
HAL Id: hal-03830890
https://hal.science/hal-03830890v1

Submitted on 26 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Indoor-Outdoor Detection using Time Series
Classification and User Behavioral Cognition

Sid Ali Hamideche, Marie-Line Alberi Morel, Kamal Singh, Cesar Viho

To cite this version:
Sid Ali Hamideche, Marie-Line Alberi Morel, Kamal Singh, Cesar Viho. Indoor-Outdoor
Detection using Time Series Classification and User Behavioral Cognition. WMNC 2022 -
14th IFIP Wireless and Mobile Networking Conference, Oct 2022, Sousse, Tunisia. pp.1-8,
�10.23919/WMNC56391.2022.9954290�. �hal-03830890�

https://hal.science/hal-03830890v1
https://hal.archives-ouvertes.fr


Indoor-Outdoor Detection using Time Series
Classification and User Behavioral Cognition

Sid Ali Hamideche
Nokia Paris Saclay

Nozay, France
sid.hamideche@nokia.com

Marie Line Alberi Morel
Nokia Paris Saclay

Nozay, France
marie line.alberi-morel@nokia.com

Kamal Singh
Laboratoire Hubert Curien

Saint-Etienne, France
kamal.singh@univ-st-etienne.fr

Cesar Viho
IRISA-UR1

Rennes, France
cesar.viho@irisa.fr

Abstract—During the last decades, different studies highlighted
the benefits of acquiring channel state cognition based on the
environmental context of mobile users or devices. Thanks to this
cognition, cellular networks can optimize themselves and per-
sonalize the delivered services and in turn, offer a better quality
of experience to users. This benefit for mobile networks will
come only if the environments are detected with high accuracy,
short delays and minimal implementation cost. However, accurate
environment detection is challenging for mobile networks as real-
life situations are numerous, complex and dynamic. In this paper,
we investigate the detection of mobile users’ environment, in
real-life situations, using machine learning classification methods
on time series data. To attain the highest accuracy, while using
limited length of time series, we propose using a heuristic
method to account for the typical user behavior when he or
she changes environment. For this, a new module, called User
Behavioral Optimizer, is investigated and combined with time
series models. It detects erroneous user behaviour predictions
output by the machine learning models and then corrects some
of them. Experiments are done using real radio data, that has
been massively gathered from diverse real situations of mobile
users. Experiments show that machine learning on time series
data using our behavioral optimizer and heuristic allows to detect
indoor/outdoor with F1− score , up to around 94.8%.

Index Terms—Indoor/Outdoor Detection, Time Series Classi-
fication, LSTM, User Behavioral Optimizer, Machine learning

I. INTRODUCTION

5G-advanced is the step before 6G which will open the door
for many new services such as network as a sensor. With the
later, the mobile network will be able to sense the environ-
ment. Thus, the network will become a center of situational
information as well as collection and processing of signals
and data. One of the idea towards realising the above vision
is to design mobile networks that know the context in which
the mobile devices are used. Indeed, adding context awareness
makes networks more aware of the situations in which mobile
users prefer to consume their services and applications. By
detecting users’ consumption habits, the network infrastructure
will be able to efficiently take appropriate decisions in face of
variable network conditions and users’ habits.

Among the contextual information, (e.g. time, spatial loca-
tion or social situation) the environmental situation constitutes
relevant information about users’ activities. For example, users
may only listen to music or audio when they are walking
outside, while they may use more variety of applications when
they are at home, where they may play games or watch movies

etc. Some works show that it is possible to beneficially exploit
the environmental context. For example, it can be used to
enhance network operations, in terms of better QoE for video
applications [1], improved handover process [2], slice selection
to switch from a slice with more flexible resources to a resilient
one [3], accurate user localisation detection [4], etc. Therefore
to ensure that the network functions benefit from the cognition
about environment, there is a need to design a new function,
which can accurately and automatically detect, in real-time,
where a mobile user likes to consume mobile services. For
this, the detection function is required to be placed close
to network functions using environment information to have
a win-win situation for Mobile Network Operators (MNOs).
Furthermore, ensuring a full automatic process, the function-
ality should work without requiring constant user interaction.
Hence, placing such function inside infrastructure of operator
network would also have the following advantages: not over-
loading User Equipment’s (UEs) with additional computations
and avoiding costly additional signalling for UE reports of
environment information or data to network. UEs often have
limited data uplink, computing power and energy. So, the
challenge is to develop models for mobile networks which
are able to quickly detect real-life environments (as well as
changes in environment) of connected users with the highest
detection accuracy. Indeed longer execution times lead to
delayed detection and can be prejudicial for wireless networks
that would like to use the information about the user envi-
ronment. Nonetheless, this is a hard task because there exist
various as well as complex real-life environmental situations.

