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Abstract
Anti-synthetase syndrome (ASyS)-associated myositis is a major subgroup of the idiopathic inflammatory myopathies (IIM) 
and is characterized by disease chronicity with musculoskeletal, dermatological and pulmonary manifestations. One of eight 
autoantibodies against the aminoacyl-transferase RNA synthetases (ARS) is detectable in the serum of affected patients. 
However, disease-specific therapeutic approaches have not yet been established.
To obtain a deeper understanding of the underlying pathogenesis and to identify putative therapeutic targets, we comparatively 
investigated the most common forms of ASyS associated with anti-PL-7, anti-PL-12 and anti-Jo-1. Our cohort consisted 
of 80 ASyS patients as well as healthy controls (n = 40), diseased controls (n = 40) and non-diseased controls (n = 20). We 
detected a reduced extent of necrosis and regeneration in muscle biopsies from PL-12+ patients compared to Jo-1+ patients, 
while PL-7+ patients had higher capillary dropout in biopsies of skeletal muscle. Aside from these subtle alterations, no 
significant differences between ASyS subgroups were observed. Interestingly, a tissue-specific subpopulation of CD138+ 
plasma cells and CXCL12+/CXCL13+CD20+ B cells common to ASyS myositis were identified. These cells were localized 
in the endomysium associated with alkaline phosphatase+ activated mesenchymal fibroblasts and CD68+MHC-II+CD169+ 
macrophages. An MHC-I+ and MHC-II+ MxA negative type II interferon-driven milieu of myofiber activation, topographi-
cally restricted to the perifascicular area and the adjacent perimysium, as well as perimysial clusters of T follicular helper 
cells defined an extra-medullary immunological niche for plasma cells and activated B cells. Consistent with this, proteomic 
analyses of muscle tissues from ASyS patients demonstrated alterations in antigen processing and presentation. In-depth 
immunological analyses of peripheral blood supported a B-cell/plasma-cell-driven pathology with a shift towards immature 
B cells, an increase of B-cell-related cytokines and chemokines, and activation of the complement system. We hypothesize 
that a B-cell-driven pathology with the presence and persistence of a specific subtype of plasma cells in the skeletal muscle 
is crucially involved in the self-perpetuating chronicity of ASyS myositis. This work provides the conceptual framework for 
the application of plasma-cell-targeting therapies in ASyS myositis.

Keywords  Anti-synthetase syndrome · PL-7 · PL-12 · Jo-1 · Plasma cells · Pathophysiology

Introduction

The anti-synthetase syndrome (ASyS) is defined as a mul-
tiorgan disease affecting mainly skeletal muscle and lung 
parenchyma (interstitial lung disease), with a characteristic 
syndromic involvement of other internal organs (e.g., heart), 
skin (e.g., Raynaud’s phenomenon, mechanic’s hands), and 
joints [28]. Of note, patients with ASyS harbor one of eight 
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myositis-specific serum autoantibodies directed against the 
different aminoacyl-transfer RNA synthetases (ARS) that 
have so far been identified. The most frequent autoantibodies 
are directed against histidyl-, threonyl- and alanyl-transfer 
RNA synthetases, called anti-PL-1 (better known as Jo-1), 
anti-PL-7 and anti-PL-12. Particularly, lung involvement 
and the specific type of myositis have a considerable impact 
on quality of life and prognosis in affected patients. Due to 
limited data from randomized controlled trials, therapy is 
currently based on empirical usage of nonspecific immuno-
suppressive drugs [52].

Myositis-specific morphological features of the skeletal 
muscle affected in anti-Jo-1 associated ASyS were previ-
ously identified and characterized, thereby defining a distinct 
subtype of myositis [4, 47, 49, 68, 73]. These unique features 
comprise perifascicular necrosis, inflammation with major 
histocompatibility complex (MHC) expression and myonu-
clear actin inclusions. Despite progress in our understand-
ing of the morphology and ultrastructural features of ASyS, 
there remains a significant gap with respect to therapeutic 
targets and specific therapies that address the underlying 
disease pathophysiology [5, 68, 73].

The precise role in pathogenicity of ARS autoantibod-
ies in ASyS-associated myositis has not yet been fully elu-
cidated, but there is a clear association of certain disease 
manifestations including patterns of organ involvement with 
certain autoantibodies [30, 31, 67]. Anti-Jo-1 is the most 
common ARS with frequent muscle and joint involvement, 
whereas anti-PL-7- and anti-PL-12-mediated pathology pre-
dominantly affects the lung with a poorer prognosis [46]. 
Whether the distinct clinical phenotypes are related to dis-
tinct pathophysiological features remains largely unknown. 
Previous pathophysiological studies mainly focused on anti-
Jo-1-mediated ASyS. In accordance with the pathogenic role 
of anti-Jo-1, those studies have shown a correlation between 
antibody titer and disease activity and no coexistence with 
other myositis-specific antibodies [29, 48, 69]. Furthermore, 
Jo-1-induced animal models corroborated certain aspects of 
the human disease [9, 66]. Interestingly, fragments of amino-
acyl tRNA-synthetases also serve as chemokines attracting 
immune cells to sites of inflammation, further emphasiz-
ing their pathogenic role in IIMs. Immunogenicity could 
potentially originate in the lung where the autoantibodies 
are expressed in a defined structural conformation then are 
proteolytically cleaved and become immunogenic [34, 39]. 
Whether comparable pathways are operative in skeletal 
muscle has not yet been studied. Autoantibodies are pro-
duced by activated plasma cells. In contrast to T cells in 
the peripheral circulation, plasma cells reside in the bone 
marrow, and different types of cell and activation states have 
been linked to autoimmunity [16, 23, 33]. Plasma cells have 
been detected in tissues with concurrent signs of inflamma-
tion in autoimmune diseases such as in salivary glands in 

Sjögren syndrome [64], synovial fluid in rheumatoid arthri-
tis [53] and in the kidneys of lupus erythematosus patients 
[43]. More specifically, the plasma cell niche in the bone 
marrow and a ‘niche’-like home for long-term persistence in 
other organs has intensely been studied and discussed as the 
basis of several autoimmune responses in mice and humans 
[16, 32, 56, 74]. Whether similar pathogenic features can be 
found in ASyS is unclear.

Here, we study the presence of B cells and plasma cells in 
the skeletal muscle and in the blood of patients with ASyS. 
We characterize their activation status and provide a com-
prehensive description of the immunological milieu that 
constitutes defining the features of myofibers, fibroblasts 
and vascular endothelial cells in concert with the analysis of 
other immune cells. We also investigate potential differences 
in the immunopathogenic traits of several ASyS subtypes 
(anti-Jo1, anti-PL7, and anti-PL12). Our findings provide the 
basis and strongly argue for plasma cell-targeting therapies 
for this form of myositis.

Material and methods

Patients

Clinical data of all patients enrolled in this study are listed 
in Table 1. Patients were screened in participating centres. 
Patients were referred to our centres after consultation in pri-
mary or secondary care facilities. ASyS patients in this study 
were required to fulfil current ACR/EULAR criteria for 
IIM [3]. Further, diagnosis was established by clinical and 
serological data as well as results from muscle biopsies as 
recommended in 224th [5] and 239th [45] European Neuro-
muscular Centre workshops [72]. All patients were required 
to have received a muscle biopsy to verify diagnosis. A total 
of four centres participated in this study (Berlin (Germany), 
Duesseldorf (Germany), Lyon (France) and Paris (France). 
Patients were recruited from 2008 until 2019. No epidemio-
logical or clinical differences were detected between centres 
(data not shown). Clinical and demographic data is in line 
with previous reports on ASyS patients. In addition to the 
ASyS cohort, three control groups were included as follows:

•	 Healthy controls (HC, n = 40): The HC group were 
healthy individuals without known diseases. HC were 
used as control group for analysis of the peripheral 
immune response in ASyS. HC were sex- and age-
matched to ASyS patients.

