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 Proc. R. Soc. London A386 95-143]. The focus is given here on the twist rotations such that the superimposition of the two layers generates a coincidence lattice. The set of such coincidence rotations plotted as function of the lengths of their coincidence lattice unit cell nodes, exhibits remarkable arithmetic properties.

The second part of the paper is devoted to determine the space groups of the bilayers as a function of the rigid body translation associated the coincidence rotation. These general results are exemplified with a detailed study of the graphene bilayers showing that the possible symmetries of graphene bilayers with coincidence lattice whatever PREPRINT: Acta Crystallographica Section A A Journal of the International Union of Crystallography the rotation and the rigid body translation distribute in only six distinct types of space groups. The appendix discusses some generalized cases of heterophase bilayers with coincidence lattices due to specific lattice constants ratios, and/or mechanical deformation by elongation or shear of a layer on top of an undeformed one.

Introduction

The discovery of strong electronic correlations and superconductivity in twisted bilayer graphene (Trambly de Laissardire et al., 2010, 2012) with a so called magic rotation angle close to 1.05 where the Fermi velocity vanishes, has significantly increased the interest of studying in detail (Cao et al., 2018) this kind of low dimension structures (see, for transition metal dichalcogenides, Nai et al., 2018;Wu et al., 2019;Soriano et al., 2020;Venkateswarlu et al., 2020.) for eventually deciphering what symmetry property is to be considered to explain the existence of flat bands in the electronic structure (Suarez Morell et al., 2010) : what in the symmetry properties -if anyof twisted bilayers is at the origin of this electronic localization ?

A solid answer to this question requires a solid general crystallographic description of bilayer structures. It turns out that the investigation of the symmetry properties of the abstract superimposition of two 3D crystals, called bicrystals, has been carried out in the 80's (Gratias & Portier, 1982;Pond & D.S. Vlachavas, 1983) in the study of the properties of grain boundaries in metals and alloys. Although these bicrystals at that time were only theoretical concepts, their 2D versions of superimposing two monoatomic layers make sense in the present context as the idealization of a twisted bilayer considered as the superimposition of two infinitely thin monoatomic layers di↵erently oriented by a twist rotation of angle ↵ perpendicular to the layer plane and displaced with respect to each other by a translation ⌧ in the plane.

The paper is organized as follows:

• our first task is to enumerate which specific rotation angles ↵ lead a situation where two homophase layers share a common sublattice, say T ↵ , of index ⌃ in ⇤ and to explictely give the expressions of these intersection T ↵ and union U ↵ lattices;

• our second task is to discuss and understand how these specific coincidence angles distribute with respect to the values of the square lenght of the coincidence unit cell vectors;

• our third task is to determine which space group N ⌧ is generated for bilayers with coincidence lattices when the rigid body translation ⌧ varies at constant rotation ↵;

• three appendices gives the explicit illustration of the whole process in the case of the twisted graphene bilayers and the conditions for coincidence and union lattices to exist in the case of heterophase bilayers obtained by dilatation and/or rotation or mechanical deformation.

We use the following notations:

• point groups are noted in capital letters like G or W ;

• space groups and translation groups are noted in calligraphic letters like G or T ↵ ;

• space symmetry operators (or functions in the complex plane as discussed next) are noted as b ↵ or b g whereas point symmetry operators are simply written as ↵ or g.

Elementary bicrystallography

As already mentioned, homophase bilayers are ideally defined here as the super- showing the holohedral symmetry class of point group G ⇤ , with G ⇤ according to:

• oblique system G ⇤ = 2 : = 1, 2;

• rectangular system G ⇤ = 2mm : = m, 2mm;

• square system G ⇤ = 4mm : = 4, 4mm;

• hexagonal system G ⇤ = 6mm : = 3, 3m, 6, 6mm;

The corresponding group and lattice of the second monolayer II are given by:

G 0 = b ↵ G b ↵ 1 , 0 = ↵ ↵ 1 and ⇤ 0 = ↵ ⇤
Since any point in the orbit of r in G can be equivalently chosen, we characterize the transformation from layer I to II by the coset b ↵G. The inverse transformation from

II to I is given by G b ↵ 1 = G(↵ 1
| ↵ 1 ⌧ ) as shown on Fig. 1.

1
In all 2D enantiomorphic structures, these two descriptions are equivalent as they describe the same twist operation. ↵ 1 . The overlap of the monolayers designed here as bilayer, generates its own symmetry that is a space group when the two lattices ⇤ and ⇤ 0 have a common coincidence lattice T = ⇤ \ ⇤ 0 and only an approached symmetry else.

Using complex numbers for 2D crystallography

2D-crystallography is particularly simple to handle using complex numbers. In fact, any 2D-vector V = (x, y) in an orthonormal reference frame of the plane is equivalently described by a complex number z = x + iy 2 C. Concerning the nodes of a 2D lattice ⇤(a, b) defined by its unit cell of vectors a and b, we choose the unit cell vector a along the real axis and its length as the length unit with no loss of generality. The unit vector b is the complex number b = ⇢e i' where ⇢ is the length of vector b in |a| IUCr macros version 2.1.11: 2020/03/03 units and ' the angle of b with the real axis as shown on Fig. 2. A general primitive 3 lattice ⇤ p of unit vectors a = 1 and b = ⇢e i' is then the set of complex numbers:

⇤ p = {na + mb, n, m 2 Z} = { z = n + m⇢e i' , z 2 C, n, m 2 Z} Fig. 2. The lattice ⇤(a, b) with unit cell (a, b) is the set of complex numbers z = n + m⇢e i' , n, m 2 Z, ⇢ 2 R
where a is chosen as the unit vector along the real axis x and b is the complex number b = ⇢e i' . A rotation of angle around the origin transforms z into ze i and a mirror m ✓ passing through the origin and oriented along the direction of angle ✓ transforms z into ze 2i✓ .

Table 1. 2D lattices: the parameter a is the length unit (a = 1) along the real axis. All lattices are primitive except in the rectanguler system with c-type lattices. Running indices n, m are integers.

System

Lattice ⇤(n, m) Unit cell (a = 1) angle (a, b) oblique (n + ⇢e i' m) b = ⇢ ' rectangular (n + im⇢) b = ⇢ ⇡ / 2 (n + im⇢) [ (n + 1 2 + i(m + 1 2 )⇢) b = ⇢ ⇡ / 2 square (n + im) b = 1 ⇡/2 hexagonal (n + jm) b = 1 2⇡/3
The symmetry operations act as functions of complex variable f (z) as elementary transformations of complex numbers:

• a translation u 2 C acts on a point z as z ! u(z) = z + u;

• a rotation around the origin transforms z into z ! (z) = ze i ; 3

In addition, c-type lattices encountered in the rectangular symmetry class (' = ⇡/2) are defined as

⇤c = ⇤p [ 1 2 (1 + i⇢)⇤p.
• a mirror m ✓ passing through the origin and oriented in the direction ✓ transforms

z into z ! m ✓ (z) = ze 2i✓ .
Space operators are the usual combinations of point symmetries and translations as shown on Table 2. General twisted bilayers are quasiperiodic structures built on a Z-module of rank 4. Specific cases arise for particular values of the rotation angle ↵, called coincidence angles, where the two initial lattices ⇤ and ⇤ 0 share a 2D sublattice T ↵ , called the coincidence lattice characterized by the index ⌃ (defined by equation ( 7)), ratio of the unit cell sizes of T ↵ and ⇤ (⇤ 0 ). This makes the nodes of the general Z-module of rank 4 to condense on a 2D lattice U ↵ called the union lattice discussed later, in a way similar to generating periodic approximants from quasicrystals. In fact, as will be shown next, coincidence angles occur an infinite countable number of times and form a uniformly dense set of values on the real axis: any generic twisted bilayer is infinitely close to a coincidence situation, only case that leads to exact space symmetries of the bilayer.

Finding the proper coincidence angles has been the subject of a very large number of publications for 2D and 3D crystals (see, for instance, [START_REF] Ranganathan | [END_REF]Grimmer, 1973Grimmer, ,1974Grimmer, ,1984)). The most complete and recent analysis of coincidence lattices in 2D crystals has been given by [START_REF] Romeu | Crystal Structure Theory and Applications[END_REF], a work that we reconsider here shortly 4

This includes bilayers with di↵erent monolayers but sharing identical lattices

IUCr macros version 2.1.11: 2020/03/03 using complexe notations and that leads to a derivation that is worth its simplicity and gives explicit expressions for the coincidence and union (homophase) lattices as discussed next.