In this paper, we focus on real-life Users’ Environment De-
tection (UED), namely whether the user is indoor or outdoor,
using Deep Learning techniques (DL) which learn on mutl-
tivariate time series. Time series classification techniques are
popular for their ability to extract additional information from
sequences of raw data [5]. In our case, the time information is
related to time variations of the input features. Our hypothesis
is that, as stated in literature, capturing signal change pattern
in time series would help detection algorithms to increase
accuracy by better distinguishing ambiguous points. They
sometimes have similar instantaneous values even if they
correspond to different environments (Indoor vs. Outdoor). We
target multivariate time series-based classification models for
networks that use relevant environmental features, preferably,
extracted from already available data within the network.
Recently, some works in [6], [7] showed that UED can beISBN 978-3-903176-52-2© 2022 IFIP



achieved accurately using Feed forward Neural Networks
(FNN) classification models with specific 3GPP radio signals
that are already available at Radio Access Network (RAN)
side. We are interested in investigating environment detec-
tion using the same 3GPP radio features. But contrary to
these previous works, we consider Long-Short-Term-Memory
(LSTM) which is a variant of Recursive Neural Network
(RNN) models which can process time-ordered sequences of
data values obtained successively [8]. Thanks to its complex
internal structure, LSTMs can efficiently learn short and long
terms sequence correlations. This allows them to model com-
plex multivariate sequences. They outperform non-ML and
other deep neural networks approaches in various domains
[9]. However using time series data also has drawbacks in
terms of training time, delayed detection of environment
change, storage space and complexity while classification.
So, to ensure high accuracy UED with short time series
data model, we propose a new approach which leverages the
domain knowledge on how a user typically behaves when he
or she switches their environment. For example, a user can
not quickly change their environments several times. Thus,
using such kind of domain knowledge, we propose a module
called User Behavioral Optimizer (UBO). It aims to correct
environment detection errors by tracking behavioral anomalies,
that diverge from typical behavior. Thus, we establish an
anomaly list after considering how a user typically moves from
one environment to another. These behavioral anomalies serve
to prohibit ML model to change the predicted class too fast
and in turn, help to perform accurate UED. We investigate
the application of UBO in two ways. First, it is introduced in
the training phase of UED model by helping weights and bias
computation. Second, it is applied after UED model output.

Our contributions are as follows. We investigate user envi-
ronment detection using supervised, multivariate, time series
classification technique. We study LSTM and also integrate the
heuristics corresponding to user behavior in the training phase
and at model output stage. Two evaluation methods, Forward-
chaining cross-validation and Time Block-based validation,
adapted to time series, are used to prevent data leakage
and assess model performance robustly. Bench-marking is
conduced to compare the use of LSTMs for a real-time UED
with ML and other DL techniques. UBO shows positive impact
in terms of reducing time series duration required for high
accuracy. As a consequence, such time series models will be
preferred for use in real-time context for wireless networks.

This paper is organized as follows. Sec. II presents related
work. Sec. III discusses data, motivations and the proposed
method. Sec. V presents performance analysis and discussion.
Finally, Sec. VI provides conclusions and perspectives.

II. RELATED WORK

In recent years, many works have studied the issue of mobile
user environment awareness. Most of them focus on binary
classification with two classes (Indoor/Outdoor). Remaining
existing works consider up to eight classes: Indoor/Semi-

Outdoor/Outdoor [10] or eight types of Indoor/Outdoor en-
vironments in [7].

The Indoor/Outdoor detection (IOD) problem in mobile
terminal has been predominantly studied on the mobile ter-
minal side. The methods investigated mainly exploit the data
produced by the sensors equipped on cell phones, such as GPS,
cell signal strength, light intensity as well as magnetic sensor.

On the other hand, there are very few works which study the
IOD problem from network side. In this case, IOD model uses
features which are available in the network infrastructure or
RAN. These works investigate methods that exploit instanta-
neous measurements and do not consider sequence of temporal
data or time series. In [1] the authors use RSRP (Reference
Signal Received Power) and RSRQ (Reference Signal Re-
ceived Quality) signals for IOD and compare Support Vector
Machine (SVM), logistic regression and random forest. SVM
was found to perform best. In [11], a semi-supervised learn-
ing algorithm using a logistic regression model is proposed
to estimate the probability that a particular connection was
generated indoor. The detection is based on LTE measurements
from radio connection traces. [12] studied quantum machine
learning approaches for IOD using the 3GPP signals such as
received power level and Signal-to-Interference Ratio (SIR).
[6], [7] investigate deep learning based algorithms using large-
scale radio dataset. They show that a multi-output classifica-
tion model processing instantaneous radio measurements from
specific 3GPP radio signals, as RSRP or Timing Advance
(TA) signals among other signals, achieves high accuracy for
a relatively complex environment classification, considering
multiple environments. Unlike above, there are only a few
works where user environment inference is performed by
exploiting or learning on time series data. They investigate
mainly models for device. In the majority of them, the in-
tention is to manually compute derived features and then use
thresholds [2] or machine learning techniques to detect the
environment [13], [14]. In [2], they classify the environment
only in outdoor situation (pedestrian, in-car or non-moving).

To the best of our knowledge, our work is the first to
perform user’s environment detection, using LSTM-based clas-
sification algorithms combined with a heuristic related to user
behavior. The IOD detection is done on network side by
learning on multivariate time series of 3GPP radio data which,
as per the standards, are supposed to be already measured by
the network. Thus, we use models for detecting whether user
will be indoor or outdoor at a given time.

III. ENVIRONMENT DETECTION USING TIME SERIES DATA

In this section, we explain our approach. First, we start by
describing our data. We then expound the motivations behind
the proposed approach and then detail our proposal.

