
HAL Id: hal-03830847
https://hal.science/hal-03830847

Submitted on 17 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy-Efficient and Context-aware Trajectory Planning
for Mobile Data Collection in IoT using Deep

Reinforcement Learning
Sana Benhamaid, Hicham Lakhlef, Abdelmadjid Bouabdallah

To cite this version:
Sana Benhamaid, Hicham Lakhlef, Abdelmadjid Bouabdallah. Energy-Efficient and Context-aware
Trajectory Planning for Mobile Data Collection in IoT using Deep Reinforcement Learning. 30th
International Conference on Software, Telecommunications and Computer Networks (SoftCom 2022),
Sep 2022, Split, Croatia. �10.23919/SoftCOM55329.2022.9911304�. �hal-03830847�

https://hal.science/hal-03830847
https://hal.archives-ouvertes.fr


Energy-Efficient and Context-aware Trajectory
Planning for Mobile Data Collection in IoT using

Deep Reinforcement Learning
1st Sana Benhamaid

Université de Technologie de Compiègne
Sorbonne Universités, CNRS

Compiègne, France
sana.benhamaid@hds.utc.fr

2nd Hicham Lakhlef
Université de Technologie de Compiègne

Sorbonne Universités, CNRS
Compiègne, France

hlakhlef@utc.fr,

3rd Abdelmadjid Bouabdallah
Université de Technologie de Compiègne

Sorbonne Universités, CNRS
Compiègne, France

madjid.bouabdallah@hds.utc.fr

Abstract—IoT networks are often composed of spatially
distributed nodes. This is why mobile data collection (MDC)
emerged as an efficient solution to gather data from IoT
networks that tolerate delay. In this paper, we study the use of
reinforcement learning (RL) to plan the data collection trajectory
of a mobile node (MN) in cluster-based IoT networks. Most of the
existing solutions use static methods. However, in a context where
the MN has little information (no previous data set) about the
environment and where the environment is subject to changes
(cluster mobility, etc.), we want the MN to learn an energy-
efficient trajectory and adapt the trajectory to the significant
changes in the environment. For that purpose, we will train
two reinforcement learning (RL) algorithms: Q-learning and
state-action-reward-state-action (SARSA) combined with deep
learning (DL). This solution will allow us to maximize the
collected data while minimizing the energy consumption of the
MN. These algorithms will also adapt the trajectory of the MN
to the significant changes in the environment.

Index Terms—Internet-of-Things, Mobile data collection,
energy efficiency, Adaptive trajectory planning, Deep Q-learning,
Deep SARSA

I. INTRODUCTION

In the era of pervasive IoT, millions of IoT devices are
deployed in intelligent applications. These devices generate
huge amounts of data and consume large amounts of energy
to communicate their data to the base stations or their
neighbors. Since IoT devices usually have limited batteries,
once emptied or depleted, those batteries are often difficult
to replace especially if the devices are placed in an isolated
or a difficult-to-access position. In the literature, various
authors studied how to reduce the energy consumption of
spatially distributed IoT nodes [1]. Researchers have studied
cluster-based energy-efficient solutions which consist in
regrouping IoT devices into clusters and electing a node
depending on its energy capability. This node will serve as
a relay node between the cluster devices and the gateways
or receivers. The relay node will be responsible for sending
data and will allow IoT devices to save their energy by only
sending their data through the relay node [2]. To enhance the
energy efficiency of cluster-based solutions, authors proposed
energy-efficient routing protocols applied to these contexts.

For example, in [3], the authors proposed an energy-efficient
cluster-based routing protocol for wireless sensor networks
that uses different parameters to balance the energy load and
decrease the energy consumption of the network. However,
using a routing protocol to reduce the energy consumption in
an IoT network implies that these devices must be connected
which is not always realistically possible if the nodes are
placed in isolated or harsh conditions. One of the solutions
proposed to tackle the limitation of routing-based energy-
efficient solutions are the MDC approaches [4]. However, the
most challenging part in mobile sink-based solutions is to
determine and plan the trajectory of the mobile sink in order
to efficiently gather data from the IoT nodes. Most existing
approaches to MDC are static and only find a solution for
scenarios with fixed parameters. These solutions suppose that
the MN has a great knowledge of its environment and do not
consider a change of context in the system such as a change
in the clusters’ data generated or position. Recently, artificial
intelligence techniques such as machine learning (ML) or DL
are used in order to propose intelligent solutions that allow
devices to learn and take intelligent decisions. In contrast to
static methods, intelligent schemes will be able to discover
new clusters at any point and adapt the trajectory of the MN
accordingly without the need for expensive re-computation

The paper is organized as follows: Section II discusses
the works related to our problem, Section III presents
background information on RL, Section IV presents the
system model and Markov Decision Process. Sections V and
VI describe our RL algorithms and present and discuss the
simulation results. Finally, discussions and conclusions are
presented in Section VII.