Let ↵ be the rotation angle between the two homophase monolayers. The coincidence lattice, if any, is the common subset of the lattice translations of the monolayers:

T ↵ = ⇤ \ e i↵ ⇤
that is obtained by superimposing two non-colinear lattice nodes of same length, say node (n, m) with n, m 2 Z, gcd (n, m) = 1, on top of node (n 0 , m 0 ) with n 0 , m 0 2 Z, gcd (n 0 , m 0 ) = 1, by the rotation ↵ around the origin:

n 0 + m 0 ⇢e i' = e i↵ (n + m⇢e i' )
leading to:

e i↵ = n 0 + m 0 ⇢e i' n + m⇢e i' = nn 0 + mm 0 ⇢ 2 + mn 0 ⇢e i' + nm 0 ⇢e i' n 2 + 2nm⇢ cos ' + m 2 ⇢ 2 (1) 
to be satisfied together with the equality of the lengths of the superimposing nodes (n, m) and (n 0 , m 0 ):

n 2 + 2nm⇢ cos ' + m 2 ⇢ 2 = n 02 + 2n 0 m 0 ⇢ cos ' + m 02 ⇢ 2 .
The possible generic solutions 5 are listed below according to the crystalline system of the structure:

• oblique system 2 : in the generic case, they are no two non zero di↵erent nodes (n, m, ) and (n 0 , m 0 ) with same length except the trivial solution (n 0 , m 0 ) = ( n, m).

• rectangular system 2mm (' = ⇡/2) : n 0 = ±n, m 0 = ±m; this includes the special case of those specific oblique lattices where 2⇢ cos = ±1 that can thus be considered as c-type rectangular lattices (cm(m));

5

There are a few specific cases, in particular for the square system, with n 2 + m 2 = n 02 + m 02 where the nodes (n, m) and (n 0 , m 0

) do not belong to the same orbit (for instance the nodes (3, 4) and (5, 0)). These cases are not explicitely considered here but can be easily treated using relation (1).
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• square system 4mm (' = ⇡/2, ⇢ = 1) : in addition to the rectangle case, n 0 = ±m, m 0 = ±n;

• hexagonal system 6mm (' = 2⇡/3, ⇢ = 1) is identical to rectangular (' = ⇡/2, ⇢ = p 3) with a c-type lattice.

With the exception of the generic oblique system, the rotation of a lattice node (n, m) on top of another one of same length can be made using the mirror symmetry along x (or y) of the rectangular system as shown on Fig. 3. or

e i↵ = n + im⇢ n im⇢ = n 2 + 2inm⇢ m 2 ⇢ 2 n 2 + m 2 ⇢ 2 = ✓ n + im⇢ p ◆ 2
(2) where = n 2 + m 2 ⇢ 2 is the square modulus of the superposition node:

cos ↵ = n 2 m 2 ⇢ 2 , sin ↵ = 2nm⇢ (3) p e i↵/2 = n + im⇢, tan ↵ 2 = ⇢m n (4)
leading to the basic relations 7 :

p cos ↵ 2 = n, p sin ↵ 2 = m⇢ (5) 
Relation ( 5) insures that the lattice row k(n + im⇢), k, n, m 2 Z with n, m coprime, is a coincidence raw whatever the value of ⇢. But this relation is not su cient to generate a 2D lattice that requires another non colinear row of lattice nodes to be in coincidence for the same angle ↵.

Let {T 1 , T 2 } be the unit cell of the searched coincidence lattice T ↵ with T 1 = n+im⇢.

Because T ↵ , if it exists, shares the same symmetry class as the lattice of the monolayer (see, for instance, Gratias & Portier, 1982) -here the rectangular symmetry 2mm or higher -the second unit vector T 2 = n 0 + im 0 ⇢ must be aligned along i⇢T 1 up to a rational ratio r, taking thus the form:

T 2 = ir⇢T 1 = mr⇢ 2 + irn⇢ = n 0 + im 0 ⇢, n 0 , m 0 Z, r 2 Q. This requires mr⇢ 2 = n 0 that is achieved if and only if ⇢ 2 2 Q, i. e. ⇢ 2 = p/q,
where p and q are coprime positive integers. Thus, is a rational number:

= n 2 + m 2 ⇢ 2 = qn 2 + pm 2 q .
and q = qn 2 + pm 2 2 Z is a multiple of = gcd(mp, nq).

7 see relations (20) for the specific case of mirror related equivalent nodes.
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These results confirm in a few calculation steps those obtained by Romeu et al.

(2012) following a seminal paper by [START_REF] Ranganathan | [END_REF] in the context of classical 3D crystallography. Here, coincidence lattices in homophase bilayers in the rectangular system 8 exist if and only if the ratio ⇢ = |b|/|a| is the square root of a rational number:

⇢ = r p q , p, q, 2 N.
We observe therefore that the coincidence angles distribute as an uniformly dense countable set of points on the real axis as 2 arctan ⇢⌘ with ⌘ 2 Q.

2.2.1. Explicit expression of the coincidence lattice. The use of complexe numbers is particularly attractive since, beyond its simplicity, it allows for explicit expressions of the coincidence (and union) lattice as shown here.

The unit vector T 2 of T ↵ is the smallest vector along i⇢T 1 with integer coordinates :

T 2 / i⇢T 1 = ( m⇢ 2 + in⇢) = 1 q ( mp + inq⇢)
It is obtained by multiplying i⇢T 1 by q and then dividing the result by = gcd(mp, nq):

T 2 = 1 ( mp + inq⇢) = q ( m⇢ 2 + in⇢) = i q ⇢T 1 .
We first note that posing nq = r and mp = s with r, s 2 Z, we obtain T 2 = s+ir⇢, that explicitly shows that, indeed, T 2 belongs to ⇤. We then observe that, as required,

T 2 is orthogonal to T 1 , but the length of T 2 is in the ratio ⇢ with the length of T 1 only when q = and therefore, although of same symmetry class of ⇤, the coincidence lattice is not necessarily homothetic to ⇤ in the general case as illustrated on Fig. 4.

Because of relations (4) and (5), we have:

T 1 = n + im⇢ = e i ↵ 2 p and T 2 = i q ⇢T 1 = i e i ↵ 2 p q ⇢, 8 
Oblique lattices with 2⇢ cos ' = 1, as the hexagonal lattice, can be considered as rectangular c-type lattices of parameters (1, ⇢ 0 = tan ') and therefore show a 2D coincidence lattice when ⇢ 02 = tan 2 ' = p/q, with p, q 2 Z. so that the coincidence lattice T ↵ is explicitly given by:

T ↵ = NT 1 + MT 2 = e i ↵ 2 p (N + iM q ⇢), N, M, 2 Z (6)
showing that the coincidence lattice T ↵ is generated by a lattice characterized by a 0 = 1 and b 0 = i q ⇢, rotated by ↵/2 with respect to ⇤ and linearly dilated by p .

Since ⌃ is the index of the translation group T ↵ in ⇤, i. e., the ratio of the surfaces of the unit cell of the coincidence lattice T ↵ with respect to the one of the lattice ⇤, we find:

⌃ = |T 1 | |T 2 | ⇢ = q = 1 (n 2 q + m 2 p) 2 N + (7)
that is, indeed, an integer since = gcd(mp, nq) is a divisor of n 2 q + m 2 p. 

⇢ = q 3 2 (p = 3, q = 2) for : (a) n = 2, m = 1, = 1, T 1 = (2, 1), T 2 = ( 3, 4), |T 2 | = 2⇢|T 1 |, = 11 2 , ⌃ = 11, ↵ = 62.9643 ; (b) n = 1, m = 2, = 2, T 1 = (1, 2), T 2 = ( 3, 1), |T 2 ] = ⇢|T 1 |, = ⌃ = 7, ↵ = 135.585 .

Explicit expression

U ↵ = ⇤ [ e i↵ ⇤ = {h + h 0 e i↵ + i⇢(k + k 0 e i↵ ); h, k, h 0 , k 0 2 Z}
or, because of relation ( 2) and ( 4):

U ↵ = e i↵/2 ⇣ he i↵/2 + h 0 e i↵/2 + i⇢(ke i↵/2 + k 0 e i↵/2 ) ⌘ = e i↵/2 p (nH + m⇢ 2 K 0 + i⇢(mH 0 + nK)) = e i↵/2 q p (nqH + mpK 0 + iq⇢(mH 0 + nK))
where

H = h + h 0 , H 0 = h 0 h, K = k + k 0 , K 0 = k k 0 , N, M 2 Z.
Therefore:

U ↵ = e i↵/2 q p (N + iM q ⇢) = q T ↵ = 1 ⌃ T ↵ (8) 
This shows that, for any coincidence angle and any symmetry class larger or equal to the rectangular one, U ↵ is homothetic to T ↵ in the linear ratio 9 1/⌃. 9 this ratio applies on each unit vector leading thus to a relative density of nodes card U↵/T↵ = ⌃ 2 . to a general pattern P of points (↵, ⌃) that we shall call here the coincidence pattern and that is the global superimposition of all the coincidence angles equivalent to ↵ with respect to the intrinsic symmetries of the layer, each associated to ⌃ as shown on Fig. 5(a) for the case of the rectangular system. This pattern exhibits a rather complicated fine structure due to the arithmetic irregularities introduced by the term q/ in the definition of ⌃ seen in equation ( 7). In fact, as shown on Fig. 5 

Coincidence patterns

(n, m), = n 2 + m 2 ⇢ 2 instead of ⌃.
A very basic fact is that since the coincidence angles are defined by lattice vectors (n, m) where n and m are coprime integers, these vectors point to those nodes of a 2D lattice known as the set of points visible from the origin noted here V as shown on Fig. 6. All points (↵, ) of the coincidence pattern P are in a one-to-one correspondance with those (n, m), of V: 3/2. The points distribute on branches asymptotically converging to specific coincidence angles ↵ i /2 = arctan(⇢m i /n i ) where the points (n i , m i ) belong to (extended) Farey sequences generated from the initial pair [(1, 0), (0, 1)]; here, the optimum branches generated by the Farey sequence F r (3) asymptotic by lower (purple) and upper (cyan) values are underlined with the same colors as their corresponding rows on the set V of Fig. 6.