A. Dataset description

1) Data collection representative of real life: The data
has been collected during the day and night and 7/7 days,
during various activities of mobile users: while being static,
while moving with different speeds and at various diverse



Fig. 1: a) Temporal variations of measured RSRP (dBm) over time - b) Data sequence. Sliding window algorithm

cities/places. The data collection was conducted by volunteers.
Their characteristics are detailed in Table I. The volunteers
are urban and they have regular but specific lives and habits
regarding the sites they crossed. The collection was done
in several locations in France which were visited by the
volunteers. Part of data has been labelled manually over
an accumulated period of more than 200 days. After data
cleaning and pre-processing phase, this enables us to build
a representative dataset for training and evaluation which is as
close as possible to the complexity and the usage situations
variety of mobile phones and of users’ movements in real
world. So, the dataset used for training and evaluation is
composed of many various instances of UE-specific 4G data
(as 5G was not available at that time).

Data & Period Location User I/O
130K over Urban, indoor, Regular Indoor: 63%
15 months beach, mountains habits Outdoor: 37%

TABLE I: Data collection configuration

2) Data Features: For environment detection, datasets are
composed of some 3GPP standard radio features already
employed in [6] and re-explained below. But, we target to in-
vestigate three features related to power, location and mobility
signals. They are Key Performance Indicators and commonly
used in mobile networks context and reflecting the behavior of
users. Moreover, they contribute hugely to efficiently classify
the ambiguous points and have shown significant impact on
the model accuracy. The radio features are as follows:
• RSRP : average received power of a single Reference

Signal (RS) resource element [15].
• TA: used to control UL signal transmission timing [16].
• MI: Mobility indicator refers to number of Cell ID

changes in a sliding window of a given duration Tm [17].
To estimate its value, Tm is fixed to 100s [18].

TA is an indicator of the distance between a UE and a
base station, whereas MI values depend on the mobility
state. The information of distance combined with mobility
information helps to distinguish measurement points, which
have low RSRP values even when they do not correspond to
indoors. For example, when a user is moving at high speed,
the radio signal quality can degrade (which is also the case
when the user is indoors). As we are dealing with supervised
methods, environment labels are used to train the models.
Data cleaning and verification methods as described in [6]
are applied to correct as much erroneous environment labels

as possible. Thus, our whole data-set is composed of a vector
of 3 features (RSRP , TA, MI) plus labels.

B. Learning on time series data

The measurements in the datasets have been collected in
various situations and over a long period of 15 months. They
also contain some breaks over time in data collection. The
duration of these interruptions is up to several days (up to
30 days). Except these interruptions, the collection proceeded
in an almost regular manner. Fig. 1 shows the temporal
variations in RSRP signal measurements. The blue curve
corresponds to times when user was indoor, while the orange
curve corresponds to times when user was outdoor.

As seen in Fig. 1a), the amount of RSRP signal variations
over time is different for indoor from that of outdoor. We
observe also that RSRP values vary less when user is indoor,
while they vary much more when user is outdoor. The standard
deviation is calculated from the whole time-series during
data collection. Comparing RSRP standard deviation of both
environment, we notice that the outdoor standard deviation
(12.8dB) is almost 2.2 times higher than indoor standard
deviation (5.8dB). This can be explained as follows. When
user is outdoor and moving then the multiple paths of radio
propagation can change, causing the phenomenon known as
multi-path induced fading creating constructive or destructive
interference as user is moving. In comparison, in indoor places,
the users are relatively less mobile. Additionally, the peak
RSRP value can be relatively high in outdoor as compared
to indoor. This is because the walls attenuate the radio signals
more when user is indoor. These differences are more visible
if we look at the sequence of temporal data. Using data
sequences as input also indirectly adds information about the
user’s previous environment. Moreover, since users are more
likely to stay in the same environment for some time, previous
environments can also help to predict the next environment.
There may exist some ambiguous points where some radio
signal values corresponding to outdoor are similar to those
of indoor, but have different variations over time. In addition,
time series will help us distinguishing them.

Histogram in Tab. II depicts the empirical cumulative dis-
tribution of sojourn time per environment. It is computed
on the whole data of volunteers. From the curve, we can
derive the minimal and the maximal duration of stay in an
environment before moving to another one. During the data
collection period, we observed that the volunteers stayed in



Fig. 2: User Environment Detection: step 1 to step 5 for 8 typical Indoor/Outdoor real-life environments

same environment with a minimal duration of 3m42s and
a maximal duration of 9h25m indoor, where humans stay
for longer time by nature. When we analyse their behavior
more with statistics of sojourn time given in Table II, we
observe a divergence of volunteers’ behavior between indoor
and outdoor environments. Statistically, Users remained in-

Sojourn Min. Mean Median 75 % percentile Max.
Time

Indoor 3m42s 2h00m 1h11m 2h56m 9h25m
Outdoor 7m24s 57m 35m 1h05m 7h54m

TABLE II: Sojourn time statistics in I/O environment
doors longer than outdoors. However, the sojourn time is
minimal indoor. As a matter of fact, this time value is a
crucial information because it would fix the maximal upper
limit of time series duration for accurate UED. Indeed, this
constraint would help prevent an overlap of input sequences
data from two cumulative transient periods, between different
environments in the same processing window. Nevertheless,
this duration should also be large enough to allow models to
better recognize indoor or outdoor signatures over time, for
correct environment detection.