II. RELATED WORKS

In the literature, most of the existing data collection and
trajectory planning solutions in the data collection context
use non-learning based approaches. For example, in [9], the
authors proposed a framework that optimizes the deployment
and mobility of multiple unmanned aerial vehicles (UAV) in



order to collect data in the uplink from ground IoT devices
and minimize the energy consumption of the MNs. In [10],
the authors proposed a computing and networking framework
for energy-efficient disaster management using UAVs where
UAVs use deep learning algorithms for real-time route
planning, obstacle avoidance and object detection. In [11],
the authors proposed an algorithm that optimizes the UAV
stops for data collection from neighboring sensors and the
itinerary followed by the UAV to ensure efficient collection
of all data with minimum energy consumption. However, in
IoT networks, devices do not constantly collect and transmit
data, their activity depends on the environment around them
or the period of time the node is visited in. In the previous
solutions, a change in the activity of the IoT network is not
considered. Consequently, having a mobile sink periodically
collecting data, following a static trajectory, may cause energy
waste and does not constitute an optimal solution to achieve
energy efficiency.
In recent years, researchers have considered learning based
solutions and especially RL as a very promising trend in
this field. In [12], the authors proposed a distributed RL
approach for path planning and collision avoidance of UAVs.
In this study, the MNs are given a visiting order and the
algorithm designs an optimal path for data collection in IoT
networks with devices having different communication radios.
Compared to this study, our solution uses deep RL which
is more suitable for complex environments and the MN can
explore the environment and establish its own visiting order
based on its experience. In [13], the authors proposed a
deep RL scheme that plans the trajectory of an MN which
is used as a data collector and charger in wireless powered
IoT networks. The solution minimizes the average data buffer
length, the residual battery level of the system and avoid
devices data overflow. In [14], the authors proposed a multi-
agent RL approach that allows the control of the trajectory
of a team of cooperative UAVs in order to maximize the
collected data under flying time and collision constraints. In
[15], the authors proposed a double deep Q network to plan
the trajectory of a UAV on an IoT data harvesting mission.
The solution proposed aims to maximize the collected data
under flying time and navigation constraints and allows the
UAV to adapt to variations in the number of IoT devices.
Contrary to our solution, the previously discussed solutions
do not take into consideration the inconsistencies in the IoT
devices activity (e.g., a device can collect more data on a
certain period of the day more than another).

Our solution consists in planning an adaptive and energy-
efficient trajectory for the MN using a deep RL algorithm.
The MN will visit clusters and collect data from an elected
node in the cluster called the relay node. The relay node is
responsible for collecting the data from the IoT nodes in the
cluster and transmitting it to the MN. The objective of our
solution is to maximize the collected data while minimizing
the energy consumption of the MN and IoT devices. In our
solution, the MN has information on the position of all the

relay nodes. It will build an energy-efficient data collection
trajectory depending on the context of the network (e.g.,
the clusters’ activity). Fundamentally, the MN will adapt
its trajectory and save energy by not visiting a cluster with
no data to transmit. The learning algorithm used to plan
the trajectory is also computed on the MN. Other solutions
proposed RL solutions to plan the trajectory of MNs in order
to either optimize data collection or minimize the energy
consumption and need to perform expensive computations
in order to adapt to a change in the context. This solution
doesn’t require a previously recorded data set. The MN will
build its own knowledge by exploring the environment. In
our paper :

• We formally describe our environment and propose a
system model of the environment.

• We define our problem as a Markov Decision Process.
• We propose a Deep SARSA (DS) and deep Q-learning

(DQN) path planning algorithms.
• We carry out simulations on these algorithms and

compare their performances in terms of data collection,
energy consumption and adaptability.