(n, m) 2 V () (↵/2 = arctan(⇢ m n ), = n 2 + m 2 ⇢ 2 ) 2 P
In particular, rational rows in the set V faithfully mirror the branches in P that are asymptotically converging to specific angles ↵ characterized by their coincidence nodes (n, m) with tan(↵/2) = ⇢m/n as exemplified by the rows and corresponding branches drawn in cyan and purple on Fig.s 6 and 7.

The simplest way to classify and order these branches is to label them according to Farey sequences f (N ) (see for instance [START_REF] Hardy | An Introduction to the Theory of Numbers 5th edition[END_REF]. The Farey sequence of order N noted f (N ), is the set of fractions m/n where m and n are coprime integers, associated to the nodes (n, m) of the set V (see for instance in a di↵erent context [START_REF] Philippon | Un oeil et Farey hal-00488471[END_REF], and such that 0 < m < n  N , ordered by size.

We note the following properties: i-for any two elements of a sequence, corresponding in the set V to the nodes IUCr macros version 2.1.11: 2020/03/03 (n 0 , m 0 ) pointing in the direction tan(m 0 /n 0 ) and (n 1 , m 1 ) pointing in the direction tan(m 1 /n 1 ), with m 0 /n 0 < m 1 /n 1 , the vector (n 0 + n 1 , m 0 + m 1 ) pointing along their diagonal is such that:

m 0 n 0 < (m 0 + m 1 ) (n 0 + n 1 ) < m 1 n 1 , with (n 0 + n 1 )m 1 (m 0 + m 1 )n 1 = n 0 (m 0 + m 1 ) m 0 (n 0 + n 1 ) = n 0 m 1 m 0 n 1 ;
ii-if two elements i and j are consecutive (j = i + 1) in a sequence with m i /n i < m j /n j then n i m j m i n j = 1. Because of Bzout's identity, we deduce that beyond (n i , m i ) and (n j , m j ) being coprimes, the couples (n i , n j ) and (m i , m j ) are also coprimes.

In fact, because the coincidence angles ↵ run between 0 and ⇡ for the rectangle system, the sequences we are interested in here are extended Farey sequences (Halphn, 1877), noted F r (N ), made of the standard Farey sequence f (N ) between (1, 0) and

(1, 1) completed by the sequence from (1, 1) to (0, 1), obtained in adding to the original sequence the inverse fractions n/m in opposite order. Such typical extended sequences for the rectangular system, where ↵/2 2 [0, ⇡/2], are:

F r (0) = [(1, 0), (0, 1)] F r (1) = [(1, 0), (1, 1), (0, 1)] F r (2) = [(1, 0), (2, 1), (1, 1), (1, 2), (0, 1)] F r (3) = [(1, 0), (3, 1), (2, 1), (3, 2), (1, 1),
(2, 3), (1, 2), (1, 3), (0, 1)] etc For the square system, the possible twist angles run from 0 to ⇡/2 with the basic IUCr macros version 2.1.11: 2020/03/03 sequences (↵/2 2 [0, ⇡/4]): 4, 1), (3, 1), (2, 1), (3, 2), (4, 3), (1, 1)] etc;

F s (1) = [(1, 0), (1, 1)] F s (2) = [(1, 0), (2, 1), (1, 1)] F s (3) = [(1, 0), (3, 1), (2, 1), (3, 2), (1, 1)] F s (4) = [(1, 0), (
and for the hexagonal system, with twist angles extending from 0 to ⇡/3 , the sequences

(↵/2 2 [0, ⇡/6]): F h (2) = [(1, 0), (2, 1)] F h (3) = [(1, 0), (3, 1), (2, 1)] F h (4) = [(1, 0), (4, 1), (3, 1), (2, 1)]
F h (5) = [(1, 0), (5, 1), (4, 1), (3, 1), (5, 2), (2, 1)] etc.

(9)

Invariance property of the branches

Defining branches of points in the coincidence pattern is pertinent when the points of a same branch, described by a running index k, share a same property independent of this index. To decipher which invariance property a branch corresponds to, we note that, because of relation ( 5), any two points (↵, ), associated to the superimposition node (n, m), and (↵ 0 , 0 ), associated to (n 0 , m 0 ), of a same coincidence pattern are related by :

p 0 sin ↵,↵ 0 = ⇢(n 0 m m 0 n) (10) with ↵,↵ 0 = (↵ ↵ 0 )/2.
This remarkable relation is the key for characterizing the invariance rule for each branch of the pattern. Indeed, let us choose two Farey neighbors terms (n 0 , m 0 ) and IUCr macros version 2.1.11: 2020/03/03

(n 1 , m 1 ) such that m 0 /n 0 < m 1 /n 1 , with n 0 m 1 m 0 n 1 = 1. We pose 0 = n 2 0 + ⇢ 2 m 2 0 , 1 = n 2 1 + ⇢ 2 m 2 1 , tan(↵ 0 /2) = ⇢m 0 /n 0 and tan(↵ 1 /2) = ⇢m 1 /n 1 and consider the nodes n k,k 0 = kn 0 + k 0 n 1 , m k,k 0 = km 0 + k 0 m 1 , k, k 0 2 Z (11)
under their irreducible form (gcd(n k,k 0 , m k,k 0 ) = 1), defining the points in P :

( ↵ k,k 0 = 2 arctan ⇢ (km 0 +k 0 m 1 ) kn 0 +k 0 n 1 , k,k 0 = k 2 0 + k 02 1 + 2kk 0 (12) with = (n 0 n 1 + ⇢ 2 m 0 m 1 ).
At constant k 0 and running k, these nodes (n k,k 0 , m k,k 0 ) describe raws in V that are parallel to the direction (n 0 , m 0 ) and to the direction (n 1 , m 1 ) for running k 0 at constant k. Moreover, because:

n 0 m k,k 0 m 0 n k,k 0 = n 0 (km 0 + k 0 m 1 ) m 0 (kn 0 + k 0 n 1 ) = k 0 (n 0 m 1 m 0 n 1 ) = k 0 , 8 k 2 Z (13) m 1 n k,k 0 n 1 m k,k 0 = m 1 (kn 0 + k 0 n 1 ) n 1 (km 0 + k 0 m 1 ) = k(m 1 n 0 n 1 m 0 ) = k, 8 k 0 2 Z, (14) 
we note that, because of relation ( 13), at constant k 0 and running k, the points (n k,k 0 , m k,k 0 ) describe a set of branches in P, one for each value of k 0 , asymptotic (by upper values for k 0 > 0 and by lower values for k 0 < 0) to ↵ 0 for k ! 1 with the invariance property :

8 k 2 Z, p k,k 0 0 sin (k,k 0 ),0 = ⇢k 0 . ( 15 
)
Similarly, because of relation ( 14), at constant k and running k 0 , corresponds a set of branches asymptotic (by upper values for k > 0 and by lower values for k < 0) to ↵ 1 for k 0 ! 1 sharing the invariance property :

8 k 0 2 Z, p 1 k,k 0 sin 1,(k,k 0 ) = ⇢k. ( 16 
)
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Concerning the irreducibility property, we note that n k,k 0 and m k,k 0 are both multiple of gcd(k, k 0 ) and therefore k and k 0 must be coprime for the node (n k,k 0 , m k,k 0 ) to belong to V. Thus, any row in the set generated by a running k(k 0 ) at constant k 0 (k), exhibits only the points that are not multiple of the prime factors of the constant k 0 (k).

For example, in the Farey sequence

F (0) = [(1, 0), (0, 1)] where (n k,k 0 , m k,k 0 ) = (k, k 0 ),
the rows parallel to the x corresponding to running k at constant k 0 , show in increasing k 0 order: all k values for k 0 = 1, only odd values of k for k 0 = 2, k not multiple of 3 for k 0 = 3, k not multiple of 2 and 3 for k 0 = 6 etc. The densest rows correspond to k 0 being a prime number. The same behavior is to be found for the rows parallel to the y direction and, extraordinary enough, for any row parallel to a rational direction !