IV. TIME SERIES-BASED INDOOR-OUTDOOR DETECTION

Fig. 2 depicts our global approach followed to achieve time
series-based ML techniques, for user environment detection.
Pre-processing: The collected data is noisy. This is due to
the use of a collection mode and the not 100% accurate of
labeling by volunteer. In real world, users may face some
software/hardware failures or disconnection events that may
stop the data collection or introduce noise to the recorded
values. The records that contain these noises are discarded if
the failure was for a long period. When the failure was for a
short period, causing only a few missing values, the missing
values were interpolated.

Data sequence extraction for learning: This step is done
by using a sliding window which starts by extracting the first
data sequence of duration L of RSRP , TA and MI starting

from an initial index I at the beginning of data. The index is
then shifted by a stride l and used to extract the next sequence.
The process is repeated until all the sequences are extracted.
Extracted sequences of all the above features are then fed as
input to ML model. Fig. 1 b) shows an iteration of sliding
window algorithm in black applied on RSRP for L = 100s
and a shift of l = 1s.

Machine learning algorithms: The classification problem
is formulated as follows: Given a set of data denoted as:
D = {(ti,x1, y1), · · · , (tn,xn, yn)} where ti is the i-th
timestamp, xi ∈ Rm is the i-th data vector with m features,
and yi ∈ {1, · · · , C} is its label, the objective of time
series classification is to predict class yi from a sequence
{xi−L, · · · ,xi}. For time series classification, we investigate
multivariate LSTM algorithm which is well known due to its
ability to efficiently extract useful information from sequential
data. We also compare it with other DL architectures, such as
FNN and Convolutional Neural Networks (CNN), in addition
to other classical ML algorithms shown in Table III. The
hyper-parameters listed in Table III will be discussed later
in Section V-A. A baseline threshold-based algorithm that
computes statistical features and achieves thresholding, is also
tested. We consider that multivariate LSTMs to perform the
best since its structure is designed for this kind of sequential
data. LSTMs have recurrent connections which enable them to
process sequences of data while treating each point in relation
with the whole sequence. It retains useful information about
previous data to help with the processing of new data points.

User behavioral optimizer: In addition to ML methods
of classification, we introduce a module based on domain
knowledge, which we call User Behavior Optimizer. Its aim
is to leverage behavioral knowledge about users’ movements

Algorithm Optimized Hyper-parameters
K-NN [19] • Number of neighbors: 5
SVM [20] • Regularization parameter: 3

• Kernel: Radial basis function
Random Forest [20] • Number of trees: 80

• Maximum depth of the tree: 16
AdaBoost [20] • Base estimator: Decision Tree

• Number of estimator: 50 - Learning rate: 1.0
FNN [21] • Hidden layers: 4 layers - Dropout rate: 0.4

• Optimizer: Nadam - Loss: Binary cross entropy
CNN [22] • Hidden layers: 5 layers - Dropout rate: 0.25

• Optimizer: Nadam - Loss: Binary cross entropy
LSTM [8] • Hidden layers: 2 layers - Dropout rate: 0.25

• Optimizer: Nadam - Loss: Binary cross entropy

TABLE III: Hyper-parameters for supervised methods



in their environment to further improve user environment
classification performances. An improvement is expected after
correcting supposedly aberrant patterns output by the model.
The goal of UBO is to detect and correct them when they
do not match a real user behavior. For example, users usually
do not change their environment twice during a short period.
If we denote by τmax the maximal upper limit of this short
period, we can reasonably assume that τmax is around 60s.
We propose two ways of utilising UBO for UED. The first
one, referred as UBO-int, acts directly inside the model during
training phase and the second one, referred as UBO-ext, acts
after model output, see Fig. 3. The first step of both UBO-int
and UBO-ext is to find aberrant user patterns (AUP) where
the ML model outputs a user leaving and getting back to
the previous environment. The procedure AUP is described
as follows. As shown in Alg. 1, it outputs S+

k and S−k for
environment k ∀k ∈ {1, · · · , C}. We use S+

k to denote the set
of indexes when a given user enters the environment k. We
use the indicator function 1k(ŷi) such that it is 1 if ŷi = k,
but 0 otherwise. Note that ¬ is used to denote negation. Thus,
∀j ∈ S+

k , 1k(yj) = 0 and 1k(yj+1) = 1. We use S−k to denote
the set of indexes when a given user leaves the environment
k. Thus, ∀j ∈ S−k , 1k(yj) = 1 and 1k(yj+1) = 0.

We intend to inspect the sequence of predicted labels
{ŷ1, · · · , ŷl} to look for anomalous patterns and we try to
correct them. Lets o

(k)
i be the softmax output of the neu-

ral network model corresponding to the environment k and
ŷi = argmaxk∈{1,··· ,C} o

(k)
i represents the predicted class of

the i-th example. These predictions ŷi need to be corrected.

