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A stability estimate for data assimilation subject to the heat

equation with initial datum

Erik Burman† Guillaume Delay‡ Alexandre Ern§ Lauri Oksanen¶

November 7, 2023

Abstract

This paper studies the unique continuation problem for the heat equation. We
prove a so-called conditional stability estimate for the solution. We are interested
in local estimates that are Hölder stable with the weakest possible norms of data
on the right-hand side. Such an estimate is useful for the convergence analysis of
computational methods dealing with data assimilation. We focus on the case of a
known solution at initial time and in some subdomain but that is unknown on the
boundary. To the best of our knowledge, this situation has not yet been studied in
the literature.

1 Introduction

The goal of the present work is to derive a conditional stability estimate for the data
assimilation problem subject to the heat equation. This problem consists in finding the
solution to the heat equation in a target subdomain with the knowledge of its values in
another subdomain and of its initial datum. The main difficulty is that the boundary
conditions of the problem are not known. This situation frequently arises in variational
data assimilation, when a background state obtained from a previous assimilation cycle is
available as (approximate) initial condition. Integration of such a background state is a
requirement in weather forecasting, but also for optimization algorithms that divide the
assimilation window into several shorter time intervals and perform assimilation on these
intervals sequentially. Stability estimates for this situation do not appear to be available
in the literature, and existing techniques cannot be adapted “off the shelf”. Therefore, we
give a self-contained proof with special care taken to design an estimate on a form that is
readily applicable to the error analysis of numerical schemes in the spirit of [2, 3, 6].

More precisely, let Ω ⊂ Rn (n ∈ {1, 2, 3}) be an open bounded set, let ω ⊂⊂ Ω (i.e.,
ω ⊂ Ω) be the open and non-empty subset where the solution is known, and let T > 0. We
use the shorthand notation L := ∂t−∆ for the space-time differential operator associated
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with the heat equation, u̇ := ∂tu for the time derivative, and M := (0, T )×Ω for the space-
time cylinder. We consider the following data assimilation problem: Find u : M → R such
that

L(u) = f in M, (1)

u(0, ·) = u0(·) in Ω, (2)

u =g in (0, T )× ω, (3)

where f ∈ L2(0, T ;L2(Ω)), u0 ∈ H1(Ω), and g ∈ H1(0, T ; (H1(ω))′) ∩ L2(0, T ;H1(ω)) are
given. Notice that no information is given on the boundary ∂Ω. We assume that f , u0

and g are chosen so that there exists a solution to the data assimilation problem (1)-(3).
Since this problem is ill-posed, however, one cannot hope for a stability estimate in the
usual form. Nevertheless, one can derive a so-called conditional stability estimate which
bounds the energy norm of the solution u in a target subdomain B ⊂⊂ Ω using (i) the
measurements in (0, T )×ω; (ii) the initial datum u0; (iii) the source term f ; and (iv) an a
priori bound on the solution under the form of its L2-norm over the whole domain Ω. Our
main result establishes Hölder stability of the solution to the data assimilation problem
in the interior of the target space-time subdomain.

Theorem 1 (Three-cylinders inequality). Let ω ⊂⊂ Ω be open and non-empty, and let
0 < T1 < T . Let B ⊂⊂ Ω be open and connected. Then there are C > 0 and κ ∈ (0, 1)
such that any space-time function u in the space

H1(0, T ;H−1(Ω)) ∩ L2(0, T ;H1(Ω)) (4)

satisfies

‖u‖L2(0,T1;H1(B)) ≤ C(‖u‖L2((0,T )×ω) + F (u))κ(‖u‖L2((0,T )×Ω) + F (u))1−κ, (5)

where

F (u) := ‖u|t=0‖L2(Ω) + ‖L(u)‖L2(0,T ;H−1(Ω)). (6)

The proof of Theorem 1, which hinges on a suitable pointwise Carleman estimate, is
developed through the following two sections.

Carleman estimates for parabolic problems can be found in [8, 10, 15, 12, 1]. However,
most works in the literature are concerned with the initialization problem [12, 2, 3], where
boundary conditions are known, but not the initial condition. Here, we are instead inter-
ested in the opposite case, where the initialization problem has been solved and therefore
the initial datum is known, but the boundary conditions are unknown. The estimate de-
rived in Theorem 1 uses the initial datum in the upper bound and bounds the solution up
to the initial time. Instead, in the usual setting in which the initial datum is unknown,
the solution is estimated only in a space-time subdomain that is kept away from the initial
time; see for instance [2, Thm. 1&2]. Furthermore, a similar control problem is considered
in [7] where well-posedness is proven using Carleman estimates. The main difference with
the present work is that the function that is estimated therein vanishes on the lateral
boundary instead of the initial time; consequently, the weight function that is used in the
proof is singular at the initial time.
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The rest of this contribution is organized as follows. In Section 2, we prove a pointwise
Carleman estimate. In Section 3, this estimate is used to prove a preliminary three-
cylinders inequality. This result is then adapted to complete the proof of Theorem 1.