The k(k 0 )-branches associated to the smallest values of k,k 0 -designated here as optimal branches because they generate the smallest coincidence unit cell -are those where the constant k(k 0 ) in relations ( 13) and ( 14) is the unity. These are the branches and associated rows colored respectively in cyan and purple in Fig.s 6 and 7.

The two optimal branches in k and k 0 defined by the neighbor nodes (n 0 , m 0 ),

(n 1 , m 1 ) in the Farey sequence intersect at the node defined by k = k 0 = 1, i. e. at the node (n 0 + n 1 , m 0 + m 1 ) that is precisely the term inserted between the two original nodes in the Farey sequence next to the original one.

Analytical expression of optimal branches

Although the coincidence angles form a dense enumerable set of points on the trigonometric circle, the proximity of two alpha values do not ensure, by far, that of their corresponding values. This happens only when the two angles are on a same branch. Two branches are particularly important which are asymptotic to the own symmetry angles of the monolayer, i.e. ↵ = 0 for all systems, and ↵ = ⇡ for rectangle, ↵ = ⇡/2 for square and ↵ = ⇡/3 for hexagonal systems. They take a particular

IUCr macros version 2.1.11: 2020/03/03 importance for bilayers with very small rotations as they allow to choose the smallest sized coincidence lattices closest to the searched angle generating the smallest atomic model to be used in electronic calculations.

In the rectangle system, the two extreme asymptotic angles are ↵ = 0 and ⇡ and the two extreme branches are thus defined by the Farey sequence [(n 0 , m 0 ) =

(1, 0), (n 1 , m 1 ) = (0, 1)]. The relations ( 12), ( 15) and ( 16) lead to:

0 = 1, 1 = ⇢ 2 , = 0 
↵ ! 0 8 < : n k,1 = k, m k,1 = 1, k,1 = k 2 + ⇢ 2 sin k,1 = ⇢ p k 2 +⇢ 2 ↵ ! ⇡ 8 < : n 1,k 0 = 1, m 1,k 0 = k 0 , 1,k 0 = 1 + k 02 ⇢ 2 sin 1,k 0 = 1 p k 02 ⇢ 2 +1
We assume ⇢ > 1 (p > q). Using ⇢ 2 = p/q with ⌃ = q / and = gcd(mp, nq), we find:

⌃ k,1 = q gcd(p, k) k,1 , ⌃ 1,k 0 = q gcd(q, k 0 ) 1,k 0
We first observe, as shown on Fig. 8, that each time k and p share a same divisor, ⌃ k,1 changes its value so that the initially unique k,1 branch splits into ⌫ subbranches

⌃ ⌫ k,1
where ⌫ is the number of divisors 10 of p. Similarly, 1,k 0 splits into µ subbranches ⌃ µ 1,k 0 where µ is the number of divisors of q.

We then note that a same angle is shared by the two branches at steps respectively k and k 0 when kq = pk 0 i. e. for k = p`, k 0 = 1 for one branch and k 0 = q`, k = 1, for the other, `2 Z. At that stage q p`,1 = p 1,q`a nd therefore ⌃ p`,1 = q p p`,1 = 1,q`= ⌃ 1,q`. The two branches superimpose every p steps for one branch and q steps for the other with the same ⌃ values. Hence, the optimal branch for small angles in 10

Let n = a p 1 ⇥ b p 2 ⇥ c p 3 ⇥ . . . the positive integer of prime factors a, b, c,. . . ; the number of its divisors is (p1 + 1) ⇥ (p2 + 1) ⇥ (p3 + 1) ⇥ . . .. the rectangle system (⇢ 2 = p/q, p > q) is found to be:

n = 1, m = q`, `2 N, ↵ `= 2 arctan ⇢q`, `= pq`2 + 1 sin `= 1 p `with 2 `= ⇡ ↵ `(17)
with a primitive lattice of parameters A = 1 + i⇢q`, B = p`+ i⇢ that condenses to a c-type lattice (A + B)/2, (A B)/2 when p, q and `are all three similtaneously odd.

1 2 3 4 1 2 3 4
Fig. 8. Splitting of the optimal branches as plotted against ⌃ instead of in the rectangle system for the cases ⇢ = p 10/7 and ⇢ = p 21/16. The red dots and lines correspond to ⌃ k,1 and the blue dots and lines to ⌃ 1,k 0 . In the first case, p = 2 ⇥ 5 the red branch splits into 4 sub-branches in the ratio 1, 2, 5 and 10 and since q = 7, the blue branch splits into 2 sub-branches of ratio 1 and 7. In the second case, p = 21 = 3 ⇥ 7, the red branch splits into 4 sub-branches in the ratio, 1, 3, 7 and 21 whereas for q = 2 4 , the branch splits in 5 sub-branches in the ratio 1, 2, 4, 8 and 16. In both cases, the red and blue branches superimpose for k = p`and k 0 = q`, `2 Z. For the square system, the situation is much simpler since here = ⌃. The Farey sequence to be used here is [(1, 0), (1, 1)] out of which we obtain:

0 = 1, 1 = 2, = 1 
↵ ! 0 8 < : n k,1 = 1 + k, m k,1 = 1, k,1 = k 2 + 2k + 2 sin k,1 = 1 p k 2 +2k+2 ↵ ! ⇡/2 8 < : n 1,k 0 = 1 + k 0 , m 1,k 0 = k 0 , 1,k 0 = 2k 02 + 2k 0 + 1 sin 1,k 0 = 1 p 4k 02 +4k 0 +2
A same angle is shared by the two branches each time k = 2k 0 with, then, k,1 = 2 1,k 0 . This is easily understood by noting that k = 2k 0 implies n k,1 + m k,1 = 2 + 2k 0

and n k,1 m k,1 = 2k 0 both even that lead directly to n 1,k 0 = 1 + k 0 , m 1,k 0 = k 0 with a value twice smaller. The branch asymptotic to ↵ = ⇡/2 is therefore the optimal solution with smallest unit cell defined by: 18) with a primitve lattice defined by A = (1 + `+ i`), B = ( `+ i(1 + `)).

n = 1 + `, m = `, `2 N, ↵ `= 2 arctan 1 + `, `= 2`2 + 2`+ 1 sin `= 1 p 2 `with 2 `= ⇡ 2 ↵ `(
The case of the hexagonal system is treated in the appendix 1 and leads to:

n = 1 + 2`, m = `, `2 N, ↵ `= 2 arctan `p3 3`+ 2 , `= 3`2 + 3`+ 1 sin `= 1 2 p `with 2 `= ⇡ 3 ↵ `(19)
These results are easily understood by noting that the smallest coincidence angles are obtained when the two superimposed nodes of a same orbit are as close as possible from each other. This is achieved when they are deduced from each other by a symmetry mirror of the structure. Let z be one of these lattice nodes and ✓ the angle of the mirror with the real axis as skteched on Fig. 9. The rotation angle 2 corresponding to the action of the mirror on z is given by:

ze 2i = ze 2i✓ .
IUCr macros version 2.1.11: 2020/03/03

Posing z = x + iy, = z z = x 2 + y 2 , we obtain p e i = ze i✓ and thus: For the square system, we have ✓ = ⇡/4 and z = `+ 1 + i`:

p sin = 1 p 2 (`+ 1 `) = 1 p 2 (22)
and for the hexagonal system, with ✓ = ⇡/6 and z = 2`+ 1 + |`= 3 2 `+ 1 + i p 3 2 `:

p sin = 1 2 ( 3 2 `+ 1) p 3 2 p 3 2 `= 1 2 (23)
2.6. Optimal branches and 0-lattice.

Introduced in the description of grain boundaries in metals and alloys in the late sixty's by Bollman (1967Bollman ( , 1970)), the notion of 0-lattice is an important tool for discussing the relative displacements of the atoms at the level of the interface. In the present context, this notion takes a very clear physical meaning: the 0-locus made of points and lines is the geometric set of the points that are not displaced when passing from one layer to the other. In other terms, it is the set of points of the first layer that transform into equivalent ones in the second layer at the very same place up to a symmetry operation of the first layer:

b ↵GZ 0 = Z 0 .
Z 0 is the geometrical locus of the carriers of the reducible elements in the coset b ↵G.