Algorithm 1: Find Aberrant User Patterns (AUP)
1 Input: {ŷi−L, · · · , ŷi}
2 Output: {S+

k , S
−
k } ∀k

3 Iterate over all predicted labels and classes.
4 foreach k ∈ {1, · · · , C} do
5 Initialize S−

k = {}, S+
k = {}

6 foreach j ∈ {i− L .. i} do
7 if 1k(ŷj) ∧ ¬1k(ŷj+1) then
8 S−

k ← S−
k ∪ {j}

9 else if ¬1k(ŷj−1) ∧ 1k(ŷj) then
10 S+

k ← S+
k ∪ {j}

11 continue;

12 continue;

UBO-int acts internally within the model, as described
in Alg. 2. It will penalize instances when l successively
detected environment classes contain anomalous patterns. For

Fig. 3: UBO-int and UBO-ext location

this, instead of using classic loss function, we introduce a
new additive term α LUBO in the loss function. LUBO is a
differentiable function that penalize sequences containing the
aberrant user behavior and α ≤ 1 is a weight factor. Note
that to be able to do as above, we use LSTM model which
outputs data sequences instead of just a single element. LUBOi

is estimated as follows. We first estimate δk for each class k:

δk =
∑

j+∈S+
k

∑
j−∈S−

k

(1 + |o(k)j+ − o
(k)
j− |)× (tj+ − tj−) (1)

Then we use δk to compute:

LUBOi
=

1

C × L

k<C∑
k=1

1

1 + δk
(2)

UBO-ext described in Alg. 3 is an external system inter-
faced with LSTM model output. It monitors sequences of l
successively detected classes of environment to spot as well as
correct the aberrant patterns. The detected patterns must also
be of short period < τmax with the mean of confidence scores
of these prediction, computed by the model softmax output
(oi), < Cth. The corresponding instances are corrected by
setting their predicted classes to previous environment. τmax

and Cth are learned during the training step to maximize
number of corrected instances by UBO-ext while reducing
potential added errors by having a big τmax. Fig. 4 shows
an example sequence where UBO-ext corrected false patterns.

Algorithm 2: User Behavior Optimizer Internal (UBO-
int)

1 Input: {ŷi−L, · · · , ŷi}, {oi−L, · · · ,oi}, {ti−L, · · · , ti}
2 Output: LUBOi

3 Find Aberrant Patterns.
4 S+

k , S
−
k ← AUP({ŷi−L, · · · , ŷi})

5 Estimate δk and then LUBOi
using eq.(2).

One has to notice that the actions of UBO-int and UBO-
ext are different. Nevertheless, both of them follow the same
objective: detecting behavioral aberrations at sequence level
and then acting to correct them.

Algorithm 3: User Behavior Optimizer External
(UBO-ext)

1 Input: {ŷi−L, · · · , ŷi}, {oi−L, · · · ,oi}, {ti−L, · · · , ti}
2 Output: Corrected predictions {ŷi−L, · · · , ŷi}
3 Find Aberrant Patterns.
4 S+

k , S
−
k ← AUP({ŷi−L, · · · , ŷi})

5 Correct previously predicted labels.
6 foreach j− ∈ S−

k , j
+ ∈ S+

k do
7 ∆t← tj+ − tj−
8 µc ← 1

j+−j−−2

∑j+−1

j=j−+1
o
(j)
k

9 if ∆t < τmax ∧ µc < Cth then
10 ŷj−+1:j+−1 ← ŷj−

Performance evaluation To avoid data leakage while train-
ing on time series data and in order to fairly evaluate the
models, we use two different validation methods. The first



Fig. 4: User behavioral optimizer: environment output and
confidence score

method that we refer as Time-Block validation method consists
in slicing the data into blocks, using the data collection
interruption times as boundary markers. Then, each block
is randomly assigned to either training or test set. These
boundaries caused by data interruptions ensure that there is
no correlation in time between the training dataset and the
test dataset. The second one is the Forward-chaining cross-
validation method also known as rolling-origin-recalibration
evaluation in [23]. Next section evaluates the performance of
several environment detection algorithms using both these val-
idation methods over multiple experiments. The investigation
is conducted on the aspects of time series and the impact of
UBO. The model evaluation is done with optimal values of
confidence threshold.

V. RESULTS AND DISCUSSIONS

In this section, we first describe the configuration setup.
We then discuss our experiments and the results obtained for
Indoor/Outdoor detection using time series and UBOs.

A. Configuration setup

Before training the classifiers, we started by tuning
the hyper-parameters for each ML algorithm. FNN, CNN,
and LSTM model hyper-parameters were optimized using
Bayesian optimization, while those of other algorithms were
manually tuned in Table III. We used 70% of the labeled
data for training and the remaining 30% for evaluation. As
mentioned in Section III-B, we use two evaluation methods.
Note that we split the datasets into different blocks. Then
for each experiment, the blocks are randomly assigned to
either the training or the test sets. We generate a total of 10
and 5 experiments for Time-Block validation and Forward-
chaining cross-validation method, respectively. Our choice is
motivated by the need to ensure sufficient sizes for training
and test blocks. For performance evaluation of models, we also
compute average of balanced Accuracy and F1− score that
is expressed as: F1 − score = 1

N

∑N
i 2.Precisioni×Recalli

Precisioni+Recalli
, where N = 2 is number of classes. Precision is number
of correct positive results divided by number of all positive
results returned by the classifier, and Recall is number of

correct positive results divided by number of all relevant
samples. Optimizations and experiments, including training
and evaluations, are performed on a Linux machine equipped
with Intel Core i7-5930 CPU and GPU, Nvidia GTX Titan X
graphic card and 64 GB of RAM. Neural network models are
trained on 1 GPU while other models are training on 1 CPU.