III. BACKGROUND ON REINFORCEMENT LEARNING

Reinforcement learning is a machine learning technique
that consists in learning by interacting with the environment
[5] [7]. It is a computational and goal-oriented approach
to learning by interaction as the agent learns how to map
situations to actions to maximize a numerical reward. The
agent is not given the right actions to take but instead explores
the environment and tries which actions lead to the most
reward. RL problems are often described with Markov decision
processes [8]. Reinforcement learning is a semi-supervised
machine learning algorithm. It is different from supervised
learning which consists in learning from a set of labeled
data provided by a knowledgeable external supervisor [6].
The goal of supervised learning is to find the right answer
while for RL it is to find how to carry out a certain task
and when a data set is not available, the learner uses its
previous experience. RL is also different from unsupervised
learning. Unsupervised learning is a learning paradigm that
aims to find correlations in sets of unlabeled data. This type
of learning is not based on correct examples. Finding structure
in an RL agent experience might be interesting. However,
in our solution, the most important objective is to maximize
the reward (e.g. maximize the collected data and minimize
the energy consumption) in an environment the agent needs
to explore and adapt the trajectory to the context’s changes.
covered by unsupervised learning. Consequently, RL is the
most suitable technique to our problem.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we will formally describe the environment,
present our system model and formulate our problem as a
Markov decision process.



Fig. 1. System representation

A. System Model

We consider an IoT network composed of a number of
clusters randomly distributed in a square grid world of size
M ×M ∈ N2 with an MN collecting data through a relay
node from a number K of clusters of IoT devices. We suppose
that the relay node is already chosen depending on its energy
capability (i.e., the node with the biggest energy capacity).
The k-th relay node is permanently located at [xk(t), yk(t)] in
the grid world with k ∈ [1,K] and t = 1, 2, ..., T , represents
the number of time slots. We consider the velocity v(t) of
the MN constant and enough for the MN to move from one
square of the grid to the one next to it. We consider the velocity
as constant since we want our energy-efficient solution to be
adapted to any type of MN. At time step t, the MN has an
energy capacity u(t) and wc,i(t) the amount of energy spent to
visit a cluster or a safe spot at time step t. We also consider
wf (t) the minimum level of energy needed for the MN to
move to a safe stop spot z with z in[1, Z]. A safe spot is
an area in the square grid where the MN will go when its
energy level is not sufficient to visit another cluster in order to
recharge its energy. We calculate the minimum energy needed
for the MN to reach a cluster or a safe spot by the following

wm,i(n) = |xm(t)− xi(t)|+|ym(t)− yi(t)| (1)

Where [xm(t), ym(t)] corresponds to the coordinates of the
MN and [xi(t), yi(t)] are the coordinates of a cluster or a safe
spot on the grid. We also suppose that the only information
possessed by the MN about the clusters is their initial position.
The amount of collected data by the MN from a relay node is
given by cdk. Figure 1 represents a system with an MN, four
relay nodes and one safe spot.

B. Markov Decision Process

We will formulate our problem as a Markov decision
process problem. In this section, we define the state space,
action space and reward function. The RL algorithms will
interact with the environment (the MDP) in order to find
an optimal data collection policy that maximizes the data
collection and minimizes the energy consumption of our MN
guided by the rewards’ feedback. The MDP is defined by
the tuple (S,A,R, P ) with state-space S, action-space A and
reward function R.
The state in time t, is given by st = pt, et, C where:

• pt ∈ R2 is the MN position on the grid;

TABLE I
REWARDS DEFINITION

Reward Type Environment Conditions
red Positive if cdk > 0 and wc,i = wm,i

rsd Positive if cdk > 0 and wc,i > wm,i

ree Positive if cdk = 0 and wc,i = wm,i

rne Negative if cdk = 0 and wc,i > wm,i

rmove Negative if the MN moves without collecting data

rss Positive if the MN collects data from the clusters and ends
the episode on a SS

rfinish Negative if the MN energy reaches 0 without being in a
safe spot

• et ∈ N is the remaining energy of the MN in time t;
• C ∈ R2×K represents the coordinates of the K cluster

heads.
The MN can move to one of the four adjacent grids from its
current grid in each time slot. The action-space is defined as

A = north, east, south, west (2)

