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Abstract
Lately, there has been a growing interest in applying Machine Learning and Digital Twins for the speed-up
of acoustic simulations. However, the lack of interpretability and physics foundation inhibit the widespread
usage of these black-box models by the scientific community. In this article, global sensitivity analysis and
feature engineering techniques are leveraged to improve the interpretability and physical consistency of ML-
based simulations of the Sound Transmission Loss problem for a variety of plate materials. Computationally
efficient sensitivity analysis is obtained via the Mean Decrease in Impurity, which is the byproduct of the
training of the Random Forest surrogate models. The resulting sensitivity indices were shown to be similar to
the traditional Sobol indices and more accurate than Fourier amplitude sensitivity testing for small datasets.
Moreover, introducing basic expert knowledge into the ML inputs helped reduce the surrogate prediction
error and interpret the physical meaning of sensitivity indices throughout the frequency spectrum.

1 Introduction

Recently Machine Learning (ML) and Digital Twins have enhanced vibroacoustic analyses, being able to,
e.g., detect, diagnose and predict system failures with high accuracy [1] and speed up costly simulations [2].
These methods, however, are classified as ”black-box”, meaning that the causal relationship between the
model’s inputs and outputs is not explicitly determined. As understanding the underlying physics of the
model is crucial in product design to support decision-making and to advance innovation, the adoption of
ML in vibroacoustics has been lagging.

One of the most used techniques to improve the interpretability of a model or phenomenon is Sensitivity
Analysis (SA). SA methods evaluate the importance of each input parameter to determine the output vari-
ability of a system [3]. In the local sensitivity analysis, commonly used in the vibroacoustic domain [4–6],
the inputs are varied individually around a given point in the design space to assess their effects on the model
output. On the other hand, Global Sensitivity Analysis (GSA) methods, such as Fourier amplitude sensi-
tivity test (FAST) [7] and Sobol’s method [8], provide sensitivities indices valid for a broad input variation
range. Moreover, GSA can capture input interaction effects and nonlinearities when higher-order sensitiv-
ity terms are considered [3]. The drawback of GSA is that it usually demands a specific sampling method
and numerous evaluations [9]. Complex vibroacoustic phenomena have been investigated with GSA, e.g.,



the importance of micro-perforated panel absorbers parameters on sound absorption levels [10], the effects
of several vehicle components on its interior noise [11], and the sensitivity of Sound Transmission Loss
evaluated with analytical methods [12] and with Statistical Energy Analysis [13].

SA has also been employed on ML-based methods to render more meaningful and explainable models [14,
15]. Apart from classic SA methods, the so-called permutation feature importance or Mean Decrease in
Accuracy (MDA) [16] can also be applied to any ML model to assess its global first-order sensitivities. In
MDA, each feature’s importance is evaluated as the drop in the model accuracy given by randomly permuting
the feature values, i.e., defining it as a noise input. Chai et al. [17] explored the convenience of evaluating
the MDA method at the out-of-bag samples of an RF and applied it to the STL problem of a honeycomb
sandwich plate. Besides that, some algorithms have sensitivity indices as a post-processing step of the
training, as in polynomial chaos expansions (PCE) [18], gaussian process regressors [19] and decision tree-
based methods [20]. The Mean Decrease in Impurity (MDI) is an example of a sensitivity method that
comes as a by-product of Random Forest (RF) and which sensitivity indices are similar to the Sobol’s total
sensitivity indices, being more flexible to implement [21].

Recent research also integrates physical knowledge into the ML model to increase its accuracy and inter-
pretability for applications in diverse scientific fields. Willard [22] surveyed the methods applied with this
purpose including, e.g., penalizing physical inconsistencies during the ML training and defining ML archi-
tectures that encode the symmetries and variables dependencies of the physical problem. A straightforward
method to embed domain expertise in the ML is to include physics-guided features through feature engineer-
ing, as recently applied in thermal [23], fluid flows [24], and material science problems [25].

This study aims to apply physics-guided features and the MDI global sensitivity analysis to develop an
interpretable and explainable RF-based surrogate model for the classical vibroacoustic problem of STL with
no additional computational cost. The present paper extends the work in [26] by performing a comparison of
MDI indices with Sobol and FAST indices regarding their formulation, accuracy, and time elapsed, and by
encompassing different incident fields and material properties, namely isotropic, orthotropic, and sandwich
materials. The performance and the results obtained are compared with the STL sensitivity analyses in
[12, 17]. The methodology presented is extendable to other engineering problems and experimental setups,
where it may enhance system identification and scientific discoveries.