B. Machine learning performance for Time Series

Table V shows the performance of environment detection
algorithms with both validation methods. To investigate the
impact of time series, we trained multiple models using
different duration values, L, of sliding window as input. We
studied the cases for: L = 1 sample, L = 90s and L = 190s.
The case “L = 1 sample” corresponds to only using 1
instantaneous value and not a data sequence. Note that, as
discussed in III-B, we limit L ≤ 3m42s where 3m42s is the
minimal sojourn time in an environment. As we are interested
in limiting the detection delays, hence we do not test higher
durations than 190s, namely 3min10s.

Lets first see the performance of ML models with L =
1 sample, i.e, only where ’1 samp.’ option is present in the
table. The best among them is Adaboost with an F1− score
of 88.8% for Time-Block and with an F1 − score of 88.6%
for Forward-chaining cross-validation. When we exploit time-
series data, the best F1 − score is shown by LSTM with
L = 190s, which is 94.4% and 91.4% for Time-Block and
Forward-chaining validation, respectively. We also note good
performances shown by Random Forest and CNN. CNN’s
good performance is because the 1D CNN is able to consider
time-series data. For all algorithms, except FNN in some
cases, the models which use data sequences outperform up
to around 4% the ones that only use a single measurement.
The above is observed in most cases, for both Time-Block
validation and Forward-chaining cross-validation. Further, we
can observe that for SVM, Random Forest, Adaboost and FNN
with L = 90s perform better than when using L = 190s in
certain cases. While LSTM and CNN perform the best with
L = 190s. This may mean that beyond a certain duration of
sliding window, measurements that are too old are irrelevant
for some machine learning classifiers while LSTM and CNN
are still able to exploit them.

Overall, LSTM with L = 190s with F1 − score = 94.4%
for Time-Block has the best performance, in almost all exper-
iments, as compared to other models (as seen in Table V).

C. Impact of UBO on machine learning model performance

How do UBOs act?
We conduct a finer analysis using LSTM with L = 190s as
well as UBOs with τmax = 60s and α = 0.3 for a given Cth.
The performance is evaluated over 10 experiments with Time-
Block validation. This allows us to understand how UBOs
act. The role of UBOs is to detect, avoid or correct unwanted
patterns. A pre-analysis of the ground-truth dataset showed us
that initially it did not contain any unwanted patterns. Table IV
shows the number of unwanted patterns (UPs) for different
UBO scenarios in case of the 8th experiment (with Cth = 0.9).



Fig. 5: Case of LSTM and L = 190s: a) Modified instances
(blue) and additional errors (orange) versus confidence thresh-
old - b) Correction score (blue), F1-score without (orange) and
with User Behavioral Optimizer (green) versus experiment

As shown in Table IV, we remark that the output of LSTM has
some UPs within predicted classes. We can also observe that
enabling UBOs permits us to remove more than half of the
anomalies. To continue the analysis, Fig. 5 a) illustrates the
impact of UBO-ext for different confidence thresholds. The
figure shows the evolution of the total number of modified
instances (blue) as well as the additional errors (AEs) (orange)
when UBO-ext is enabled. The additional errors represent the
predicted classes which were correctly detected by LSTM
initially, but correction by UBO-ext made them erroneous. We
observe that both the numbers increase with Cth. However, the
error growth saturates and quickly reaches a maximal value of
228 errors at Cth = 0.7. In contrast, the modified instances
continue to grow and reach a maximal number of 698 instances
at Cth = 0.9. At this threshold, UBO-ext is still able to
positively correct the instances without introducing AEs. We
define the correction score (CS) as the difference between the
number of correctly corrected instances and AEs. Fig. 5 b)
depicts F1− score and CS for the 10 different experiments.
For that we did several experiments after configuring UBO-ext
with optimal values of Cth which maximize CS. In the figure,
CS varies between 7 and 242 instances correctly modified.
We note that F1− score (green curve) gets enhanced in each
case by using UBOs. Thus, these experiments demonstrate
that proposed UBOs can cope with various situations having
different amounts of errors to correct.

w/o UBO-int & w/o UBO-int & w. UBO-int & w. UBO-int &
UBO-ext w. UBO-ext w/o UBO-ext UBO-ext

UPs 101 53 62 23

TABLE IV: UBOs impact on the unwanted patterns (UPs)

Performance enhancement:
Experiments done with the other ML algorithms show a very
small F1−score improvement around +0.2%. The poor gain
obtained can be explained by their internal structure which
did not allow to integrate UBO-int inside their model. Thus,
in terms of best result obtained among other ML algorithms,
F1 − score of SVM increases to maximal value of 92.0%
with UBO-ext and L = 190s. In contrary, UBOs improve
LSTM’s performance globally by +0.8% as compared to
LSTM without UBOs. Overall, with UBOs and L = 190s,
LSTM remains the best with mean F1− score of 94.8% for
Time-Block validation and 92.2% for Forward-chaining cross-
validation, as compared to other models (as seen in Table V).
Similar trend is observed with Accuracy. Note that for CNN’s
F1 − score increases by +0.55%. This is mainly thanks to
UBO-ext, since adding UBO-int degrades the performance.

