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Abstract. In this paper, we extend Inner-Product Functional Encryption (IPFE), where there is
just a vector in the key and a vector in the single sender’s ciphertext, to two-client ciphertexts.
More precisely, in our two-client functional encryption scheme, there are two data providers who can
independently encrypt vectors x and y for a data consumer who can, from a functional decryption
key associated to a vector α, compute

∑
αixiyi = x · Diag(α) · y⊤. Ciphertexts are linear in the

dimension of the vectors, whereas the functional decryption keys are of constant size. We study
two interesting particular cases:

– 2-party Inner-Product Functional Encryption, with α = (1, . . . , 1). There is a unique functional
decryption key, which enables the computation of x · y⊤ by a third party, where x and y are
provided by two independent clients;

– Inner-Product Functional Encryption with a Selector, with x = x0∥x1 and y = b̄n∥bn ∈
{1n∥0n, 0n∥1n}, for some bit b, on the public coefficients α = α0∥α1, in the functional decryp-
tion key, so that one gets xb ·α⊤

b , where x and b are provided by two independent clients.

This result is based on the fundamental Product-Preserving Lemma, which is of independent in-
terest. It exploits Dual Pairing Vector Spaces (DPVS), with security proofs under the SXDH as-
sumption. We provide two practical applications: to medical diagnosis for the latter IPFE with a
selector, and to money-laundering detection for the former 2-party IPFE, both with strong privacy
properties, adaptative security and the use of labels granting a Multi-Client Functional Encryption
(MCFE) security for the scheme, thus enabling its use in practical situations.

1 Introduction

Let us consider the following practical use-case: two distinct data providers (DP1 and DP2) with
private and sensitive pieces of information want to combine them to allow a data consumer (DC)
to get a result from a calculation on them. For instance, DP1 could be a hospital with a patient’s
biological monitoring data on which a diagnosis depends, but being also be affected by a private
piece of information relative to the patient’s personal historic, owned by DP2. We want to grant
an efficient result calculation by DC based on associated data from both data providers and
public coefficients, which after the initialization phase would allow both data providers to send
their encrypted data to the data consumer indefinitely without further interaction. This can
be formally written as DP1 owning a vector x ∈ Zn

q , and DP2 owning a vector y ∈ Zn
q , and

having DC wanting to get x · D(α) · y⊤, where D(α) is the diagonal matrix with α ∈ Zn
q on

the diagonal, i.e.
∑

i αixiyi.

This is a particular case of quadratic evaluation, as recently studied in [AGT21], where the
quadratic function is diagonal. But the multi-client aspect with labels has many interesting
applications. For example, in the above medical use-case, we can even have a more specific
setting, where DC wants to get either x0 ·α⊤

0 or x1 ·α⊤
1 according to a bit b encoded in y, which

can inform about particular medical predispositions:

x = (x0,x1) ∈ Z2n
q y = (b̄ · 1, b · 1) ∈ Z2n

q α = (α0,α1) ∈ Z2n
q

so that in the end, the obtained result is xb · α⊤
b = ⟨αb,xb⟩. This is a particular case of inner-

product, with a selector b. And thanks to the labels associated to each vectors x and y, and
hence to x0, x1, and b, computations are restricted between values encrypted under the same
labels.
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Another application could be money-laundering detection: following [SNY+16], we can con-
sider a graph of transactions between bank accounts during short windows of time: nodes are
the account numbers and the oriented edges are the amounts transferred between accounts; wu,v

is the amount of the transactions from u to v in that time-period. When there is no edge, or no
transaction, wu,v is set to 0. If one maps all the bank accounts to [[1;N ]], one can write, for all
vertices v, the vectors of the incoming transactions wv,in = (w1,v, . . . , wN,v) and of the outgoing
transactions wv,out = (wv,1, . . . , wv,N ). The index of similarity between two accounts u and v is
calculated as:

σ(u, v) = σin(u, v)× σout(u, v)

where, using the norm L2:

σin(u, v) =

∑
xwx,uwx,v√∑

xw
2
x,u

√∑
xw

2
x,v

= ⟨
wu,in

||wu,in||
,

wv,in

||wv,in||
⟩

σout(u, v) =

∑
xwu,xwv,x√∑

xw
2
u,x

√∑
xw

2
v,x

= ⟨ wu,out

||wu,out||
,

wv,out

||wv,out||
⟩

If we denote w = w/||w|| the normalized vector, this is

σin(u, v) = ⟨wu,in,wv,in⟩ σout(u, v) = ⟨wu,out,wv,out⟩

As explained in [SNY+16], we can compare all the pairs of accounts to detect similar behaviors
that are potentially involved in money-laundering activities. One can then identify clusters of
suspicious nodes, and a human investigation will draw conclusions on these. We will select
accounts with a similarity index above a threshold θ for a given time period.

σ(u, v) = ⟨wu,in,wv,in⟩ × ⟨wu,out,wv,out⟩

is the product of two inner-products on vectors generated by two independent banks: these
inner-products are a particular case of our general description with α = (1, . . . , 1).

More detail, with specific optimisations about these two applications, is provided later. We
first present our generic protocol to allow the DC to compute x · D(α) · y⊤ =

∑
i αixiyi. We

stress that in this paper, we consider row vectors.

1.1 Functional Encryption

Functional Encryption (FE), first introduced in [O’N10,BSW11], enables the construction of
protocols in which the encrypted secret information x can be partially decrypted by a party
with a decryption key skf , with f a function, that will allow them to learn f(x) and nothing
else about x. The multi-client functional encryption (MCFE) generalization [CDG+18] allows
the plaintext x = (x1, . . . , xn) to be owned and encrypted by multiple independent clients. But
all the clients agree on a common label so that only those inputs can be combined into the same
vector on which the functional decryption applies.

In recent years, efficient constructions for particular cases of functional encryption were
studied, and first for linear functionalities: given a vector x encrypted by a party and given the
functional key sky, for a vector y, one can compute the inner-product ⟨x,y⟩ [ABDP15,ALS16],
with extensions to the multi-client setting, when x = (x1, . . . , xn), and each component is
encrypted by a different client [CDG+18,CDSG+20]. Quadratic functions have also been dealt,
but in the multi-input setting [AGT21], which differs with the multi-client setting by the absence
of label. And so, all the contributions of any encryptor can be combined together into the
ciphertext of x so that, given the functional key skA, for a matrix A, one can compute the
quadratic relation xAx⊤.
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We are interested in the two-client quadratic functional encryption, where client 1 encrypts
x and client 2 encrypts y, under a common label so that, given the functional key skA, for
a matrix A, one can compute the quadratic relation xAy⊤. Our construction is limited to
diagonal matrices A = D(α), but we will show that this also presents interesting practical
applications.

1.2 MIFE and MCFE

In [DOT18], a Multi-Input Functional Encryption (MIFE) for Inner Product has already been
presented, and [TT18] proposes an Inner-Product FE, both using a similar approach to ours
with Dual Pairing Vector Spaces (DPVS). However, the latter paper provides a proof specific
to the scheme (without multiple users), whereas we present below a generic Product-Preserving
Lemma, that can be applied in several contexts. And the former paper only addresses MIFE.

While in both MIFE and MCFE, there are multiple users that can independently encrypt
the multiple inputs, we here stress the main difference: MCFE allows labels, whereas MIFE
does not. Hence, MCFE with a constant label reduces to MIFE. But from the security point
of view, MCFE allows each client to encrypt multiple inputs with different labels. Only inputs
under the same labels will be combined into a vector on which the functional decryption key will
apply. In MIFE, if a client encrypts two inputs, they both can be combined with all the other
clients’ inputs leading to multiple vectors on which the functional decryption key can apply.
This leaks so much information that all the individual inputs can be revealed. Such a leakage
is not a weakness of a specific MIFE scheme, but of the functionality: this must be considered
in the security model, which results in a very weak level of security. With MCFE, the security
model excludes any leakage between inputs encrypted under different labels, so the actionable
scheme must guarantee that, which is much more difficult to achieve.

This is the main goal of this paper: whereas [AGT21] proposed an MIFE scheme that allowed
the computation of xAxT from encryptions of the coordinates of vectors x by different users
without labels, and a decryption key specific to the matrix A, we offer a two-client FE scheme
that provides the result of xAyT from encryptions of vectors x and y from two independent
clients, and a decryption key specific to the matrix A. Even if we only manage to deal with
diagonal matrices, this finds applications.

1.3 Contributions

In the above money-laundering detection application, [GGJ+20] suggested using MPC with
oblivious comparisons to calculate the similarity coefficients between accounts held by different
banks. This means a highly interactive and synchronous protocol whereas our goal is to have
an asynchronous setting where a neutral law enforcement third party receives the private data
and computes the similarity coefficients.

Our main contribution is thus a two-client functional encryption scheme where client 1 owns
and encrypts a vector x ∈ Zn

q , client 2 owns and encrypts a vector y ∈ Zn
q , while a third party

knowing a functional decryption key dkα can compute x ·D(α) ·y⊤, where D(α) is the diagonal
matrix with public vector α ∈ Zn

q on the diagonal:
∑

i αixiyi.
We stress again that we are in the multi-client setting, and not just the multi-input, with

independent x and y from the two clients, but associated to a common label to allow the
application of the functional decryption key, and to give access to the value

∑
i αixiyi. No

information leaks if different labels are used.
To this aim, we use dual pairing vector spaces (DPVS) [OT10,OT12a] so that from cipher-

texts in each of the two DPVS associated bases, the desired scalar product can be calculated,
adding the public coefficients as exponents and using the associated decryption key.

More precisely, we prove and use the Product-Preserving Lemma, that essentially states
that no adversary can see the difference, for each component, between the ciphertexts on xi
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and yi and the ciphertexts on 1 and xiyi, as the product is preserved. This Product-Preserving
Lemma is of independent interest for other security proofs where one wants to exploit a product
invariant. We provide several examples below. We now stress that our computation x·D(α)·y⊤,
from two independent inputs x and y can be seen as a particular case from [AGT21], as they
allow to compute zAzT which could be used with

z = x||y A =

(
0 0

D(α) 0

)
But first, this would result in an MIFE scheme, and not 2-client FE scheme as [AGT21] does
not handle labels, and furthermore our functional decryption key is constant-size while theirs
is linear in the size of the matrix. Eventually, their security analysis only deals with selective
adversaries, who have to commit on the challenge messages before asking functional decryption
keys, and ours grants adaptative security.

2 Dual Pairing Vector Spaces

Dual Pairing Vector Spaces (DPVS) have been proposed for efficient constructions with adaptive
security [OT10,OT12a]. We will use them here for their orthogonality properties, and the hard
subspace membership problem under the SXDH assumption.

2.1 Pairing Vector Spaces

Let us be given any cyclic group (G = ⟨G⟩,+) of prime order q, denoted additively. We can
define the n-dimension Zq-vector space

Gn = {X = x ·G def
= (X1 = x1 ·G, . . . ,Xn = xn ·G) |x ∈ Zn

q },

with the following laws:

x ·G+ y ·G def
= (x+ y) ·G a · (x ·G)

def
= (a · x) ·G

where x+ y and a · x are the usual internal and external laws of the vector space Zn
q . For the

sake of clarity, vectors will be row-vectors.
In a pairing-friendly setting (G1,G2,Gt, e,G1, G2, q), with a bilinear map e from G1 × G2

into Gt, where G1 (resp. G2) is a generator of G1 (resp. G2), we can have an additional law
between elements in Gn

1 and Gn
2 :

(x ·G1)× (y ·G2) = X × Y =
∏
i

e(Xi, Yi) =
∏
i

e(xi ·G1, yi ·G2)

=
∏
i

gxi·yi
t = gx·y

⊤

t = g
⟨x,y⟩
t

where gt = e(G1, G2) and ⟨x,y⟩ is the inner product between vectors x and y.

2.2 Dual Pairing Vector Spaces

We define E = (ei)i the canonical basis of the n-dimensional vector space Zn
q , where ei =

(ei,1, . . . , ei,n), and ei,j = δi,j : δi,j = 1 if i = j and δi,j = 0 otherwise, for i, j ∈ {1, . . . , n}. We
can also define E = (Ei)i the canonical basis of Gn, where Ei = ei ·G = (δi,j ·G)j . The above
notation x · G will thus be denoted (x)E =

∑
i xi · Ei = x · E. More generally, given any basis

B = (bi)i of Zn
q , we can define the basis B = (Bi)i of Gn, where Bi = bi ·G. Choosing a random

basis B of Gn is equivalent to a random choice of an invertible matrix B
$← GLn(Zq), such that

B = B · E. In this case, we can now have (x)B = x · B = x ·B · E = (x ·B)E.
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In case of pairing-friendly setting, for a dimension n, we will denote E = (Ei)i and E∗ = (E∗
i )i

the canonical bases of Gn
1 and Gn

2 , respectively: E×E∗ = (g
⟨ei,ej⟩
t )i,j = (g

δi,j
t )i,j = Idn. The same

way, if we denote B = (Bi)i = B ·E the basis of Gn
1 associated to a matrix B, and B∗ = (B∗

i )i =

B∗ · E∗ the basis of Gn
2 associated to the matrix B∗ = (B−1)

⊤
, as B ·B∗⊤ = In, B× B∗ = Idn.

B and B∗ are called Dual Orthogonal Bases. When (B,B∗) are associated to a random matrix

B
$← GLn(Zq), they are called Random Dual Orthogonal Bases. A pairing-friendly setting

(G1,G2,Gt, e,G1, G2, q), with such dual orthogonal bases, is called a Dual Pairing Vector Space.
For avoiding ambiguous notations, we used bold letters x for vectors in Zq, underlined letters

A for matrices in Zq, and capital bold letters E for vectors in G. More precisely, in general, B
is a vector in G1 and B∗ is a vector in G2. Then, B and B∗ are for bases (sets of independent
vectors) in G1 and G2 respectively.

2.3 Useful Transformations

As detailed in [DGP22], we can describe several transformations that are indistinguishable,
either in a perfect way or in a computational way under the Decisional Diffie-Hellman Problem:

Definition 1 (Decisional Diffie-Hellman Assumption). The DDH assumption in G, of
prime order q with generator G, states that no algorithm can efficiently distinguish the two
distributions

D0 = {(a ·G, b ·G, ab ·G), a, b
$← Zq} D1 = {(a ·G, b ·G, c ·G), a, b, c

$← Zq}

And we will denote by AdvddhG (t) the best advantage an algorithm can get in distinguishing the
two distributions within time bounded by t.

As we will use pairing-friendly setting, we might alternate with modifications in G1 and G2.
We will thus make the more general assumption:

Definition 2 (Symmetric eXternal Diffie-Hellman Assumption). The SXDH assump-
tion in (G1,G2,Gt, e,G1, G2, q) makes the DDH assumptions in both G1 and G2.

Then, we define Advsxdh(t) = max{AdvddhG1
(t),AdvddhG2

(t)}.

Subspace Indistinguishability. Let us consider a triple (a · G1, b · G1, c · G1), for c = ab +
τ mod q, that is either a Diffie-Hellman tuple (i.e., τ = 0 mod q) or a random tuple (i.e.,

τ
$← Zq). For any random dual orthogonal bases U and U∗ of dimension 2, associated to the

matrices U and U∗ = (U−1)⊤, respectively, we can set

B =

(
1 a
0 1

)
B∗ =

(
1 0
−a 1

)
B = B · U B∗ = B∗ · U∗

Note that we can compute B = (Bi)i, as we know a ·G1 and all the scalars in U :

B1 = U1 + a ·U2 B2 = U2

This is the same for B∗, excepted for the vector B∗
2 as a ·G2 is missing:

B∗
1 = U∗

1 B∗
2 = −a ·U∗

1 +U∗
2

One can thus publish {B1,B2} and {B∗
1}, but not B∗

2.
As already remarked, (x)B = (x ·B)U, so (x)U = (x ·B−1)B. Note that B−1 = B∗⊤. In

particular

(b, c)U = (b, c− ab)B = (b, τ)B
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where τ can be either 0 or random: the vector is thus either in the subspace spanned by B1 or
in the full space spanned by B1 and B2.

Whereas we cannot compute B∗
2, this does not exclude this second component in the vectors:

(y)U∗ = (y ·B∗−1)B∗ = (y ·B⊤)B∗ . So, in particular (y1, y2)U∗ = (y1 + ay2, y2)B∗ . And when
y2 = 0, (y1, 0)U∗ = (y1, 0)B∗ .

Theorem 3 (Subspace Indistinguishability). Under the DDH assumption in G1, for ran-
dom dual orthogonal bases B and B∗, once having seen B and B∗\{B∗

2}, and any vector (y1, 0)B∗,
for any y1 ∈ Zq, one cannot distinguish the vectors (x1, 0)B and (x1, x2)B, for unknown random

x1, x2
$← Zq. More precisely, the best advantage one can get is bounded by 2× AdvddhG1

(t).