The 0-lattice, noted O, is the subset of this ensemble Z 0 of the points z that transform after rotation 2 into an equivalent position up to a lattice translation of the initial layer at the same location:

O = {z 2 C | 9 2 ⇤ such that e 2i z + = z} leading to : O = i 2 sin e i ⇤. (24) 
This applies of course in the case of the rotations associated to the optimal branches, 2 = g ↵ where g is the rotation ⇡, ⇡/2 and ⇡/3 for respectively the rectangle,

IUCr macros version 2.1.11: 2020/03/03 square and hexagonal systems as shown on Fig. 9, in which case the 0-lattice is directly connected to the coincidence lattice of the optimal branches as can be easily calculated using relations ( 21), ( 22) and ( 23) and comparing expression (6) to ( 24):

• for the rectangle system, we obtain:

T ↵ = e i↵ `/2 p `⇤ = ie i sin `⇤ = 2O
showing that the 0-lattice is a supergroup of order 4 of T ↵ with unit cell parameters twice smaller than those of T ↵ ;

• for the square system, we obtain:

T ↵ = p 2 p `e i⇡/4 ie i `⇤ 2 sin `= p 2e i⇡/4 O
showing that the 0-lattice is obtained from T ↵ by a rotation of ⇡/4 and a rescaling of 1/ p 2. It is thus a supergroup of order 2 of T ↵ ;

• for the hexagonal system, the O-lattice is identical to the coincidence lattice of the optimal branch as shown from relations ( 19) and (33):

T ↵ = e i⇡/3 ie i 2 sin `⇤ ⌘ O
We observe that these remarkable features of the 0-lattice being so nicely connected to the coincidence lattice is valid only for the coincidence angles of the optimal branches.

These results are easily understand by an examination of Fig. 9: the smallest translation of superimposing two equivalent close lattice nodes is respectively two unit vectors along x for the rectangle (⇢ > 1) system, the main diagonal of the unit square for the square system and the unit vector for the hexagonal systems.

However, in all cases, the 0-lattice is not to be confused with the translation group of some symmetry group attached to the bilayer. It is a set of well located points that are equivalent sites in layers I and II. Assuming the layer being defined by a continuous fonction %z, like the electron density map, the 0-points are the points z 0
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where % I (z 0 ) ⌘ % II (z 0 ) or:

O = {z 2 C such that % I (z) % II (z) = 0}
Although these points distribute over a lattice defined by the unit cell parameters:

A = 1 2 (1 + i cot ), B = 8 > > < > > :
i⇢A for rectangle system, iA for square system, |A for hexagonal system.

they are generally not equivalent to each other; they are only the specific sites where the phase di↵erences between the two layers are locally zero. Periodicity appears only in the specific situations where a coincidence lattice exists in which case the coincidence lattice is always a subgroup of the 0-lattice. For example, in the rectangular system, comparing the unit cell [A, B] of the 0-lattice defined previously with that, [T 1 , T 2 ], of the coincidence lattice defined in (6) leads to:

8 < : T 1 = 2nA, T 2 = 2n q B for n, m of di↵erent parity T 1 = n(A + q B), T 2 = n(A q B)
for n, m both odd Since = gcd(nq, mp), T 2 is an integer multiple of B and thus, T ↵ is a subgroup of O of order ⌘ = 4n 2 q/ . As expected, the smallest order, ⌘ = 4, is obtained for the rotations of the optimal branch (21) where n = 1 and = q.
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Space groups of homophase bilayers with coincidence lattices

Building the space group of a homophase bilayer with coincidence lattice is a simple work in principle that follows a same general scheme: the symmetry group of a set of two identical objects taken as a whole (also called the normalizer of the set of the two objects) is the union of the symmetry elements that are common to both objects and are intrinsic symmetries of these objects plus extra elements, if any, that exchange the two objects as illustrated on Fig. 11. It is easily demonstrated that the union of these two sets forms a group homomorphic to the permutation group of two objects (see for instance Gratias & Quiquandon, 2020). Here, both the rotation ↵ and the rigid body translations ⌧ are to be considered in the computations of these two basic sets:

• the intersection group contains those symmetry elements of the original layers that are of same nature and superimpose in space:

I = G \ G 0
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where G 0 = b ↵ G b ↵ 1 ; this group is never empty since it contains at least the identity and the translation group T ↵ of the coincidence lattice;

• the additional set of symmetry elements correspond to those extra new elements that exchange the two layers, transforming layer I into II and simultaneously

II into I, defined by the intersection of the cosets b ↵ G with G b ↵ 1 designated, if
not empty, the exchange set E:

E = b ↵ G \ G b ↵ 1
The normalizer of the homophase bilayer, say N of translation group T ↵ , is thus the union:

N = I [ E with either E = ; or E = b " I such that b " 2 2 I
In addition to the normalizer N , another fundamental symmetry group of interest is the space group W ↵ that generates all possible equivalent rigid body translations to a given one for a given coincidence rotation. Its point group W ↵ is obtained by considering the point group of the monolayer, say , and observing that the elements of the exchange set transform ⌧ into its opposite. We obtain thus:

W ↵ = ( \ ↵ ↵ 1 ) [ ( 1)(↵ \ ↵ 1 ) (25)
where 1 stands for the inversion operator 11 . It is easily shown that W ↵ is indeed a group.

Its translation group is found owing the fact that adding to ⌧ any translation of the lattices of either crystal does not change the bicrystal (except by a possible global translation): this is the union group U ↵ . The space group W ↵ of the equivalents to ⌧ is therefore the direct product of W ↵ with the translation group U ↵ :

W ↵ (U ↵ ) = W ↵ ⇥ U ↵ ( 26 
)

11

A very unfortunate mistake is to be corrected in Gratias & Quiquandon (2020) where the inversion operation has been forgotten in the expression of W↵ and improperly added in the one of N .

This result shows that the domain of definition of the rigid body translation ⌧ is becoming very narrow and behaves linearly as 1/ p ⌃ for coincidence angles ↵ decreasing to zero. It also shows that the natural reference frame to be used for labelling ⌧ is the union lattice. As a consequence, at very small angle of rotation where the coincidence lattice unit cell increases dramatically, the unit cell of the union lattice becomes small enough for the rigid body translation to become physically meaningless.

Therefore, in that case of large moir patterns due to small disorientations, it is not necessary to consider the rigid body translation in the description (it can be chosen to be the null vector).

Finding the bilayer groups: point symmetry

The point symmetry elements to consider are rotations z ! ze i and mirrors z !

ze 2i✓ with , ✓ 2 {0, ⇡ 6 , ⇡ 4 , ⇡ 3 , ⇡ 2 }.
The rotation ↵ commutes with all the rotations of the lattice crystal since z ! ze i↵ e i = ze i(↵+ ) = ze i e i↵ .

The intersection point group \ ↵ ↵ 1 is thus the set of all the rotations of the point group of the crystal whatever the value of the coincidence angle ↵.

On the other hand, the exchange set ↵ \ ↵ 1 contains the mirrors generated by the product of the rotation ↵ by the original mirrors, i.e. mirrors rotated by ↵/2 from the original ones. Indeed the elements of ↵ act on z as z ! e i↵ ze 2i✓ = ze i(↵+2✓)

whereas those of ↵ 1 act as z ! ze i↵ e 2i✓ = ze i(↵+2✓) .

Therefore the exchange sets contain all the mirrors obtained by a rotation of ↵/2 of the original mirrors of the structure whatever the value of the coincidence angle ↵. This explains that the coincidence lattice T ↵ has the same point symmetry as the original symmetry class of the lattice. For the group W ↵ , the exchange set that contains all the mirrors is multiplied by the inversion generating thus an equivalent set of mirrors
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Finding the bilayer groups: space symmetry

The space group W ↵ is easily determined since it is the direct product of W ↵ with

U ↵ .
Concerning the normalizer N , the calculation requires a few steps.

Elements of I are the elements b g, b g 0 2 G such that b ↵b g = b g 0 b ↵ and elements of E are the elements b ↵b g such that b ↵b g = b g 0 b ↵ 1 . From b ↵z = ze i↵ +⌧ and b ↵ 1 z = ze i↵ ⌧ e i↵ ,
with b g being either a rotation b gz = ze i + t, or a mirror b gz = ze 2i✓ + t, we have the general explicit expressions:

b ↵b gz = ( e i↵ (ze i + t) + ⌧ = ze i(↵+ ) + te i↵ + ⌧ e i↵ (ze 2i✓ + t) + ⌧ = ze i(↵+2✓) + te i↵ + ⌧ (27) b g b ↵z = ( (ze i↵ + ⌧ )e i + t = ze i(↵+ ) + ⌧ e i + t (ze i↵ + ⌧ )e 2i✓ + t = ze i(2✓ ↵) + ⌧ e 2i✓ + t (28) b g b ↵ 1 z = ( (ze i↵ ⌧ e i↵ )e i + t = (z ⌧ )e i( ↵) + t (ze i↵ ⌧ e i↵ )e 2i✓ + t = (z ⌧ )e i(↵+2✓) + t (29) 
For an element being possibly included in either sets I or E, the arguments of the variable z must be identical for the equalities to hold for any value of z.

Concerning I, the comparison between the lines ( 27) and (28) shows that the only possible solution for the elements b g and b g 0 to be in I is to be two rotations of the same angle such that :

t 0 te i↵ = ⌧ ⌧ e i
Concerning E, the comparison of ( 27) with (29) shows that the pertinent elements b ↵b g are obtained with b g and b g 0 being parallel mirrors such that:

t 0 te i↵ = ⌧ + ⌧ e i↵ e 2i✓ = ⌧ + ⌧ e 2i(✓+↵/2)
with t, t 0 2 U ↵ or possibly U ↵ /2 for the c-type space groups cm and c2mm and the non-symmorphic ones pg, p2mg, p2gg and p4gm.