The movement of our MN from a position pt is expressed as

pt+1 =


pt + (−X, 0) if at = west
pt + (X, 0) if at = east
pt + (0, X) if at = north
pt + (0,−X) otherwise

(3)

where X is length of a square in the grid. The reward function
is a function that maps state-action pairs to a real-valued
reward, i.e., R : S×A→ R. It consists of the positive rewards
and negative rewards (penalties) summarized in Table I

V. OUR SOLUTION

The main aim of our solution is to plan an adaptive
and energy-efficient trajectory that maximizes the quantity of
collected data and minimizes the energy consumption of the
MN. For that, we want our MN to explore the environment,
find an optimal trajectory and modify it in case a cluster stops
its activity or in case a new cluster appears. To achieve this
goal, we chose to use two RL algorithms. In this section, we
will present Q-learning and SARSA and discuss why allying
DL with RL is more efficient in our case. Finally, we will
present our DS algorithm specified in Algorithm 1 and our
DQN algorithm specified in Algorithm 2.

A. Q-learning And SARSA

The standard architecture of an RL algorithm is given
in figure 2. Formally, the MN observes a state s of its
environment at time step t st ∈ S where S is the set of states.
It executes an action at ∈ A, where A is the set of possible
actions and interacts with its environment. This action changes
the state of the environment to a new state st+1 and the agent
will receive a reward rt accordingly. The agent’s goal is to find
a policy π that maps a state st to a probability of choosing
action at. This policy is represented as following

π : S → P (A) (4)

The reward is the sum of discounted future rewards. To
calculate the reward we use γ, where γ ∈ [0, 1] is a discount



Fig. 2. Reinforcement learning standard architecture

factor that determines the effect of the future rewards to the
current one and T is the time when the process terminates.
The future reward is defined as follows

Rt =

T∑
i=0

γkrt+k+1 (5)

We also define the state-action value function which represents
an agent at state s taking action a under policy π

Qπ(s, a) = Eπ[R(t)|st = s, at = a] (6)

where Eπ[R(t)|st = s, at = a] is the expected return. The
learning goal is to find the optimal state-action function which
is based on the Bellman equation.
Q-learning is the most famous RL algorithm. It is an off-

policy algorithm which means the agent will sometimes apply
a policy even if it is sub-optimal in order to improve the policy.
To update and estimate the current state-action value function,
we use the next state-action value. It is important to note that
even if the next state st+1 is given, the next action at+1 is
still unknown. The update equation of the state-action value
function in Q-learning is

Q(s, a)←− Q(s, a) + α[r + γmaxQ(s′, a′)−Q(s, a)] (7)

where α represents the learning rate which is a hyper-
parameter that controls the model change in response to
the estimated error. As we can see, in Q-learning the next
action is chosen greedily to maximize the next state-action
value Q(st+1, at+1). Contrary to Q-learning, SARSA is an
on-policy RL algorithm. It means if the agent finds a good
policy, it will be more likely to repeat it. In contrast to Q-
learning, in SARSA, when updating the current state-action
value, the action at+1 will be taken instead of chosen greedily.
Consequently, the update equation of the state-action value
function in SARSA is

Q(s, a)←− Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)] (8)

As its name suggests, in SARSA the training quintuple is
(s, a, r, a′, s′) which means in every update, the quintuple will
be derived while a

′
in Q-learning is just for estimation.

In a complex and sophisticated environment with large state
and action spaces like our environment problem, computing
and updating table values for each state-action pair is not
efficient. In this case, it is more interesting to find an
approximation of the Q-value rather than directly computing it.
In order to do that, we will use DL combined with Q-Learning
and SARSA to approximate the optimal Q-function Qπ(s, a).
DL is a machine learning technique based on neural networks
(NNs) with a powerful generalizing ability. This approach

initialize action-value with random weights θ and θ′, replay
memory size H, number of episodes F

initialize ϵ for exploration and ϵexpt
for episode :1, ..., F do

Initialize the environment and receive initial state st;
Choose at randomly from action space;
Set t = 0;
while u > wi,ss do

Execute action at, compute rt and observe the next
state st+1;

Choose action at+1 from the st+1 ;
Store experience (st, at, rt, st+1) in the replay

memory with a random placement policy;
Sample a random mini-batch of G experiences
(si, ai, ri, si+1) from replay memory;