•	 Diseased controls (DC, n = 40): The DC group con-
sisted of patients diagnosed with IIM other than ASyS 
(IMNM = 9, DM = 21, IBM = 10). The diagnosis was 
made according to current criteria [42]. DC patients were 
required to have no antibodies associated with ASyS. 
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Table 1   Clinical characteristics of investigated patients and controls

Jo-1 (n = 42) PL-7 (n = 18) PL-12 (n = 20) Disease control 
(n = 40)

Non-disease 
control (n = 20)

Healthy control 
(n = 40)

Mean age at 
biopsy [y]

45 ± 14 55 ± 12 51 ± 18 52 ± 21 45 ± 9 49 ± 5

Biological 
gender

♀ / ♂ 62% / 38% 50% / 50% 55% / 45% 65% / 35% 50% / 50% 50% / 50%

Additional 
antibodies*

Yes 50% 16% 50% 65% 0% 0%

No 33% 56% 40% 20% 100% 100%
Unknown 17% 28% 20% 15% 0% 0%

Creatine kinase Normal 12% 11% 5% 25% 50% 100
(CK)  < Tenfold 26% 50% 50% 20% 17% –

 > Tenfold 2% 22% 5% 10% – –
 > 30-fold 40% – 20% 12% – –
Unknown 19% 17% 20% 32% 33 –

C-reactive 
protein

Normal 48% 44% 35% 25% 67% 67%

(CRP)  < Tenfold 19% 11% 30% 30% – –
 > Tenfold 15% 11% 25% 15% – –
Unknown 19% 33% 10% 30% 33% 33%

Onset of symp-
toms

 < 1 year 26% 28% 50% 17% 33% 33%

 > 1 year 5% 22 – 26% – –
 > 5 years – – – – 17% 17%
Unknown 69% 50% 50% 16% 50% 50%

Symptoms (yes/
no/n.d)

Muscle symp-
toms

Pain 81% / 14% / 5% 56% / 33% / 
11%

80% / 20% / 
20%

58% / 29% / 
13%

67%***/ – / 
33%

–

Weakness 81% / 10% / 
10%

50% / 39% / 
11%

65% / 30% / 5% 81% / 11% / 
18%

67%***/ – / 
33%

–

Fatigue 55% / 29% / 
17%

50% / 39% / 
11%

50% / 40% / 5% 71% / 18% / 
11%

– / – / 100% – / 100% / –

Lung involve-
ment

64% / 24% / 
12%

56% / 33% / 
11%

60% / 35% / 5% 42% / 31% / 
27%

– / – / 100% – / 100% / –

Skin involve-
ment

52% / 38% / 
10%

39% / 50% / 
11%

35% / 60% / 5% 58% / 23% / 
19%

– / – / 100% – / 100% / –

Raynaud 21% / 50% / 
29%

28% / 61% / 
11%

25% / 60% / 
15%

5% / 80% / 15% 17% / – / 83% – / 100% / –

Cardiomyopathy 29% / 52% / 
19%

28% / 61% / 
11%

20% / 50% / 5% 7% / 71% / 18% – / – / 100% – / 100% / –

Arthritis 64% / 24% / 
12%

28% / 56% / 
17%

30% / 65% / 5% 13% / 57% / 
30%

– / – / 100% – / 100% / –

Fever 37% / 33% / 
52%

17% / 50% / 
33%

30% / 40% / 
30%

– / 18% / 82% – / – / 100% – / 100% / –

Dysphagia 14% / 60% / 
26%

17% / 72% / 
11%

15% / 80% / 5% 35% / 42% / 
23%

– / – / 100% – / 100% / –

Weight loss 12% / 52% / 
36%

22% / 56% / 
22%

30% / 55% / 
15%

7% / 25% / 69% – / – / 100% – / 100% / –

Neoplasm – / 83% / 17% 17% / 72% / 
11%

25% / 65% / 
20%

31% / 62% / 7% 17% / – / 83% – / 100% / –

Therapy Corticosteroids 52% 28% 45% 68% 0 0
Mean dose, mg 

(SD)
36.8 (25.5) 11.75 (18.9) 45 (37.7) 28.2 (19.1) 0 0

DMARDs
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The DC cohort served to account for treatment bias. 
DCs were used for all analyses except for proteomics as 
described below.

•	 Non-diseased controls (NDC, = 20): NDC were patients 
that underwent muscle biopsy for diagnostic purposes 
but without any indication of inflammatory muscle dis-
ease, e.g., they had suffered from myalgia, but objec-
tive muscle weakness and morphological abnormalities 
on skeletal muscle biopsy were absent. CK levels were 
normal and no signs of systemic inflammation and no 
myositis-specific antibodies (MSA) or myositis-associ-
ated antibodies (MAA) were detectable. NDC were used 
as the control group for the analysis of changes to skeletal 
muscle in ASyS. NDC were sex- and age-matched to 
ASyS patients.

Overall, this study included 80 ASyS, 40 HC, 40 DC and 
20 NDC. The individual number of patients is given in each 
experimental section. Informed consent was obtained from 
all patients and ethical approval was granted by the Charité 
ethics committee (EA2/163/17), as well as the local ethi-
cal committees in Düsseldorf and Essen (Düsseldorf: AZ 
2021–1417, Essen: 19–9011-BO).

Skeletal muscle specimens

In this study, we analyzed biopsied skeletal muscle, periph-
eral blood mononuclear cells and serum derived from ASyS 
patients and NDCs. All skeletal muscle specimens had been 
cryopreserved at  – 80 °C prior to analysis.

Availability and quality of material led to inclusion/exclu-
sion of individual patients, depending on the analysis.

Morphological analysis

All stains were performed on 8  µm cryostat sections, 
according to standard procedures. Immunohistochemical 
and double immunofluorescence reactions were carried out 
as described previously [57]. We used irrelevant antibody 
stains (either mouse/rabbit monoclonal/ polyclonal isotype 
controls) as negative controls, as well as omission of the 
primary antibody. The following antibodies were used for 
staining procedures:

APRIL (Abcam, polyclonal, 1:100), BAFF (Abcam, clone 
Buffy 2, 1:100), C5b-9 (DAKO, clone aE11, 1:200), CD4 
(Zytomed, clone SP35, 1:100), CD8 (DAKO, clone 144B, 
1:100), CD20 (DAKO, clone L26, 1:200), CD68 (DAKO, 
clone EBM1, 1:100), CD90 (Dianova, clone AS02, 1:100), 
CD138 (DAKO, clone MI15, 1:30), CD169/Siglec1 (Mil-
lipore, clone 5F1.1, 1:50), CXCL12 (R&D Systems SDF-1 
MAb79018, 1:100), CXCL13 (R&D Systems, polyclonal, 
1:100), CXCR4 (Abcam clone UMB2, 1:50), MHC-cl. I 
(DAKO, clone W6/32, 1:1000), MHC-cl. II (DAKO, clone 
CR3/43, 1:100), MyHC dev (Novocastra, clone NB-MHCd, 
1:5), and MyHC neo (Novocastra, clone NB-MHCn, 1:20), 
PD1 (Abcam, clone NAT105, 1:100). Secondary antibodies 
for peroxidase (POD) staining: POD Goat Anti-Mouse or 
POD Goat Anti-Rabbit (Dianova, 1:100). Secondary anti-
bodies for immunofluorescence: in general, AF488 com-
bined with Cy3, AF568 and labeling of nuclei through DAPI 
containing liquid mounting medium. Antibodies: Goat Anti-
Rabbit Alexa Fluor® 488, Goat Anti-Mouse Alexa Fluor® 
488, Goat Anti-Mouse AF568, Goat Anti-Rabbit Cy3, or 
Goat anti-mouse Cy3 (all Dianova, 1:100).