Balancing Indistinguishability. With a transformation of the bases, it is possible to alter
two components in a vector when there is twice the same value in the other vector, using

B =

1 −a a
0 1 0
0 0 1

 B′ =

 1 0 0
a 1 0
−a 0 1


Lemma 4 (Balancing Indistinguishability). Under the DDH assumption in G1, for ran-
dom dual orthogonal bases B and B∗, once having seen B and B∗\{B∗

2,B
∗
3} and any vector

(y1, y2, y2)B∗, for any y1, y2 ∈ Zq, one cannot distinguish the vectors (x1, 0, 0)B and (x1,−x2, x2)B,
for unknown random x1, x2

$← Zq. More precisely, the best advantage one can get is bounded by
AdvddhG1

(t).

Swapping Indistinguishability. Applying twice the above Balancing Indistinguishability
Lemma 4, with a chosen shift x2 on B2 first, with indistinguishability between (x1, x2, 0)B and
(x1, x2 − θ, θ)B, and thus (x1, θ

′, θ)B with θ+ θ′ = x2, and then a second chosen shift x2 on B3,
with indistinguishability between (x1, 0, x2)B and (x1,−θ, x2 + θ)B, and thus again (x1, θ

′, θ)B
with θ + θ′ = x2:

Theorem 5 (Swapping Indistinguishability). Under the DDH assumption in G1, for ran-
dom dual orthogonal bases B and B∗, once having seen B and B∗\{B∗

2,B
∗
3} and any vector

(y1, y2, y2)B∗, for any y1, y2 ∈ Zq, one cannot distinguish the vectors (x1, x2, 0)B and (x1, 0, x2)B,

for an unknown random x1
$← Zq, but chosen x2 ∈ Zq. More precisely, the best advantage one

can get is bounded by 2× AdvddhG1
(t).

Indexing Indistinguishability. We will make use of the major transformation introduced
in [OT12b], with orthogonal indices that allow alterations of many components at once, in an
indistinguishable way, if labels λ and λ′ differ using

B =
1

λ′ − λ

 λ′ −λ aλ′

−1 1 −a
0 0 λ′ − λ

 B′ =

 1 1 0
λ λ′ 0
−a 0 1



Theorem 6 (Indexing Indistinguishability). Under the DDH assumption in G1, for fixed
distinct labels λ, λ′ ∈ Zq, random dual orthogonal bases B and B∗, once having seen B and

B∗\{B∗
3} and any vector (π · (λ′,−1), y)B∗, for any y ∈ Zq but an unknown random π

$← Zq, one
cannot distinguish the vectors (µ · (1, λ), 0)B and (µ · (1, λ), x)B, for any x ∈ Zq but an unknown

random µ
$← Zq. More precisely, the best advantage one can get is bounded by 2× AdvddhG1

(t).
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Replication Indistinguishability. Eventually, we will have to replicate some components,
in order to prepare a balance or swap transformation on the other vector. In this case, this is
perfectly indistinguishable using

B =

(
1 −1
0 1

)
B′ =

(
1 0
1 1

)

Lemma 7 (Replication Indistinguishability). For random dual orthogonal bases B and B∗,
once having seen B\{B1}, B∗\{B∗

2}, one cannot distinguish the vectors (x1, x2)B, (y1, y2)B∗ and
(x1, x1 + x2)B, (y1 − y2, y2)B∗, for any x1, x2, y1, y2 ∈ Zq.

We stress that for the above theorem, B1 and B∗
2 must not be shown to the adversary, and then

with just B2 = U2 and B∗
1 = U∗

1, the adversary cannot know whether one is using (U,U∗) or
(B,B∗).

3 Product-Preserving Lemma

We start with a lemma that will be the basis of our results and applications, using several
times the above indistinguishability theorems. This lemma is our main contribution. It is of
independent interest, with various applications.

Lemma 8 (Product-Preserving Lemma). For two random dual orthogonal bases B and B∗,
of length 5, unknown to the adversary A, given a list of indexed vectors, for any (xi, yi, ai, bi),
fixed indices λi among Q possible values, but random unknown πi, µi, for i = [[1;N ]]:

Ci =(πi(1, λi), xi, ai, 0)B Di =(µi(λi,−1), yi, bi, 0)B∗

A cannot distinguish between the two cases, for fixed λ∗ ̸= λi, and any x∗, y∗, but unknown
random π∗, µ∗:

(0) C∗ =(π∗(1, λ∗), x∗, 0, 0)B D∗ =(µ∗(λ∗,−1), y∗, 0, 0)B∗

(1) C∗ =(π∗(1, λ∗), 0, 1, 0)B D∗ =(µ∗(λ∗,−1), 0, x∗y∗, 0)B∗

with an advantage greater than 4 · (NQ + 1) · (AdvddhG1
(t) + AdvddhG2

(t)), and thus greater than

8 · (NQ+ 1) · Advsxdh(t).

In Figure 1, we present the sequence of games of the security proof of the above lemma, where
the πi’s and the µi’s are used when unknown randomness is required to apply swapping in-
distinguishability. Grey cells highlight the modified values, and the various transformations of
bases are precised in the left column. We stress that the indices (λi)i and λ∗ have to be known
in advance, to be able to enumerate them deterministically, and apply the indexing indistin-
guishability several taimes. We thus bound their number by Q (which will be the number of
hash queries in our applications). The full proof can be found in appendix A.

4 2-Client Inner-Product Functional Encryption

In this section, we first recall the general protocol we want to instantiate, and then we provide
and prove a concrete construction.
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G0 ∀i Ci = ( πi(1, λi) | xi ai | 0 )
Di = ( µi(λi,−1) | yi bi | 0 )
C∗ = ( π∗(1, λ∗) | x∗ 0 | 0 )
D∗ = ( µ∗(λ∗,−1) | y∗ 0 | 0 )

G1 ∀i Ci = ( πi(1, λi) | xi ai | 0 )

Replication Di = ( µi(λi,−1) | yi bi | yi )

C∗ = ( π∗(1, λ∗) | x∗ 0 | 0 )

D∗ = ( µ∗(λ∗,−1) | y∗ 0 | y∗ )

G2 ∀i Ci = ( πi(1, λi) | xi ai | 0 )
Swapping Di = ( µi(λi,−1) | yi bi | yi )

C∗ = ( π∗(1, λ∗) | 0 0 | x∗ )

D∗ = ( µ∗(λ∗,−1) | y∗ 0 | y∗ )

G3 ∀i Ci = ( πi(1, λi) | xi ai | 0 )

Indexing Di = ( µi(λi,−1) | yi bi | 0 )

C∗ = ( π∗(1, λ∗) | 0 0 | x∗ )
D∗ = ( µ∗(λ∗,−1) | y∗ 0 | y∗ )

G4 ∀i Ci = ( πi(1, λi) | xi ai | xi )

Replication Di = ( µi(λi,−1) | yi bi | 0 )
C∗ = ( π∗(1, λ∗) | 0 0 | x∗ )

D∗ = ( µ∗(λ∗,−1) | 0 0 | y∗ )

G5 ∀i Ci = ( πi(1, λi) | xi ai | 0 )

Indexing Di = ( µi(λi,−1) | yi bi | 0 )
C∗ = ( π∗(1, λ∗) | 0 0 | x∗ )
D∗ = ( µ∗(λ∗,−1) | 0 0 | y∗ )

G6 ∀i Ci = ( πi(1, λi) | xi ai | 0 )
Quotient Di = ( µi(λi,−1) | yi bi | 0 )

for x∗ ̸= 0 C∗ = ( π∗(1, λ∗) | 0 0 | 1 )

D∗ = ( µ∗(λ∗,−1) | 0 0 | x∗y∗ )

G7 ∀i Ci = ( πi(1, λi) | xi ai | 0 )
Subspace Di = ( µi(λi,−1) | yi bi | 0 )

for x∗ = 0 C∗ = ( π∗(1, λ∗) | 0 0 | 1 )

D∗ = ( µ∗(λ∗,−1) | 0 0 | 0 )

G8 ∀i Ci = ( πi(1, λi) | xi ai | 0 )

Replication Di = ( µi(λi,−1) | yi bi | −bi )

C∗ = ( π∗(1, λ∗) | 0 1 | 1 )

D∗ = ( µ∗(λ∗,−1) | 0 0 | x∗y∗ )

G9 ∀i Ci = ( πi(1, λi) | xi ai | ai )

Indexing Di = ( µi(λi,−1) | yi bi | 0 )

C∗ = ( π∗(1, λ∗) | 0 1 | 1 )
D∗ = ( µ∗(λ∗,−1) | 0 0 | x∗y∗ )

G10 ∀i Ci = ( πi(1, λi) | xi ai | ai )
Swapping Di = ( µi(λi,−1) | yi bi | 0 )

C∗ = ( π∗(1, λ∗) | 0 1 | 1 )

D∗ = ( µ∗(λ∗,−1) | 0 x∗y∗ | 0 )

G11 ∀i Ci = ( πi(1, λi) | xi ai | 0 )

Replication Di = ( µi(λi,−1) | yi bi | 0 )

C∗ = ( π∗(1, λ∗) | 0 1 | 0 )

D∗ = ( µ∗(λ∗,−1) | 0 x∗y∗ | 0 )

Fig. 1. Sequence of Games for the Product-Preserving Lemma
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4.1 General Protocol Description

Two data providers DP1 and DP2 send ciphertexts based on their data x and y ∈ Zn
q respectively

to a data consumer DC. DC has a functional decryption key dkA forA = Diag((αi)i∈[[1;n]]) ∈ Zn×n
q

enabling them to learn xAyT =
∑

i αixiyi and nothing else about x nor y. This is defined using
four algorithms:

Setup(1κ). This algorithm generates the encryption keys ek1 and ek2 for DP1 and DP2 respec-
tively, and the secret key sk;

KeyGen(sk,A). For A = Diag((αi)i∈[[1;n]]) ∈ Zn×n
q , using the secret key sk, one generates the

functional decryption key dkA;

Encrypt(λ, ek, z). Given the label λ and (ek, z), either equal to (ek1,x) or (ek2,y), the corre-
sponding data provider returns the ciphertext E;

Decrypt(dkα,C,D). Where C is a ciphertext obtained from DP1 and D from DP2 under labels
λ1 and λ2 respectively, returns xAyT =

∑
i αixiyi if λ1 = λ2.

4.2 Our 2-Client Inner-Product Functional Encryption

We provide a construction for the general protocol described in section 4.1 hereafter, using
ciphertexts made of vectors of elements in two groups G1 and G2 used for pairings, with the
first data provider DP1 using elements fromG1 and the second, DP2, fromG2. We take advantage
of dual pairing vector spaces, ciphertext group exponents being components of an element of
GL12(Zq) decomposed into one of its bases B for DP1, or in its dual base B∗ for DP2. As such,
when a pairing is performed between ciphertexts from the two data providers, the exponent of
the new target group element is the scalar product of the vectors of exponents in both data
providers’ ciphertexts, and this will procure the expected result, with additional enforcement
of identical labels in both ciphertexts, and randomness and additional components to ensure
privacy.

Combining the above product-preserving lemma together with IPFE scheme from [ALS16],
we can obtain a secure construction, even against adaptive adversaries. However, since we will
have two IPFE in G1 and G2, we will need secret keys S = (si)i and T = (ti)i of dimension
3. To this aim we will use 4 times the above Product-Preserving Lemma 8, on the values
(xℓ,yℓ) = (xℓ,i, yℓ,i)i, for all the labels ℓ, and on the three pairs of randomness (σℓ,jsi,j , τℓ,jti,j),
for j = 1, 2, 3, for all ℓ, i, to lead to unique vectors zℓ = (zℓ,i = xℓ,iyℓ,i)i, the unique secret key
R = (ri = (ri,j = si,jti,j)j)i, as well as global randomnesses ρℓ = (ρℓ,j = σℓ,jτℓ,j)j .

We use a Dual Pairing Vector Space of dimension 12, in a pairing-friendly setting (G1,G2,Gt,
e, G1, G2, q):

Setup(1κ). From a pairing-friendly setting (G1,G2,Gt, e,G1, G2, q) of appropriate size with re-

spect to the security parameter κ, one chooses random dual orthogonal matrices B = (bi)i
$←

GL12(Zq) and B∗ = (b∗i )i ← (B−1)⊤, which define the bases (B,B∗). One also generates se-

cret vectors S = (si)i,T = (ti)i
$← (Z3

q)
n. The encryption key ek1 of DP1 is set to (B,S),

while the encryption key ek2 of DP2 is set to (B∗,T). The secret key is sk = (S,T). The
public parameters are just PK← (G1,G2,Gt, e,G1, G2, q), together with a collision-resistant
hash function H into Zq;

KeyGen(sk,α). For a vector α ∈ Zn
q , one generates the functional decryption key dkα ← d =∑

αi(si,1ti,1, si,2ti,2, si,3ti,3) ∈ Z3
q ;

Encrypt(λ, ek, z), for a label λ, where ek is either ek1 or ek2, and z is either x or y, one derives
λi = H(λ, i) ∈ Zq, for i ∈ [[1;n]]:
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– To encrypt x with ek1 = (B,S), one generates σ
$← (Z∗

q)
3, random πi

$← Zq, and sets
C← (λ,C0, (Ci)i), where C0,j = σj ·G1, for j = 1, 2, 3, and for i = 1 . . . , n,

Ci = (πi(b1 + λi · b2) + xi · b3 +
3∑

j=1

σjsi,j · b4+2j) ·G1

= (πi · (1, λi), xi, 0, 0, σ1si,1, 0, σ2si,2, 0, σ3si,3, 0, 0)B

= (πi · (1, λi), xi, 0, 0, (σjsi,j , 0)j , 0)B

– To encrypt y with ek2 = (B∗,T), one generates τ
$← (Z∗

q)
3, random µi

$← Zq, and sets
D← (λ,D0, (Di)i), where D0,j = τj ·G2, for j = 1, 2, 3, and for i = 1 . . . , n,

Di = (µi(λib
∗
1 − b∗2) + yi · b∗3 +

3∑
j=1

τjti,j · b∗4+2j) ·G2

= (µi · (λi,−1), yi, 0, 0, τ1ti,1, 0, τ2ti,2, 0, τ3ti,3, 0, 0)B∗

= (µi · (λi,−1), yi, 0, 0, (τjti,j , 0)j , 0)B∗

Decrypt(dkα,C,D). Due to the orthogonality of the bases B and B∗, with gt = e(G1, G2), one
has

Ci ×Di = [πiµi(λ
′
i − λi) + xiyi +

3∑
j=1

σjτjsi,jti,j ]Gt

If the labels are the same, then Ci ×Di = gxiyi
t ·

∏
j(g

si,jti,j
t )σjτj . Then,∏

i

(Ci ×Di)
αi =

∏
i

gαixiyi
t ·

∏
j

(g
αisi,jti,j
t )σjτj

= g
∑

i αixiyi
t ·

∏
j

(g
dj
t )σjτj

= g
∑

i αixiyi
t ·

∏
j

e(C0,j , D0,j)
dj

One can thus get g
∑

i αixiyi
t and extract the discrete logarithm

∑
i αixiyi.

4.3 Security Model

About the security, it is clear neither DP1 nor DP2 are allowed to see each other’s inputs: given
Ci = (πi · (b1 + λi · b2) + xi · b3 + σ1si,1 · b6 + σ2si,2 · b8 + σ3si,3 · b10) · G1, DP2 can compute
Ci × (b3 ·G1) = gxi

t . This thus completely leaks xi.
However, we can expect the Data Consumer not to learn more than

∑
i αixiyi on a pair of

inputs. And moreover, multiple pairs of inputs cannot be mixed. We thus define a security game,
where the adversary can get multiple functional decryption keys dkα for any vector α of their
choice, multiple ciphertexts on (λ,xb,yb) for (λ,x0,x1) and (λ,y0,y1) of the adversary’s choice,
in any order of their choice, but for a random bit b. The adversary wins the game if they have
correctly guessed b, without cheating: for all the α for which it got the functional decryption
keys, and all the labels λ for which it asked (λ,x0,x1) and (λ,y0,y1),

∑
αix

0
i y

0
i =

∑
αix

1
i y

1
i .