2 A pointwise Carleman estimate

The main result of this section is the pointwise Carleman estimate established in Lemma 2.
We consider two functions ρ ∈ C3(M) and w ∈ C2(M) and a real number τ > 0. Notice
that the functions ρ and w both depend on time t ∈ [0, T ] and space x ∈ Ω, i.e., we have
ρ = ρ(t, x) and w = w(t, x). In Section 3, the function w will be chosen in a specific way in
terms of the function u in Theorem 1, and the real number τ will be chosen large enough.
A specific choice for the function ρ will be made as well.

In what follows, we suppose that ∇ρ 6= 0 in M . We denote by λ > 0 a bound on D2ρ
(uniformly in M) and by θ > 0 a real number such that θ ≤ |∇ρ|2 ≤ θ−1 (uniformly in
M). We fix a real number α such that α > 3θ−3λ. Here, the differential operators ∇
and D2 act only on the space variables. Moreover, we use the shorthand notation Y . Z
with positive real numbers Y,Z for the inequality Y ≤ CZ where the value of the generic
constant C can change at each occurrence provided it is independent of w and τ . The
value of C can depend on ρ since this function will be fixed once and for all in Section 3.

We introduce the following functions that are defined using ρ, w, and τ :

φ := eαρ, ` := τφ, v := e`w. (7)

We also define the following auxiliary quantities:

a := 3λατφ, σ := a+ ∆`, q := a+ |∇`|2, b := −σv − 2(∇v,∇`), c := (|∇v|2 − qv2)∇`,
(8a)

r := (∇σ,∇v)v + (div(a∇`)− aσ) v2, Q := q + ˙̀, B := b− v̇, (8b)

R := r +
1

2
Q̇v2 + div( ˙̀∇`)v2 − σ ˙̀v2. (8c)

The main result of this section is that |∇w|2 + |w|2 (with weights depending on τ and
ρ) can be upper bounded by |L(w)|2 and additional terms subject to a divergence or a
time derivative. This result already contains the structure for Theorem 1. Indeed, the
divergence and time-derivative terms will disappear when an integration will be performed
over M .

Lemma 2 (Pointwise Carleman estimate). There is τ0 > 0 such that for all τ > τ0 and
all w ∈ C2(M), we have

e2τφ(τ |∇w|2 + τ3|w|2) . e2τφ|L(w)|2 − div(b∇v + c) + div(v̇∇v + v2 ˙̀∇`)− 1

2
∂t(|∇v|2 −Qv2).

(9)

The rest of this section is devoted to proving Lemma 2.
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2.1 Preliminary results

The first step towards proving Lemma 2 is to upper bound e2τφ(τ |∇w|2+τ3|w|2) as follows.

Lemma 3. For all τ > 0 and all w ∈ C2(M), we have

e2τφ(τ |∇w|2 + τ3|w|2) . a|∇v|2 + 2D2`(∇v,∇v) + (−a|∇`|2 + 2D2`(∇`,∇`))v2. (10)

Proof. We argue as in the proof of [5, Prop. 1]. For a vector X ∈ Rn, we have

D2φ(X,X) = αφ(α(∇ρ,X)2 +D2ρ(X,X)). (11)

Since the first term is positive, this implies

D2φ(X,X) ≥ αφD2ρ(X,X) ≥ −λαφ|X|2, (12)

where we recall that λ > 0 is an upper bound on D2ρ (uniformly in M). Taking X :=
∇` = ατφ∇ρ in (11), we obtain

D2`(∇`,∇`) = ταφ(α(∇ρ,∇`)2 +D2ρ(∇`,∇`)) ≥ (ατφ)3(α|∇ρ|4 − λ|∇ρ|2).

Recalling the choice for the real number θ, this gives

D2`(∇`,∇`) ≥ (ατφ)3(αθ2 − λθ−1). (13)

We also have

|∇`|2 = τ2|∇φ|2 = (ατφ)2|∇ρ|2 ≤ (ατφ)2θ−1. (14)

Using (12) with X := ∇v, we get

2D2`(∇v,∇v) ≥ −2λατφ|∇v|2.