For electron microscopy (EM), diagnostic muscle sam-
ples were processed as previously described [22]. Entire 
ultrathin sections with the near-absence of limiting arti-
facts (large-scale digitization samples; LDS) of resin 
blocks were prepared and digitized with a Zeiss Gemini 

* Additional antibodies included: anti-neutrophil cytoplasmic+ (ANCA), anti-ALAT+, anti-ASAT+, anti-CCP+, anti-NSMAF+, anti-Ro52+, anti-
Ro60+, anti-SS-A+, anti-TPO
** One NDC had one measurement with a 2.8-fold increase; however, all others were normal
*** Symptoms were subjective; in muscle biopsies no irregularities were found and no immune reactions and no signs of inflammation. CK levels 
were normal and no MSA or MAA were detected

Table 1   (continued)

Jo-1 (n = 42) PL-7 (n = 18) PL-12 (n = 20) Disease control 
(n = 40)

Non-disease 
control (n = 20)

Healthy control 
(n = 40)

– Naïve 59% 68% 75% 52% 0% 0%
– Azathioprine 5% 11% 0% 11% 0% 0%
– MMF 5% 0% 10% 0% 0% 0%
– MTX 17% 5% 5% 25% 0% 0%
– Cyclophos-

phamide
0% 11% 5% 0% 0% 0%

– Other 14% 5% 5% 12% 0% 0%
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300 field-emission scanning electron microscope (Zeiss, 
Oberkochen, Germany), equipped with a scanning trans-
mission electron microscopy detector (STEM) and Atlas 
5 software (Fibics) with a scanning transmission electron 
microscopy detector (STEM) [22].

Scores and cell counts

For further evaluation, a semi-quantitative score, as estab-
lished previously [10], was used to rate the biopsies. The 
biopsies were blinded for scoring, with autoantibody status, 
age, sex or any other parameter not possible to identify from 
the label. The scoring was performed in randomly distrib-
uted 10 high power fields (HPF, based on the microscope 
used and the respective oculars ≙ 0.16 mm2), by four myo-
pathologists (WS, HHG, CP, BP) leading to a mean over-
all severity score (1 = minimally affected and 10 = strongly 
affected). For this we rated the following multiple features:

Atrophy, necrosis, and regeneration each: 0 = absent, 
1 = low, 2 = medium, 3 = strong. Perifascicular fragmenta-
tion: 0 = absent, 1 = seldom, perimysial, 2 = distinct, perimy-
sial, 3 = peri-/endomysial. Perifascicular fibrosis and cap-
illary enlargement, each 0 = absent, 1 = present. Capillary 
dropout: 0 = absent, 1 = present, singular, 2 = present, only 
perifascicular, 3 = present in multiple areas, extensive in 
whole fascicle. Upregulation of MHC I and MHC II, 0 = no 
staining; 1 = single fibers; 2 = perifascicular fibers, 1–2 cell 
layer; 3 = extensively in whole fascicle, > 2 cell layer. C5b-9 
deposits: 0 = no deposits on sarcolemma; 1 = minimal num-
ber of deposits on sarcolemma; 2 = intermediate number 
of deposits; 3 = high number of deposits in whole fascicle. 
Immune cells (CD68, CD8, CD20 and CD138) were counted 
in ten HPF, which were evaluated per biopsy and the mean 
provided a score according to: 0 = no cells; 1 = single cells 
(1–4); 2 = 5–20 cells; 3 = cluster and/or > 20 cells.

Quantitative reverse transcription PCR (qRT‑PCR)

Total RNA was extracted from muscle specimens using a 
described previously technique [57]. Briefly, cDNA was 
synthesized using the High-Capacity cDNA Archive Kit 
(Applied Biosystems, Foster City, CA). For qPCR reac-
tions, 10–20 ng of cDNA were used, and for subsequent 
analysis the 7900HT Fast Real-Time PCR System (Applied 
Biosystems, Foster City, CA) was utilized with the follow-
ing running conditions: 95 °C 0:20, 95 °C 0:01, 60 °C 0:20, 
45 cycles (values above 40 cycles were defined as “not 
expressed”). All targeted transcripts were run as triplicates. 
For each of these runs, the reference gene PGK1 has been 
included as internal control to normalize the relative expres-
sion of the targeted transcripts. The qPCR assay identifica-
tion numbers, TaqMan® Gene Exp Assay from Life Technol-
ogies/ ThermoFisher are listed as follows: APRIL/TNFS13 

Hs00182565_m1, BAFF/TNFSF13B Hs00198106_m1, 
CCR7 Hs01013469_m1, CXCL12 Hs03676656_mH, 
CXCR4 Hs00607978_s1, CXCL13 Hs00757930_m1, CXCR5 
Hs00540548_s1, IL6 Hs00985639_m1, IFNG Hs00989291_
m1, TNFA Hs00174128_m1, IL1B Hs01555410_m1, STAT1 
Hs01013989_m1, PGK1 Hs99999906_m1. The ΔCT of 
NDCs was subtracted from the ΔCT of ASyS patients’ mus-
cles to determine the differences (ΔΔCT) and fold change 
(2^-ΔΔCT) of gene expression. Gene expression was illus-
trated by the log10 of fold change values compared to NDCs.

Flow cytometry

Cryopreserved peripheral blood mononuclear cells (PBMCs) 
from ASyS patients and sex- and age-matched healthy con-
trols were thawed and stained with distinct sets of fluoro-
chrome-conjugated antibodies (Supplementary Table 1). 
For intracellular staining, cells were treated with Fixation/
Permeabilization solution (eBiosciences) for 20 min, subse-
quently washed with Permeabilization buffer (eBiosciences), 
and finally incubated with antibodies directed against intra-
cellular target molecules of interest.

To investigate the capacity to produce cytokines, PBMC 
were rested overnight in X-Vivo 15 (Lonza) and subse-
quently stimulated with LAC (leukocyte activation cock-
tail, PMA, Ionomycin, Brefeldin A, BD Biosciences) for 4 h 
(h) prior to extra-cellular staining for lineage markers and 
intracellular staining for cytokines (for staining panels see 
Supplementary Table 1).

Flow-cytometric data were analyzed using Kaluza 2.1 
Analysis Software (Beckman Coulter). Immune cell sub-
sets were defined by the gating strategies outlined in Sup-
plementary Table 2.

Bead array for soluble factors

Concentrations of soluble factors (APRIL, BAFF, CD40L, 
CXCL12, IL-4, IL-6, IL-10, IL-13, IL-21, IFNγ, TNFα) 
in the serum of patient samples were analyzed by a LEG-
ENDplex™ Multiplex Assay with a custom panel as per the 
manufacturer’s instructions.

Multiplex analysis of complement factors

A multiplex ELISA based on chemiluminescence was used 
according to the manufacturer’s recommendations (Quidel 
Corporation, San Diego, CA, USA) to systematically profile 
complement proteins in serum samples as described previ-
ously [21]. Cut-offs were defined according to the manufac-
turer’s instructions.
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Muscle preparation for proteomics analysis

Lysis of the muscle samples was performed by adding 200 µl 
of 50 mM Tris–HCl (pH 7.8) buffer containing 5% SDS, and 
cOmplete ULTRA protease inhibitor (Roche). Samples were 
placed into the Bioruptor® (Diagenode) for 10 min (min) 
(30 s on, 30 s off, 10 cycles) at 4 °C. To ensure complete 
lysis, an additional sonication step with an ultra-sonic probe 
(30 s, 1 s/1 s, amplitude 40%) followed by centrifugation 
at 4 °C and 20,000 g for 15 min was conducted. Protein 
concentration was determined by BCA assay according to 
the manufacturer’s protocol. Reduction of disulfide bonds 
was done by addition of 10 mM TCEP at 37 °C for 30 min, 
and free sulfhydryl bonds were alkylated with 15 mM IAA 
at room temperature (RT) in the dark for 30 min. In total, 
100 µg protein of each sample was taken for proteolysis 
using the S-Trap protocol (Protifi) and using a trypsin to 
protein ratio of 1:20. Digestion was conducted for 2 h at 
37 °C. Proteolysis was stopped using FA to acidify the sam-
ple (pH < 3.0).