The paper is organized as follows. Section 2 briefly presents the theory of the classical Sobol’s and FAST
methods. Section 3 introduces RF and MDI concepts and formulation. Section 4 shows the analytical
formulations for the STL for the different plate materials analyzed. The results of the comparison between
Sobol, FAST, and MDI are presented in Section 5. The MDI-based sensitivity results in Section 6 bring
light to different aspects of the coincidence phenomenon in the STL problem. The influence of including
physics-guided features on the surrogate accuracy and the total sensitivity indices are presented in Section 7.
Dimension reduction has also been applied following GSA. Section 8 contains the conclusions.

2 Variance Based Sensitivity Analysis

In the variance-based sensitivity analysis, the importance of each input and input interaction is assessed by
their contribution to the output variance. The Sobol’s decomposition of variance states that the total variance
of the output of a model Y = f(x) = f(x1, x2, . . . , xD) can be represented as the sum of the individual
effects of the each input xi, denoted as Vi, and the higher-order effects from the interactions between a set of
inputs as long as some conditions are met [8, 27]. That is:

V ar[Y ] = V =

D∑
i=1

Vi +

D∑
i=1

D∑
j>i

Vij + · · ·+ V1,2,...,D. (1)

Following [8, 27], the first-order Sobol sensitivity indices or main effect indices of the input variable xi can



be expressed in terms of conditional expected values as

Si =
Vi

V
=

Ex∼i (Y | xi)
V

, (2)

where x∼i denotes the set of all variables but xi and the numerator of Si is equivalent to the expected
average reduction of the output variance when xi is fixed [28]. The total contribution of the variable xi to
the variance output, including the effects caused by its interactions with other variables, is measured by the
total sensitivity index [3]:

STi = 1− V arx∼i(Exi(Y |x∼i))

V
. (3)

The total sensitivity indices can be interpreted as the remaining variance when all terms but xi are fixed [29].
The sum of the total sensitivity indices is equal to or greater than one. When equals to one, the function is
additive, i.e., only the first-order terms contribute to the variance, and there is no effect of the interaction
between any parameter, what read as STi = Si.

Evaluating variance-based sensitivity indices involves sampling and uncertainty quantification stages usually
based on Monte Carlo or quasi-Monte Carlo integral methods, which are computationally intensive. A popu-
lar and less costly technique to evaluate variance-based sensitivity indices is the Fourier amplitude sensitivity
test (FAST), developed in 1973 by Cukier et al. [7] to evaluate the main effect indices. The FAST method
was extended by Saltelli et al. [30] to include the computation of the total effects and is now integrated
with Sobol’s indices. FAST uses a particular period sampling approach to define the multiple Fourier series
expansion that approximates the function f(x). As the Fourier series expansion can be decomposed as an
Analysis Of Variance (ANOVA)-like decomposition, the components of the model variance can be modeled
in terms of the Fourier coefficients [29]. The FAST and Sobol methods assume uncorrelated and indepen-
dent variables, otherwise, they lead to biased results if specific methodologies for correlated and dependent
variables are not applied [15].

3 Random Forest Surrogates and Mean Decrease in Impurity SA

Surrogate models or metamodels are approximations of costly functions that are constructed based on in-
ferred information from a set of input-output pairs (q, y) sampled with the true function. An increasingly
popular way to construct these surrogates is to use ML regressors to make the data inference. Most ML mod-
els are constructed based on a structure/representation that defines the relation between inputs and outputs
depending on its parameters. These parameters are optimized during the ML training to minimize the cost
function, which defines the error between the predicted ML output and the true output.

Many ML methods use decision trees as its basic structure to define the data relations. The decision tree
splits the input feature space using simple rules at each of its branches [16]. Each split at a node n is defined
by a threshold tn applied to an input feature qin and divides the space at the current branch C into two new
subspaces (two new branches):

C−(qin , tn) = {(q, y) ∈ C : qin ≤ tn},
C+(qin , tn) = {(q, y) ∈ C : qin > tn}.