IUCr macros version 2.1.11: 2020/03/03

Since t 0 te i↵ is a vector of U ↵ or U ↵ /2, we find that:

i-the rotation ( |t) 2 G is in I if ⌧ is such that ⌧ ⌧ e i is a vector of U ↵ (or U ↵ /2)
that is achieved for ⌧ pointing on special positions of the group W ↵ .

ii-the mirror

(m ✓+↵/2 |t) is in E if ⌧ is such that ⌧ + ⌧ e 2i(✓+↵/2) is a vector of U ↵
or U ↵ /2 requiring thus ⌧ to point on the perpendicular bisector of a mirror of E and thus ⌧ to align along a mirror of W ↵ .

These both conditions lead to non trivial solutions for ⌧ being located at special positions of W ↵ .

This shows that the space group N depends on the value of ⌧ according to the di↵erent symmetry strata of W ↵ : the number of di↵erent possible space groups of the bilayer is equal to the number of the symmetry strata of the group W ↵ .

Moreover, the type of the space group N of the bilayer does not depend on the value of the coincidence angle ↵: whatever ↵ in that set, the groups N obtained for rigid body translations ⌧ with the same coordinates in U ↵ , are isosymbolic; their actual representations in space, are scaled according to the length p and the rotation ↵/2. 

A simple low symmetry example

We consider two bilayers A and B with coincidence lattices built from structures of symmetry class m x with space groups pm x (⇤) for A and pg x (⇤) for B. In both cases, the point group W ↵ is made of the identity for the intersection group and m y (original m x rotated by ↵/2 plus ⇡/2 because of the inversion) for the exchange set:

W ↵ = pm y with translation group U ↵ . This group has three strata expressed in the unit cell of U ↵ : (0, y), (1/2, y) and (x, y) with little groups respectively m y , m y and 1. The translation ⌧ = (0, y) expressed in the unit cell of U ↵ generates the group N = pm x for the structure A and N = pg x for structure B, both of translation group T ↵ , and vice-versa for the translation ⌧ = (1/2, y).

Conclusion

To summarize, we find that infinitely many coincidence lattices generically exist down to the rectangle symmetry provided that the ratio ⇢ of the lengths of the unit cell vectors is the square root of a rational number: ⇢ 2 = p/q. They are generated by specific coincidence rotations of angle of the form ↵/2 = arctan(⇢m/n) where n and m are coprime integers and can be written as:

T ↵ = e i ↵ 2 p (N + i⇢ q M ), N, M 2 Z
where = n 2 + ⇢ 2 m 2 and = gcd(mp, nq).

To each coincidence lattice is associated an union lattice In the case where a coincidence lattice exists, the space group of the bilayer depends on the value of the rigid body translation ⌧ between the two layers. There are as many di↵erent symbolic names of space groups as there are strata in the group W(U ↵ ) of the equivalent translations ⌧ to a given one. These symbolic names do not depend on the value of the rotation ↵.

U ↵ = T ↵ /⌃ homothetic to T ↵
Because the rigid body translation ⌧ has U ↵ as translation subgroup the unit cell size of which tends to zero for rotations tending to zero, this rigid body translation becomes a non pertinent parameter -analogous to a phason field in quasicrystals -for twisted bilayers with very small rotation.

But the most important point to note here is that the 0-lattice exists whatever the value of the twist angle and does not depend on the existence or not of a coincidence lattice. It varies continuously with the rotation and follows the distribution of the local phase interferences between functions representative of the periodicities of each layer. The local positions in the two layers that are in equal phase, generate thus an apparent periodicity responsible of the moir patterns (see, for example, [START_REF] Rong | [END_REF][START_REF] Miller | [END_REF]. A subsequent work is to be submitted next discussing the case of general bilayers where U ↵ is a Z-module of rank 4 in connection with the notion of 0-lattice independently of the possible existence of a coincidence lattice.

IUCr macros version 2.1.11: 2020/03/03 Fig. 13. (a) The graphene is a 2D structure made of a honeycomb lattice of carbon atoms (in ocher on the picture).The standard primitive hexagonal lattice is generated by the couple 1, j in complex notations defining the unit cell drawn in gray.

The point symmetry group is 6m that can be generated by the two mirrors M and M 0 . (b) Generating coincidence lattices by rotation is easily obtained by applying rotations ↵ around the origin that superpose nodes deduced from each others by the mirror along the real axis transforming the node n + m j into n + jm. Because of the hexagonal symmetry, choosing point n + m j with n, m coprime in the region n > 2m > 0 between the mirrors M and M 0 is su cient for generating all the possible rotations of coincidence angles ↵ and ⇡/3 ↵. Here, the generic node (n, m) is (4, 1).

The graphene has a 2D periodic structure of group p6mm(ã, b) with carbon atom at special position 2b 3m (1/3, 2/3). It is described 12 in the complex plane C by the primitive hexagonal lattice ⇤ (⇢ = 1, ' = 2⇡/3) defined by :

⇤ = {z = n + jm, j = e 2i⇡/3 , n, m 2 Z}.
with a carbon atom at position z 1 = (1 + 2j)/3 (and equivalent z 2 = (2 + j)/3) as shown on Fig. 13 (a). The unit cell parameter equal to a = 0.2456 nm, is chosen here as the unit length.

The point symmetry elements of 6mm are generated by the rotation of ⇡/3 located at the origin and transforming 13 z into jz and the mirror along x transforming z into z. The orbit G z of a generic point z has thus 12 elements per unit cell:

G z = {z, jz, jz, z, jz, jz, z, j z, j z, z, j z, j z} + ⇤ as exemplified on Fig. 13 (b).

1.1. Graphene bilayers with coincidence lattices.

Twisted graphene bilayers are certainly among the most studied materials in the world (see for instance the recent review by Geim, 2009) often created, for example, in epitaxial graphene growth on the C-terminated face of Si-C (see [START_REF] Campanera | [END_REF][START_REF] Hass | International Tables for Crystallography vol. A, Space group symmetry[END_REF]Varchon et al., 2008;Bistritzer & MacDonald, 2011). These twisted bilayers are the superimposition of two single graphene sheets slightly twisted with respect to each other by a small angle ↵ of a few degrees or less. It has been seen a couple of years ago that those twisted graphene bilayers have remarkable electronic structures (see Trambly et al., 2010). As already mentioned, for the geometric point 12

It turns out that the commonly used notation in the physics community of graphene, is to take the hexagonal reference frame with the acute angle ⇡/3 instead of the crystallographic definition that uses the angle 2⇡/3. This corresponds in choosing ( j, 1) as reference frame instead of (1, j). Noting thus that a node z can be equivalently written as z = n + mj = M N j we obtain n = N + M and m = N and thus M = n m.

13

The six hexagonal rotations are {1, j, j, 1, j, j}.

IUCr macros version 2.1.11: 2020/03/03 of view discussed here, the two graphene sheets are considered as infinitely thin and located on the same plane.

Twist rotations of angle ↵ leading to coincidence lattices are infinitely many (see Feuerbacher, 2021). They are characterized by the rotations ↵ that superpose a representative of a given orbit of nodes z = n + jm on top of another point of the same orbit G z . As previously mentioned, because of the high symmetry of the hexagonal system, enough is to examine the rotation ↵ around the origin that transforms the lattice point z = n + jm = n m jm into z 0 = n + jm as shown on Fig. 13, where n and m are positive coprime integers with n > 2m > 0:

n + jm ↵ ! n + jm = e i↵ (n + jm) (30) 
or:

e i↵ = n + jm n + jm = ✓ n + jm p ⌃ ◆ 2
and thus e i↵/2 = n + jm p ⌃

where ⌃ = n 2 + m 2 nm.

Hexagonal and rectangular coordinates.

The connection between the rectangular c-type lattice with ⇢ = p 3 reference frame with coordinates (n r , m r ) both integers or both half-integers and the hexagonal lattice reference frame (n h , m h ) both integers is given by:

(

n h = n r + m r , m h = 2m r ( 2n r = 2n h m h 2m r = m h
It is easily verified that is an integer for both n r and m r being half integers

= n 2 r + 3m 2 r = (N + 1 2 ) 2 + 3(M + 1 2 ) 2 = N 2 + N + 1 4 + 3M 2 + 3M + 3 4 = N (N + 1) + 3M (M + 1) + 1.
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and that 14 :

⌃ = n 2 h + m 2 h n h m h = (n r + m r ) 2 + 4m 2 r 2m r (n r + m r ) = n 2 r + 3m 2 r =
1.3. Coincidence and Union lattices.