Otherwise, this is easy to guess b.
The goal of the adversary is to guess b, in this classical indistinguishability game, that we

model with a left-or-right game, with many queries:

Definition 9 (Indistinguishability). The IND security game is defined as follows:



Two-Client Inner-Product Functional Encryption with an Application to Money-Laundering Detection 11

Initialize: The challenger runs the Setup algorithm and gives the public parameters PK to the
adversary. They also draw a random coin b

$← {0, 1};
OKeyGen(α): this is a KeyGen-query for any vector α. It outputs the functional decryption key

dkα ← KeyGen(sk,α);
LoREncryptb(λ, z

0, z1): this is a Left-or-Right query, on a new label λ for b ∈ {1, 2}, and a pair
of vectors (z0, z1). It outputs C∗

b ← Encrypt(λ, ekb, z
b);

Finalize(b′): The adversary outputs a guess b′ for b. If for all the α asked to the OKeyGen-
oracle, and all the pairs (x0

ℓ ,x
1
ℓ ) and (y0

ℓ ,y
1
ℓ ) asked to the LoREncrypt-oracle

∑
αix

0
ℓ,iy

0
ℓ,i =∑

αix
1
ℓ,iy

1
ℓ,i, where we denote (x0

ℓ ,x
1
ℓ ) the pair (z0, z1) asked for the ℓ-th label λℓ with b = 1

and (y0
ℓ ,y

1
ℓ ) for b = 2. Then one outputs b′ (for legitimate attacks), otherwise one outputs

a random bit (for non-legitimate attacks).

The advantage of an adversary A in this indistinguishability game is defined as Advind(A) =
Pr[1|b = 1]− Pr[1|b = 0] = 2Pr[b′ = b|legitimate]− 1.

We stress that in the above security game, the adversary can ask for OKeyGen and LoREncrypt
oracles as many times as they want, and in any order. When we specify a “new label”, this
means that a label can appear only once for each value of b. If the scheme allows to learn some
informations between two vectors encrypted under different labels, this breaks this security
level. This would be the case with an MIFE scheme, unable to handle labels.

Definition 10 (Ordered Indistinguishability). The ord-IND security game is exactly the
same as the IND game except that for each label λ, LoREncrypt2 must always be asked before
LoREncrypt1.

We will need the ord-IND security notion in our second construction to drastically reduce
the number of ciphertexts sent by DP2 in the particular case where this data provider sends
information to select one or the other half of DP1’s vector. In this case, for a given label, DP2

must send their ciphertext before DP1 sends ciphertexts with the same label, because if these
were received in the opposite order, our security games would not allow us to apply the product-
preserving lemma storing the product in DP1’s ciphertext vector. This is a constraint coming
from our proof: we cannot think of any practical attack if ciphertexts were sent in the opposite
order, but we would then not be able to prove the security. This security level is definitely
weaker in theory, as it introduces some constraint for the adversary. However, in practice, one
can simply make sure DP2 first sends all its ciphertexts, and then DP1 does. This is a similar
organizational constraint as not generating two ciphertexts under the same label for each data
provider. If these constraints are not satisfied, all the security guarantees are lost.

4.4 Security Analysis

Theorem 11. Our above construction from Section 4.2 satisfies IND indistinguishability against
adaptive adversaries in time t with:

Advind(A) ≤ (32QN(Nn+ 1) + 3N + 8) · Advsxdh(t) + 3N/q

where N is the number of different labels the adversary got encryptions for, and Q the number
of labels queried to the hash function.

In Figure 2, we present the sequence of games, starting from the real game, where the λℓ are
all the distinct labels, and λℓ,i = H(λℓ, i) for i ∈ [[1;n]], for ℓ increased from 1 to N , the total
number of distinct labels. We denote L1 the set of indices ℓ where LoREncrypt1 is asked first,
and L2 the set of indices where LoREncrypt2 is asked first. Their sizes are respectively N1 and
N2. However, we have to get the possible λℓ,i known in advance, in order to enumerate them in
the proofs, even if not actually used. We thus program the random oracle for all the Q λ-queries
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G0 ∀ℓ ∈ L1, Cℓ,i = ( · · · | xb
ℓ,i 0 0 |(σℓ,jsi,j 0 )j | 0 )

Random b Dℓ,i = ( · · · | yb
ℓ,i 0 0 |(τℓ,jti,j 0 )j | 0 )

∀ℓ ∈ L2, Cℓ,i = ( · · · | xb
ℓ,i 0 0 |(σℓ,jsi,j 0 )j | 0 )

Dℓ,i = ( · · · | yb
ℓ,i 0 0 |(τℓ,jti,j 0 )j | 0 )

G1 ∀ℓ ∈ L1, Cℓ,i = ( · · · | 0 1 0 |(σℓ,jsi,j 0 )j | 0 )

Product-Preserving Dℓ,i = ( · · · | 0 xb
ℓ,iy

b
ℓ,i 0 |(τℓ,jti,j 0 )j | 0 )

G2 ∀ℓ ∈ L1, Cℓ,i = ( · · · | 0 1 0 |( 0 1 )j | 0 )

Product-Preserving Dℓ,i = ( · · · | 0 xb
ℓ,iy

b
ℓ,i 0 |( 0 σℓ,jτℓ,jsi,jti,j )j | 0 )

G3 ∀ℓ ∈ L1, Cℓ,i = ( · · · | 0 1 0 |( 0 1 )j | 0 )

Formal Renaming Dℓ,i = ( · · · | 0 zbℓ,i 0 |( 0 ρℓ,jsi,jti,j )j | 0 )

G4 ∀ℓ ∈ L1, Cℓ,i = ( · · · | 0 1 0 |( 0 1 )j | 0 )

Random in Span Dℓ,i = ( · · · | 0 zbℓ,i 0 |( 0 ρℓv1,jsi,jti,j )j | 0 )

G5 ∀ℓ ∈ L1, Cℓ,i = ( · · · | 0 1 0 |( 0 1 )j | 0 )

Swapping Dℓ,i = ( · · · | 0 cℓ,i 0 |( 0 0 )j | 0 )

G6 ∀ℓ ∈ L1, Cℓ,i = ( · · · | 0 1 0 |( 0 0 )j | 0 )

Replication Dℓ,i = ( · · · | 0 cℓ,i 0 |( 0 0 )j | 0 )

∀ℓ ∈ L2, Cℓ,i = ( · · · | xb
ℓ,i 0 0 |(σℓ,jsi,j 0 )j | 0 )

Dℓ,i = ( · · · | yb
ℓ,i 0 0 |(τℓ,jti,j 0 )j | 0 )

G7 ∀ℓ ∈ L1, Cℓ,i = ( · · · | 0 1 0 |( 0 0 )j | 0 )
Idem for L2 Dℓ,i = ( · · · | 0 cℓ,i 0 |( 0 0 )j | 0 )

∀ℓ ∈ L2, Cℓ,i = ( · · · | 0 0 cℓ,i |( 0 0 )j | 0 )

Dℓ,i = ( · · · | 0 0 1 |( 0 0 )j | 0 )

G8 ∀ℓ ∈ L1, Cℓ,i = ( · · · | 0 1 0 |( 0 0 )j | 0 )

b = 0 Dℓ,i = ( · · · | 0 c′ℓ,i 0 |( 0 0 )j | 0 )

∀ℓ ∈ L2, Cℓ,i = ( · · · | 0 0 c′ℓ,i |( 0 0 )j | 0 )

Dℓ,i = ( · · · | 0 0 1 |( 0 0 )j | 0 )

The 2 first components of the Cℓ,i and Dℓ,i are always πℓ,i · (1, λℓ,i) and µℓ,i · (λℓ,i,−1).
For ℓ ∈ Lk : cℓ,i = zbℓ,i + ρℓ

∑
j vk,jsi,jti,j , and c′ℓ,i = z0ℓ,i + ρℓ

∑
j vk,jsi,jti,j .

Cℓ,0 = σℓ ·G1, Dℓ,0 = τ ℓ ·G2, and ρℓ = (σℓ,jτℓ,j)j , where

– From G0 to G3, σℓ, τ ℓ
$← Z3

q;

– From G4, for ℓ ∈ L1, σℓ
$← (Z∗

q)
3, ρℓ ← ρℓ · v1, for ρℓ

$← Z∗
q , τ ℓ ← ρℓ · (v1,j/σℓ,j)j ;

– From G7, for ℓ ∈ L2, τ ℓ
$← (Z∗

q)
3, ρℓ ← ρℓ · v2, for ρℓ

$← Z∗
q , σℓ ← σℓ · (v2,j/τℓ,j)j .

Fig. 2. Sequence of Games for the Indistinguishability Security
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asked to H, anticipating Qn possible indices. K denotes the number of OKeyGen-queries. lls
highlight the modified values, and the various transformations of bases are precised in the left
column. The full proof is provided in appendix B. Note that under the collision-resistance of
H, all the λℓ,i are also distinct.

5 Inner-Product Functional Encryption with a Selector

The above 2-client IPFE works for all possible inputs from both data providers. However, one
may be interested in a very specific sub-case where the second data provider’s vector is actually
a selector with half of its coefficients equal to one, the other half being zero, i.e., DP1’s input
is x = x0||x1, DP2’s input y = (1− b)n||bn, with b ∈ {0; 1}, and the functional coefficients are
α = α0||α1, so that the decryption key dkα helps to decrypt xb · α⊤

b . For such a particular
case, the above scheme would lead to a long ciphertext for y, whereas it just contains a bit b.
We thus propose a more compact scheme, with a dedicated security result.

5.1 Description

Let us first see how the above general scheme can be improved in the specific case of IPFE with
a selector:

Setup(1κ). From a pairing-friendly setting (G1,G2,Gt, e,G1, G2, q) of appropriate size with re-
spect to the security parameter κ, the function chooses random dual orthogonal matrices
B = (bi)i

$← GL9(Zq) and B∗ = (b∗i )i ← (B−1)⊤, which define the bases (B,B∗). One gener-

ates secret vectors S = (si, s
′
i)
n
i=1

$← ((Z2
q)

2)n and T = (t, t′)
$← (Z2

q)
2. The encryption key

ek1 of DP1 is set to (B,S), the encryption key ek2 of DP2 is set to (B∗,T), and the secret
key is set to sk = (S,T). The public parameters are just PK ← (G1,G2,Gt, e,G1, G2, q),
together with two collision-resistant hash functions H,H′ into Zq;

KeyGen(sk,α). For a vector α = (α0,α1) ∈ (Zn
q )

2, DP1 and DP2 generate the functional
decryption key

dkα ← d =
n∑

i=1

α0,i(si,1t1, si,2t2) + α1,i(s
′
i,1t

′
1, s

′
i,2t

′
2) ∈ Z2

q

Encrypt(ℓ, ek, z), for a label ℓ, where ek is either ek1 or ek2, and z is either x = (x0,x1) ∈ (Zn
q )

2

or b, one derives λ1 = H(ℓ), λ2 = H′(ℓ) ∈ Zq:

– To encrypt x = (x0,x1) ∈ (Zn
q )

2 with ek1 = (B,S), one generates σ
$← (Z∗

q)
2, random

πi, π
′
i

$← Zq, and returns C ← (ℓ,C0, (Ci,C
′
i)i), where C0,j = σj · G1, for j = 1, 2, and

for i ∈ [[1;n]]:

Ci = (πi(b1 + λ1 · b2) + x0,i · b3 + σ1si,1 · b5 + σ2si,2 · b7) ·G1

= (πi · (1, λ1), x0,i, 0, σ1si,1, 0, σ2si,2, 0, 0)B

= (πi · (1, λ1), x0,i, 0, (σjsi,j , 0)j , 0)B

C ′
i = (π′

i · (1, λ2), x1,i, 0, (σjs
′
i,j , 0)j , 0)B

– To encrypt b ∈ {0, 1} with ek2 = (B∗,T), one generates τ
$← Z2

q , random µ1, µ2
$← Zq,

and returns D← (ℓ,D0,D1,D2), where D0,j = τj ·G2, for j = 1, 2, and:

D1 = (µ1(λ1b
∗
1 − b∗2) + (1− b) · b∗3 + τ1t1 · b∗5 + τ2t2 · b∗7) ·G2

= (µ1 · (λ1,−1), 1− b, 0, τ1t1, 0, τ2t2, 0, 0)B∗

= (µ1 · (λ1,−1), 1− b, 0, (τjtj , 0)j , 0)B∗

D2 = (µ2 · (λ2,−1), b, 0, (τjt′j , 0)j , 0)B∗
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Decrypt(dkα,C,D). Due to the orthogonality of the bases B and B∗, with gt = e(G1, G2), for
i ∈ [[1;n]] one has

Ci ×D1 = [πiµ1(λ
∗
1 − λ1) + (1− b)x0,i + σ1τ1si,1t1 + σ2τ2si,2t2]Gt

C ′
i ×D2 = [π′

iµ2(λ
∗
2 − λ2) + bx1,i + σ1τ1s

′
i,1t

′
1 + σ2τ2s

′
i,2t

′
2]Gt

If the labels are the same, Ci × D1 = g
(1−b)x0,i

t ·
∏

j(g
si,jtj
t )σjτj and C ′

i × D2 = g
bx1,i

t ·∏
j(g

s′i,jt
′
j

t )σjτj . Then,

n∏
i=1

(Ci ×D1)
α0,i × (C ′

i ×D2)
α1,i

=
n∏

i=1

g
(1−b)α0,ix0,i

t ·
∏
j

(g
α0,isi,jtj
t )σjτj · gbα1,ix1,i

t ·
∏
j

(g
α1,is

′
i,jt

′
j

t )σjτj

= g
αb·x⊤

b
t ·

∏
j

(g
dj
t )σjτj = g

αb·x⊤
b

t ·
∏
j

e(C0,j , D0,j)
dj

One can thus get g
αb·x⊤

b
t and extract the discrete logarithm αb · x⊤

b .

This scheme drastically reduces second data provider’s ciphertext sizes, from being linear in n
to a small constant size.

5.2 Security Analysis

Theorem 12. Our above construction from Section 5.1 satisfies ord-IND indistinguishability
against adaptive adversaries in time t with:

Advind(A) ≤ (2N · (12Qn(N + 1) + 25) + 4) · Advsxdh(t) + 3N/q

where N is the number of different labels the adversary got encryptions for, and Q the number
of labels queried to the hash function.

We stress that in the ord-IND indistinguishability we assume LoREncrypt2 is always asked first.
The full proof is provided in appendix C.

6 Privacy-Preserving Money-Laundering Detection

For money-laundering detection, based on the work of [SNY+16] that presented a method for
this detection on cleartexts with no privacy, which we now provide, we consider the graph where
the vertices are all the bank accounts, and oriented edges represent transactions between them,
with a weight corresponding to the amount of money sent. These can be considered at regular
time periods. We can apply our above two-client inner-product functional encryption scheme to
calculate the similarity of two nodes u and v belonging to distinct banks, the two data providers
DP1 and DP2 respectively, over a time-period. One wants to compute:

σin(u, v) = ⟨wu,in,wv,in⟩ σout(u, v) = ⟨wu,out,wv,out⟩
σ(u, v) = σin(u, v)× σout(u, v)

where the vectors wu,in and wu,out are normalized N -vectors that can be generated by DP1, and
wv,in and wv,out can be generated by DP2. Indeed, using the notations introduced in section 1,
wu,in is the normalized vector of dimension N , of all the incoming transactions, where N is the
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total number of possible account numbers, and similarly for the other vectors. One may only
focus on the computation of ⟨wu,in,wv,in⟩, as the same can be done on ⟨wu,out,wv,out⟩.

While we want all the inner products between all the nodes, our privacy-preserving technique
only allows to combine one vector with a unique other vector, both encrypted under the same
label. For each pair of nodes (u, v), one thus defines a label λu,v, then DP1 and DP2 encrypt w̃u,in

and w̃v,in respectively under λu,v, and the DC can compute the inner-product with the functional
decryption key for the Identity matrix. This might look costly, because of the quadratic number
of ciphertexts. On the other hand, providing N2 inner products between N vectors would leak
too much information on the inputs, whatever the protocol. One can thus exploit these multiple
encryptions of the same vectors to add independent small noise to non-zero components, in the
same vein as differential privacy. The level of noise to be introduced is out of the scope of this
analysis, but this illustrates the main advantage of labels, and thus of the use of MCFE instead
of MIFE, that would not allow the additional protection.

6.1 Communication Complexity

Let us evaluate the communication complexity for the banks and the regulation organisation,
when DP1 manages N1 accounts and DP2 manages N2, among a global number of accounts N ,
as incoming/outgoing transactions can be with other banks. Our security model indeed requires
making ciphertexts for a given label (u, v) to allow combination for the inner-product evaluation.
As such, the vector of weights for all incoming and outgoing transactions for each node will have
to be encoded differently for each similarity calculation with a new node, meaning DP1 would
have to send 2N1N2 ciphertexts for each vertex u (because both its in and out weight vectors
haveN components) of theirN1 big set to DC for a comparison with DP2’s nodes. Symmetrically,
DP2 would have to send 2N1N2 N -long vectors of ciphertexts. In the end, for the comparisons
between DP1 and DP2, DC receives 4NN1N2 ciphertexts.

Fig. 3. Illustration of banks DP1 and DP2 owning some nodes of the graph of all accounts

We hereafter discuss optimizations to reduce these communication costs when there are
many bank accounts and weight vectors are sparse. Another method to reduce these communi-
cations can be for each bank to preselect accounts, for instance with a threshold on the amount
of transactions transiting through them. Other methods such as the complementary formula
growing with a node’s amount of transactions and similarity between the amount in its in-
coming and outgoing transactions presented in [SNY+16] can also help for this preselection of
vertices of interest. The banks should then decide for themselves to which extent it is acceptable
to let such a selection of accounts leak to other banks collaborating in the comparison.