Complete digestion was checked for all proteolytic sam-
ples after desalting by using monolithic column separation 
(PepSwift monolithic PS-DVB PL-CAP200-PM, Dionex) 
on an inert Ultimate 3000 HPLC (Dionex, Germering, Ger-
many) by direct injection of 1 μg sample. A binary gradient 
(solvent A: 0.1% TFA, solvent B: 0.08% TFA, 84% ACN) 
ranging from 5 to 12% B in 5 min and then from 12 to 50% 
B in 15 min at a flow rate of 2.2 μL/min and at 60 °C was 
applied. UV traces were acquired at 214 nm [15].

Data independent acquisition liquid 
chromatography mass‑spectrometry/
mass‑spectometry analysis (DIA LS‑MS/MS)

All samples were analyzed using an UltiMate 3000 RSLC 
nano UHPLC setup coupled to a QExactive HF mass spec-
trometer by loading a total amount of 1 µg peptide per sam-
ple. The samples were first transferred to a 75 µm × 2 cm, 
100 Å, C18 pre column with a flow rate of 10 µl/min for 
20 min followed by a separation on the 75 µm × 50 cm, 
100 Å, C18 main column with a flow rate of 250 nl/min 
and a linear gradient consisting of solution A (99.9% water, 
0.1% formic acid) and solution B (84% acetonitrile, 15.9% 
water, 0.1% formic acid), where the pure gradient length 
was 120 min (3–45% solution B). The gradient was set up 
as follows: 3% solution B for 20 min, 3–35% for 120 min, 
followed by 3 washing steps each ranging to 95% buffer B 
for 3 min. After the last washing step, the instrument was 
allowed to equilibrate for 20 min. The acquisition of MS 
data was conducted in DIA (data independent acquisition) 
mode using a spectral library built in-house. An appropri-
ate amount of iRT standard (Biognosys) was added to each 
sample analyzed. Full MS scans were acquired from 300 

to 1100 m/z at a resolution of 60,000 (Orbitrap) using the 
polysiloxane ion at 445.12002 m/z as lock mass. The auto-
matic gain control (AGC) was set to 3E6 and the maximum 
injection time to 20 ms. Full MS scans were followed by 23 
DIA windows, each covering a range of 28 m/z with 1 m/z 
overlap, starting at 400 m/z, acquired at a resolution 30,000 
(Orbitrap) with an AGC set to 3E6 and nCE of 27 (CID).

Analysis of DIA data

Samples acquired with nano-LC–MS/MS in DIA mode were 
analyzed by introducing the data to the Spectronaut software 
(Biognosys) and analyzed with a library-based search. As 
the library, spectral library built in-house was used. Search 
and extraction settings were kept as standards (BGS Factory 
settings). As proteome background the human proteome data 
were selected from UniProt (www.​unipr​ot.​org) containing 
20,374 entries. For reliable label-free quantification, only 
proteins identified with ≥ 2 unique peptides were considered 
for further analysis. Normalized relative intensities were 
obtained by Spectronaut and averages were calculated for 
each protein to determine the ratios between patient muscle 
samples and their respective controls. To investigate interac-
tive networks, protein–protein interactions were visualized 
using STRING v11.5 (string-db.org).

Statistical analysis

Since this is an exploratory and descriptive study, sample 
sizes are not based on a priori power calculation, but based 
on previous studies.

Data are presented as the median ± IQR unless otherwise 
indicated. Differences between two groups were examined 
by the Mann–Whitney U test. The Kruskal–Wallis test fol-
lowed by the Bonferroni-Dunn correction for multiple com-
parisons was used to assess differences between multiple 
groups (n > 2). One-way analysis was performed using the 
Kruskal–Wallis one-way analysis of variance with Dunn’s 
multiple comparison test. Volcano plots were constructed 
by plotting log2 values of the relative difference between 
the median against the  – log10 p-values. Cut-off values were 
applied as indicated. Gene Set Enrichment Analysis (GSEA) 
was performed for proteomics data using the R package 
WebGestaltR (v0.4.4 [40]). The level of significance was 
set at p < 0.05. GraphPad Prism 8.4.3 software (GraphPad 
Software, Inc., La Jolla, CA, USA) was used for statistical 
analysis.

http://www.uniprot.org
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Results

Clinical description of anti‑Jo‑1, ‑PL‑7 and ‑PL‑12 
autoantibody positive ASyS patients

80 patients with ASyS were included in this study. In 52.5% 
(n = 42) of cases, anti-Jo-1-autoantibodies were detected, 
followed by 22.5% (n = 18) anti-PL-7- and 25% (n = 20) anti-
PL-12-autoantibodies. To elucidate potential clinical differ-
ences between serological subgroups, we analyzed clinical 
data according to the associated autoantibody status.

62% (26 patients) of anti-Jo-1+ and 55% (11 patients) 
of anti-PL-12+ patients were female, while in anti-PL-7+ 
patients there was an equal proportion of each gender 
(50:50). The mean age at time of biopsy did not differ sig-
nificantly between the subgroups (Jo-1+ 45y ± 14y, PL-7+ 
55y ± 12y, PL-12+ 51y ± 18y). CK levels varied among 
patients, with higher levels in anti-Jo1+ patients when com-
pared to -PL-7+ and -PL-12+ patients (40% > tenfold vs. 20% 
/ 25% > tenfold).

The presence of myalgia was more prevalent in anti-Jo-1+ 
(81%) and -PL-12+ (80%), when compared to anti-PL-7+ 
patients (56%). Anti-PL-7+ and -PL-12+ were associated 
with less skin involvement (PL-7 40% vs. PL-12 35% vs. 
Jo-1 52%) and arthritis (PL-7 28% vs. PL-12 30% vs. Jo-1 
64%) compared to Jo-1+ patients. Additional symptoms 
comprised of fever, weight loss or heart involvement in a 
subset of patients. No neoplasms were detected the Jo-1+ 
patients, whereas neoplasms were found in 17–27% of par-
ticipants in the other groups. Across all subgroups, patients 
were most often treatment-naïve for standard immunosup-
pressants. Approximately half of anti-Jo-1+ and anti-PL-12+ 
patients were treated with corticosteroids with a mean dose 
of 36.8 (25.5) mg and 45.0 (37.7) mg, respectively. 28% 
of anti-PL-7+ patients received corticosteroids with a mean 
dose of 11.75 (18.9) mg. None of the patients received 
B cell-depleting therapies. Further, we included a group 
of NDC (n = 20). This group was defined as controls that 
received muscle biopsy without indication of inflammatory 
muscle disease as described above. To account for treat-
ment as a confounding factor, e.g., corticosteroids, we also 
included DC patients (n = 40). This group was recruited from 
non-specified myositis and DM patients who had evidence 
of inflammatory muscle disease. Importantly, this group was 
comparable in terms of treatment as 68% of patients received 
glucocorticoids with a mean dosage of 28.2 (19.1) mg. In 
this group, MSA other than anti-synthetase antibodies were 
detected, e.g., Mi-2, NXP2 or TIF1-γ. Clinical characteris-
tics are given in Table 1.

Overall, clinical signs and symptoms of our cohort reca-
pitulate what has been previously reported in the literature 

[30], which demonstrates that this cohort is a representative 
group of patients with ASyS-associated myositis.