Because n + jm = 1 2 (2n m + i p 3m), we find: tan ↵ 2 = m p 3 2n m (31)
that is expression (4) rewritten in hexagonal coordinates. Similarly, the relations (5) become:

2 p ⌃ sin ↵ 2 = m p 3, 2 p ⌃ cos ↵ 2 = 2n m. (32) 
The unit vectors of T ↵ are T 1 = n + jm and T 2 = jT 1 = m + j(n m); because of relation (32), this translates into T 1 = e i↵/2 p ⌃ and since T 2 = jT 1 :

T ↵ = e i↵/2 p ⌃ (N + jM ), N, M 2 Z (33)
The coincidence lattice T ↵ is an hexagonal lattice deduced from the original lattice ⇤ of the layer by a rotation of ↵/2 with unit cell parameter p ⌃. The calculation of the union lattice U ↵ leads to the same expression as in equation ( 8):

U ↵ = T ↵ /⌃
that is the original hexagonal lattice rotated by ↵/2 with an unit cell parameter linearly shrinked by 1/ p ⌃.
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The relation ⌃ = q / , found for the rectangular system is based on = gcd(mrp, nrq) = gcd(3mr, nr) = gcd(3, nr) and leads to = 1 -and thus ⌃ = as expected -when nr is not a multiple of 3, but to = 3 when nr = 3hr and thus ⌃ = /3 that seems contradictory to the present result. In fact, because n h = 3hr + mr, m h = 2mr, the sum n h + m h is a multiple of three and the actual coincidence unit cell reduces to ((n h + m h )/3, (2m h n h )/3), that is indeed three times smaller.

n k,1 2m k,1 = 3k 0 both multiple of three, leading to an unit cell three times smaller.

The trigonometric relation relating the angle ↵/2 to ↵ 0 /2 = ⇡/6 ↵/2:

tan( ⇡ 6 arctan( m p 3 2n m )) = p 3(n 2m) 3n ⌘ m 0 p 3 2n 0 m 0
implies that n 0 = 2n m and m 0 = n 2m, and thus, for k = 3k 0 :

3n 1,k 0 = 2n k,1 m k,1 and 3m 1,k 0 = n k,1 2m k,1 .
This shows that the asymptotic branch ↵ ! ⇡/3 is the optimal solution leading to the smallest unit cells: m) n, m 2 Z, n > 2m > 0 plotted for one unique twist rotation as a function of ⌃ = n 2 + m 2 nm for ⌃ < 8000, on a logarithmic scale. As in the general case, well defined asymptotic branches are observed that correspond to the terms of the consecutive Farey sequences: the asymptotic branches of the F h (6) sequence are drawn in cyan and red.

n = 1 + 2`, m = `, `2 N, `= 3`2 + 3`+ 1 with sin `= 1 2 p 5 10 15 

Normalizers of twisted graphene bilayers

Table 1. Normaliser N of graphene twisted bilayers as a function of the rigid body translation ⌧ expressed on the basis of the union group W ↵ = p6mm with origin chosen on the 6-fold axis. Its translation group is the union lattice U ↵ defined by U 1 = (n + mj)/⌃ and

U 2 = ( m + (n m)j)/⌃ with ⌃ = n 2 + m 2 nm. ⌧ (U ↵ ) little group in W ↵ (U ↵ ) N ⌧ (T ↵ ) Figure 1 a (0, 0) 6mm p6mm (a) 2 b (1/3, 2/3)⇤ 3m⇤ p31m⇤ (b) 3 c (1/2, 0) 2mm c2mm (c) 6 d (x, 0) .m cm (d) 6 e (x, x) m. cm (e) 12 f (x, y) 1 p1 ( f)
Our last task is to analyze the overall symmetry of the graphene twisted bilayers with coincidence lattices. The group W ↵ is easily found as W ↵ = p6mm of translation group U ↵ whatever value of the coincidence angle ↵ in P. The group p6mm contains 6 symmetry strata listed in table 1. There are thus only six di↵erent possible space groups for the bilayer according to the coordinates of ⌧ expressed in units of the union lattice U ↵ as shown on table 1 and 1. Rigid body translation ⌧ = (1/3, 2/3) corresponds to the natural stacking in graphite. All coincidence angles ↵ in P generate normalizers with the same symbols, they di↵er only by the scaling factor defined by the union and coincidence lattices.

The case of very small rotations deserves some attention. Rotations decreasing to zero are associated to larger and larger coincidence lattices and therefore to shorter union lattices. As noticed in the body of the text, this leads to rigid body translations tending to zero and therefore loosing any physical pertinence. Small rotations indeed can be locally described as translations between the two almost parallel layers as shown on Fig. 16(a). The normalizer at ⌧ = 0 is the group of the graphene layer, p6mm scaled by p ⌃ and rotated by ↵/2: the bilayer has exactly the same symmetry properties as the initial graphene unit cell but magnified to mesoscopic scales ! It can be roughly described as an hexagonal tiling made of three main microscopic high symmetry structures occurring at each special point of the large hexagonal coin- that is consistent with the expression of ↵ given by relation (37).

The union lattice U = ⇤ [ ⇤ 0 , is given by: U = 1 T , where = ⌃⌃ 0 gcd(⌃, ⌃ 0 ) gcd(n, m) gcd(n 0 , m 0 ) .

It is easily checked that, in the homophase case, where ⌃ = ⌃ 0 , gcd(n, m) = gcd(n 0 , m 0 ) = 1, this relation simplifies to (8). ii-the shear intensity ⌘ rational with respect to the square lattice parameter: ⌘ = p/q, p, q 2 N + then, the transformation b ↵ writes as a matrix with rational coe cients: b ↵ = 1 q 2 q 2 2pnm(n 2 m 2 ) p(n 2 m 2 ) 2 4pn 2 m 2 q 2 + 2pnm(n 2 m 2 ) ! that generates a coincidence lattice defined by the unit vectors :

A = 1 (n 2 m 2 , 2nm), B = q ( 2nm, n 2 m 2 ); where = gcd(n 2 m 2 , 2nm).

one-dimensional dilatation

A dilatation of the square lattice ⇤ of intensity in the direction of angle ↵ with respect to the x axis of ⇤ can be written as:

b ↵ = 1 + cos 2 ↵ cos ↵ sin ↵ cos ↵ sin ↵ 1 + sin 2 ↵ ! As in the preceding case, if = p/q, p, q 2 N + and ↵ = 2 arctan(m/n), the transfor-

mation b
↵ is a matrice with rational coe cient: b ↵ = 1 q 2 q 2 + p(n 2 m 2 ) 2 2pnm(n 2 m 2 ) 2pnm(n 2 m 2 ) q 2 + 4pn 2 m 2 ! with lattice parameters:

A = q + 1 (n 2 m 2 , 2nm), B = 1 (2nm, m 2 n 2 )
where = gcd(n 2 m 2 , 2nm).

  IUCr macros version 2.1.11: 2020/03/03 imposition of two identical monolayers on top of each other forming an infinitely thin layer of matter. The twist operation, that transforms the monolayer I into II is either a rotation-translation b ↵ ⌧ acting as b ↵ ⌧ r = (↵|⌧ )r = ↵r + ⌧ , or a mirrortranslation 1 c m ✓,⌧ oriented along a direction of angle ✓ with the x axis, acting as c m ✓,⌧ r = (m ✓ |⌧ )r = m ✓ r + ⌧ .The original monolayer I has space group 2 G with point group and lattice ⇤

Fig. 1 .

 1 Fig. 1. Passing from monolayer I to monolayer II is achieved by the coset b ↵G and from II to I by the inverse coset G b↵ 1 . The overlap of the monolayers designed here as bilayer, generates its own symmetry that is a space group when the two lattices ⇤ and ⇤ 0 have a common coincidence lattice T = ⇤ \ ⇤ 0 and only an approached symmetry else.

Fig. 3 .

 3 Fig. 3. In the general case, coincidence angles connect two nodes of a same orbit irrespective of the internal symmetry of the monolayer. Here for a monolayer of rectangular symmetry, the node (n, m) is the transformed of either (n, m) by the rotation ↵, or equivalently of ( n, m) by the rotation ↵ ⇡.

Fig. 4 .

 4 Fig. 4. Example of coincidence lattices in black in the rectangular system ⇢ =

  of the union lattice. The other fundamental translation group is the group U ↵ generated by the union of the lattice translation groups of IUCr macros version 2.1.11: 2020/03/03 the two crystals:

Fig. 5 .

 5 Fig. 5. Coincidence pattern in the rectangle system for ⇢ = p 3/2: (a) plotting all equivalent rotations ↵, ↵, ⇡ + ↵, ⇡ ↵ with ⌃ in ordinate; (b) plotting only one representative ↵ with in ordinate.

  (b), a simpler and more informative pattern is obtained by plotting only one rotation representative irrespective of the internal symmetry of the monolayer, as a function of the square length of the superposition node

Fig. 6 .Fig. 7 .

 67 Fig.6. The points of coincidence are defined by coprime pairs of integers (n, m), i.e., by fractions m/n in their irreducible forms. Plotted on the nodes of a (square) lattice, they generate the so-called set V of points visible from the origin made of the lattice points drawn in blue. Each rational row of this set, as those drawn in colors, is associated to a branch of points with the same colors in the coincidence pattern of Fig.7.