Each node split aims to aggregate samples with similar outputs. Therefore, during the training process the
pair (qin , tn) that minimizes the splitting error at node n, also called impurity criterion Gn(qin , tn), is chosen
to split the domain. A common impurity criterion used in regression problems is based on the Mean Squared
Error (MSE) of each subspace, defined as

Gn(qin , tn) =
L−

L

 1

L−

∑
y∈C−

(y − µ−)2

+
L+

L

 1

L+

∑
y∈C+

(y − µ+)2

 , (4)



where µ− and µ+ denote the mean output value of the subspaces C− and C+, respectively, and L, L− and
L+ are the number of samples in subspaces C, C− and C+.

The binary divisions of the decision tree continue successively until an established criterion is met, e.g., the
decision tree reaches its maximum depth. At the terminal nodes, a scalar is assigned as output prediction for
each final subspace. Individual decision trees can be combined in an ensemble model using bagging to create
a Random Forest (RF) predictor [16]. The bagging procedure randomly selects distinct sub-datasets to train
each tree, ensuring different trees. The final RF prediction is the average of the decision tree predictions in
the forest and, therefore, it has lower variance and generalizes better than individual predictors.

Besides being efficient and able to approximate complex models, RFs are notable for being interpretable ML
models. They provide different ways to access feature importances that relate to sensitivity indices. One of
them is the Mean Decrease in Impurity (MDI), a by-product of the RF training. The principle of MDI is that
the contribution of each input feature to reduce the impurity error is a measure of its importance. Given an
RF with Φκ trees, κ = 1, . . . , T , the MDI importance can be defined as [16, 20]:

MDI(qi) =
1

T

T∑
κ=1

∑
n∈Φκ

1(qin = qi)
L

Ltot
∆Gn(qin , tn), (5)

where 1(qin = qi) is one if qin = qi and zero otherwise. The term ∆Gn(qin , tn) denotes the changes in
impurity at node n ∈ Φκ and it is weighted by the fraction of samples at that node L

Ltot
. Therefore, similarly

to how the total Sobol indices can be interpreted as the effect of one input variable in the output variance
decrease, the MDI indices are the effect of the input feature in the RF impurity decrease. Indeed, Scornet [31]
proved that, for the case of additive functions with independent variables, the MDI of a decision tree provides
a decomposition of the output variance. In the presence of interactions, consistent MDI can be obtained via
RF, i.e., by averaging the MDI of several decision trees [31]. Scornet also showed that the MDI is biased
towards positively correlated variables.

MDA is also often applied to evaluate the SA of RF models. Jaxa-Rozen and Kwakkel [21] compared MDI
and MDA indices with Sobol and Moris metrics for different study cases and highlighted that both MDI and
MDA meet the criteria of an ”ideal” sensitivity metric, i.e., ”suitable for global sampling projects, indepen-
dent of model structure, relatively easy to implement numerically, stable across all sample sizes and bootstrap
resamples and applicable with generic input sampling and heterogeneous input types”. Nonetheless, MDI
and MDA do not provide the direct effects of inputs on output variance, but their relative importances. The
direct effects can be assessed by applying traditional SA approaches to the fitted RF-based surrogate.

4 Analytical Sound Transmission Loss

The sound insulation capacity is an important characteristic of a structure, which is deeply studied in acoustic
projects. The assessment of the sound insulation capacity is usually done by the sound transmission loss
(STL) analyses, which evaluate the relation between the sound power reaching the structure II and the sound
power transmitted through the structure IT . Following [32, 33], the STL of a plane wave is evaluated by

STL = −log10τ(ϕ, θ, ω) = −log10

(
IT
II

)
= −log10

∣∣∣∣PT

PI

∣∣∣∣2 , (6)

where τ is the acoustic transparency of a harmonic plane wave of frequency ω, azimuth angle ϕ and incident
angle θ, and PI and PT are the incident and transmitted sound fields, respectively.

The sound pressure field can be generically defined as

P∗ = p∗e
i(ωt−kxx−kyy±kzz). (7)

Here, P∗ can refer to either the incident, transmitted, or reflected sound pressure field, and p∗ is the as-
sociated pressure amplitude. The components of the wave number are defined as k =

(
kx ky kz

)T
=



ω
c0

(
sin θ cosϕ sin θsinϕ cos θ

)T , where c0 is the sound speed through the fluid. Both the incident and the
transmitted sound pressure PI and PT have a z component in the positive direction according to the conven-
tion in Figure 1, while the sound field reflected by the plate PR has a negative component in z. Hereinafter,
the term ei(ωt−kxx−kyy) will be omitted by convenience.