Our non-optimized version of the protocol is best for small set sizes or graphs with a big
connectivity, as is shown in figure 5, in which we reported [SNY+16]’s parameter sets for N
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and n, the number of accounts in the system and their connectivity respectively, and took
N1 = N2 = Ni, the individual bank sizes, to be a fifth of N . The graph hashing method results
in a smaller communication size for all their parameter sets.

6.2 Reduced Graph with Hashing

Intuition Making similarity calculations in a large graph is by definition an application where
the number of comparisons has a quadratic complexity in the number of tested nodes. In money
laundering detection, where the graphs considered can be huge, this can become humongous,
even though bank infrastructures are considerable. Either a first filtering of nodes of interest can
be made, to get reasonable communications, or else we also suggest the following optimization
when there are many nodes with a small connectivity (mean number of neighbors a vertex
has). The main idea here is to work on much smaller graphs than the original one, even though
that means having to consider several ones. To do this we hash the nodes into a smaller space,
adding some of them together in common nodes, and perform the similarity calculations on the
added weight vectors of nodes landing on the same hash values. We then select nodes where
the similarity is in the suspicious range [θ; 1] for at least τ of the hashed graphs, relying on
the weight vectors’ sparseness. In the following section we detail the probability calculations
we made from the supposed sparseness of weight vectors, to deduce the appropriate size of the
set nodes should be hashed into, and the corresponding number of hash functions necessary to
make the detection accurate.

Building on the idea exposed in presentation [GGJ+20], similar to Bloom filter techniques,
we take r hash functions H1, . . . ,Hr from [[1;N ]] to [[1; 2m]], and for each function Hs we build
the corresponding reduced vertices set Vs = {Hs(v); v ∈ V } from the original N -long set of
vertices V , and each vertex v in this new set gets, for the incoming transactions, the sum of
the normalized weight vectors of incoming transactions of all the V vertices that Hs projected
onto v, written ws,v,in. The same goes for the out weight vectors ws,v,out. As we are working
with two data providing banks DP1 and DP2, who respectively own N1 and N2 nodes, they will
only add up vectors of nodes they own in this smaller graph space. We will write V1 (resp. V2)
DP1’s (resp. DP2’s) set of vertices, and for each hash function index s, Vs,1 (resp. Vs,2) the set
of vertices they are hashed into.

In this version, one makes r computations, one for each hash function reduction, to evaluate
to vertices’ similarity. In each computation, vectors are still of size N , and if a data provider
(a bank) DP1 wants to compare all their accounts with another bank DP2’s, they then need to
send DC 2r22mN ciphertexts, and DP2 2r2

2mN , so DC should receive r22(m+1)N ciphertexts (of
constant size, since this is for each component). This thus has to be compared with 4NN1N2

to select the best method.

Parameter calculations We build the following probability model on the bank account data
used, in order to set appropriate parameters for the graph hashing technique. We model weight
vectors’ sparseness with Bernoulli variables, and make sure that for a given inner-product in the
original graph, at least σ of the inner-products in the hashed graphs will be with added vectors
hashed to the same node that have disjoint supports, so that they do not influence the resulting
inner-products. We will select pairs of nodes for which at least τ ≥ σ of the inner-products on
hashed graphs gave a result in the detection range [θ; 1] from [SNY+16]. For σ, we take at least
half of the number of hash functions to avoid false positives.

Let (Ω,A, P ) be a probability space, and, to model weight vectors’sparseness, Xv,i : Ω →
{0; 1}, E 7→ 1− δwv,i,0, be the random variable taking value 1 if the i-th component of wv from

the original graph is non-zero, else 0. Xv,i follows a Bernoulli distribution B
(
n
N

)
, where n can

be seen as the connectivity of the graph (i.e. the number of neighbors of each node) for either
in or out transactions. Our optimization will take advantage of having n≪ N in our use-case.
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It will also exploit the random choice of the hash functions that combine totally independent
nodes from the original graph. We define the sum Xv =

∑N
k=1Xv,k, following the binomial

distribution B
(
N, n

N

)
(as the Xv,k are considered be independent), which gives the number of

non-zero components in the vector. Let us set: Zv,in,i : Ω → [0; 1], E 7→ wv,i (resp. Zv,out,i) as
the random variable which for v ∈ V takes the value of wv,in (resp. wv,out)’s i-th component,
following a law Z. This variable also models weight vectors’sparseness, but instead of taking 0
or 1 values to get the weight vectors’ supports, it more precisely takes the transaction amounts
inside the weight vectors.

Let: Ys,v,l : Ω → [[0;N − 1]], E 7→
∑

u∈Vl
u̸=v

δHs(u),Hs(v) be the random variable which gives, for

a vertex v ∈ Vl (l ∈ {1; 2}), the number of other vertices from Vl which Hs maps to the same

node as v. Ys,v,l
$← B

(
Nl − 1, 1

2m

)
, and is assumed independent of other Ys′,v′,l′ ’s, and from the

X and Z above random variables. Let: Xs,v̄,in,i,l : Ω → {0; 1}, E 7→ 1− δ∑
x∈Vl

Hs(x)=Hs(v)
x ̸=v

wx,in,i,0
(or

respectively Xs,v̄,out,i,l) be the boolean random variable which tells whether the i-th component
of the sum of the weight vectors added to v’s weight vector in hashed graph s, from DPl’s
vertex set,

∑
x∈Vl,Hs(x)=Hs(v),x ̸=v wx, is null or not. For them not to perturb the inner-product

calculation, we will want them to be null on components with transactions on our two original
vectors of interest wa and wb, and on the other components, we will want them to be null on
one or the other of the destination vectors. We write Xs,v̄,in,l =

∑N
i=1Xs,v̄,in,i,l (and with out

respectively), the number of non-null component in the sum of vectors hashed to the same node
as v, excluding v.

For a ∈ V1, b ∈ V2, and s ∈ [[1; r]] such that Hs(a) = u ̸= v = Hs(b),

⟨wa,in +
∑
x∈V1

Hs(x)=u
x ̸=a

wx,in;wb,in +
∑
x∈V2

Hs(x)=v
x ̸=b

wx,in⟩

= ⟨wa,in;wb,in⟩+ ⟨wa,in;
∑
x∈V2

Hs(x)=v
x ̸=b

wx,in⟩+ ⟨wb,in;
∑
x∈V1

Hs(x)=u
x̸=a

wx,in⟩+ ⟨
∑
x∈V1

Hs(x)=u
x ̸=a

wx,in;
∑
x∈V2

Hs(x)=v
x ̸=b

wx,in⟩.

Let Zs,v,in,l : Ω → ZN
q , E 7→

∑
x∈Vl,Hs(x)=Hs(v),x ̸=v wx,in (respectively Zs,v,out,l : Ω → ZN

q ,
E 7→

∑
x∈Vl,Hs(x)=Hs(v),x ̸=v wx,out), for all v ∈ Vl, be the random variable, which gives the

vector of normalized weights from other nodes in the original data owner’s graph added with
v’s normalized weight vector.

It is a sum of Ys,v,l random variables of the original weight vectors following the distribution
Z. As such, the probability that a component of Zs,v,in,l (or Zs,v,out,l) is equal to 0 is

pz,l = P (Zs,v,in,i,l = 0) =
(
1− n

N

) Nl
2m

−1
.

The expected value of Xs,v̄,in,l is bounded by nNl
2m , and is equal to N

(
1−

(
1− n

N

) Nl
2m

−1
)
,

assuming its components are independent in our model. The same goes for out vectors of course.
Also, the probability that Zs,a,in,1 has a separate support from the one of Zs,b,in,2, meaning
⟨
∑

x∈V1
Hs(x)=u

x ̸=a

wx,in;
∑

x∈V2
Hs(x)=v

x ̸=b

wx,in⟩ would be null, is:

P (∀i ∈ [[1;N ]], zs,a,in,i,1zs,b,in,i,2 = 0) = (pz,1 + pz,2 − P ((zs,a,in,i,1 = 0) ∩ (zs,b,in,i,2 = 0)))N

=

((
1− n

N

)N1
2m

−1
+
(
1− n

N

)N2
2m

−1
−
(
1− n

N

)N1+N2
2m

−2
)N

Similarly, The probability that Zs,a,in,1 and Zs,b,in,2 have disjoint supports, but also Zs,a,in,1

andwb,in, and Zs,b,in,2 andwa,in, resulting in null ⟨wa,in;
∑

x∈V2
Hs(x)=v

x ̸=b

wx,in⟩ and ⟨wb,in;
∑

x∈V1
Hs(x)=u

x ̸=a

wx,in⟩,



18 Paola de Perthuis and David Pointcheval

which we will call event Ain, is, writing q = 1 − n
N , q′ = 1 − n′

N , supposing vectors wa,in and
wb,in each have n′ non-zero components, with uniformly distributed indices, knowing that even
if Hs(a) = Hs(b), V1 and V2 being disjoint grant the independence of Zs,a,in,1 and Zs,b,in,2:

P (Ain) = P (∀i ∈ [[1;N ]], (zs,a,in,i,1zs,b,in,i,2 = 0) ∩ (wb,in,izs,a,in,i,1 = 0) ∩ (wa,in,izs,b,in,i,2 = 0))

=
((

q
N1
2m

−1 + q
N2
2m

−1 − q
N1+N2

2m
−2
)(

q′ + q
N1
2m

−1 − q′q
N1
2m

−1
)(

q′ + q
N2
2m

−1 − q′q
N2
2m

−1
))N

again with our independence assumptions.
This gives the expected proportion of the r hash functions for which all the vectors hashed to

the same value as our two vectors of interest in the original graph are cancelled out in the inner
product for a given hash function. Analogously, P (Aout) = P (Ain) = pA. We will be interested in
having Ain and Aout happen for the same hash functions, and approximating in and out vectors’
weights as independent, and calling B the event where both Ain and Aout happen for a given
hash function, pB = P (B) = P (Ain)P (Aout) = p2A.

Relating this with the birthday paradox, with the more restrictive expectation that none of
the n(N1+N2)

2m draws for all the non-null coordinates of nodes hashed to the same bucket (and
approximating one vector’s non-null components will not land in the same place), whereas in our
case we do not care about some vector components being added together if they get cancelled
out with a null component in the inner-product, we give the following lower bound on pA:

pA ≥ e−
n2(N1+N2)

2

22m+1N .

So if we want to have pB = p2A ≥ 0.95, we can thus take: m ≥ log2(n) + log2(N1 + N2) −
1
2(log2(N) + log2(ln(

1
0.95)) − 1), and we will take m just above that limit. With n = 0.14,

Ni = 2000 and N = 10000, we can thus take m = 6. We choose values for m using the birthday
paradox approximation and then calculate the exact resulting probabilities pA and pB, with
results shown in figure 4. Considering the binomial random variable with probability pB, and r
(the number of hash functions) repetitions, the probability of having at least σ ≥ 2 successes
(the outcome B) out of the r hash functions (the expected number of successes being rpB),
which we will write 1− F (σ − 1, r, pB), where F is the cumulative distribution function of the
binomial law, is greater than the following Chernoff bound, for σ ≤ rpB + 1:

1− F (σ − 1, r, pB) ≥ 1−
( rpB
σ − 1

)σ−1
eσ−1−rpB (1)

Let c be our lower bound on the confidence interval of having at least σ successes B for one
of the r hash functions. We choose the minimal r such that the right member of inequality 1
is greater than c, taking σ = ⌈r/2⌉, meaning we want to be sure to have relevant result on at
half of the hash functions, as we will take the majority output and want to avoid having false
positives. We show the results in figure 5 (whose Python code is provided in appendix E) for
σ = ⌈r/2⌉ , using N and n parameters from [SNY+16]. #C0 is the number of ciphertexts to be
sent without optimizations and #CH with these optimizations.

If event B happens, then:

⟨wa,in + Zs,a,in,1;wb,in + Zs,b,in,2⟩ × ⟨wa,out + Zs,a,out,1;wb,out + Zs,b,out,2⟩ = ⟨wa,in;wb,in⟩ × ⟨wa,out;wb,out⟩

is in [0; 1], and we will deem a and b suspicious if it is in [θ, 1], where θ was taken equal to 0.2
in [SNY+16].

To make sure our above theoretical method yielded good results in practice, we compared its
results to those from the experiments of [SNY+16], with their parameter sets and our suggested
corresponding r and m from figure 4. Because the theoretical approach was pessimistic when
using the birthday paradox approximation, we found that we could lower m to 3 on the first
set and still get good results, and recorded these in figure 5. We also empirically adapted the
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n N m pA pB Ni r c #C0 #CH

0.36 103 5 0.99 0.99 200 16 0.95 1.6E+08 6.6E+07
0.11 104 5 0.99 0.99 2000 16 0.96 1.6E+11 6.6E+08
0.14 104 6 1.0 0.99 2000 16 0.96 1.6E+11 2.6E+09

Fig. 4. parameters and communications comparison with or without the hash functions optimization. n is the
average number of other accounts one account has transactions with, N the total number of existing bank
accounts, Ni the number of accounts each of the two banks controls, m is the bit size of the space each hash
function maps into, pA gives, for one graph hashing and two nodes in the original graph, the probability that
their in (or out) scalar product in the hashed graph is equal to its value in the original graph, and pB gives the
probability that this both happens for their in and out inner-products. r is the number of hash functions required
so that we have a resulting c confidence interval of having this happen for at least half of the hash functions, for
a given node in the original graph, and thus of detecting similar nodes. #C0 is the number of ciphertexts in the
communication without the hashing strategy, and #CH is this communication with the hashing technique. We
took input n and N parameter sets from in [SNY+16] with Ni = N/5.

threshold τ on the number of hash functions we need a positive result from to sort a node as
positive, and show the results in the figure, using our script in appendix E. Because of the
empirical variations on m, yielding the r parameter, we recorded the resulting communication
sizes in figure 6, to see when the graph hashing technique was interesting compared with the
standard procedure.

Parameter set 1 2 3
N 1000 10000 10000

clean transactions 300 500 200
money laundering trans. 10 100 200

n 0.36 0.11 0.14
r 32 16 16
τ 18 14 14
m 3 5 6

Sensitivity without hashing 0.971 0.988 0.970
Sensitivity with hashing 0.959 0.982 0.969
Fall-out without hashing 0.000 0.000 0.000
Fall-out with hashing 0.024 0.008 0.008

False negative rate without h. 0.029 0.012 0.030
False negative rate with h. 0.041 0.018 0.031

Fig. 5. We used a detection threshold θ = 0.2 as in [SNY+16], and more generally their three parameter sets.
We chose τ empirically, above the limit of r/2, and also modified m empirically when we saw the experiments
still worked with a less pessimistic bound than the birthday paradox one; it can be adapted depending on the
desired sensitivity versus fall-out tradeoff. Sensitivity gives the true positive rate, fall-out the false positive rate.
These are given as an average on 50 dataset generations.

n N m pA pB Ni r c #C0 #CH

0.36 103 3 0.91 0.83 200 32 0.95 1.6E+08 8.2E+06

Fig. 6. parameters and communications comparison with or without the hash functions optimization from an
empiricalm on the first set and its corresponding theoretical number of hash functions r, and success probabilities.

Our expermiments confirm that using the hashing technique is interesting on all parameter
sets from [SNY+16]. We show that our hashing parameters from figure 4 give very similar
detection rates as the standard method, as showed in figure 5.
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6.3 Optimization on the number of ciphertexts for null edges would reveal
information

One could remark that in the weight vectors for this use-case, many components are set to zero
as each bank account will supposedly only communicate with a small portion of all existing
bank accounts. One could suggest using similar techniques as in the selector instantiation of
our scheme to use only one ciphertext for all these null components. However, as the other data
provider in the computation would have to encode all corresponding ciphertexts with the same
label, this would leak information about which accounts each one of them is communicating
with, which would not work out in this use-case. If public information can cut out groups of
bank accounts, the two data providers might as well agree on it together from the start to reduce
vector sizes.
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A Proof of the Product-Preserving Lemma 8

Proof. We detail the full proof of Lemma 8, following the sequence of games presented on
Figure 1.

Game G0: We start from the original distribution, for random πi, µi
$← Zq, but any xi, yi, ai, bi,

for i ∈ [[1;N ]], and fixed λi among Q possible values:

Ci = (πi · (1, λi), xi, ai, 0)B Di = (µi · (λi,−1), yi, bi, 0)B∗

and

C∗ = (π∗(1, λ∗), x∗, 0, 0)B D∗ = (µ∗(λ∗,−1), y∗, 0, 0)B∗

for random π∗, µ∗ but any λ∗, x∗, y∗. And we denote S0 the event that the adversary eventu-
ally outputs 1, when distinguishing the distributions of C∗. One can note that in this game,
we are with the input distribution (0), where the adversary can choose (λi, xi, yi, ai, bi) for
all i, and λ∗, x∗, y∗, but λ∗ is distinct from any other λi, and all the labels being among Q
possible values.