Calculate the target value;
Update the weights θ′ = θ every J time step;
Decrease u;
Set t = t+ 1;

end
Decrease ϵ;

end
Algorithm 1: DS energy-efficient Mobile Data Collection

initialize action-value with random weights θ and θ′, replay
memory size H, number of episodes F

initialize ϵ for exploration and ϵexpt
for episode :1, ..., F do

Initialize the environment and receive initial state st;
Set t = 0;
while u > wi,ss do

if ϵ > ϵexpt then
Choose at randomly from action space;

else
Select at = argmaxQ(st, at, θ);

end
Execute action at, compute rt and observe the next

state st+1;
Store experience (st, at, rt, st+1) in the replay

memory with a random placement policy;
Sample a random mini-batch of G experiences
(si, ai, ri, si+1) from replay memory;

Calculate the target value;
Update the weights θ′ = θ every J time step;
Decrease u;
Set t = t+ 1;

end
Decrease ϵ;

end
Algorithm 2: DQN-based energy-efficient Mobile Data
Collection

can retrieve highly abstract structures or features from the
real environment and then precisely depict the complicated
dependencies between raw data. However, it can not directly
select a policy for decision-making problems. Consequently,
allying Q-learning and SARSA with DL constitutes the most
appropriate solution for our problem.

B. The proposed algorithms

We propose a DS and DQN algorithm in order to plan
the trajectory of our MN. The trajectory will maximize the
quantity of collected data and minimize the energy consumed
by the MN. The proposed algorithm will also adapt the



Fig. 3. The training curves of the MN’s energy consumption for DS and
DQN

MN trajectory depending on the clusters’ activity. In addition
to previously described specifications, DS and DQN uses
experience replay which is a technique that allows us to store
the agent’s experiences at each time step in a data set called
replay memory [17]. At time step t, the agent’s experience is
defined as following

et = (st, at, rt+1, st+1) (9)

The main reason for using experience replay is to break the
correlation of consecutive samples [18]. In our solution, we
use two NNs. The policy network θ approximates the optimal
policy by finding the optimal Q-function. It accepts the current
state sn and finds the evaluation of the value Q(sn, an, θ).
We also use a second network called target network θ′ to
improve the stability of learning. The target network weights
are frozen with the original policy network and are updated
periodically. It accepts the next state sn+1 and outputs the
Q-value Q(sn+1, an+1, θ

′). These values are optimized to
minimize the loss function defined by

L(θ) = E[(Tt −Q(st, at))
2] (10)

where Tn is the target value in the DQN algorithm. It is defined
as following

Tt = rt + γt−1maxQ(st+1, at+1, θ
′) (11)

For DS Tt is described as

Tt = rt + γt−1Q(st+1, at+1, θ
′) (12)

where the Q-value for the next state st+1 is passed to the
target NN θ′ for more stability in learning. ϵ is the exploration
rate which represents the probability that our MN will explore
the environment and ϵexpt is the threshold from which our
MN will stop exploring the environment and will exploit the
experience acquired through the policy network.

VI. SIMULATION AND PERFORMANCE ANALYSIS

In this section, we will present the simulations carried out
in order to assess the learning performance of using DQN
and SARSA. Both of our algorithms are trained for a total
of 8000 episodes. We assume that four clusters are randomly
distributed in a 10 x 10 units area. The battery capacity of

Fig. 4. The training curves of the MN’s collected data for DS and DQN

the MN is set to 100 units. The MN consumes 1 unit of
energy to move from one area to another. The MN consumes
1 unit of energy to collect data when the relay node is in its
range. The cluster head is considered in the range of the MN
if they are both on the same position [xt, yt] at time step t.
An episode ends if the MN collects all the cluster data and
is in a safe spot or if its energy is equal to 0. The maximum
of possible data to collect for the MN for each episode is
between 600 and 800 units. The MN will start by exploring
the environment since ϵ is initialized to 1 and will exploit the
data when ϵ is inferior to 0.001 (i.e., corresponding to ϵexpt
in algorithms 1 and 2). The neural network is composed of
an input layer of 256 neurons (i.e., the grid is fed to the
NN as an image and is divided into 256 pixels). The output
layer is a dense layer with the size of the action space. The
configuration of the algorithms is given in Table II.