The continuity between the speed of the fluid and the plate at the interface can be stated as{
ikz(pR − pI) = ρ0ω

2w, for z = 0 at the incident side,
ikzpT = −ρ0ω

2w, for z = 0 at the transmission side, (8)

where ρ0 is the fluid density and w the plate displacement. From Eq. 8, it is deduced that pR = pI − pT ,
and, therefore, the fluid pressure force acting in the plate is given by F = (pI + pR)− pT = 2(pI − pT ).

The plate constitutive equation can be formulated as a function of the plate impedance Z as

iZωw = F = 2(pI − pT ). (9)

Combining Eq. 8 and Eq. 9, the ratio between incident and transmitted pressures is given by

pI
pT

=

(
1 +

Z cos (θ)

2ρ0c0

)
. (10)

This ratio can be used to calculate the acoustic transparency of a plane wave τ and the STL for τ (Eq. 6).
Moreover, the acoustic transparency for a diffuse field τd(ω) is the weighted average transmission coefficient
over all possible angles θ ∈ [0, π/2] and ϕ ∈ [0, 2π]:

τd(ω) =

∫ 2π
0

∫ π/2
0 τ(ϕ, θ, ω) cos θ sin θ dθdϕ∫ 2π
0

∫ π/2
0 cos θ sin θ dθdϕ

. (11)

The sound transmission reaches its maximum value whenever the wavelength of the acoustic wave projected
onto the plate, also called the trace wavelength, coincides with the wavelength of the natural propagating
waves of the plate, which is known as the coincidence phenomenon. Thus, the coincidence frequency ωcoin

is the frequency with which the projected acoustic wavenumber kt = ω
c0
sin θ is equal to the plate natural

propagating wavenumber kp(ω). In the case of diffuse fields, the minimum frequency at which coincidence
takes place (i.e., when sin θ = 1) is called critical frequency ωcrit.

4.1 Isotropic Model

The structural impedance of a Kirchhoff-Love isotropic plate with thickness h, density ρ, Young’s modulus
E, Poisson ratio v, structural damping η and plate bending stiffness D = Eh3

12(1−v2)
(1 + iη) impinged by an

acoustic plane wave is given by

Z(ω, θ) =

(
1− ω2 D

ρhc40
sin4 θ

)
iωρh. (12)

Figure 1: MDI indices for the STL analysis of isotropic plates for a plane wave with θ = 60◦.



By replacing the impedance expression in Eq. 10 with Eq. 12, one can evaluate the acoustic transparency and
the STL for the isotropic plate. As observed in [32], while the first term of Z(ω, θ) in Eq. 12 is dominated
by the plate inertia, the second term is stiffness-controlled. This characteristic of isotropic plates is later
observed in this paper in STL curves.

The natural propagating wavenumber of the thin isotropic plate is the bending wavenumber kp = ω2ρh
D

1/4

[32]. Therefore, its coincidence frequency occurs at

ωcoin(θ) =
c20

sin2 θ

√
ρh

D
. (13)

4.2 Orthotropic Plates

Following [12], the structural impedance of an infinite orthotropic plate in the STL problem is given by

Z(ω, θ, ϕ) =

(
1− ω2D(ϕ)

ρhc40
sin4 θ

)
iωρh, (14)

where D(ϕ) is the heading bending stiffness of the plate and is defined as

D(ϕ) = Dx cos
4 ϕ+ 2Dxy sin

2 ϕ cos2 ϕ+Dy sin
4 ϕ

=
(
Ex cos

4 ϕ+ 2(Eyvxy + 2Gxy) sin
2 ϕ cos2 ϕ+ Ey sin

4 ϕ
) h3(1 + iη)

12
(
1− Ey

Ex
v2xy

) . (15)

In Eq. 15 the sub-indices correspond to the direction relative to each material property, and Gxy is the in-
plane shear modulus.

The behavior of the plate bending wave on an orthotropic plate varies according to the wave’s direction.
Thus, the coincidence frequency occurs at different azimuth angle ϕ, and is given by

ωcoin(ϕ, θ) =
c20

sin2 θ

√
ρh

D(ϕ)
. (16)

Two special cases of Eq. 16 are important in the STL analysis of orthotropic plates, namely the critical
frequencies corresponding to the directions x and y, i.e. when ϕ = 0◦ and ϕ = 90◦, respectively, and are
calculated as

ωcrit,x = c20

√
ρh
Dx

and ωcrit,y = c20

√
ρh
Dy

. (17)

4.3 Sandwich Panels

Sandwich structures are composite structures composed of two thin and stiff plates, the skin layers, in-
terspersed with a thick layer of lightweight material, the core layer, and are widely used due to their good
stiffness-weight ratio. Sandwich material can be designed to shift the critical frequency to higher frequencies
and increase the transmission loss at coincidence due to the dampening effects of the core layer. Narayanan
and Shanbhag [34] proposed an analytical implementation of the STL for infinite damped sandwich panels,
considering that the deformations of the skin and core can be modeled respectively as purely bending and
shear deformations and that the skin material is non-dissipative.