Game G1: As the 5-th components in Ci and C∗ vectors are all 0, one can duplicate the 3-rd
components of Di and D∗ vectors at the 5-th position, applying the Replication Lemma 7.
This is perfectly indistinguishable: S0 = S1.

Game G2: Since the 3-rd and 5-th components of Di and D∗ vectors are all identical, one
can swap x∗ from the 3-rd to the 5-th positions in C∗, applying the Swapping Lemma 5
with the first two components for the required randomness: S1 − S2 ≤ 2 · AdvddhG1

(t).
Game G3: For any i, the 5-th component of Ci is 0. Applying the Indexing Lemma 6, on

(B∗,B), between λ∗ and every possible label λi ̸= λ∗, iteratively, one replaces each yi in the
5-th component of Di by 0. More precisely, at the beginning of each the game (each value
of i), one anticipates the Q possible values in which λ∗ and the λi are drawn, one makes a
guess on λ∗, and enumerates all the Q− 1 possible values for λi. When the guess on λ∗, one
aborts. When the guess is correct (which happens with probability 1/Q): S2/Q − S3/Q ≤
2N ·AdvddhG2

(t), as there are N indexing operations to apply for all the useful λi. Other values

have no impact. Hence, S2 − S3 ≤ 2NQ · AdvddhG2
(t)

Game G4: One now removes y∗ from the 3-rd component ofD∗ with the Replication Lemma 7:
replicating negatively the 5-th components at the 3-rd positions of D vectors, one subtracts
y∗ in D∗, and 0 in other vectors, but adds the 3-rd component to the 5-th in the Ci vectors.
The two games are perfectly indistinguishable: S3 = S4.

Game G5: For any i, the 5-th component of Di is 0. Applying the Indexing Lemma 6, on
(B,B∗), between λ∗ and every possible label λi ̸= λ∗, iteratively, one replaces each xi in the
5-th components of Ci by 0. More precisely, at the beginning of each the game (each value
of i), one anticipates the Q possible values in which λ∗ and the λi are drawn, one makes a
guess on λ∗, and enumerates all the Q− 1 possible values for λi. When the guess on λ∗, one
aborts. When the guess is correct (which happens with probability 1/Q): S4/Q − S5/Q ≤
2N ·AdvddhG1

(t), as there are N indexing operations to apply for all the useful λi. Other values

have no impact. Hence, S4 − S5 ≤ 2NQ · AdvddhG1
(t).

Game G6: One replaces the pair (x∗, y∗) by (1, x∗y∗) in the 5-th coordinates of C∗ and D∗

(if x∗ ̸= 0). To this aim, one makes a random guess X
$← Zq on x∗, and defines the matrices

if X ̸= 0:

B =
(
X
)
5

B′ =
(
1/X

)
5

B = B · U B∗ = B′ · U∗

or no change otherwise. If during the execution, x∗ ̸= X, one aborts, otherwise the two
games are perfectly indistinguishable in case of correct guess: S5/q = S6/q, hence S5 = S6.
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Game G7: In case x∗ = 0, then, the Subspace Indistinguishability Theorem 3 enables the
replacement of the y∗ coordinate in D∗ with 0 since the corresponding coordinate in C∗ is
null and the D∗’s has random components at the beginning of the vector, and then using
the same theorem again we replace the zero in the 5-th coordinate of C∗ with a 1, using the
now null fifth component of D∗, and the randomness in one of the first two components of
C∗. In this case, we have: S6 − S7 ≤ 2AdvddhG1

(t) + 2AdvddhG2
(t).

Game G8: One now duplicates the 1 from the 5-th component of C∗ to the 4-th using the
Replication Lemma 7. This also negatively adds the 4-th components at the 5-th positions
of Di vectors. The two games are perfectly indistinguishable: S7 = S8.

Game G9: One applies twice the Indexing Lemma 6, between λ∗ and every possible label
λi ̸= λ∗, iteratively, to first on (B∗,B) to replace each −bi in the 5-th components of Di by
0, while all the 5-th components of the Ci are 0, and then on (B,B∗) to replace the 0 in
the 5-th components of Ci by ai, while all the 5-th components of the Di are 0. One gets
S8 − S9 ≤ 2QN · (AdvddhG1

(t) + AdvddhG2
(t)).

Game G10: One now swaps the 5-th component x∗y∗ and the 4-th component 0 of D∗. This
easily works as all the Ci and C∗ vectors have identical 4-th and 5-th components, using the
Swapping Lemma 5, with the first two components for randomness: S9−S10 ≤ 2 ·AdvddhG2

(t).

Game G11: One then withdraws the 4-th components from the 5-th components in C∗ and
the Ci’s, while the null 5-th components of Di’s and D∗ are added to the 4-th components,
using the Replication Lemma 7. This game is perfectly indistinguishable from the previous
one: S10 − S11 = 0.

The global probability difference is bounded by 0+ 2 ·AdvddhG1
(t) + 2NQ ·AdvddhG2

(t) + 0+ 2NQ ·
AdvddhG1

(t) + 2(AdvG1(t) + AdvG2(t)) + 0 + 2NQ · (AdvddhG1
(t) + AdvddhG2

(t)) + 2 · AdvddhG2
(t) + 0 =

4 · (NQ+ 1) · (AdvddhG1
(t) + AdvddhG2

(t)) ≤ 8 · (NQ+ 1) · Advsxdh(t).

B Proof of Theorem 11 (Indistinguishability of the 2-Client IPFE)

Proof. The security proof follows the sequence of games presented on Figure 2.

Game G0: This is the real game with xℓ and yℓ encrypted in Encrypt-queries: one starts with
a pairing-friendly setting (G1,G2,Gt, e,G1, G2, q), with random dual orthogonal matrices B

and B∗ of dimension 12 that define (B,B∗), and two secret matrices S,T
$← (Z3

q)
n. One sets

the encryption keys ek1 ← (B,S) and ek2 ← (B∗,T), and the secret key sk← (S,T). Then,
the public parameters PK← (G1,G2,Gt, e,G1, G2, q) are provided to the adversary.

– For the query OKeyGen(αk), with αk ∈ Zn
q , one outputs

dkαk
← dk =

∑
αk,i(si,1ti,1, si,2ti,2, si,3ti,3)

– For a query LoREncrypt1(λℓ,x
0
ℓ ,x

1
ℓ ), one first derives λℓ,i = H(λℓ, i) ∈ Zq, for i ∈ [[1;n]],

and then outputsCℓ ← (λℓ,Cℓ,0, (Cℓ,i)i) where Cℓ,0,j = σℓ·G1, for a random σℓ
$← (Z∗

q)
3,

and, for random πℓ,i
$← Zq,

∀i ∈ [[1;n]], Cℓ,i = (πℓ,i · (1, λℓ,i), x
b
ℓ,i, 0, 0, (σℓ,jsi,j , 0)j , 0)B

– For a query LoREncrypt2(λℓ,y
0
ℓ ,y

1
ℓ ), one first derives λℓ,i = H(λℓ, i) ∈ Zq, for i ∈ [[1;n]],

and then outputs Dℓ ← (λℓ,Dℓ,0, (Dℓ,i)i) where Dℓ,0,j = τ ℓ · G2, for a random τ ℓ
$←

(Z∗
q)

3, and, for random µℓ,i
$← Zq,

∀i ∈ [[1;n]], Dℓ,i = (µℓ,i · (λℓ,i,−1), ybℓ,i, 0, 0, (τℓ,jti,j , 0)j , 0)B∗
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Then we consider S0 = Pr[β = b], where β
$← {0, 1} if for some αk asked to the OKeyGen-

oracle and some (x0
ℓ ,x

1
ℓ ), (y

0
ℓ ,y

1
ℓ ) asked to the LoREncrypt oracle one has the inequality∑

αk,ix
0
ℓ,iy

0
ℓ,i ̸=

∑
αk,ix

1
ℓ,iy

1
ℓ,i, which is a non-legitimate attack, or β ← b′, as this is a

legitimate attack. Our goal is to show that S0 is close to 1/2. In the following games, we
alter the simulation of all the LoREncrypt-oracles. We denote N the number of distinct
λℓ, but anticipate by programming at most Qn values of λℓ,i (among a select set), and
K the number of OKeyGen-queries. Additionally, we denote L1 the set of indices ℓ where
LoREncrypt1 is asked first, and L2 the set of indices where LoREncrypt2 is asked first. Their
sizes are respectively N1 and N2.

Game G1: We first deal with all the indices ℓ ∈ L1 such that LoREncrypt1(λℓ,x
0
ℓ ,x

1
ℓ ) is asked

first. We apply the Product-Preserving Lemma 8 on the vectors (xℓ,i, 0) and (yℓ,i, 0) to
replace them into (0, 1) and the preserved product (0, xℓ,iyℓ,i). As we have to do it N1 times,
each with a guess on the correct label: S0 − S1 ≤ 8QN1(Nn+ 1) · Advsxdh(t).

Game G2: We apply again the Product-Preserving Lemma 8 on the vectors (σℓ,jsi,j , 0) and
(τℓ,jti,j , 0) to replace them into (0, 1) and the preserved product (0, σℓ,jτℓ,jsi,jti,j), succes-
sively for j = 1, 2, 3: S1 − S2 ≤ 24QN1(Nn+ 1) · Advsxdh(t).

Game G3: We now formally replace zℓ,i ← xℓ,iyℓ,i, and τℓ,j ← ρℓ,j/σℓ,j , for j = 1, 2, 3. This
makes no difference: S2 = S3.

Game G4: We replace the random choice ρℓ
$← Z3

q by ρℓ in the span of v1 = (v1,1, v1,2, v1,3),

for v1,1 = 1 but random v1,2, v1,3
$← Zq: ρℓ = ρℓ · v2 for ρℓ

$← Zq. The simulation of
Dℓ,0 = (ρℓ,1/σℓ,1 ·G2, ρℓ,2/σℓ,2 ·G2, ρℓ,3/σℓ,3 ·G2) does not need to know ρℓ, but just ρℓ ·G2,
as the vector σℓ is known. The simulation of the Dℓ,i do not either, but just ρℓ · G2 too.
Under the DDH assumption in G2, this game is indistinguishable from the previous one,
after N1 successive changes. See Lemma 13. Hence, S4 − S3 ≤ N1 · AdvddhG2

(t) +N1/q.
Game G5: Since the 4-th, the 7-th and the 9-th components of Cℓ,i vectors are all identical

to 1, one can successively swap elements from the 7-th to the 4-th positions, and from the
9-th to the 4-th positions in Dℓ,i to get

cℓ,i = zbℓ,i + ρℓ
∑
j

v1,jsi,jti,j

Applying the Swapping Lemma 5, one gets S4 − S5 ≤ 4 · AdvddhG2
(t).

Game G6: Since the 7-th and the 9-th components of the Dℓ,i vectors are null, we use the
Replication Lemma 7 twice to withdraw the 4-th component of the Cℓ,i’s, 1, to their 7-th
and then 9-th components, all the while adding zeros to the 4-th component in the Dℓ,i’s.
This is perfectly indistinguishable from the previous game: S5 − S6 = 0.

Game G7: We now do the same as the previous sequence, but for the indices ℓ such that
LoREncrypt2(λℓ,x

0
ℓ ,x

1
ℓ ) is asked first, where we replace the random choice ρℓ

$← Z3
q by ρℓ

in the span of v2 = (v2,1, v2,2, v2,3), for v2,1 = 1 but random v2,2, v2,3
$← Zq: ρℓ = ρℓ · v2 for

ρℓ
$← Zq. We can additionally formally replace ri,j ← si,jti,j :

∀ℓ ∈ L1 cℓ,i = zbℓ,i + ρℓ
∑
j

v1,jri,j = zbℓ,i + ρℓ · riv⊤
1

∀ℓ ∈ L2 cℓ,i = zbℓ,i + ρℓ
∑
j

v2,jri,j = zbℓ,i + ρℓ · riv⊤
2

We thus have the same distance as between G0 and G6, but with at most N2 labels and
opposite groups: S6 − S7 ≤ 32QN2(Nn+ 1) · Advsxdh(t) + (4 +N2) · AdvddhG1

(t) +N2/q.
In this game, in the setting (G1,G2,Gt, e,G1, G2, q), one starts with random dual orthogonal
matrices B and B∗ of dimension 12 that define (B,B∗), two random vectors v1 and v2

with v1,1 = v2,1 = 1, and a secret matrix R
$← (Z3

q)
n. The public parameters PK ←

(G1,G2,Gt, e,G1, G2, q) are provided to the adversary.
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– For the query OKeyGen(αk), with αk ∈ Zn
q , one outputs dkαk

← dk = (dk,j =
∑

αk,iri,j);
– For ℓ ∈ L1: a query LoREncrypt1(λℓ,x

0
ℓ ,x

1
ℓ ) is first asked for the label λℓ. One asks for

OEncrypt1(λℓ): one first derives λℓ,i = H(λℓ, i) ∈ Zq, for i ∈ [[1;n]], and outputs Cℓ ←
(λℓ,Cℓ,0, (Cℓ,i)i), where Cℓ,0 = σℓ · G1, for random σℓ

$← (Z∗
q)

3, and for i = 1, . . . , n,

with random πℓ,i
$← Zq,

Cℓ,i = (πℓ,i · (1, λℓ,i), 0, 1, 0, (0, 0)j , 0)B

When LoREncrypt2(λℓ,y
0
ℓ ,y

1
ℓ ) is queried, one asks for OEncrypt2(λℓ, zℓ), where zℓ =

(xℓ,iyℓ,i)i and outputs Dℓ ← (λℓ,Dℓ,0, (Dℓ,i)i), where

Dℓ,0 = ρℓ · (v1,1/σℓ,1, v1,2/σℓ,2, v1,3/σℓ,3) ·G2

for random ρℓ
$← Zq, and for i = 1, . . . , n, with random πℓ,i

$← Zq,

Dℓ,i = (πℓ,i · (1, λℓ,i), 0, z
b
ℓ,i + ρℓ · riv⊤

1 , 0, (0, 0)j , 0)B∗

– For ℓ ∈ L2: the simulation is symmetrical.
For a legitimate attack, we must have z0

ℓα
⊤
k =

∑
αk,iz

0
ℓ,i =

∑
αk,iz

1
ℓ,i = z1

ℓ · α⊤
k for all the

functional key queries αk: all z
0
ℓ − z1

ℓ are orthogonal to all αk.
Game G8: We eventually replace zb

ℓ by z0
ℓ in all the encryption:

∀ℓ ∈ L1 c′ℓ,i = z0ℓ,i + ρℓ · riv⊤
1

∀ℓ ∈ L2 c′ℓ,i = z0ℓ,i + ρℓ · riv⊤
2

Since b does not appear anywhere, S8 = 0. But we also have to prove there is not much
difference between G8 and G7: Using Lemma 14, one gets S8−S7 ≤ 2N ·Advsxdh(t)+2N/q.

We can thus conclude that

S0 − S8 ≤ 32QN1(Nn+ 1) · Advsxdh(t) + (4 +N1) · AdvddhG2
(t) +N1/q

+ 32QN2(Nn+ 1) · Advsxdh(t) + (4 +N2) · AdvddhG1
(t) +N2/q

+ 2N · Advsxdh(t) + 2N/q

≤ (32QN(Nn+ 1) + 3N + 8) · Advsxdh(t) + 3N/q

Lemma 13. From the view of ρℓ · G2 ∈ G3
2, for ℓ = 1, . . . , N , one cannot make the difference

between ρℓ = ρℓ · v, with ρℓ
$← Zq for all ℓ, for some random vector v ∈ Z3

q with v1 = 1, and

ρℓ
$← Z3

q for all ℓ, with advantage greater than N · AdvddhG2
(t) +N/q.

Proof. For a given ℓ, one can define the hybrid game Gℓ: for some random vector v ∈ Z3
q with

v1 = 1

– For all indices j ∈ [[1; ℓ]], one chooses a random ρj
$← Z∗

q , and sets ρj ← ρj · v;
– For all indices j ∈ [[ℓ+ 1;N ]], one chooses ρj

$← Z3
q .

This is clear that in G0, all the vectors are random, while in GN , all the vectors are co-linear
with v.