Blood analysis of cellular and soluble compartment 
reveals pronounced B cell related immune 
responses in ASyS

To characterize the immunological phenotype of ASyS, 
different immune cell subsets of peripheral blood mononu-
clear cells and soluble inflammatory factors in the serum 
were investigated. For analysis of the peripheral immune 
response, we analyzed ASyS (n = 36), HC (n = 40) and DC 
(n = 40). We performed analysis of PBMCs to obtain flow 
cytometric data on immune cell composition. For soluble 
factors, we employed both bead arrays and multiplex analy-
sis to investigate serum levels. At the cellular level, a subtle 
reduction in lymphocytes counts with similar granulocyte 
and monocyte levels were detected in ASyS and DC com-
pared to HCs (Fig. 1a). In the lymphocyte compartment, 
frequencies of CD4+, CD8+ T, B and NK cells were compa-
rable across groups (Fig. 1b). In contrast, further differentia-
tion of subset composition revealed pronounced alterations 
in the B cell compartment in ASyS compared to HCs and 
DCs. Naïve B cell populations were significantly expanded, 
whereas mature B cell subsets (class-switched, marginal 
zone and IgM only memory B cells) were decreased in ASyS 
(Fig. 1c, Supplementary Fig. 1a). This effect was less pro-
nounced compared to DCs. Plasma cells were not detected in 
the blood of ASyS patients or control groups. In the CD4+ T 
cell compartment, cellular subsets including naïve and mem-
ory CD4+ T cells were comparable across groups (Fig. 1c, 
Supplementary Fig. 1b, c). Further, reduced proportions of 
T helper 1 (TH1) and recent thymic emigrant regulatory T 
cells (RTE-Treg) were detected in ASyS compared to HCs, 
whereas Tfh cells were expanded compared to DCs and 
recent thymic emigrant regulatory T cells (RTE-Treg) were 
decreased compared to HCs. CD8+ T and NK cell subsets 
demonstrated a similar distribution across groups (Fig. 1c, 
Supplementary Fig. 1d, e). In accordance with the marked 
alterations detected in the B cell compartment, increased 
serum concentrations of several soluble factors related to B 
cell activation, proliferation and maturation (APRIL, BAFF, 
IL-4, IL-6, IL-13, IL-21, sCD40L [60]) were detected, as 
well as evidence of CXCL12-mediated B cell migration [60, 
75] (Fig. 1d, Supplementary Fig. 1f) in ASyS patients. This 
change was less pronounced when compared to DC patients. 
As antibodies are supposed to be essentially involved in the 
pathogenesis of ASyS and essential for classical comple-
ment activation, serum concentrations of different comple-
ment factors were evaluated. In comparison to HCs and 
DCs, higher levels of C4a, C3a and the regulatory Factor 
H and Factor I were observed, whereas Ba, Bb, C5a and 
soluble C5b-9 levels were similar between groups (Fig. 1d, 
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Supplementary Fig. 1 g, Supplementary Table 3). Regarding 
T cell-related cytokines, increased concentrations of IL-10, 
IL-21, IFN-γ and TNF-α in the serum of AsyS patients could 
be detected compared to HCs but not DCs (Fig. 1d, Sup-
plementary Fig. 1 h). Taken together, we observed marked 
alterations of the peripheral immune response in ASyS. At 
the cellular level, a pronounced B cell response was evident, 

with both soluble B and T cell factors aberrant in ASyS. 
In addition, multiple complement factors were elevated in 
ASyS compared to HCs and DCs. To assess the potential 
influence of glucocorticoids on the peripheral immune 
response, we divided our ASyS cohort according to those 
who did (n = 17) or did not (n = 19) receive glucocorticoid 
treatment. Comparing these two groups, we observed only 

Fig. 1   Immune cell profiling of the peripheral blood from ASyS 
patients demonstrates predominant alterations in the B cell compart-
ment. Changes to peripheral immune cell subsets analyzed by flow 
cytometry for the leukocyte compartment (a) and the lymphocyte 
compartment (b) of ASyS (n = 36), and HC (n = 40) and DC (n = 40). 
In-depth analysis of the cellular immune compartment was per-
formed by flow cytometry (c). Relative cell numbers were compared 
between ASyS, HC and DC for the corresponding immune cell com-
partments. Analysis of soluble factors was performed by bead array 
and multiplex immunoassay (d). Serum levels of soluble factors were 

compared between ASyS, NDC and DC as indicated. The heatmap 
indicates the normalized group mean as color code. Significance is 
indicated for the comparison ASyS vs. HC and for ASyS vs. DC in 
each row, respectively. Also see suppl. Figure 1 for detailed compari-
son of the peripheral immune response. Differences between groups 
were analyzed using the Kruskal–Wallis test followed by the Bonfer-
roni-Dunn correction for multiple comparisons. *p < 0.05. ASyS  Anti-
synthetase syndrome, CM central memory, EM effector memory, 
NDC non-diseased control, RTE recent thymic emigrates
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subtle effects consistent with the known effects of glucocor-
ticoids on immune cell composition (Supplementary Fig. 2). 
Lymphocyte and monocyte numbers were decreased in glu-
cocorticoid-treated patients, while the number of immature 
B cells was slightly increased.

Blood analysis of cellular and soluble compartment 
demonstrates subtle differences in ASyS 
autoantibody subtypes

Next, we aimed to dissect patterns of immunological altera-
tions in relation to serological subgroups. Therefore, we 

investigated alterations in the parameters stated above 
that distinguished ASyS from NDCs. In many aspects, the 
patterns were similar among the three ASyS subgroups. 
However, blood-derived parameters were the most similar 
between anti-Jo1 and anti-PL7 ASyS (Fig. 2a). At the cel-
lular level, all subgroups were highly similar (Fig. 2a–d). In 
contrast, of the soluble immune parameters, the observed 
patterns in anti-PL-7 and anti-Jo-1 ASyS were indicative of 
stronger B cell responses and complement activation com-
pared to anti-PL-12. However, the differences reached statis-
tical significance only for single parameters (Fig. 2b–d). In 
conclusion, the different serological subgroups demonstrated 

Fig. 2   Immune profiles demonstrate subtle differences between sero-
logical ASyS subgroups. In-depth immune analyses as performed in 
Fig.  1 were compared for serological ASyS subgroups: anti-Jo-1+ 
(n = 22), PL-7+ (n = 8) and PL-12+ (n = 6). Heatmap displaying 
changes to cellular and soluble factors for serological subgroups (a). 
Data is displayed as median with normalization to the row mean. 
Two-sided comparison between subgroups is displayed as bar graph 

(b, c, d) with log2 fold change of the median on the y-axis. Signifi-
cant differences between groups are indicated. Differences between 
groups were analyzed using the Kruskal–Wallis test followed by the 
Bonferroni-Dunn correction for multiple comparisons. The level of 
significance was set to p < 0.05. *p < 0.05, **p < 0.01. CM central 
memory, EM effector memory, RTE recent thymic emigrates
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only subtle differences in their cellular and non-cellular 
blood immune phenotype.

Skeletal muscle pathology is similar 
among autoantibody subtypes in ASyS‑associated 
myositis

Aside from clinical and blood-derived data, we quantified 
morphological features such as atrophy, necrosis, regenera-
tion, sarcolemmal MHC expression and cell infiltration by 
assessment of different immune histological stains. Regard-
ing the overall severity score, there were no significant dif-
ferences among subgroups (Fig. 3a). However, upon further 

analysis, higher level of necrosis and regeneration could be 
observed in Jo1+ patient’s muscles, without reaching sta-
tistical significance (Fig. 3b). Loss of capillaries was pro-
nounced in the muscles of anti-PL-7+ patients (Fig. 3c).

Up-regulation of MHC-I was strong and found in all 
patients with ASyS (Fig. 3d, e), as was expression of MHC-
II, pronounced in the perifascicular areas, clearly separat-
ing AsyS patients from those with other forms of myositis 
and indicating type I and type II interferon responses within 
the muscle. Only single anti-PL-12+ patients were negative 
for MHC-II (Fig. 3f, g). Consistent with this, we detected 
significantly upregulated gene expression of IFNG, TNFA, 
IL6, IL1B and STAT1, which indicate a prominent type II 

Fig. 3   Muscle morphological features of ASyS were similar between 
serological ASyS subgroups. Analysis of skeletal muscle biopsies 
by immunohistochemistry (a, b, c, e, g, i). Muscle morphology was 
quantified and compared between subgroups by semi-quantitative 
score. Muscle biopsies from anti-Jo-1+ (n = 10), PL-7+ (n = 6) and 
PL-12+ (n = 8) patients were analyzed. Representative muscle biop-

sies are displayed (d) for C5b-9, MHC-cl. I and MHC-cl. II for sero-
logical subgroups. Scale bar 100  µm. Differences between groups 
were analyzed using the Kruskal–Wallis test followed by the Bonfer-
roni-Dunn correction for multiple comparisons. The level of signifi-
cance was set to p < 0.05. *p < 0.05. cl. = class 
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interferon response in the skeletal muscles of all three sub-
groups (Supplementary Fig. 3). In accordance with this, we 
detected significantly increased concentrations of IFNγ and 
TNFα in the sera of ASyS patients compared to those of 
NDC (Supplementary Fig. 1 h).