According to [34], the structural impedance of the infinite sandwich panels approximates as

Z(ω, θ) =
k6tDsgβY

ω(k2t+g)2+g2β2 + i
(
ωm− Dsk4t

ω
1+gY (k2t+g+gβ2)

(k2t+g)2+g2β2

)
, (18)



where β is the core loss factor, Y = 3(1 + hc/hs)
2 is the geometric parameter, m is the mass density of the

entire structure, Ds is the skin bending stiffness, g = 2Gc(1−v2s)
Eshshc

is the shear parameter of the core and Gc is
the shear modulus of the core. The subindices c and s relate respectively to core and skin. The coincidence
frequency equation for the sandwich panels can be found in [34].

5 Comparison of Variance-Based and MDI Sensitivity Analyses

In this section, the total importances obtained with the variance-based SA using Sobol and FAST are com-
pared with the MDI results regarding accuracy and computing time. All analyses were carried out on a
desktop with a hexa-core 3.1 GHz processor and 32 GB of RAM using Python as the primary programming
language and Matlab functions to solve the analytical STL. The Salib library [35] was used to obtain the
sensitivity indices with Sobol and FAST approaches, while the RF models were instantiated and trained us-
ing sklearn. One RF with 100 trees is trained for each of the Nω outputs and 15% of the database is used
to assess the RFs accuracy. The same desktop and RF architecture is used in the remaining sections of this
paper. The following comparison was made for the STL of isotropic infinite plates impinged by a diffuse
field. The five-dimensional design space considered is presented in Table 1 and encloses a broad range of
material properties, including the aluminum grades.

Table 1: Design space considered for the isotropic plate analyses.

Inputs h E ν ρ η
Units mm GPa - kg/m3 %

Lower Bound 7 55 0.20 2300 0.1
Upper Bound 8 85 0.35 3300 1

The MDI indices are comparable with the variance-based total effect indices ST but on different scales, as
the MDI indices sum up to one, while

∑
i STi >= 1. Thus, to enable a prompt comparison between MDI

indices and ST , the importances will be scaled as S̄Ti =
STi∑
i STi

. MDI and FAST accuracies were evaluated
having as a reference model R the Sobol analyses with 24576 evaluations, which was determined after a
convergence test. The accuracy error of the sensitivity indices from analysis A in relation to the reference R
is evaluated by

ε(A,R) =
1

NωD

Nω∑
ω

D∑
i

|S̄A
Ti

− S̄R
Ti
|. (19)

Figure 2 shows the comparison between the performance of FAST and RF. The MDI indices are more
accurate with few evaluations, while the FAST method is slightly more accurate for large databases. The
elapsed time for the same number of samples is similar for both methods since sampling is the most time-
consuming stage of both approaches. Recently Chai et al. [17] showed good agreement between FAST and
MDA importances obtained with RF-based surrogates for an STL analysis, however, the approach did not
prove to be advantageous due to the extra cost of MDA and its lack of mathematical foundation.

The scaled total sensitivity importances calculated with the three approaches are shown in Figure 3 for visual
comparison. Both MDI and FAST importances were computed using 1280 evaluations, being that the root
mean squared error (RMSE) of the surrogate evaluated in the test dataset was 0.40 dB. Figure 2a and Figure
3 indicate that there is a good agreement among the sensitivity indices calculated by all approaches and that
the MDI indices obtained with RF-based surrogates are suitable indicators of input importances when few
samples are available.

Besides that, the MDI presents other advantages. First, the RF can be trained based on a generic sampling
strategy, while FAST requires a particular sampling scheme and can not reuse previous evaluations of the
model. Furthermore, once the RF-based surrogate is trained, it can be used to perform a multitude of for-
warding analyses in a fraction of the time, being suitable for uncertainty propagation, optimizations, and
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Figure 2: Comparison of Sensitivity Analyses approaches.
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(a) Sobol total sensitivity indices.
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(b) FAST total sensitivity indices.
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(c) MDI importances.