TABLE II
PARAMETERS’ VALUES FOR DS AND DQN

Parameters Values
Number of training episodes 8000

Learning rate 0,01
Discount factor 0,99
Exploration rate 1 (will be decayed)

Replay memory size 50000
Minibatch size 64

We carried out this simulation with the goal of maximizing
the amount of collected data while minimizing the energy
consumption as well as adapting the MN’s trajectory to the
clusters’ activity. We want to determine which approach
is more suitable for our problem. It is important to note,
that using learning approaches to plan a trajectory is more
appropriate for networks with no critical data that need
to be collected during a single training episode (e.g., all
the clusters data should be collected during the maximum
time where the MN can move). In order to observe the
behavior of our algorithms in an environment where the
context could change, we programmed a decrease in the
activity for two clusters between episode 5000 and episode
6000 (e.g., no data to transmit). The clusters resume their
activity after episode 6000. The rewards for this policy



red, rsd, rss, ree, rnc, rne, rfinish, rmove are set to 500, 50,
1000, 10, -100, -300, -500, -1 respectively.

Before episode 5000, all the clusters are active. As shown in
Figure 4, for the DQN algorithm, the amount of collected data
is very low at the beginning of the training and then increases
gradually. This means that our MN explores the environment,
visits the cluster positions and builds a trajectory to efficiently
collect the cluster data. While for DS, the agent quickly
learns a trajectory and visits multiple clusters. We can notice
that before episode 5000, the MN under the DS algorithm
collects more data while consuming less energy than under
the DQN algorithm. However, the MN is not visiting all the
clusters as the maximum of possible data to collect for each
episode is between 600 and 799 units.
Between episode 5000 and episode 6000, we programmed
a decrease in activity of two clusters. When the clusters’
activity drops, we notice that the amount of collected data
drops for the two algorithms. We also remark that the energy
consumption of the MN drops drastically for the DQN
algorithm while it remains in the same range for the MN
training under the DS algorithm (as shown in Figure 3. For
the DQN algorithms, these results mean that the MN does
not visit the clusters which stopped their activity and stops
the data collection to save energy. The clusters resume their
activity after episode 6000. We can see through Figure 4
that the amount of collected data increases lightly for the
DS algorithm and drastically for the DQN algorithm. These
results show that the MN training under the DQN algorithm
finds a trajectory that not only collects all the clusters’ data
during one episode while consuming less energy compared
to before episode 5000. While under the DS algorithm, the
MN certainly consumes less energy but does not visit all the
clusters.
We can conclude through the results we obtained that in
order to plan an energy-efficient and adaptive trajectory,
DQN is more appropriate than DS. The DQN tries to learn
the best trajectory to collect the data from all the clusters
while consuming the minimum energy. The algorithm also
showed great adaptability between episodes 5000 and 6000
and quickly re-learned the trajectory after episode 6000
without doing expensive re-computation and learning while
enhancing the performances. We can also conclude that the
DS algorithm took safer decisions (e.g., choosing a path is
a more appropriate solution for problems that require less
risk-taking). These results also show one of the drawbacks of
SARSA as the algorithm is easily stuck at a local optimum.

VII. CONCLUSION

In this paper, we have introduced two energy-efficient deep
RL algorithms with experience replay for trajectory planning
of an MN in a MDC and cluster-based IoT networks scenario.
The results we obtained in our paper show that the MN,
knowing only the cluster positions, uses information about
the environment to learn and find an energy-efficient data
collection trajectory with both of the algorithms. However,

under the same parameters, the DQN algorithm shows more
adaptability to the significant changes in the context scenario
(e.g., the amount of collectible data) without the need for
expensive retraining or recollection of data while DS shows a
less risky and safer trajectory.