  Fig. 9. (a) principle of calculating the rotation 2 relating two nodes z and ze 2i✓ deduced from each other by a mirror oriented along the direction ✓ : ze 2i = ze 2i✓ . Application to the smallest rotation angles for the three systems, (b) rectangle: ⇢ > 1, ✓ = ⇡/2, z = 1 + i⇢q`, (c) square: ✓ = ⇡/4, z = (`+ 1) + i`and (d) hexagonal: ✓ = ⇡/6, z = 2`+ 1 + |`.

Fig. 10 .

 10 Fig. 10. Coincidence lattices (cyan) of examples (n, m) of the optimal branches as compared to their corresponding 0-lattices (yellow) for, from left to right, the rectangle, square and hexagonal systems where the ratios of the area of the coincidence and 0-lattices are respectively 4, 2 and 1.

Fig. 11 .

 11 Fig. 11. Thes two identical cups share a same mirror (in blue) and transform into each other by another mirror (in red) perpendicular to the previous one. Alone, each cup has the point symmetry m, but the pair of cups, taken as a whole, has point symmetry 2mm.

Fig. 12 .

 12 Fig. 12. Example of structures of symmetry pm x (⇤) and pg x (⇤), showing that the mirror of the exchange set survives in the bicrystal symmetry only for the rigid body translation ⌧ located at special positions of the group W ↵ = pm y with translation group U ↵ . Beyond the general position (x, y) generating a bilayer of symmetry p1 and not shown here, there are two other strata (0, y) and (1/2, y) that generate a mirror in the bilayer structure. According to the values 0 or 1/2 of the x component of ⌧ on U ↵ , these mirrors are either pure or glide. Here ⇢ = p 3/2, n = 1, m = 1, ↵ = 101.537 ; the coincidence lattice T ↵ is defined by T 1 = (1, 1), T 2 = ( 3, 2) with ⌃ = 5.

  and that is the translation group of the space group of the equivalent translations of the rigid body translation ⌧ . Both coincidence and union lattices share IUCr macros version 2.1.11: 2020/03/03 the symmetry class of the original layer. For square and hexagonal systems, the three lattices T ↵ , ⇤ and U ↵ are two by two homothetic in the linear ratio p ⌃. The complete set of possible coincidence lattices characterized by the rotation angle ↵ and the unit cell size ⌃ of the corresponding coincidence lattice form a diagram in one-to-one correspondence with the so-called set of points visible from the origin and can be analyzed using Farey sequences. They distribute on branches each characterized by a geometric invariant relating the sinus of the rotation angle to the square root of the unit cell size.

Fig. 14 .

 14 Fig. 14. The rotations of coincidence n + m j ! n + mj are defined by ↵ = 2 arctan m p 3/(2nm) n, m 2 Z, n > 2m > 0 plotted for one unique twist rotation as a function of ⌃ = n 2 + m 2 nm for ⌃ < 8000, on a logarithmic scale. As in the general case, well defined asymptotic branches are observed that correspond to the terms of the consecutive Farey sequences: the asymptotic branches of the F h (6) sequence are drawn in cyan and red.

  Fig. 15. Example of a graphen bilayer with twist rotation (n, m) = (3, 1), ↵ = 2 arctan p 3/5 = 38.2132 , T 1 = ( 1, 2), T 2 = (2, 3), ⌃ = 7, as a function fo the rigid body translation ⌧ shown on Table1. Rigid body translation ⌧ = (1/3, 2/3) corresponds to the natural stacking in graphite. All coincidence angles ↵ in P generate normalizers with the same symbols, they di↵er only by the scaling factor defined by the union and coincidence lattices.

Fig. 16 .

 16 Fig. 16. (a) Small rotations generate bilayers with the same symmetry as the original graphene layer, magnified by p ⌃ and rotated by ↵/2. (b) Four unit cells of the local structure often called SP corresponding to the special point 2mm. IUCr macros version 2.1.11: 2020/03/03

Fig. 17

 17 Fig.17gives a simple example of a rotation-dilation transformation between two square lattices ⇤, ⇤ 0 where the node (n, m) = (2, 1) of ⇤ (in red) superimposes on the node (n 0 , m 0 ) = (3, 1) of ⇤ 0 (in blue) by a rotation ↵ and a dilatation %. Here ⌃ = 1 + 4 = 5 and ⌃ 0 = 1 + 9 = 10. Thus, we find % = p 5/10 = 1/ p 2 and tan ↵ = (3 2)/(6 + 1) = 1/7. We have tan = 1/2 with cos = 2/ p 5, sin = 1/ p 5 and tan 0 = 1/3 with cos 0 = 3/ p 10 and sin 0 = 1/ p 10.

Table 2 .

 2 2D symmetry operations (g|t) acting as functions f (z) in the complex plane z = x + iy.

	Symmetry operation f (z)	f 1 (z)
	Translation (1|t)	z + t	z t
	inversion ( 1|t)	z + t	z + t
	rotation ( |t) mirror (m ✓ |t)	ze i + t ze 2i✓ + t (z t)e 2i✓ (z t)e i
	2.2. Coincidence angles for homophase bilayers 4	

IUCr macros version 2.1.11: 2020/03/03

We use the notations of the International Tables ofCrystallography (2005).IUCr macros version 2.1.11: 2020/03/03
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Appendix 1 The specific example of graphene bilayers

IUCr macros version 2.1.11: 2020/03/03 1.4. The coincidence pattern P.

The coincidence pattern is shown on Fig. 14 (a) -generated by one unique representative out of the twelve equivalents of the rotation -with the corresponding ⌃ plotted on a logarithmic scale. As already discussed in subsection 2.3, the coincidence points distribute on branches converging asymptotically to specific rotation values when ⌃ ! 1. Posing n k,k 0 = kn 0 + k 0 n 1 and m k,k 0 = km 0 + k 0 m 1 from equation ( 11), we obtain:

. The basic invariance relations (10) for each branch are in hexagonal coordinates:

Here again, the optimally branches are those where k 0 (k) = 1 for running k(k 0 ) drawn in cyan and red in Fig. 14. Of greatest importance are the optimal branches associated to the nodes of the initial Farey sequence F h (2) = [(1, 0), (2, 1)] since they cover the entire angular definition domain of P generating the smallest ⌃ values. We find:

A same angle is found between the two branches for k = 3k 0 with k,1 = 3 1,k 0 . Indeed, since then n k,1 = 2 + 3k 0 we see that Appendix 2 Heterophase bilayers with coincidence lattices 2.1. Homogoneous Dilatation-rotation coincidence lattices for heterophase bilayers Heterophase bilayers are formed by two layers of di↵erent structures; they show very similar geometrical properties as the homophase bilayers. However, our present context of using complex numbers allows us to treat here only those heterophase bilayers where the lattices ⇤ and ⇤ 0 of the layers can be be deduced from each other by a dilatation-rotation, i. e. when:

Here, % is the dilatation coe cent and ↵ the rotation from ⇤ to ⇤ 0 . This kind of transformation is the general case when the lattices belong both to either the square or the hexagonal systems as examplified on Fig. 17.

We choose here to discuss heterophase bilayers in the square system for simplicity.

Let ⇤ and ⇤ 0 the two square lattices of lattice parameters a = 1 for ⇤ and a 0 = % for ⇤ 0 :

exist with gcd(n, m, n 0 , m 0 ) = 1 such that:

in which case the coincidence lattice is

the unit cell of ⇤ 0 . Explicitely:

IUCr macros version 2.1.11: 2020/03/03

or by posing ⌃ = n 2 + m 2 , ⌃ 0 = n 02 + m 02 , we obtain:

Therefore two square 15 lattices of di↵erent sizes can share a coincidence lattice only if the ratio of the unit celle lengths, is the square root of a rational number % 2 2 Q + in which case the area of the coincidence unit cell is simultaneously an integer multiple ⌃ of the area of the unit cell of the first lattice and another integer mulitple, ⌃ 0 of the unit cell of the second lattice in the ratio of the rational number % 2 = ⌃/⌃ 0 . It can be easily verified that the same property applies for the case of hexagonal lattices.

IUCr macros version 2.1.11: 2020/03/03 2.1.1. Pure dilatation A pure dilatation of one layer with respect to the other is characterized by ↵ = 0 and therefore nm 0 = mn 0 or m/n = m 0 /n 0 . We assume n and n 0 are non zero leading to:

The union lattice U = ⇤ [ ⇤ 0 writes:

Appendix 3 Homophase bilayer under mechanical deformation

The two layers can in general be of two di↵erent structures of space groups G and G 0 with lattices respectively ⇤ and ⇤ 0 . We still designate by b ↵ the transformation from ⇤ to ⇤ 0 :

as exemplified on Fig. 18. For simplicity we treate here the case of the initial lattice ⇤ belonging to the square system.

IUCr macros version 2.1.11: 2020/03/03