Sarcolemmal deposition of the C5b-9 complex, indicat-
ing activation of terminal complement, was found in around 
50% of ASyS patients, whereby amount of deposition varied 
between and within subgroups (Fig. 3h, i). Jo-1+ patients had 
higher scores than PL-7+ or PL-12+ patients, but this did not 
reach statistical significance.

In summary, the general pathology of patients’ biopsied 
muscles with ASyS-associated myositis was similar between 
antibody subgroups [24, 47, 68].

Proteomic analysis of skeletal muscle indicates 
increased antigen presentation and processing 
and disturbed muscle homeostasis in ASyS patients

Aiming to further dissect the immunogenic milieu of skel-
etal muscle, proteomic profiling of muscle biopsies from 
NDCs and ASyS patients was applied. The comparison of 
proteomic signatures revealed a pattern of proteins elevated 
in ASyS responsible for antigen presentation and processing, 
particularly members constituting the MHC class I complex 
(Fig. 4a). Concurrently, myosin-14 (MYH14) was decreased 
in ASyS. Analysis of functional pathways demonstrated the 
immunogenic properties of skeletal muscle and further sup-
ported that proteins for antigen processing and presentation 
were significantly enriched in ASyS (Fig. 4b). Additionally, 
pathways for the cellular components and molecular func-
tions were identified. A number of protein pathways respon-
sible for the maintenance of skeletal muscle homeostasis 
were decreased in ASyS, including the respiratory chain, 

Fig. 4   Proteomic profiling identifies for enhanced antigen-processing 
and presentation in skeletal muscle of ASyS patients. Analysis by 
proteomic profiling of muscle biopsies from ASyS patients (n = 20) 
and NDC (n = 20) displayed as volcano plot (a). Volcano plots were 
constructed by calculating the log2 fold change of the median and 
the -log10 p-value. The log2 fold change and p-value cutoff are indi-
cated. Differentially expressed proteins are bold. Functional pathways 

were assessed by gene set enrichment analysis for biological pro-
cesses, cellular components and molecular functions (b). The signifi-
cance level was set to the FDR-adjusted p < 0.05. Statistical analysis 
was performed using the Mann–Whitney test (unpaired compari-
sons). ASyS Anti-synthetase syndrome, NDC  non-diseased control, 
B2M  beta2-microglobulin, FDR  false discovery rate, HLA  human leu-
kocyte antigen, MYH14  myosin-14
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extracellular matrix and glycosaminoglycan binding. In-
depth analysis of proteins associated with antigen presenta-
tion and processing using STRING analysis revealed that 
in addition to MHC class I, antigen processing is driven 
by the 20 s proteasome and the AP2 adaptor complex in 
ASyS (Supplementary Fig. 4a). Expression of calreticulin 
(CALR) and Protein Disulfide Isomerase Family A Member 
3 (PDIA3), belonging to the MHC class I, were corroborated 
on protein level using immunohistochemistry (Supplemen-
tary Fig. 4b, c). Both proteins contribute to formation of 
MHC class I [27, 59]. In line with our previous analysis of 
ASyS autoantibody subtypes, proteomic profiling of skeletal 
muscle revealed no meaningful differences between Jo-1+, 
PL-7+ or PL-12+ subtypes (Supplementary Fig. 5). Thus, 
proteomic analysis supports an antibody-mediated pathol-
ogy in ASyS.

ASyS‑associated myositis is characterized by strong 
macrophage infiltration as well as B cell / plasma 
cell clusters

A distinct feature of ASyS is the specific infiltration of 
immune cells into the muscle tissue orchestrating the inflam-
matory response. Therefore, we analyzed the muscle-infil-
trating immune cells and their location within the muscle by 
histology and semi-quantitative analyses. First, these analy-
ses revealed a prominent invasion of the perimysium and the 
adjacent endomysial areas by CD68+CD169+ macrophages, 
with these being the most frequent invading immune cells 
(Fig. 5a, b). T cells were predominantly observed in the per-
imysial areas. CD8+ T cells were found most abundantly in 
anti-Jo-1+ patients (Fig. 5c, d). Of note, we identified an 
ample number of CD20+ B cells (Fig. 5e, f) and CD138+ 
plasma cells (Fig. 5g, h), again predominantly in the per-
imysium, extending into the endomysium, mostly in clusters, 
which are rare in other forms of myositis. Thus, cellular 
infiltrates were similar between the serological subgroups. 
In all subgroups, we found characteristic perimysial B cells/
plasma cells.

Skeletal muscle perimysium produces a specific 
immune micro milieu for B cells and plasma cells 
in ASyS

Based on those specific B cell/plasma cell patterns in ASyS 
muscle, we next investigated the humoral immune response 
and the immune micro milieu in detail. Therefore, we ana-
lyzed the expression of chemoattractants involved in homing 
of certain B cell and plasma cell subtypes within the skeletal 
muscle biopsies. We observed that CXCL12 and the respec-
tive chemokine receptor CXCR4 were all expressed on 
monocytic cells in the inflammatory infiltrate of the skeletal 
muscles of all three ASyS subtypes (Fig. 6a, Supplementary 

Fig. 6a, b). CXCL12 co-expression was detected in CD68+ 
macrophages, CD4+ and CD8+ T cells and CD20+ B cells 
(Fig. 6d, e, Supplementary Fig. 6a), while CXCL13 was co-
expressed by CD68+ macrophages, CD8+ T cells and CD20+ 
B cells (Fig. 6b, f, Supplementary Fig. 6c). Neither gene 
expression of CCR7 nor CXCR4 was elevated in ASyS or 
IMNM patients (an acute inflammatory myopathy serving 
as DC) compared to NDC, while CXCL12 expression was 
elevated in PL-7+ patients when compared to Jo-1+ patients 
(Fig. 6i). In addition, expression of CXCL13 was increased 
by more than 1.5-fold in all subgroups, reaching significance 
in all ASyS patients compared to NDC, as well as in Jo-1+ 
patients compared to DC (Fig. 6j). Expression of its receptor 
CXCR5 was not increased in ASyS patients vs. NDC, but 
PL-12+ patients had significantly more CXCR5 expression 
than DC (Fig. 6j). No significant up-regulation of APRIL and 
BAFF was detected in any of the groups (Fig. 6k), which are 
pivotal for survival and homing of plasma cells. However, 
strong expression of those factors was detectable instead at 
the protein level (Fig. 6c, d). BAFF expression was observed 
in CD20+ B cells, but not in CD138+ plasma cells (Fig. 6h, 
Supplementary Fig. 6e). However, expression of APRIL 
could not be detected in these cells (Fig. 6g, Supplementary 
Fig. 6d), but in macrophages and monocytes instead (e.g., 
CD4+ T cells, Supplementary Fig. 6d). Generally, those B 
cell / plasma cell factors were predominantly found in the 
perimysium extending into the endomysium. Additionally, 
corresponding stains were performed on skeletal muscle tis-
sue of DC patients, demonstrating markers being expressed 
by the same immune cells. However, since quantification of, 
e.g., B cells revealed lower numbers in IMNM patients, the 
overall abundance of the respective chemokines/receptors 
was less relevant than in muscle tissue from ASyS patients 
(Supplementary Fig. 7).