Figure 3: Total sensitivity indexes of the STL analyses for isotropic plates.

classical sensitivity analysis. Figure 4 illustrates an example in which the RF-based surrogate was used to
replace the true STL model in the calculation of Sobol’s first order indices with 24576 evaluations. While
the elapsed time using the true model was 1867s, the analysis using the surrogate took 23s, that is, more
than 80 times faster. At a previous stage, the sampling and training of this surrogate took more 111s. The
higher-order sensitivity indices can be readily obtained similarly.
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(a) True STL model is used to
evaluate the outputs.
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Figure 4: First-order sensitivity indices with Sobol algorithm.

6 MDI Results for Isotropic, Orthotropic and Sandwich Plates

MDI analysis can be used to approximate expensive GSA analysis but also to bring interpretability to the
surrogate model, a constant demand from the scientific community regarding black-boxes. This section
analyzes the STL for different materials and incident acoustic fields through the use of surrogate models and



the MDI sensitivity analysis. It should be noted that the MDI results depend on the selected design space, as
is the case for every GSA, thus, the results cannot be generalized to other input ranges. In this work, design
spaces with a broad variation range were selected to train surrogates suitable for design exploration.

6.1 Isotropic Plates

The same design space and database from Section 5 is used in this Section. According to the theory of STL
for infinite isotropic plates [32], it is known that two regions are expected: the inertia controlled region, in
which the STL can be approximated by the mass law, and the stiffness controlled region. These regions
correspond to the region where the first and second terms of the structural impedance of the plate in Eq. 12
predominate, respectively.

The MDI sensitivity analysis performed for a plane wave with θ = 60◦ (Figure 5) clearly shows both regions,
the inertia controlled, where the variance in ρ and h defines all the output variance and goes up to around
2000 Hz, and the stiffness controlled region where E and h play major roles. The transition frequency range
between these regions matches the range of the coincidence frequency for this space design, which ranges
from approximately 1680 Hz to 2680 Hz. According to STL physics, the amplitude of the STL valley at the
coincidence frequency is controlled by the plate damping η, which importance slightly rises at this frequency
range in Figure 5.
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Figure 5: MDI indices of isotropic plates STL for a plane wave with θ = 60◦. Surrogate RMSE: 0.97 dB.

In the case of an incident diffuse field (Figure 3), the coincidence phenomenon occurs at the frequencies
above the critical frequency, which varies approximately between 1260 and 2000 Hz. It is observed that
in this frequency range, the importance of the inputs E and h, related to the stiffness, predominates, while
the damping effect is predominant for higher frequencies. This behavior was also remarked in [12], which
concluded that for plane waves the location of the STL dip has a greater effect on the output variance than
its amplitude, explaining why the damping importance near the coincidence is smaller than expected. For
the diffuse field analysis, the dip location is important at the critical frequency range, but the STL amplitude
is more important in the coincidence region, where damping predominates. These results are summarized in
Table 2 and corroborate that the RF-based surrogate is physically consistent and interpretable.

Table 2: Main MDI importances at different regions of STL of isotropic plates.

ω < ωcrit At ω ≈ ωcrit ω > ωcrit

Plane Wave ρ, h ρ, h,E + η peak E, h
Diffuse Field ρ, h E,h η

6.2 Orthotropic Plates

The investigations of the STL for an orthotropic plate were performed considering a unidirectional fiber-
reinforced composite plate in which carbon fibers are oriented along the x axis with resin as matrix material,



resulting in different Young Modulus in the in-plane directions. The material properties ranges are presented
in Table 3, from where 1792 points were sampled for each analysis. The complexity of the STL analysis
increases for the orthotropic plates as it has two more dimensions than isotropic plates and the coincidence
phenomena occur in multiple directions.

Table 3: Design space considered for the orthotropic plate analyses.

Inputs h Ex ν ρ η Ey Gxy

Units mm GPa - kg/m3 % GPa GPa

Lower Bound 3.25 190 0.25 1300 0.1 5 50
Upper Bound 4 260 0.35 1800 1 10 65

The incident plane waves cases were all evaluated with θ = 80◦, close to grazing angle, and with azimuth
angle ϕ equals 0◦, 45◦, and 90◦, to evaluate the behavior of the coincidence phenomenon and STL curve for
different wave directions. The MDI indices evaluated for STL of each plane wave are depicted in Figures 6a
to 6c. It is noted that, regardless of the direction of the incident wave, the low-frequency region is controlled
by plate inertia. Nonetheless, the behavior of the MDI indices in the high-frequency region differs for each
wave direction.