Let us consider the following game from some ℓ: from a Decisional Diffie-Hellman instance
in G2, U = u · G2, V = v · G2, and W = w · G2, where u, v

$← Zq and w = uv + δ with either

δ
$← Zq or δ = 0: one chooses random a, b

$← Zq and set A ← U , B ← a · G2 + b · U , hence
(G2, A,B) = v ·G2 with

v1 = 1 v2 = u v3 = a+ ub
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For all indices j < ℓ, one sets, for a random ρj
$← Z∗

q ,

ρj ·G2 = ρj · (G2, A,B) = ρj · v ·G2

For all indices j > ℓ, one chooses a random ρj
$← Z3

q . For the ℓ-th query, one chooses a random

x
$← Zq and sets

ρℓ,1G2 ← xG2 + V = (x+ v)G2 = ρG2 = ρℓv1G2

ρℓ,2G2 ← xU + C = (xu+ w)G2 = (ρu− δ)G2 = (ρℓv2 − δ)G2

ρℓ,3G2 ← axG2 + bxU + aV + bW = (ax+ bxu+ av + bw)G2

= (ρ(a+ bu)− δb)G2 = (ρℓv3 − δb)G2

where ρℓ = x + v. If δ = 0, ρℓ = ρℓ · v, for a random ρℓ as x
$← Zq. Then we are in Gℓ, unless

x = −v. When δ
$← Zq, as b

$← Zq, ρℓ is random in Z3
q . So we are in Gℓ−1.

Lemma 14. S7 − S8 ≤ 2N · Advsxdh(t) + 2N/q.

Proof. We proceed iteratively on each ℓ, as in [CDG+18], but in both G1 and G2, which requires
a randomness with dimension 3:

Game G7.ℓ.0 This is the previous game, and we deal with the ℓ-th label that is in Lb, for the
appropriate b, that is learnt from the first query of the adversary.

Game G7.ℓ.1 We use back ρℓ
$← Z3

q , instead of the span of vb: c
′
ℓ,i = zbℓ,i+ ρℓ · riv⊤

b is replaced

by c1ℓ,i = zbℓ,i+ riρ
⊤
ℓ , with S7.ℓ.0−S7.ℓ.1 ≤ Advsxdh(t), using the same analysis as in the proof

of Lemma 13.

Game G7.ℓ.2 We stop if eventually ρℓ is in the plane spanned by v1 and v2: S7.ℓ.1 − S7.ℓ.2 ≤
1/q. Otherwise, denoting v3 a unitary vector orthogonal to both v1 and v2, we can note
ρℓ = c1v1 + c2v2 + c3v3, with c3 ̸= 0 mod q.

Game G7.ℓ.3 We replace zb
ℓ by z0

ℓ in the encryption: c1ℓ,i = zbℓ,i + riρ
⊤
ℓ is replaced by c2ℓ,i =

z0ℓ,i + riρ
⊤
ℓ . As in [CDG+18], we can use the complexity leveraging, by guessing (z0

ℓ , z
1
ℓ )

to show this makes no difference, by building an adversary that guesses (z0
ℓ , z

1
ℓ ). We then

note S∗ the success of this new adversary that makes both a correct guess on (z0
ℓ , z

1
ℓ ) and

a correct guess for b with a legitimate attack.

– Step 1: one guesses (z0
ℓ , z

1
ℓ ), which can either be in (Zq)

2n or empty if the second en-
cryption query is not asked. There are thus q2n + 1 possibilities. If the guess is correct,
one does not change anything, if this is incorrect, one stops and outputs a random bit.
One can note that the advantage in this game is S∗

1 = S7.ℓ.2/(q
2n+1), as the good guess

is exactly 1/(q2n + 1), even in case of correct guess of b in a legitimate attack;

– Step 2: we can replace ri by ui = ri + γ(zbℓ,i − z0ℓ,i) · v3, for random γ
$← Zq, as R =

(ri)i
$← (Z3

q)
n is random and independent of (z0

ℓ , z
1
ℓ ). We have to check this does not

impact the view of the adversary:

• the keys, for all k, are generated as

dk =
∑
i

αk,i · ui =
∑
i

αk,i ·
(
ri + γ(zbℓ,i − z0ℓ,i) · v3

)
=
∑
i

αk,i · ri + γ ·

(∑
i

αk,i · (zbℓ,i − z0ℓ,i)

)
· v3 =

∑
i

αk,i · ri

as for a legitimate attack,
∑

i αk,i(z
b
ℓ,i − z0ℓ,i) = 0.
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• the ciphertexts, for all j ̸= ℓ are all generated with ρj = ρj · vδ, for some δ ∈ {1, 2}.
So, with bj = 0, for j < ℓ, and bj = b for j > ℓ:

cj,i = z
bj
j,i + ρj · ui · v⊤

δ = z
bj
j,i + ρj ·

(
ri + γ(zbℓ,i − z0ℓ,i) · v3

)
· v⊤

δ

= z
bj
j,i + ρj · ri · v⊤

δ

• excepted cℓ,i:

cℓ,i = zbℓ,i + ui · ρ⊤
ℓ

= zbℓ,i + ui · ρ⊤
ℓ + γ(zbℓ,i − z0ℓ,i) · v3 · (c1v⊤

1 + c2v
⊤
2 + c3v

⊤
3 )

= zbℓ,i + ui · ρ⊤
ℓ + c3γ(z

b
ℓ,i − z0ℓ,i) · v3 · v⊤

3

= zbℓ,i + c3γ(z
b
ℓ,i − z0ℓ,i) + ui · ρ⊤

ℓ = z0ℓ,i + ui · ρ⊤
ℓ

if γ = −1/c3, as v3 is a unitary vector. Then S∗
2 = S∗

1 .
And this is clear that S∗

2 = S7.ℓ.3/(q
2n + 1) . Hence, S7.ℓ.3 = S7.ℓ.2.

Game G7.ℓ.4 After having ignored linear vectors, we force ρℓ to be in the span of vb: S7.ℓ.3 −
S7.ℓ.4 ≤ Advsxdh(t) + 1/q, as above.

C Proof of Theorem 12 (Indistinguishability of the IPFE with Selector)

As we will have several vectors with the same labels, we first need to propose a variant of the
Product-Preserving Lemma 8, whose proof is presented in appendix D:

Lemma 15 (Alternative Product-Preserving Lemma). For two orthogonal bases B and
B∗, of length 5, unknown to the adversary A, given a list of indexed vectors, for any (xi,1, . . . ,
xi,n, yi, ai,1, . . . , ai,n, bi), fixed indices λi among Q possible values , but random unknown πi,1, . . . , πi,n, µi,
for i = [[1;N ]], j ∈ [[1;n]]:

Ci,j =(πi,j(1, λi), xi,j , ai,j , 0)B Di =(µi(λi,−1), yi, bi, 0)B∗

A cannot distinguish between the two cases, for fixed λ∗ ̸= λi, and any x∗1, . . . , x
∗
n and y∗, but

unknown random π∗
1, . . . , π

∗
n, µ

∗:

(0) C∗
j =(π∗

j (1, λ
∗), x∗j , 0, 0)B D∗ =(µ∗(λ∗,−1), y∗, 0, 0)B∗

(1) C∗
j =(π∗

j (1, λ
∗), 0, x∗jy

∗, 0)B D∗ =(µ∗(λ∗,−1), 0, 1, 0)B∗

with an advantage greater than 2 · (Qn(N +1)+ 3) ·AdvddhG1
(t)+ 2 · (Qn(N +1)+ 1) ·AdvddhG2

(t)),

and thus greater than 4 · (Qn(N + 1) + 2) · Advsxdh(t).

In Figure 7, we present the sequence of games, starting from the real game, where the λℓ for
ℓ ∈ [[1;N ]] are all the distinct labels, and λℓ,1 = H(λℓ), λℓ,2 = H′(λℓ), with N the total number
of distinct labels.

Proof. In this proof we suppose the data consumer DC receives ciphertexts from DP2 before or
at the same time as from DP1, to be able to get the product preserving property. The security
proof follows the sequence of games presented on Figure 7. In the first game, we rename the
vectors in order to simplify the notations in the proof.

Game G0: This is the real game with xℓ and yℓ encrypted in Encrypt-queries: one starts
with a pairing-friendly setting (G1,G2,Gt, e,G1, G2, q), with random dual orthogonal ma-
trices B and B∗ of dimension 9 that define (B,B∗), and secret vectors S = (si, s

′
i)
n
i=1 =

(si,1, si,2)
2n
i=1

$← ((Z2
q)

2)n and T = (t, t′) = (tk,1, tk,2)
2
k=1

$← (Z2
q)

2. One sets ek1 ← (B,S),
ek2 ← (B∗,T), and sk← (S,T). Then, the public parameters PK← (G1,G2,Gt, e,G1, G2, q)
are provided to the adversary.
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G0 ∀ℓ ∈ [[1;N ]], Cℓ,i = ( · · · | xb
ℓ,i 0 |(σℓ,jsi,j 0 )j | 0 )

Dℓ,k = ( · · · | yb
ℓ,k 0 |(τℓ,jtk,j 0 )j | 0 )

G1 ∀ℓ, Cℓ,i = ( · · · | 0 xb
ℓ,iy

b
ℓ,⌈i/(2n)⌉ |(σℓ,jsi,j 0 )j | 0 )

Product-Preserving Dℓ,k = ( · · · | 0 1 |(τℓ,jtk,j 0 )j | 0 )

G2 ∀ℓ, Cℓ,i = ( · · · | 0 xb
ℓ,iy

b
ℓ,⌈i/(2n)⌉ |( 0 σℓ,jτℓ,jsi,jt⌈i/(2n)⌉,j )j | 0 )

Product-Preserving Dℓ,k = ( · · · | 0 1 |( 0 1 )j | 0 )

G3 ∀ℓ, Cℓ,i = ( · · · | 0 zbℓ,i |( 0 ρℓ,jsi,jt⌈i/(2n)⌉,j )j | 0 )

Formal Renaming Dℓ,k = ( · · · | 0 1 |( 0 1 )j | 0 )

G4 ∀ℓ, Cℓ,i = ( · · · | 0 zbℓ,i |( 0 ρℓvjsi,jt⌈i/(2n)⌉,j )j | 0 )

Random in Span Dℓ,k = ( · · · | 0 1 |( 0 1 )j | 0 )

G5 ∀ℓ, Cℓ,i = ( · · · | 0 cℓ,i |( 0 0 )j | 0 )

Swapping Dℓ,k = ( · · · | 0 1 |( 0 1 )j | 0 )

G6 ∀ℓ, Cℓ,i = ( · · · | 0 cℓ,i |( 0 0 )j | 0 )

Replication Dℓ,k = ( · · · | 0 1 |( 0 0 )j | 0 )

G7 ∀ℓ, Cℓ,i = ( · · · | 0 c′ℓ,i |( 0 0 )j | 0 )

b = 0 Dℓ,k = ( · · · | 0 1 |( 0 0 )j | 0 )

The 2 first components of the Cℓ,i and Dℓ,⌈i/(2n)⌉ are always πℓ,i · (1, λℓ,⌈i/(2n)⌉) and
µℓ,⌈i/(2n)⌉ · (λℓ,⌈i/(2n)⌉,−1), for each label ℓ ∈ [[1;N ]], and for i = 1, . . . , 2n.
cℓ,i = zbℓ,i + ρℓ

∑
j vk,jsi,jt⌈i/(2n)⌉,j , and c′ℓ,i = z0ℓ,i + ρℓ

∑
j vk,jsi,jt⌈i/(2n)⌉,j .

Cℓ,0 = σℓ ·G1, Dℓ,0 = τ ℓ ·G2, where

– From G0 to G3, σℓ
$← (Z∗

q)
2, τ ℓ

$← Z2
q, and ρℓ = (σℓ,jτℓ,j)j ;

– From G4, σℓ
$← (Z∗

q)
2, ρℓ ← ρℓ · v, for ρℓ $← Z∗

q , and τ ℓ ← ρℓ · (vj/σℓ,j)j .

Fig. 7. Sequence of Games for the Indistinguishability Security of the IPFE with Selector
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– For the query OKeyGen(αk = (αk,0,αk,1)), we rewrite αk = (αk,i)i ∈ Z2n
q , one outputs

dkαk
← dk =

∑
αk,i(si,1t⌈i/(2n)⌉,1, si,2t⌈i/(2n)⌉,2)

– For a query LoREncrypt1(λℓ,x
0
ℓ ,x

1
ℓ ), one first derives λℓ,i, for i ∈ [[1; 2]], and then outputs

Cℓ ← (λℓ,Cℓ,0, (Cℓ,i)i) where Cℓ,0,j = σℓ ·G1, for a random σℓ
$← (Z∗

q)
2, and, for random

πℓ,i
$← Zq,

∀i ∈ [[1; 2n]], Cℓ,i = (πℓ,i · (1, λℓ,⌈i/(2n)⌉), x
b
ℓ,i, 0, (σℓ,jsi,j , 0)j , 0)B

– For a query LoREncrypt2(λℓ,y
0
ℓ ,y

1
ℓ ), one first derives λℓ,i, for i ∈ [[1; 2]], and then outputs

Dℓ ← (λℓ,Dℓ,0, (Dℓ,i)i) where Dℓ,0,j = τ ℓ ·G2, for a random τ ℓ
$← Z2

q , and, for random

µℓ,i
$← Zq,

∀i ∈ [[1; 2]], Dℓ,i = (µℓ,i · (λℓ,i,−1), ybℓ,i, 0, (τℓ,jti,j , 0)j , 0)B∗

Then we consider S0 = Pr[β = b], where β
$← {0, 1} if for some αk asked to the OKeyGen-

oracle and some (x0
ℓ ,x

1
ℓ ), (y

0
ℓ ,y

1
ℓ ) asked to the LoREncrypt oracle one has the inequality∑

αk,ix
0
ℓ,iy

0
ℓ,i ̸=

∑
αk,ix

1
ℓ,iy

1
ℓ,i, which is a non-legitimate attack, or β ← b′, as this is a

legitimate attack. Our goal is to show that S0 is close to 1/2. In the following games, we
alter the simulation of all the LoREncrypt-oracles. We denote N the number of distinct λℓ,
but anticipate by programming at most 2Q values of λℓ,i, and K the number of OKeyGen-
queries.

Game G1: We consider LoREncrypt2(λℓ,y
0
ℓ ,y

1
ℓ ) is always asked first. We apply the Alternative

Product-Preserving Lemma 15 on the 3-rd and 4-th components (xℓ,i, 0) and (yℓ,⌈i/(2n)⌉, 0)
for each ℓ and ⌈i/(2n)⌉ to replace them into the preserved product (0, xℓ,iyℓ,⌈i/(2n)⌉) and

(0, 1). We thus have S0 − S1 ≤ 8N · (Qn(N + 1) + 2) · Advsxdh(t).
Game G2: We apply again the Alternative Product-Preserving Lemma 15 on (σℓ,jsi,j , 0) and

(τℓ,jt⌈i/(2n)⌉,j , 0) to replace them into (0, 1) and the preserved product (0, σℓ,jτℓ,jsi,jt⌈i/(2n)⌉,j),

successively for j = 1, 2 and each label: S1 − S2 ≤ 16N · (Qn(N + 1) + 2) · Advsxdh(t).
Game G3: We now formally replace zℓ,i ← xℓ,iyℓ,⌈i/(2n)⌉, and τℓ,j ← ρℓ,j/σℓ,j for j = 1, 2. This

makes no difference: S2 = S3.

Game G4: We replace the random choice ρℓ
$← Z2

q by ρℓ in the span of v = (v1, v2), for

v1 = 1 but a random v2
$← Zq: ρℓ = ρℓ · v for ρℓ

$← Zq. The simulation of Cℓ,0 = (ρℓ,1/σℓ,1 ·
G1, ρℓ,2/σℓ,2 · G1) does not require knowledge of ρℓ, but just ρℓ · G1, as the vector σℓ is
known. The simulation of the Cℓ,i does not either, but just ρℓ ·G1 too.

This game is perfectly indistinguishable from the previous one if ρℓ is not colinear with

v as v2
$← Zq is random, and applying this transformation for the N indices, we get:

S4 − S3 ≤ N/q.

Game G5: Since the 6-th and the 8-th components of Dℓ,k vectors are all identical to 1, one
can successively swap elements from the 6-th to the 4-th positions, and from the 8-th to the
4-th positions in Cℓ,i to get

cℓ,i = zbℓ,i + ρℓ
∑
j

v1,jsi,jt⌈i/(2n)⌉,j

Applying the Swapping Lemma 5, one gets S4 − S5 ≤ 4 · AdvddhG1
(t).