Trade-off between F1− score and time series duration:
Experiments demonstrate that training ML classification mod-
els over time series, for UED performance, is beneficial. Nev-
ertheless, using long time series data also has some drawbacks.
A high value of L can delay the detection of environment
change. Moreover, it also increases the amount of historical
data to be stored for performing detection. For DL models,
a high value of L leads to model complexity. The training
execution time increases with L as it can be seen in Table V.
Note that hyper-parameters optimization is done beforehand
such that the training execution time doesn’t include the hyper-
parameters optimization phase. However, we can notice that
adding UBOs doesn’t increase the training execution time a
lot while it still improves the overall performance. Thus, using
UBOs will give us an opportunity to have a trade-off between
F1− score and L, while choosing an appropriate model.

Sliding Accuracy (%) F1-Score (%) Training
Algorithms Window Time-Block Fwd-chaining Time-Block Fwd-chaining Time (s)

(seconds) C-validation C-validation
Threshold-based 90s 81.3 84.5 81.2 83.2 0.08

Model 190s 86.0 87.2 86.1 85.7 0.13

K-NN 90s 86.8 87.4 86.8 86.8 423.51

190s 87.5 87.3 87.6 86.5 743.81

SVM
1 samp. 86.5 88.6 87.2 87.6 24.5

90s 90.7 90.2 91.3 89.5 71.9
(RBF kernel) 190s 91.6 90.4 92.0 89.7 89.5

Random Forest
1 samp. 88.0 86.5 87.7 85.4 2.2

90s 91.9 90.4 92.0 90.1 7.7
190s 91.7 91.1 91.7 90.7 11.2

AdaBoost
1 samp. 88.4 89.4 88.8 88.6 0.8

90s 90.9 90.6 91.2 90.4 9.1
190s 90.0 91.1 90.3 90.8 18.7

FNN
1 samp. 87.2 87.3 87.4 85.8 28.6

90s 90.7 86.5 91.2 86.3 30.4
190s 91 83.8 91.5 83.2 33.8

CNN 90s 92.2 90.3 91.7 90.7 37.6
190s 92.7 91.1 92.1 91.3 42.8

with UBO-ext 90s 92.8 91.1 92.3 91.5 38.8
190s 93.2 91.4 92.7 91.6 44.9

with UBO-int&ext 90s 91.4 88.6 92.0 87.9 43.1
190s 91.7 88.4 92.2 86.1 48.6

LSTM
90s 92.9 91.3 93.3 90.1 68.7
190s 94.2 92.4 94.4 91.4 80.2

with UBO-ext
90s 93.8 91.7 94.1 90.7 70.9
190s 94.6 93.1 94.7 92.1 82.4

with UBO-int&ext
90s 93.8 91.8 94.1 90.7 72.3
190s 94.8 93.2 94.8 92.2 89.6

1 The times reported for K-NN are instead the times taken for classification.
The classification times for other ML algorithms were negligible.

TABLE V: Comparison of supervised ML methods: Accuracy,
F1− score and Training Time vs. sliding window duration -
Time-Block and Forward-chaining cross-validation methods



The baseline model is fastest to train. Apart from the
baseline model, Random Forest and AdaBoost are, relatively,
the fastest to train, except for SVM. Random Forest is the
fastest when using time series data. It takes around 8s but
delivers a lower mean F1 − score of 92%. LSTM models,
which are the best performing models, are among the slowest.
Without UBOs and L = 190s, LSTM takes up to the maximal
time 80.2s whereas, with UBOs , LSTM takes up to 89.6s,
which is the highest time among all the tested models. But,
with UBOs and L = 90s, LSTM takes up to 72.3s and delivers
a mean F1−score of 94.1%, which is faster, but with slightly
less F1−score than those with L = 190s. Thus, LSTM model
with L = 90s and UBOs remains eligible for selection as it is
faster for offline or real time training. Note that K-NN takes
the longest time. Practically, the time complexity of K-NN for
training is O(1) while it is O(n) for classification depending
upon the number of examples.

Finally, our experiments also show the benefit of using
domain knowledge in the form of UBOs.

VI. CONCLUSION

In this paper, we have investigated machine learning based
Indoor/Outdoor detection methods by processing 3GPP radio
data and exploiting sliding sequences of multivariate time
series data. The variations of radio signals over time are clearly
different when user is located indoor as compared to that
of outdoor. In this work, the experiments have shown that
machine learning models using time series perform the best
for Indoor/Outdoor detection in real-life situations.

Then, we proposed to use domain knowledge based module,
called User Behavioral Optimizer (UBO), to improve In-
door/Outdoor detection. Experiments demonstrate the benefit
of using UBOs with LSTM models for real-time user envi-
ronment detection. We discussed how UBOs can improve the
performance for some time-series based LSTM models. UBOs
can improve the performance of a model using shorter time
series, such that, it comes close the performance of the model
with longer time series. Using shorter time series has following
advantages: it is faster to train and to detect class changes, re-
quires lower storage space while classification and is relatively
less complex. Thus, thanks to UBO we get more choices in
machine learning model selection, with reasonable trade-offs
in terms of accuracy, speed and storage. Therefore, LSTM
with UBOs can be a good solution for sensing environmental
situations of mobile users within network infrastructure.