The results for ϕ = 0◦ are similar with the ones for the isotropic plate (Figure 5), where h and Ex are the
most important variables. Besides that, the small peaks of damping and stiffness importances coincide with
the range of ωcrit,x, which is from approximately 1140 to 1740Hz, according to Eq. 16. Similar peaks are
identified for the results with ϕ = 45◦ at higher frequencies, indicating where the coincidence is probably
occurring. The in-plane shear modulus Gxy has considerable effects when ϕ = 45◦, which is in line with
the expected physical behavior for a highly orthotropic material. Finally, for ϕ = 90◦, the bending stiffness
in the y direction becomes the most important variable at high frequencies and the coincidence peak also
coincides with the ωcrit,y range, which goes from around 5800 to 10660 Hz.
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(a) Plane wave with θ = 80◦ and
ϕ = 0◦. Surrogate RMSE: 0.27 dB.
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(b) Plane wave with θ = 80◦ and
ϕ = 45◦. Surrogate RMSE: 0.40 dB.
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(c) Plane wave with θ = 80◦ and
ϕ = 90◦. Surrogate RMSE: 0.81 dB.
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(d) Diffuse Field. Surrogate RMSE:
0.19 dB.

Figure 6: MDI indices of the STL analyses of orthotropic plates evaluated with RF-based surrogate.

Figure 6d presents the MDI indices for the diffuse field analyses, where there is a remarkable increase in



Ex and Ey importances in the regions of ωcrit,x and ωcrit,y ranges, respectively. In both regions, h also
had increased importance. In the entire coincidence region, the damping importance is primordial. The
findings for the MDI indices of the orthotropic plates are summarized in Table 4. In general, for STL with
an incident plane wave, the STL at ω > ωcoinc is controlled by the corresponding stiffness. For STL with
the diffuse field, the importance of variables related to stiffness increases at the critical frequencies, while
the coincidence region is damping-controlled.

Table 4: Main MDI importances at different regions of STL for orthotropic plates. Results were obtained for
plane wave (PW) cases with incident angle θ = 80◦ and variable azimuth angle ϕ, and for the diffuse field
case.

ω < ωcrit,x ω ≈ ωcrit,x ωcrit,x < ω < ωcrit,y ω ≈ ωcrit,y ω > ωcrit,y

PW: ϕ = 0◦ ρ, h ρ, h,Ex + η peak Ex, h Ex,h Ex,h
PW: ϕ = 45◦ ρ, h ρ, h ρ, h,Gxy + η peak Ex,Gxy, h Ex,Gxy, h
PW: ϕ = 90◦ ρ, h ρ, h ρ, h ρ, h,Ey + η peak Ey, h
Diffuse Field ρ, h Ex, h η Gxy, η η

6.3 Sandwich Panels

The RF-based surrogates for sandwich plates were trained with 4096 evaluations from the design space in
Table 5 considering eight material parameters. The MDI indices were evaluated for the STL with an incident
plane wave with θ = 80◦, Figure 7a, and STL with a diffuse field, Figure 7b.

Table 5: Design space considered for the sandwich plate analyses.

Inputs hs Es νs ρs β hc Gc ρc

Units mm GPa - kg/m3 % mm GPa kg/m3

Lower Bound 1.5 55 0.20 2300 0.1 25 15 200
Upper Bound 2 85 0.35 3300 1 35 25 300

The MDI results for a sandwich plate show that the core shear modulus also has considerable importance
at low frequencies, different from the materials from previous sections in which only inertia controlled the
low-frequency region. According to the coincidence frequency equation presented by [34], the expected
range would be from around 4900 to 11400 Hz, which coincides with the peak in β at Figure 7a. For higher
frequencies, the STL is controlled by thickness and Young Modulus, variables that compose the skin bending
stiffness. Similar observations can be made for the results at low frequency with a diffuse field, while above
the critical frequency the sandwich plate STL with a diffuse field is controlled by β, as shown in Figure 7b.