In conclusion, the skeletal muscle of ASyS patients pro-
vides a specific micro milieu for B cell / plasma cell homing, 
survival and maturation.

Endomysial AP positive fibroblasts, macrophages 
and muscle fibers form a plasma cell niche in ASyS 
patients

We further characterized the cellular micro milieu in the 
skeletal muscle interstitial tissues using electron microscopy 
(EM) and histology. EM demonstrated plasma cells (PC) 
with typical eccentric nuclei and rough endoplasmic retic-
ulum-rich cytoplasm, closely intermingled with fibroblast 
(F) processes and cell bodies. A larger cell with a slightly 
darker appearance, intracytoplasmic vacuoles and small 
cytoplasmic protrusions resembles a macrophage (MP) 
(Fig. 7a). The area shows strong alkaline phosphatase (AP) 
staining (Fig. 7b), whereby part of this reaction is due to 
AP-positive CD90+ fibroblasts (Fig. 7a, c). Fibroblasts are 
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located in close proximity to macrophages (Fig. 7d), which 
are numerous and (partially) CD68 and CD169 (Siglec-1) 
double-positive (Fig. 7e). Additionally, various T cells were 
identified (Fig. 5c). Myofibers predominantly in the perifas-
cicular areas were positive for MHC-I and -II (Fig. 3d, f), 
indicating an additional type II interferon response within 
the muscle, which is relevant in the context of plasmablast 
signaling. There was no specific endothelial capillary or 
arteriolar association with the plasma cells/plasmablasts. 
However, single CD4+CXCR4+ T cells and interestingly also 
CD4+PD1+CXCR4+ Tfh cells were also found in these areas 
[76, 77]. Local enrichment of Tfh supports the hypothesis of 

a supportive immunological niche for the plasma cells and 
activated B cells in perimysial areas.

Discussion

In this study, the major three subgroups of ASyS-associated 
myositis, anti-PL-1 (Jo-1), -PL-7 and -PL-12 autoantibody-
associated ASyS, demonstrated overlapping pathological 
features in one of their target organs, the skeletal muscle. 
Of note, we identified a highly specific immune pheno-
type in  situ, characterized by presence of plasma cells/

Fig. 5   Macrophage-rich infiltrates with B cell/plasma cell clusters are 
characteristic for ASyS-associated myositis. Representative immu-
nohistochemical stains of muscle biopsies from anti-Jo-1+ (n = 10), 
PL-7+ (n = 6) and PL-12+ (n = 8) patients for CD68, CD8, CD20 and 
CD138 (a). Scale bar 100  µm. Prominent invasion by CD68+ mac-
rophages and T cells into the perimysium and the adjacent endomy-
sial areas was observed. Muscle morphology was quantified and com-

pared between subgroups by semi-quantitative score. Representative 
muscle biopsies are displayed (d) for C5b-9, MHC-cl. I and MHC-cl. 
II for serological subgroups. Scale bar 100 µm. Differences between 
groups were analyzed using the Kruskal–Wallis test followed by Bon-
ferroni-Dunn correction for multiple comparisons. The level of signif-
icance was set to p < 0.05. *p < 0.05. ASyS Anti-synthetase syndrome, 
NDC non-diseased control
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plasmablasts as well as Tfh clusters within the perimysium/
perimysial areas of affected skeletal muscle and aberrant 
B cell pathology within the blood. Presence of those cells 
in the muscle was associated with a micro milieu that pro-
vides homing and survival factors, which are expressed by 
activated mesenchymal AP+ fibroblasts, associated lympho-
monocytic cells and MHC-I+ and -II+ myofibers express-
ing type I and type II interferons mostly at the rim of the 
muscle fascicle. Our findings in peripheral blood support 
a strong type II interferon response. Muscle proteomics 
revealed enhanced antigen processing and presentation in 
ASyS patients. Thus, we hypothesize that the skeletal mus-
cle provides sufficient elements and features qualifying 
as a survival micro milieu for memory plasma cells [35], 
and that these cells via secretion of the respective ARS 

autoantibodies may be crucially involved in chronicity of 
ASyS.

We and others have recently identified that the skeletal 
muscle pathology in ASyS is distinct from other types of 
idiopathic inflammatory myopathy [3]. This notion is based 
on myopathological and immune features including the pres-
ence of MHC-I and MHC-II on myofibers [51, 54]. MHC 
class I expression is evidenced on myofibers, showing 
an intriguing perifascicular pattern different from DM or 
IMNM patients [8, 63, 68]. MHC class I overexpression is 
further corroborated by changes to the muscle proteome of 
ASyS as compared to NDC. Further, MHC class I expres-
sion is not limited to ASyS, but has also been described 
across IIM entities [20]. Besides, we also observed a promi-
nent perimysial inflammatory milieu with AP+ fibroblasts, 

Fig. 6   B cell homing and transcription factors constitute a pro-inflam-
matory micro milieu in ASyS patients’ skeletal muscle. Representa-
tive stains of muscle biopsies from ASyS patients with correspond-
ing serological status. Monocytic cells in the inflammatory infiltrate 
of the skeletal muscles in ASyS express CXCL12 (a), CXCL13 (b) 
APRIL (c) and BAFF (d). Scale bar 100  µm. Immunohistological 
co-stains for immune cells with CXCL12 (e), CXCL13 (f), APRIL 
(g) and BAFF (h) are displayed as representative pictures, scale bar 
25  µm. CXCL12 is co-expressed in CD68+ macrophages, CD8+ T 
cells and CD20+ B cells, while CXCL13 is co-expressed in CD68+ 
macrophages and CD8+ T cells. Additionally, CD4+ T cells express 
APRIL and BAFF, which are also found in CD20+ B cells. Analysis 
of gene expression of CCR7, CXCL12 and CXCR4 (i), CXCL13 and 

CXCL5 (j), as well as APRIL and BAFF (k) are displayed as box-plot 
indicating the log10 fold change of ASyS compared to NDC for cor-
responding serological groups, as well as in IMNM patients, which 
serve as the disease control (DC) group (i, j, k). Significant differ-
ences comparing ASyS or DC with NDC are indicated by the cor-
responding p-value above each plot. Significant differences between 
serological groups is indicated by the corresponding p-value connect-
ing groups by dotted lines. The Kruskal–Wallis one-way analysis of 
variance with Dunn’s multiple comparison test was used. The level of 
significance was set to p < 0.05. *p < 0.05, **p < 0.01, ***p < 0.001. 
ASyS  Anti-synthetase syndrome, DC  disease control, IMNM  immune-
mediated necrotizing myopathy, NDC  non-diseased control
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presence of many Siglec-1+ macrophages, T cells as well 
as perifascicular necrotic myofibers, including decora-
tion of non-necrotic myofibers in this area by C5b-9, and 
nuclear actin inclusions. In this study, immune phenotyping 
is expanded to the in depth description of foci of plasma 

cells within this specific perimysium providing homing 
(CXCL12, CXCL13) and survival factors (APRIL, BAFF) 
for memory plasma cells [35]. Of note, activities of factors 
such as CXCL12 are promiscuous and not limited to the B 
cell compartment. CXCL12 is also known to stimulate T 