REFERENCES

[1] Abbasian Dehkordi, Soroush and Farajzadeh, Kamran and Rezazadeh,
Javad and Farahbakhsh, Reza and Sandrasegaran, Kumbesan and
Abbasian Dehkordi, Masih: A survey on data aggregation techniques
in IoT sensor networks. Wireless Networks, 26(2), 1243-1263 (2020)

[2] Song, Liumeng and Chai, Kok Keong and Chen, Yue and Schormans,
John and Loo, Jonathan and Vinel, Alexey: QoS-aware energy-efficient
cooperative scheme for cluster-based IoT systems. IEEE Systems
Journal, v. 11, pp 1447–1455 (2017)

[3] Toor, Amanjot Singh and Jain, AK: Energy aware cluster based
multi-hop energy efficient routing protocol using multiple mobile
nodes (MEACBM) in wireless sensor networks. AEU-Inter. Journal of
Electronics and Communications, v. 102, pp 41–53 (2019)

[4] Wala, Tanuj, Narottam Chand, and Ajay K. Sharma. ”Energy efficient
data collection in smart cities using iot.” Handbook of Wireless Sensor
Networks: Issues and Challenges in Current Scenario’s. Springer, Cham,
2020. 632-654.

[5] Ray, Susmita : A quick review of machine learning algorithms. 2019
International conference on machine learning, big data, cloud and
parallel computing (COMITCon) pp 35–39 (2019)

[6] Sutton, Richard S and Barto, Andrew G: Reinforcement learning: An
introduction. MIT press, pp 1139–1159 (2018)

[7] Wiering, Marco A., and Martijn Van Otterlo. ”Reinforcement learning.”
Adaptation, learning, and optimization 12.3: 729 (2012)

[8] Otterlo, Martijn van, and Marco Wiering. ”Reinforcement learning and
markov decision processes.” Reinforcement learning. Springer, Berlin,
Heidelberg, pp 3–42 (2012)

[9] Mozaffari, Mohammad and Saad, Walid and Bennis, Mehdi and Debbah,
Mérouane: Mobile unmanned aerial vehicles (UAVs) for energy-
efficient Internet of Things communications. IEEE Trans. on Wireless
Communications, v. 16, pp 7574–7589 (2017)

[10] Lorincz, Josip and Tahirović, Adnan and Stojkoska, Biljana Risteska
: A Novel Real-Time Unmanned Aerial Vehicles-based Disaster
Management Framework, 2021 29th Telecommunications Forum
(TELFOR), pp. 1-4 (2021)

[11] Ghorbel, Mahdi Ben and Rodrı́guez-Duarte, David and Ghazzai, Hakim
and Hossain, Md Jahangir and Menouar, Hamid: Joint position and
travel path optimization for energy efficient wireless data gathering using
unmanned aerial vehicles. IEEE Trans. on Vehicular Technology, v. 68,
pp 2165–2175 (2019)

[12] Hsu, Yu-Hsin and Gau, Rung-Hung: Reinforcement Learning-based
Collision Avoidance and Optimal Trajectory Planning in UAV
Communication Networks. IEEE Trans. on Mobile Computing, v. 16,
pp 306–320 (2020)

[13] Zhang, Jidong and Yu, Yu and Wang, Zhigang and Ao, Shaopeng and
Tang, Jie and Zhang, Xiuyin and Wong, Kai-Kit: Trajectory Planning of
UAV in Wireless Powered IoT System Based on Deep Reinforcement
Learning. 2020 IEEE/CIC Inter. Conf. on Communications in China
(ICCC), v. 16, pp 645–650 (2020)

[14] Bayerlein, Harald and Theile, Mirco and Caccamo, Marco and Gesbert,
David: Multi-UAV Path Planning for Wireless Data Harvesting with
Deep Reinforcement Learning. arXiv preprint arXiv:2010.12461, pp
1447–1455 (2020)

[15] Bayerlein, Harald and Theile, Mirco and Caccamo, Marco and Gesbert,
David: UAV path planning for wireless data harvesting: A deep
reinforcement learning approach. arXiv preprint arXiv:2007.00544, pp
1447–1455 (2020)

[16] Jang, Beakcheol and Kim, Myeonghwi and Harerimana, Gaspard
and Kim, Jong Wook : Q-learning algorithms: A comprehensive
classification and applications. IEEE Access 7 : 133653-133667 (2019)

[17] Fan, Jianqing and Wang, Zhaoran and Xie, Yuchen and Yang, Zhuoran
: A theoretical analysis of DQN. Learning for Dynamics and Control.
PMLR (2020)



[18] De Bruin, Tim and Kober, Jens and Tuyls, Karl and Babuška, Robert
: The importance of experience replay database composition in deep
reinforcement learning. Deep reinforcement learning workshop, NIPS
(2015)