7 Physics-guided features leveraged by surrogates

Previous knowledge of the physics of the problem can be built into surrogate models through the addition of
physics-guided features by simply adding pre-processing steps that rearrange the system variables in terms of
physical meaning. This section evaluates the impact of adding these physics-guided features on the accuracy
of the surrogate and on the sensitivity indices. The analyses were carried out for isotropic, orthotropic, and
sandwich plates with an incident diffuse field. It is worth mentioning that the RFs are retrained with the
same databases used in previous sections, therefore, the time elapsed to perform the following analyses is
negligible. To keep only the most relevant features, the features with an average importance of less than
2.5% were excluded from the analyses.

Table 6 shows the physics-guided features added for each analysis and underlines the selected relevant fea-
tures. While the parametric study in [34] concluded that the core shear parameter g was the most influential
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(a) Plane wave with θ = 80◦. Surrogate
RMSE: 1.89 dB.
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(b) Diffuse Field. Surrogate RMSE: 1.02
dB.

Figure 7: MDI indices of the STL analyses of sandwich plates evaluated with RF-based surrogate.

parameter for the STL of a sandwich plate, the current analysis indicates that the importance of g is negligi-
ble. This can be explained as here the output variance is better explained by other terms correlated to g than
by g itself.

Table 6: Physics-guided features included and important variables selected underlined.

STL Variables Physics-guided features
Isotropic Plates h,E, ν, ρ, η m,D

Orthotropic Plates h,Ex, Ey, Gxy, ν, ρ, η m,Dx, Dy, Dxy

Sandwich Plates hs, Es, νs, ρs, hc, Gc, ρc, β m,Ds, g, Y

Figure 8 shows the MDI indices for the plate materials considered. Three general aspects are noted:

• In the mass-controlled region the variance is entirely defined by m, except for the sandwich plate
results where Gc also has a significant contribution.

• The regions of critical frequencies are preceded by an increase in the importance of densities with a
subsequent increase in the importance of the stiffness that controls the vibration mode respective to
the coincidence taking place.

• In the coincidence regions and STL variability is composed mainly of the effects of damping.
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(a) Isotropic Plate.
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(b) Orthotropic Plate.
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(c) Sandwich Plate.

Figure 8: MDI indices of STL analyses with addition of physics-guided features and carrying out features
selection.

The results show that the variable effects can be better represented within the added physical-guided terms.
For example, the original analysis of the isotropic case (Figure 3c) showed a contribution of h both at low
and high frequencies, while in Figure 8a these contributions are encompassed by m and D at low and high
frequencies, respectively. However, it should be stressed that the physics-guided features depend on or



Table 7: Accuracy of the RF-based surrogate with and without physics-guided features (PGF) in terms of the
RMSE.

Accuracy without PGF Accuracy with PGF
Isotropic Plates 0.40 dB 0.22 dB

Orthotropic Plates 0.19 dB 0.16 dB
Sandwich Plates 1.02 dB 0.71 dB

correlate with other input variables and the MDI indices may be biased towards them [31]. Therefore, the
MDI indices of Figure 8a can be helpful in identifying the contributions of complex physical terms in the
system output, but they should not quantitatively determine their importance. In addition to assisting the
interpretation of MDI analysis results, the addition of the engineered features guides the RF model to follow
the known physics. In this way, the physics-guided features increase the physical consistency of the black
box and improve its accuracy, as seen in Table 7.

8 Conclusion

Interpretable and physics-guided RF-based surrogate models were implemented for the STL analysis through
MDI sensitivity analyses and feature engineering. The STL problems were analytically modeled for infinite
plates with isotropic, orthotropic, and sandwich materials, considering plane wave and diffuse field as inci-
dent acoustic fields.

The MDI-based sensitivity indices showed good accuracy related to the reference Sobol’s total sensitivity
indices even for a small number of function evaluations. The MDI method proves to be potentially advanta-
geous over FAST since it does not depend on a minimum number of evaluation points and specific sampling
methods, furthermore, its performance was superior to or close to FAST performance for the same number
of evaluations. However, it should be highlighted that the MDI accuracy depends on the RF’s accuracy. The
inclusion of physics-guided features was beneficial for surrogate accuracy. Furthermore, the combined use of
MDI with feature engineering allows exploring the importance of user-defined terms, clarifying the physical
relationships of the analyses.

These capabilities were illustrated for the STL analyses performed, which elucidated different aspects of the
STL, enriching the discussions in [12,17,26]. Therefore, physics-based interpretations enabled by the meth-
ods implemented can increase the level of confidence in the surrogate and allow an in-depth comprehension
of the physical phenomena with the potential to boost scientific discovery supported by data.
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