Fig. 7   Electron microscopy dissects the plasma cell micro milieu in 
ASyS patients. Representative electron microscopy (EM) from the 
perimysial area of a muscle fascicle displays the composition of the 
immunological micro milieu with plasma cells (P), fibroblasts (F) 
and a putative macrophage (MP) (a). Scale bar 5  µm. Light micro-
scopic imaging reveals AP-positive areas (red/purple) probably due to 
presence of activated CD90+ fibroblasts (brown) in muscle of ASyS 

patients (b, c). Scale bar 100 µm. Representative immunofluorescence 
microscopic images display CD90+ fibroblasts in close proximity to 
CD68+ macrophages (d). Individual macrophages also stain positive 
for CD169/Siglec1+ (e). Additionally, CD4+CXCR4+ T cells (yel-
low), as well as CD4+PD1+CXCR4+ Tfh cells (orange) are found in 
these areas (f). Scale bar a = 5 µm, b, c = 50 µm, d–f = 25 µm
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cells and acts as chemotactic for lymphocytes [36]. Further, 
we describe upregulation of CXCL13, a central homing fac-
tor for B cells [7]. Levels of the CXCR5 receptor mediating 
CXCL13 signaling on B cells were unchanged compared 
to controls, potentially owing to the dynamic function and 
secretion of CXCL13 [18]. Further, we also describe clusters 
of Tfh cells, potentially providing support for germinal cent-
ers and B cell maturation. The latter are of particular interest 
given these cells role for B cell maturation and antibody 
function [19]. Tfh cells provide IL-21 and CD40L signal-
ing required for B cell differentiation [19]. Most B cells are 
unable to successfully mature without sufficient Tfh cell 
interaction [38]. It is interesting to note that Tfh cells are 
implicated in antibody-mediated autoimmunity, i.e. Sjögren 
syndrome [70], however, their role in IIM remained largely 
elusive. A previous study reported increased levels of Tfh 
cells and IL-21 in peripheral blood of IIM patients com-
pared to HC [76]. Concurrently, detection of Tfh clusters in 
the perimysial area of ASyS muscle in our study indicates 
Tfh/B-cell interaction as a pathogenic mechanism in IIM, 
particularily in ASyS. Consistent with a pathogenic role of 
B cell/plasma cell foci, a recent publication by Talim et al. 
[61] observed plasma cells in more than half of their biop-
sies in juvenile myositis. The authors identified a specific 
micro milieu with presence of IL-4 and type I as well as type 
II interferons. Analysis of the V(H) repertoire and clonal 
diversification of B cells in myositis (not associated to any 
autoantibodies) argued that B cells are actively proliferat-
ing and that oligoclonal populations occur in situ, whilst 
follicular dendritic cells (FDCs) as counterparts for antigen 
presentation were not found.

While in DM a highly specific type I interferon response 
is mainly present, the interferon response in ASyS patients 
is critically different from that in other forms of DM, involv-
ing a mixed type I and type II response [12, 13, 26, 55]. 
Here, we expand these data and provide evidence for MHC-
II-positive myofibers as major contributors to IFNγ-driven 
immunity. We found strong MHC-II expression in all three 
subtypes at the mRNA and protein levels being a prereq-
uisite for plasmablast maturation and differentiation into 
plasma cells [50]. The observed reduction of Th1 cells and 
increased TNFα and IFN-γ levels in the peripheral blood in 
ASyS patients further argue for a strong type II interferon 
response in ASyS.

Consistent with increased expression of antigen pres-
entation molecules in histological and immunhistological 
stainings, our proteomic data revealed enhanced antigen 
processing and presentation in skeletal muscles of ASyS 
patients. Local antigen-driven humoral responses have been 
reported in myositis in general as IgG class switched plasma 
cells were detected in muscle biopsies [14]. However, this 
previous study observed only subtle expansion of B cells 
and plasma cells, which supports our observation that this 

cellular response is a signature of ASyS and in some cases 
of anti-Mi-2 associated DM [11]. Isolation of single plasma 
cells by laser microdissection in muscle affected by myositis 
identified a permissive environment including T cells and 
dendritic cells, as well as demonstrated that B-cell matura-
tion had occurred. Interestingly, the authors concluded at 
that time, 2010, ‘the clinical implications of B‐cell matura-
tion and dendritic‐cell antigen presentation locally in mus-
cle are uncertain’. [62]

Most studies link specific local B cell and plasma cell 
immunity to the presence of so-called extranodal germinal 
centers within inflamed tissues. We also studied those sec-
ondary lymphoid organs extensively in DM and identified 
a unique immune phenotype [58]. In contrast, we could not 
detect extranodal germinal centers, but plasma cell foci in 
close proximity to fibroblasts and macrophages as observed 
by electron microscopy in all ASyS subgroups, most notably 
in the perimysial area and periymsium. Macrophages could 
be classified as expressing CD68+CD169+. These mac-
rophages are primarily found in secondary lymphoid organs 
ensuring long-term antigen presentation to B cells [41]. A 
strong BCR signal is essential for the generation of memory 
plasma cells [65]. Furthermore, fibroblasts provide potential 
survival niches for long-lasting plasma cells [35]. Thus, our 
ultrastructural analyses further confirm a specific plasma 
cell niche in ASyS potentially influencing the pathophysi-
ological reaction, since memory plasma cells might be able 
to chronically produce the disease-inducing ARS. Consistent 
with an antibody-mediated disorder, we found complement 
pathway activation in the muscle fibers (sarcolemmal) and 
blood of ASyS patients. Prominent capillary and sarcolem-
mal complement deposition can also be found in DM, while 
sarcolemmal-predominant complement is most often found 
in Mi-2 positive DM [71].

Consistent with previous reports, we observed an increase 
of immature B cell subsets in the peripheral blood, whereas 
memory B cell subsets were decreased in ASyS patients 
[24]. This might be related to enhanced migration into the 
muscle compartment, which is supported by the highly 
abundant B and plasma cell infiltrates in ASyS muscle 
and elevated levels of B cell homing factors in blood and 
muscle. In addition, the shift in the B cell compartment is 
contextualized by increased levels of soluble B and T cell 
factors as well as complement factors. Corroborating previ-
ous reports of elevated BAFF levels in anti-Jo-1-antibody 
mediated IIM [37], B cell activation and proliferation factors 
(APRIL, BAFF, IL-4, IL-6, IL-13, IL-21, sCD40L) capable 
of inducing high B cell turnover were elevated in ASyS [6, 
17, 44]. Interestingly, BAFF levels were previously shown 
to correlate with antibody levels and readouts of disease 
severity. Further, we also observed subtle alterations of the 
T helper/regulatory compartment supplementing the periph-
eral immune response in ASyS. Thus, findings in peripheral 
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blood are reminiscent of those in muscle pathology and 
might support other diagnostic parameters.

In further support of a B cell-mediated pathology, rituxi-
mab, a B cell-depleting anti-CD20 antibody, demonstrated 
clinical improvement predominantly in in Jo-1+ and Mi-2 
myositis [1]. Further, anti Jo-1 levels in serum decreased 
after B cell depletion and were associated with amelioration 
of disease activity [2]. However, rituximab reduced anti-Jo-1 
titers only by approximately 30%, which is most probably 
related to the persistence of memory plasma cells, which are 
not affected by rituximab. Thus, therapies directed against 
plasma cells or factors defining the B cell/plasma cell niche 
such as BAFF/APRIL antagonists might be more effective 
in ASyS [25, 33].

A limitation to this work is potentially introduced by 
clinical and therapeutic heterogeneity among patients and 
subgroups. As such, immunomodulatory treatments might 
introduce a potential confounder in our analysis. To address 
this bias, we compared patients treated with glucocorti-
coids to those without. Here, we observed no meaningful 
differences between the two groups. ASyS is a disorder that 
is both rare and heterogenous and standardized treatment 
approaches are currently lacking. To address this concern, 
we aimed to recruit an informative and sizable cohort from 
multiple centers. In addition, we are aware that other types 
of ASyS do exist where muscle symptoms are not prevalent; 
however, this study aimed at precisely describing skeletal 
muscle immune features. The scope of this study was, there-
fore, limited to the study of skeletal muscles and peripheral 
blood. Whether we may find a relevant B cell pathology in 
other organs involved in this disease such as the skin or the 
lungs, and whether the local micro milieu is similar to that 
in affected muscles remains to be elucidated.

In conclusion, our study provides evidence for a char-
acteristic micro milieu that is particularly suited for B and 
plasma cells in ASyS-associated myositis, thereby offering 
the conceptual framework for potential B cell and plasma 
cell-targeting therapies in ASyS.
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