Game G6: Since the 6-th and the 8-th components of the Cℓ,i vectors are null, we use the
Replication Lemma 7 twice to withdraw the 4-th component of the Dℓ,k’s, 1, to their 6-th
and then 8-th components, all the while adding zeros to the 4-th component in the Cℓ,i’s.
This is perfectly indistinguishable from the previous game: S5 − S6 = 0.
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In this game, in the setting (G1,G2,Gt, e,G1, G2, q), one starts with random dual orthogonal
matrices B and B∗ of dimension 9 that define (B,B∗), a random vector v with v1 = 1, and

a secret matrix R
$← (Z2

q)
n. We formally replace ri,j ← si,jt⌈i/(2n)⌉,j . The public parameters

PK← (G1,G2,Gt, e,G1, G2, q) are provided to the adversary.
– For the query OKeyGen(αk), with αk ∈ Zn

q , one outputs dkαk
← dk = (dk,j =

∑
αk,iri,j);

– For ℓ ∈ [[1;N ]]: a query LoREncrypt2(λℓ,y
0
ℓ ,y

1
ℓ ) is first asked for the label λℓ. One asks

for OEncrypt2(λℓ): one derives λℓ,i, for i ∈ [[1; 2]], and outputs Dℓ ← (λℓ,Dℓ,0, (Dℓ,i)i),

where Dℓ,0 = σℓ ·G2, for random σℓ
$← Z2

q , and for i = 1, 2, with random µℓ,i
$← Zq,

Dℓ,i = (µℓ,i · (1, λℓ,i), 0, 1, (0, 0)j , 0)B∗

When LoREncrypt1(λℓ,x
0
ℓ ,x

1
ℓ ) is queried, one asks for OEncrypt1(λℓ, zℓ), where zℓ =

(xℓ,iyℓ,⌈i/(2n)⌉)i and outputs Cℓ ← (λℓ,Cℓ,0, (Cℓ,i)i), where

Cℓ,0 = ρℓ · (v1,1/σℓ,1, v1,2/σℓ,2) ·G1

for random ρℓ
$← Zq, and for i = 1, . . . , 2n, with random πℓ,i

$← Zq,

Cℓ,i = (πℓ,i · (1, λℓ,⌈i/(2n)⌉), 0, z
b
ℓ,i + ρℓ · riv⊤, (0, 0)j , 0)B

For a legitimate attack, we must have z0
ℓα

⊤
k =

∑
αk,iz

0
ℓ,i =

∑
αk,iz

1
ℓ,i = z1

ℓ · α⊤
k for all the

functional key queries αk: all z
0
ℓ − z1

ℓ are orthogonal to all αk.
Game G7: We eventually replace zb

ℓ by z0
ℓ in all the encryptions:

∀ℓ ∈ [[1;N ]] c′ℓ,i = z0ℓ,i + ρℓ · riv⊤

Since b does not appear anywhere, S7 = 0. But we also have to prove there is not much
difference between G7 and G6: Using Lemma 16, one gets S7−S6 ≤ 2N ·Advsxdh(t)+2N/q.

We can thus conclude that

S0 − S7 ≤ 24N · (Qn(N + 1) + 2) · Advsxdh(t) + 2N · Advsxdh(t) + 4 · AdvddhG1
(t) + 3N/q

(2N · (12Qn(N + 1) + 25) + 4) · Advsxdh(t) + 3N/q

Lemma 16. S6 − S7 ≤ 2N · Advsxdh(t) + 2N/q.

Proof. We proceed iteratively on each ℓ, as in [CDG+18]:

Game G6.ℓ.0 This is the previous game, and we deal with the ℓ-th label.
Game G6.ℓ.1 We use back ρℓ

$← Z2
q , instead of the span of v: c′ℓ,i = zbℓ,i + ρℓ · riv⊤ is replaced

by c1ℓ,i = zbℓ,i + riρ
⊤
ℓ , with S6.ℓ.0 − S6.ℓ.1 = 0, using the same analysis as in game 4.

Game G6.ℓ.2 We stop if eventually ρℓ is colinear to v: S6.ℓ.1−S6.ℓ.2 ≤ 1/q. Otherwise, denoting
v′ a unitary vector orthogonal to v, we can write ρℓ = c1v + c2v

′, with c2 ̸= 0 mod q.
Game G6.ℓ.3 We replace zb

ℓ by z0
ℓ in the encryption: c1ℓ,i = zbℓ,i + riρ

⊤
ℓ is replaced by c2ℓ,i =

z0ℓ,i + riρ
⊤
ℓ . As in [CDG+18], we can use the complexity leveraging, by guessing (z0

ℓ , z
1
ℓ )

to show this makes no difference, by building an adversary that guesses (z0
ℓ , z

1
ℓ ). We then

note S∗ the success of this new adversary that makes both a correct guess on (z0
ℓ , z

1
ℓ ) and

a correct guess for b with a legitimate attack.
– Step 1: one guesses (z0

ℓ , z
1
ℓ ), which can either be in (Zq)

2n or empty if the second en-
cryption query is not asked. There are thus q2n + 1 possibilities. If the guess is correct,
one does not change anything, if this is incorrect, one stops and outputs a random bit.
One can note that the advantage in this game is S∗

1 = S6.ℓ.2/(q
2n+1), as the good guess

is exactly 1/(q2n + 1), even in case of correct guess of b in a legitimate attack;
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– Step 2: we can replace ri by ui = ri + γ(zbℓ,i − z0ℓ,i) · v3, for a random γ
$← Zq, as

R = (ri)i
$← (Z2

q)
n is random and independent of (z0

ℓ , z
1
ℓ ). We have to check this does

not impact the view of the adversary:
• the keys, for all k, are generated as

dk =
∑
i

αk,i · ui =
∑
i

αk,i ·
(
ri + γ(zbℓ,i − z0ℓ,i) · v′

)
=
∑
i

αk,i · ri + γ ·

(∑
i

αk,i · (zbℓ,i − z0ℓ,i)

)
· v′ =

∑
i

αk,i · ri

as for a legitimate attack,
∑

i αk,i(z
b
ℓ,i − z0ℓ,i) = 0.

• the ciphertexts, for all j ̸= ℓ are all generated with ρj = ρj · v. So, with bj = 0, for
j < ℓ, and bj = b for j > ℓ:

cj,i = z
bj
j,i + ρj · ui · v⊤ = z

bj
j,i + ρj ·

(
ri + γ(zbℓ,i − z0ℓ,i) · v′

)
· v⊤

= z
bj
j,i + ρj · ri · v⊤

• excepted cℓ,i:

cℓ,i = zbℓ,i + ui · ρ⊤
ℓ

= zbℓ,i + ui · ρ⊤
ℓ + γ(zbℓ,i − z0ℓ,i) · v′ · (c1v⊤ + c2v

′⊤)

= zbℓ,i + ui · ρ⊤
ℓ + c2γ(z

b
ℓ,i − z0ℓ,i) · v′ · v′⊤

= zbℓ,i + c2γ(z
b
ℓ,i − z0ℓ,i) + ui · ρ⊤

ℓ = z0ℓ,i + ui · ρ⊤
ℓ

if γ = −1/c2, as v′ is a unitary vector. Then S∗
2 = S∗

1 .
And it is straightforward that S∗

2 = S6.ℓ.3/(q
2n + 1) . Hence, S6.ℓ.3 = S6.ℓ.2.

Game G6.ℓ.4 After having ignored linear vectors, we force ρℓ to be in the span of v: S6.ℓ.3 −
S6.ℓ.4 ≤ 1/q, as above.

D Proof of Lemma 15

It follows the steps in the proof of general Product-Preserving Lemma, though here, for each
label λ, there are n Cj ciphertexts and one D ciphertext, hence the steps presented in Figure 8.

Proof. Game G0: We start from the original distribution, for random πi,j , µi
$← Zq, but any

λi, xi,j , yi, ai,j , bi, for i ∈ [[1;N ]] and j ∈ [[1;n]]:

Ci,j = (πi,j · (1, λi), xi,j , ai,j , 0)B Di = (µi · (λi,−1), yi, bi, 0)B∗

and

C∗
j = (π∗

j (1, λ
∗), x∗j , 0, 0)B D∗ = (µ∗(λ∗,−1), y∗, 0, 0)B∗

for random π∗
j , µ

∗ but any λ∗, x∗j , y
∗. And we denote S0 the event that the adversary

eventually outputs 1, when distinguishing the distributions of C∗
j ,D

∗. One can note that
in this game, we are with the input distribution (0), where the adversary can choose
(λi, xi,j , yi, ai,j , bi) for all i, j, and λ∗, x∗j , y

∗, but λ∗ is distinct from each λi, and all the
labels being among Q possible values.

Game G1: As the 5-th components in the Ci,j , C
∗ vectors are all 0, one can duplicate the

3-rd components of Di, D
∗ vectors at the 5-th position, applying the Replication Lemma 7.

This is perfectly indistinguishable from the previous game: S0 = S1.
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G0 Ci,j = ( πi,j(1, λi) | xi,j ai,j | 0 )
∀i ∈ [[1;N ]], Di = ( µi(λi,−1) | yi bi | 0 )
j ∈ [[1;n]]: C∗

j = ( π∗
j (1, λ

∗) | x∗
j 0 | 0 )

D∗ = ( µ∗(λ∗,−1) | y∗ 0 | 0 )

G1 ∀i, j Ci,j = ( πi,j(1, λi) | xi,j ai,j | 0 )

Replication Di = ( µi(λi,−1) | yi bi | yi )

C∗
j = ( π∗

j (1, λ
∗) | x∗

j 0 | 0 )

D∗ = ( µ∗(λ∗,−1) | y∗ 0 | y∗ )

G2 ∀i, j Ci,j = ( πi,j(1, λi) | xi,j ai,j | 0 )
Swapping Di = ( µi(λi,−1) | yi bi | yi )

C∗
j = ( π∗

j (1, λ
∗) | 0 0 | x∗

j )

D∗ = ( µ∗(λ∗,−1) | y∗ 0 | y∗ )

G3 ∀i, j Ci,j = ( πi,j(1, λi) | xi,j ai,j | 0 )

Indexing Di = ( µi(λi,−1) | yi bi | 0 )

C∗
j = ( π∗

j (1, λ
∗) | 0 0 | x∗

j )
D∗ = ( µ∗(λ∗,−1) | y∗ 0 | y∗ )

G4 ∀i, j Ci,j = ( πi,j(1, λi) | xi,j ai,j | xi,j )

Replication Di = ( µi(λi,−1) | yi bi | 0 )
C∗

j = ( π∗
j (1, λ

∗) | 0 0 | x∗
j )

D∗ = ( µ∗(λ∗,−1) | 0 0 | y∗ )

G5 ∀i, j Ci,j = ( πi,j(1, λi) | xi,j ai,j | 0 )

Indexing Di = ( µi(λi,−1) | yi bi | 0 )
C∗

j = ( π∗
j (1, λ

∗) | 0 0 | x∗
j )

D∗ = ( µ∗(λ∗,−1) | 0 0 | y∗ )

G6 ∀i, j Ci,j = ( πi,j(1, λi) | xi,j ai,j | 0 )
Quotient Di = ( µi(λi,−1) | yi bi | 0 )

for y∗ ̸= 0 C∗
j = ( π∗

j (1, λ
∗) | 0 0 | x∗

jy
∗ )

D∗ = ( µ∗(λ∗,−1) | 0 0 | 1 )

G7 ∀i, j Ci,j = ( πi,j(1, λi) | xi,j ai,j | 0 )
Subspace Di = ( µi(λi,−1) | yi bi | 0 )

for y∗ = 0 C∗
j = ( π∗

j (1, λ
∗) | 0 0 | x∗

jy
∗ )

D∗ = ( µ∗(λ∗,−1) | 0 0 | 1 )

G8 ∀i, j Ci,j = ( πi,j(1, λi) | xi,j ai,j | −ai,j )

Replication Di = ( µi(λi,−1) | yi bi | 0 )
C∗

j = ( π∗
j (1, λ

∗) | 0 0 | x∗
jy

∗ )

D∗ = ( µ∗(λ∗,−1) | 0 1 | 1 )

G9 ∀i, j Ci,j = ( πi,j(1, λi) | xi,j ai,j | 0 )

Indexing Di = ( µi(λi,−1) | yi bi | bi )

C∗ = ( π∗(1, λ∗) | 0 0 | x∗
jy

∗ )
D∗ = ( µ∗(λ∗,−1) | 0 1 | 1 )

G10 ∀i, j Ci,j = ( πi,j(1, λi) | xi,j ai,j | 0 )
Swapping Di = ( µi(λi,−1) | yi bi | bi )

C∗
j = ( π∗

j (1, λ
∗) | 0 x∗

jy
∗ | 0 )

D∗ = ( µ∗(λ∗,−1) | 0 1 | 1 )

G11 ∀i, j Ci,j = ( πi,j(1, λi) | xi,j ai,j | 0 )

Replication Di = ( µi(λi,−1) | yi bi | 0 )

C∗
j = ( π∗

j (1, λ
∗) | 0 x∗

jy
∗ | 0 )

D∗ = ( µ∗(λ∗,−1) | 0 1 | 0 )

Fig. 8. Sequence of Games for the Alternative Product-Preserving Lemma
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Game G2: Since the 3-rd and 5-th components of Di, D
∗ vectors are all identical, one can

swap x∗j ’s from the 3-rd to the 5-th positions in C∗
j ’s, applying the Swapping Lemma 5 with

the first two components for the required randomness: S1 − S2 ≤ 2 · AdvddhG1
(t).

Game G3: For any i, the 5-th component of theCi,j ’s is 0. Applying the Indexing Lemma 6, on
(B∗,B), between λ∗ and the λi ̸= λ∗, iteratively, one replaces each yi in the 5-th component
of the Di’s by 0, and gets S2 − S3 ≤ 2NQ · AdvddhG2

(t).

Game G4: One now removes y∗ from the 3-rd component ofD∗ using the Replication Lemma 7:
replicating negatively the 5-th components at the 3-rd positions of D’s vectors, one subtracts
y∗ in D∗, and 0 in other vectors, but adds the 3-rd component to the 5-th in the C’s vectors.
The two games are perfectly indistinguishable: S3 = S4.

Game G5: For any j, the 5-th component of Dj is 0. Applying the Indexing Lemma 6, on
(B,B∗), between λ∗ and the λj ̸= λ∗, iteratively, one replaces each xi,j in the 5-th components
of the Ci,j ’s by 0, and gets S4 − S5 ≤ 2nNQ · AdvddhG1

(t).

Game G6: One replaces each pair (x∗j , y
∗) with (x∗jy

∗, 1) in the 5-th coordinates of C∗
j and

D∗. To this aim, one makes a random guess Y ← Zq on y∗, and defines the matrices, if
Y ̸= 0:

B =
(
1/Y

)
5

B′ =
(
Y
)
5

B = B · U B∗ = B′ · U∗

or no change otherwise. If during the execution, y∗ ̸= Y , one aborts, otherwise the two
games are perfectly indistinguishable in case of correct guess: S5/q = S6/q, hence S5 = S6.

Game G7: In case y∗ = 0, then one applies the subspace indistinguishability theorem 3 twice,
to shift the x∗j ’s to zero, using the null fifth coordinate of D∗ and the randomness in the
first coordinates of the C∗

j ’s, and then to shift the fifth coordinate of D∗ to 1 using one C∗
j ’s

now null fifth coordinate and the randomness in the first coordinates of D∗. In this case:
S6 − S7 ≤ 2AdvddhG1

(t) + 2AdvddhG2
(t).

Game G8: One now duplicates the 1 from the 5-th component of D∗ to the 4-th using the
Replication Lemma 7 (and 0 is added to the 4-th components of the Di’s). This also nega-
tively adds the 4-th components at the 5-th positions of Ci,j and C∗

j vectors. The two games
are perfectly indistinguishable: S7 = S8.

Game G9: One applies twice the Indexing Lemma 6, between λ∗ and the λj ̸= λ∗, iteratively,
to first replaces each −ai,j in the 5-th components of the Ci,j ’s by 0, and then the 0 in the
5-th components of the Di’s by bi. One gets S8 − S9 ≤ 2QnNAdvddhG1

(t) + 2QnAdvddhG2
(t).

Game G10: One now swaps the 5-th components x∗jy
∗ and the 4-th components 0 of the C∗

j ’s.
This easily works as all the Di and D∗ vectors have identical 4-th and 5-th components,
using the Swapping Lemma 5, with the first two components for randomness: S9 − S10 ≤
2 · AdvddhG1

(t).

Game G11: One then withdraws the 4-th components from the 5-th components in the Dj ’s
and the D∗, while the null 5-th components of Ci,j ’s and C∗

j ’s are added to the 4-th com-
ponents, using the Replication Lemma 7. This game is perfectly indistinguishable from the
previous one: S10 − S11 = 0.

The global probability difference is bounded by 0 + 2 · AdvddhG1
(t) + 2NnQ · AdvddhG2

(t) + 0 +

2nQAdvddhG1
(t)+2 · (AdvddhG1

(t)+AdvddhG2
(t))+0+2NnQ ·AdvddhG1

(t)+2nQAdvG1 +2 ·AdvG1 +0 =

2Qn · (N +1) ·AdvddhG1
(t) + 2Qn · (N +1) ·AdvddhG2

(t) + 6 ·AdvddhG1
(t) + 2 ·AdvddhG2

(t) ≤ 4 · (Qn(N +

1) + 2) · Advsxdh(t).