Recalling that a := 3λατφ, we obtain

a|∇v|2 + 2D2`(∇v,∇v) ≥ λατφ|∇v|2. (15)

Combining (13) and (14), we get

(−a|∇`|2 + 2D2`(∇`,∇`))v2 ≥ (2αθ2 − 5λθ−1)︸ ︷︷ ︸
=:c(α)

(ατφ)3v2. (16)

Summing (15) and (16), we see that

c(α)(ατφ)3v2 + λατφ|∇v|2 ≤ a|∇v|2 + 2D2`(∇v,∇v) + (−a|∇`|2 + 2D2`(∇`,∇`))v2.
(17)

Notice that the right-hand side of (17) is the one we have in the statement of Lemma 3.
To bound the left-hand side of (17) from below in terms of |∇w|2 and w2 we notice that

|∇v|2 = e2τφ|τw∇φ+∇w|2 ≥ e2τφ 1

2
|∇w|2 − e2τφ|∇φ|2τ2w2, (18)
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where we used the Cauchy–Schwarz and Young inequalities. Owing to the choice α >
3θ−3λ, we infer that

c(α)(αφ)3 − λαφ|∇φ|2 ≥ (αφ)3(2αθ2 − 6λθ−1) =: cα > 0, (19)

where the first inequality comes from the definition of c(α) and −λαφ|∇φ|2 ≥ −λθ−1α3φ3

(as a consequence of (14)) and the second inequality comes from α > 3θ−3λ. Multiply-
ing (18) by λατφ, multiplying (19) by τ3v2 = e2τφτ3w2 and summing both equations
gives

λατφe2τφ 1

2
|∇w|2 + cαe

2τφτ3w2 ≤ c(α)(ατφ)3v2 + λατφ|∇v|2.

Invoking (17), we get

cρe
2τφ(τ |∇w|2 + τ3|w|2) ≤ a|∇v|2 + 2D2`(∇v,∇v) + (−a|∇`|2 + 2D2`(∇`,∇`))v2,

where cρ = min(cα, λα inf(x,t)∈M |φ(x, t)|/2) > 0. This ends the proof.

The next step is to observe that the terms on the right-hand side of (10) are equal to
a weighted square norm of the heat operator plus some more terms.

Lemma 4. For all τ > 0 and all w ∈ C2(M), we have

e2`|L(w)|2/2 = (∆v +Qv)2/2 +B2/2

+ a|∇v|2 + 2D2`(∇v,∇v) +
(
−a|∇`|2 + 2D2`(∇`,∇`)

)
v2

+ div(b∇v + c)− div(v̇∇v + v2 ˙̀∇`) + ∂t(|∇v|2 −Qv2)/2 +R.

Proof. We have

e2`|L(w)|2/2 = e2`|∆w|2/2 + e2`|ẇ|2/2− e2`ẇ∆w.

Moreover, v̇ = ∂t(e
`w) = e`ẇ+ ˙̀v. Hence, −e`ẇ = −v̇+ ˙̀v. Straightforward computations

give

e`∆w = ∆v − σv − 2(∇v,∇`) + σv − (∆`)v + |∇`|2v = ∆v + b+ qv.

Combining previous relations, we get

e2`|L(w)|2/2 = e2`|∆w|2/2 + |v̇ − ˙̀v|2/2 + (−v̇ + ˙̀v)(∆v + b+ qv).

We now invoke [4, Lemma 1] (setting k := 0 therein) to obtain

e2`|∆w|2/2 = (∆v + qv)2/2 + b2/2

+ a|∇v|2 + 2D2`(∇v,∇v) +
(
−a|∇`|2 + 2D2`(∇`,∇`)

)
v2

+ div(b∇v + c) + r.
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Using this identity and recalling that Q := q + ˙̀ and B := b− v̇, we get

e2`|L(w)|2/2 = (∆v + qv)2/2 + b2/2 + (v̇2 + ( ˙̀v)2)/2− v̇ ˙̀v + ( ˙̀v − v̇)(∆v + b+ qv)
(20)

+ a|∇v|2 + 2D2`(∇v,∇v) +
(
−a|∇`|2 + 2D2`(∇`,∇`)

)
v2 + div(b∇v + c) + r

= (∆v +Qv)2/2 +B2/2− ˙̀v(∆v + qv) + bv̇ − v̇ ˙̀v + ( ˙̀v − v̇)(∆v + b+ qv)

+ a|∇v|2 + 2D2`(∇v,∇v) +
(
−a|∇`|2 + 2D2`(∇`,∇`)

)
v2 + div(b∇v + c) + r

= (∆v +Qv)2/2 +B2/2− v̇ ˙̀v + ˙̀vb− v̇(∆v + qv)

+ a|∇v|2 + 2D2`(∇v,∇v) +
(
−a|∇`|2 + 2D2`(∇`,∇`)

)
v2 + div(b∇v + c) + r.