In future research, we plan to explore other machine learn-
ing algorithms/architectures that are more robust to inter-
ruptions and irregularly spaced time series. Moreover, we
intend to explore the proposed UBO algorithm with multi-
class classification. Indeed, with higher number of classes,
the classification output might oscillate erroneously between
multiple classes. We would like to study whether UBO is able
to detect and correct such anomalous behaviour.

REFERENCES

[1] A. Ray, S. Deb, and P. Monogioudis, “Localization of LTE measurement
records with missing information,” in IEEE INFOCOM 2016-The 35th

Annual IEEE International Conference on Computer Communications.
IEEE, 2016, pp. 1–9.

[2] A. B. H. Alaya-Feki, A. Le Cornec, and E. Moulines, “Optimization
of radio measurements exploitation in wireless mobile networks.” JCM,
vol. 2, no. 7, pp. 59–67, 2007.

[3] E. Pateromichelakis, F. Moggio, C. Mannweiler, and al, “End-to-end data
analytics framework for 5g architecture,” IEEE Access, vol. 7, 2019.

[4] S. Mekki, T. Karagkioules, and S. Valentin, “HTTP adaptive streaming
with indoors-outdoors detection in mobile networks,” in 2017 IEEE
Conference on Computer Communications Workshops (INFOCOM WK-
SHPS). IEEE, 2017, pp. 671–676.

[5] J. Faouzi, “Time series classification: A review of algorithms and imple-
mentations,” in Machine Learning (Emerging Trends and Applications).
Ketan Kotecha / https://hal.inria.fr/hal-03558165, 2022.

[6] I. Saffar, M. L. A. Morel, K. D. Singh, and C. Viho, “Semi-supervised
deep learning-based methods for indoor outdoor detection,” in ICC 2019-
2019 IEEE International Conference on Communications (ICC). IEEE,
2019, pp. 1–7.

[7] I. Saffar, M. L. A. Morel, M. Amara, K. D. Singh, and C. Viho, “Mobile
user environment detection using deep learning based multi-output
classification,” in 2019 12th IFIP Wireless and Mobile Networking
Conference (WMNC). IEEE, 2019, pp. 16–23.

[8] Y. Yu, X. Si, C. Hu, and J. Zhang, “A review of recurrent neural
networks: Lstm cells and network architectures,” Neural computation,
vol. 31, no. 7, pp. 1235–1270, 2019.

[9] A. Diamanti, J. M. S. Vilchez, and S. Secci, “Lstm-based radiography
for anomaly detection in softwarized infrastructures,” in 2020 32nd
International Teletraffic Congress (ITC 32). IEEE, 2020, pp. 28–36.

[10] P. Zhou, Y. Zheng, Z. Li, M. Li, and G. Shen, “Iodetector: A generic
service for indoor-outdoor detection,” in Proceedings of the 10th acm
conference on embedded network sensor systems, 2012, pp. 113–126.

[11] J. Bejarano-Luque, M. Toril, M. Fernandez-Navarro, R. Acedo-
Hernandez, and S. Luna-Ramirez, “Data-driven algorithm for indoor-
outdoor detection based on connection traces in a lte network,” IEEE
Access, vol. 7, p. 65877–65888, 2019.

[12] C. Frank, R. S. Phillipson, I. Wezeman, and Chiscop, “Indoor–outdoor
detection in mobile networks using quantum machine learning ap-
proaches,” Computers, 2021.

[13] A. Esmaeili Kelishomi, A. Garmabaki, M. Bahaghighat, and J. Dong,
“Mobile user indoor-outdoor detection through physical daily activities,”
Sensors.

[14] Y. Zhu, H. Luo, F. Zhao, and R. Chen, “Indoor/outdoor switching
detection using multisensor densenet and lstm,” IEEE Internet of Things
Journal, vol. 8, no. 3, pp. 1544–1556, 2020.

[15] Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements
for support of radio resource management, 3GPP Standard TS 36.133
- Release 8, 2018.

[16] Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access
Control (MAC) protocol specification, 3GPP Standard TS 36.321- Re-
lease 15, 2018.

[17] Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment
(UE) procedures in idle mode, 3GPP Standard TS 36.304 - Release 15,
2018.

[18] D. Herculea, C. S. Chen, M. Haddad, and V. Capdevielle, “Straight:
Stochastic geometry and user history based mobility estimation,” in
Proceedings of the 8th ACM International Workshop on Hot Topics in
Planet-scale mObile computing and online Social neTworking, 2016.

[19] Z. Zhang, “Introduction to machine learning: k-nearest neighbors,”
Annals of translational medicine, vol. 4, no. 11, 2016.

[20] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, tools, and techniques to build intelligent systems.
” O’Reilly Media, Inc.”, 2019.

[21] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[22] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-
Shamma, J. Santamarı́a, M. A. Fadhel, M. Al-Amidie, and L. Farhan,
“Review of deep learning: Concepts, cnn architectures, challenges,
applications, future directions,” Journal of big Data, vol. 8, no. 1, pp.
1–74, 2021.

[23] C. Bergmeir and J. M. Benı́tez, “On the use of cross-validation for time
series predictor evaluation,” Information Sciences, vol. 191, pp. 192–
213, 2012.