E Scripts for the Money-Laundering Detection Application

E.1 Parameters script for the Money-Laundering Application
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from math import ∗

def get m(ln, lN, lNi, thres proba):
# return ceil(2 ∗ ln + lN − log2(2∗∗ln − 2 ∗ log(thres proba)))
return ceil(ln + (lNi + 1) − 0.5 ∗ (lN + log2((−1)∗log(thres proba)) − 1))

def get pA(ln, lN, lNi, m, nprime):
q = 1 − 2 ∗∗ (ln − lN)
q2 = 1 − nprime / 2∗∗lN
eh = 2 ∗∗ (lNi − m)
return (q ∗∗ (eh−1) ∗ (2 − q∗∗(eh−1)) ∗ (q2 + q∗∗(eh−1) − q2 ∗ q∗∗(eh−1))∗∗2) ∗∗ (2∗∗lN)

# def get approx p(ln, lN, m):
# q = 1 − 2∗∗(ln−lN)
# eh = 2 ∗∗ (lN−m)
# return (q∗∗eh ∗ (2 − q ∗∗ eh))∗∗(2∗∗lN)

# relative entropy

def D(a, p):
return a ∗ log(a / p) + (1 − a) ∗ log((1 − a) / (1 − p))

def Hoeffding(r, p):
return 1 − exp(−2 ∗ r ∗ p ∗∗ 2)

def Chernoff(r, p):
tau = min(floor(r∗p)+1, ceil(r/2))
if tau < 2:

if tau == 1:
# ”Returning the Hoeffding bound instead of the Chernoff bound.”
return 1 − exp(−2 ∗ r ∗ p∗∗2)

print("Can’t apply the Chernoff bound if tau is null! ")
return 0

return 1 − (r ∗ p / (tau−1))∗∗(tau−1) ∗ exp(tau − 1 − r ∗ p)

def get r(p, confidence min):
r = 3
while (Chernoff(r, p) < confidence min):

r += 1
if r == 300:

print("Can’t find an appropriate r! ")
break

return r

def calculate values(confidence min, lNi, lN, ln, thres proba, nprime):
for k in range(len(lN)):

m = get m(ln[k], lN[k], lNi[k], thres proba)
# # tests if we want to try other m values than from the birthday paradox approximation:
# we also try empirical m values:
if k == 3:

m = 3
# elif k == 5:
# m = 6
# print(”p B approximation: ”,
# round(exp(−2∗∗ln[k]∗(2∗∗(ln[k]+lN[k])−2∗∗m)/2∗∗(m+1)), 2))
pA = get pA(ln[k], lN[k], lNi[k], m, nprime)
# approxpA = get approx p(ln[k], lN[k], m)
pB = pA ∗∗ 2
# approxpB = approxpA ∗∗ 2
r = get r(pB, confidence min)
# # we also try r values for other m’s:
# if k == 4:
# r = 18
# elif k == 5:
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# r = 20
# tau = min(r∗pB+1, ceil(r/2))
new cfdence = Chernoff(r, pB)
C0 = 4 ∗ 2 ∗∗ (lN[k] + 2 ∗ lNi[k])
CH = r ∗ 4 ∗ 2 ∗∗ (lN[k] + 2 ∗ m)

print(
("\\rowcolor{green!10!white}" if CH <=
C0 else "\\rowcolor{orange!20!white}"),
("$2^{" +
str(ln[k]) +
"}$ & $2^{" +
str(lN[k]) +
"}$" if k < 0 else str(round(2∗∗ln[k], 2)) + " & $10^{" + str(round(log10(2∗∗lN[k]))) + "}$ "),
"& ",
m,
" & ",
"{:.2}".format(pA),
# ” & ”,
# ”{:.2}”.format(approxpA),
" & ",
"{:.2}".format(pB),
# ” & ”,
# ”{:.2}”.format(approxpB),
(" & $2^{" +
str(lNi[k]) +
"}$ " if k < 0 else " & " + str(round(2∗∗lNi[k])) + " "), # ” & $10ˆ{” + str(round(log10(2∗∗lNi[k]))) +

↪→ ”}$ ”),
"& ",
r,
" & ",
"{:.2}".format(new cfdence),
" & ",
"{:.1E}".format(C0),
" & ",
"{:.1E}".format(CH),
" \\\\"

)

confidence min = 0.95
thres birthday paradox proba = 0.95
nprime = 1
lNi = [ # 25, 25, 19, 16, 10,

log2(200), log2(2000), log2(
2000), log2(200), log2(2000), log2(2000)]

lN = [ # 30, 30, 20, 20, 15,
log2(1000), log2(10000), log2(

10000), log2(1000), log2(10000), log2(10000)]
ln = [ # 4, 5, 4, 4, 4,

log2(0.36), log2(0.11), log2(
0.14), log2(0.36), log2(0.11), log2(0.14)]

calculate values(confidence min, lNi, lN, ln,
thres birthday paradox proba, nprime)

E.2 Experiments script for the Money-Laundering Application

from math import ceil
from random import randint, seed
import numpy as np
from numpy import linalg as LA
from joblib import Parallel, delayed
from datetime import datetime

# parameters.

# Total number of nodes in the system:
N = 10000 # [1000, 10000, 10000]
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# Number of nodes owned by bank 1
N1 = 2000 # [200, 2000, 2000]
# Number of nodes owned by bank 2
N2 = N1

# Total number of transactions patterns
# because each standard pattern will lead to two nodes with a transaction and each money laundering pattern to two

↪→ transactions between three nodes.
nb standard transaction ptns = 200 # [300, 500, 200]
nb money laundering trans ptns = 200 # [10, 100, 200]

# for a given pair of nodes with a transaction pattern, the number of time a transaction happen between them
std trans cnt min = 1
std trans cnt max = 3
monlaun trans cnt min = 6
monlaun trans cnt max = 12
# money laundering number of neighbors for each ML pattern
monlaun interm min = 1
monlaun interm max = 5

# nodes average connectivity i. e. mean number of other nodes they are having transactions with, for incoming xor
↪→ outgoing edges.

n = (nb standard transaction ptns + nb money laundering trans ptns ∗
(monlaun interm max+monlaun interm min)/2 ∗ 2) / N

print("n: ", n)

# transaction amounts
mon laun amount input = 10000
mon laun amount output = 9900
std trans min = 1
std trans max = 5000

# hashing parameters
# number of hash functions:
nb hash = 16 # [32, 30, 46]
print("r: ", nb hash)
# threshold for selection of suspicious node in hash repetitions:
tau = 14 # [18,14,16]
print("tau: ", tau)
# bit size of the space hashed into:
m = 6 # [3, 3, 3]
print("m: ", m)

# Similarity threshold for detection:
theta = 0.2
hash theta = theta
print("hash_theta: ", hash theta)

# returns the matrix of similarity indexes.

def calculate similarity matrix(in graph mat 1, in graph mat 2, out graph mat 1, out graph mat 2):
# number of node in first dataset:
M1 = np.size(in graph mat 1, 1)
# number of node in second dataset:
M2 = np.size(in graph mat 2, 1)
# number of nodes in original graph:
N = np.size(in graph mat 1, 0)
# columns:
if N != np.size(in graph mat 2, 0) or N != np.size(out graph mat 1, 1) or M1 != np.size(out graph mat 1, 0) or N

↪→ != np.size(out graph mat 2, 1) or M2 != np.size(out graph mat 2, 0):
"Wrong dimensions!"

sim matrix = np.zeros([M1, M2])
# for i in range(M1):
# for j in range(M2):
# sim matrix[i, j] = np.inner(out graph mat 1[i, :], out graph mat 2[j, :]) ∗ \
# np.inner(in graph mat 1[:, i],
# in graph mat 2[:, j])
for i in range(M1):

sim matrix[i, :] = Parallel(n jobs=10)(delayed(get sim mat coeff)(i, j, in graph mat 1, in graph mat 2,
out graph mat 1, out graph mat 2) for j in

↪→ range(M2))
return sim matrix
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def get sim mat coeff(i, j, in 1, in 2, out 1, out 2):
return np.inner(out 1[i, :], out 2[j, :]) ∗ \

np.inner(in 1[:, i],
in 2[:, j])

# returns the list of suspects from the similarity matrix:

def list suspects(sim matrix, thres):
return np.unique(np.where(np.logical and(1 >= sim matrix, sim matrix >= thres)))

def get result rates(true list, suspects list, N):
ML size = np.size(true list)
TP = np.size(np.intersect1d(true list, suspects list))
FP = np.size(suspects list) − TP
FN = ML size − TP
TN = N − TP − FP − FN
print("TP: ", TP, " FP: ", FP, " FN: ", FN, " TN: ", TN)
print("TP rate (sensitivity and recall): ", (TP/ML size) if ML size != 0 else 1, " FP rate (fall-out): ",

(FP/(FP+TN)) if FP+TN != 0 else 0, " FN rate: ", FN/(FN+TP) if FN+TP != 0 else 0, " TN rate: ",
↪→ TN/(TN+FP) if FP+TN != 0 else 1)

return [TP/ML size if ML size != 0 else 1, FP/(FP+TN) if FP+TN != 0 else 0, FN/(FN+TP)if FN+TP != 0
↪→ else 0, TN/(TN+FP) if FP+TN != 0 else 1]

def run experiment(seed input):
seed(seed input)
# creation of the original graph.
# represented as a matrix in which coefficient [i,j] give the amount of transactions from i to j.
original graph = np.zeros([N, N])
money launderers = []
monlaun intermediates = []
ml interms accross 2 banks = []
# create standard transactions
for k in range(nb standard transaction ptns):

trans cnt = randint(std trans cnt min, std trans cnt max)
sender = randint(0, N−1)
receiver = sender
while receiver == sender:

receiver = randint(0, N−1)
for l in range(trans cnt):

original graph[sender,
receiver] += randint(std trans min, std trans max)

# create money laundering transactions
# add them to those that sould be detected if one intermediate is in bank 1’s [[0..N1−1]] nodes and another in bank

↪→ 2’s [[N1..N1+N2−1]] nodes.
for k in range(nb money laundering trans ptns):

trans cnt = randint(monlaun trans cnt min, monlaun trans cnt max)
nb intermediates = randint(monlaun interm min, monlaun interm max)
sender = randint(0, N−1)
if sender not in money launderers:

money launderers.append(sender)
interms = [sender for i in range(nb intermediates)]
receiver = sender
for i in range(nb intermediates):

interm = sender
while interm in interms or interm == sender:

# if k == 0: # we want at least one detectable pattern accross the two banks
# if i == 0:
# interm = randint(0, N1−1)
# elif i == 1:
# interm = randint(N1, N1+N2−1)
# else:
# interm = randint(0, N−1)
# else:
interm = randint(0, N−1)

interms[i] = interm
if interm not in money launderers:

money launderers.append(interm)
if interm not in monlaun intermediates:
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monlaun intermediates.append(interm)
if interm < N1:

for int2 in interms[:i]:
if N1 <= int2 < N1 + N2:

ml interms accross 2 banks += [interm, int2]
elif N1 <= interm < N1 + N2:

for int2 in interms[:i]:
if int2 < N1:

ml interms accross 2 banks += [int2, interm]
while receiver == sender or receiver in interms:

receiver = randint(0, N−1)
if receiver not in money launderers:

money launderers.append(receiver)
for l in range(trans cnt):

for i in range(nb intermediates):
original graph[sender,

interms[i]] += mon laun amount input/nb intermediates
original graph[interms[i],

receiver] += mon laun amount output/nb intermediates
# norm the graph:
out normed graph = np.array([(original graph[i, :]/LA.norm(original graph[i, :], 2) if LA.norm(original graph[i, :], 2)

↪→ != 0 else original graph[i, :])
for i in range(np.size(original graph, 0))])

in normed graph = np.transpose(np.array([(original graph[:, j]/LA.norm(original graph[:, j], 2) if LA.norm(
↪→ original graph[:, j], 2) != 0 else original graph[:, j])

for j in range(np.size(original graph, 1))]))

print("The data has been generated. ")
money launderers = np.unique(money launderers)
monlaun intermediates = np.unique(monlaun intermediates)
ml interms accross 2 banks = np.unique(ml interms accross 2 banks)
# DP monlaun interm = [n for n in ml if (n < N1+N2)]
# print(”Money laundering nodes: ”, money launderers)
# print(”Money laundering intermediates accross the 2 DP sets: ”,
# ml interms accross 2 banks)

# do the hashing technique
# hashed in and hashed out for each of the data providers’ vertices:
hashed in = [np.zeros([nb hash, N, 2∗∗m]), np.zeros([nb hash, N, 2∗∗m])]
hashed out = [np.zeros([nb hash, 2∗∗m, N]), np.zeros([nb hash, 2∗∗m, N])]
h sim mat = np.zeros([nb hash, 2∗∗m, 2∗∗m])
for h in range(nb hash):

for n in range(N1+N2):
seed((h, n))
hashed to = randint(0, 2∗∗m−1)
# print(hashed to)
if n < N1:

hashed in[0][h][:, hashed to] += in normed graph[:, n]
hashed out[0][h][hashed to, :] += out normed graph[n, :]

else: # we are hashing a node of the second data provider’s set
hashed in[1][h][:, hashed to] += in normed graph[:, n]
hashed out[1][h][hashed to, :] += out normed graph[n, :]

h sim mat[h] = calculate similarity matrix(
hashed in[0][h], hashed in[1][h], hashed out[0][h], hashed out[1][h])

# print(sum(sum(h sim mat[h])))
hash suspects = []
for n in range(N1+N2):

cnt = 0
for h in range(nb hash):

seed((h, n))
hashed to = randint(0, 2∗∗m−1)
if n < N1:

if (np.size(np.where(np.logical and(hash theta <= h sim mat[h][hashed to, :], h sim mat[h][hashed to, :]
↪→ <= 1))) >= 1):

cnt += 1
else:

if (np.size(np.where(np.logical and(hash theta <= h sim mat[h][:, hashed to], h sim mat[h][:, hashed to]
↪→ <= 1))) >= 1):

cnt += 1
if cnt >= tau:

hash suspects.append(n)
hash suspects = np.unique(hash suspects)
# print(”Suspects were selected with the hashing technique. ”)



Two-Client Inner-Product Functional Encryption with an Application to Money-Laundering Detection 39

# print(”hash suspects: ”, hash suspects)
print("With hashing: ")
hash rates = get result rates(

ml interms accross 2 banks, hash suspects, N1+N2)

# print(original graph)
# print(in normed graph)
# print(out normed graph)
sim mat = calculate similarity matrix(

in normed graph[:, :N1], in normed graph[:, N1:N1 +
N2], out normed graph[:N1, :], out normed graph[N1:N1+N2, :])

print("The similarity matrix has been calculated: ")
detec sim mat = np.zeros([N1+N2, N1+N2])
detec sim mat[:N1, N1:] = sim mat
# print(”Similarity matrix:”, sim mat, detec sim mat)
# print(sum(sum(sim mat[:N1, N1:]))) # − np.diag(np.diag(sim mat)))
soltani suspects = list suspects(

detec sim mat, theta)
DP soltani suspects = [n for n in soltani suspects if (n < N1+N2)]
# print(”Suspects from the standard method have been selected. ”)
# print(”Soltani suspects in DP sets: ”, DP soltani suspects)
print("Without hashing: ")
return [hash rates, get result rates(ml interms accross 2 banks, DP soltani suspects, N1+N2)]

nb exp = 50
rates = [[0, 0, 0, 0], [0, 0, 0, 0]]
for exp in range(nb exp):

print("running experiment number ", exp+1)
new rate = run experiment(exp) # datetime.now())
rates = [[rates[0][k] + new rate[0][k] /

nb exp for k in range(4)], [rates[1][k] + new rate[1][k]/nb exp for k in range(4)]]
print("mean rates at the " + str(exp+1) + "-th experiment: ")
print("With hashing: TP: ", rates[0][0]∗nb exp/(exp+1), ", FP: ", rates[0][1]∗nb exp/(

exp+1), ", FN: ", rates[0][2]∗nb exp/(exp+1), ", TN: ", rates[0][3]∗nb exp/(exp+1))
print("Without hashing: TP: ", rates[1][0]∗nb exp/(exp+1), ", FP: ", rates[1][1]∗nb exp/(

exp+1), ", FN: ", rates[1][2]∗nb exp/(exp+1), ", TN: ", rates[1][3]∗nb exp/(exp+1))
print("Final rates are: ")
print("With hashing:")
print("TP rate: ", rates[0][0])
print("FP rate: ", rates[0][1])
print("FN rate: ", rates[0][2])
print("TN rate: ", rates[0][3])
print("standard method rates:")
print("TP rate: ", rates[1][0])
print("FP rate: ", rates[1][1])
print("FN rate: ", rates[1][2])
print("TN rate: ", rates[1][3])
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