It remains to rewrite −v̇ ˙̀v + ˙̀vb− v̇(∆v + qv). We have

−v̇∆v = −div(v̇∇v) + (∇v,∇v̇) = −div(v̇∇v) + ∂t|∇v|2/2, (21)

−v̇ ˙̀v − qvv̇ = −Qvv̇ = −Q∂t(v2/2) = −∂t(Qv2)/2 + Q̇v2/2. (22)

Moreover, we have −2(∇v,∇`) ˙̀v = −(∇(v2), ˙̀∇`) = v2 div( ˙̀∇`)−div(v2 ˙̀∇`) and recall-
ing that b := −σv − 2(∇v,∇`), we obtain

˙̀vb = ˙̀v(−σv − 2(∇v,∇`)) = −σ ˙̀v2 + v2 div( ˙̀∇`)− div(v2 ˙̀∇`). (23)

The claim follows by injecting (21), (22) and (23) into (20).

2.2 Proof of Lemma 2

The proof of Lemma 2 combines the results of Lemmas 3 and 4. We still argue as the
proof of [5, Prop. 1]. Rewriting the result of Lemma 4 under the form

a|∇v|2 + 2D2`(∇v,∇v) +
(
−a|∇`|2 + 2D2`(∇`,∇`)

)
v2

≤ e2`|L(w)|2/2− div(b∇v + c) + div(v̇∇v + v2 ˙̀∇`)− ∂t(|∇v|2 −Qv2)/2−R,

and applying this bound to the right-hand side of (10), we infer that

e2τφ(τ |∇w|2 + τ3|w|2) . e2`(Lw)2/2− div(b∇v + c) + div(v̇∇v + v2 ˙̀∇`)− ∂t(|∇v|2 −Qv2)/2−R.
(24)

It only remains to bound R. We recall that

R = (∇σ,∇v)v + (div(a∇`)− aσ) v2 + Q̇v2/2 + div( ˙̀∇`)v2 − σ ˙̀v2.

For τ > 0 large enough, we have (recall that the value of the hidden constant C in any
inequality of the form X . Y can depend on ρ but is independent of τ and w)

div(a∇`)− aσ = (∇a,∇`)− a2 = 3λατ2|∇φ|2 − (3λατ)2φ2 . τ2,

Q̇ = ȧ+ 2(∇ ˙̀,∇`) + ῭= 3λατφ̇+ 2τ2(∇φ,∇φ̇) + τ φ̈ . τ2,

div( ˙̀∇`) = τ2 div(φ̇∇φ) . τ2,

σ ˙̀ = τ2(3λαφ+ ∆φ)φ̇ . τ2,
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and

(∇σ,∇v)v = τ(3αλ∇φ+∇∆φ,∇we` +∇`e`w)e`w

. τ(|∇w|e` + |∇`|e`|w|)e`|w| . e2τφ(τ |∇w||w|+ τ2|w|2) . e2τφ(|∇w|2 + τ2|w|2).

Thus, for τ > 0 large enough, we have

|R| . e2τφ(|∇w|2 + τ2|w|2).

This shows that for τ > 0 large enough, R can be absorbed in the left-hand side of (24).
The proof is complete.

3 Proof of Theorem 1

The goal of this section is to prove Theorem 1. First, using the pointwise Carleman
estimate from Section 2, we establish a preliminary three-cylinders inequality (Proposi-
tion 5). Then we conclude the proof of Theorem 1 by improving on the norms used on
the right-hand side of the preliminary three-cylinders inequality.

3.1 Preliminary three-cylinders inequality

In the earlier work [2], a three-cylinders inequality was proved via a reduction to Isakov’s
Carleman estimate [9]. The change in the present three-cylinders inequality is that we
prove stability up to t = 0, to the price of requiring an estimate on the initial datum in
the right-hand side. The proof by Isakov does not keep track of the boundary term at
t = 0, and for this reason we are forced to give a full proof of an analogous Carleman
estimate that handles that term (Lemma 2 and its integrated version (26)). Notice also
that the time-dependent part of our weight function is different from that in [2], since
we want to provide stability up to t = 0. The same observation also holds for the cutoff
function. In addition, contrary to Isakov, we derive our bound starting from a pointwise
Carleman estimate (Lemma 2) that is not yet available in the context of the heat equation
to the best of our knowledge.

Carleman estimates with boundary terms are typically somewhat more complicated to
prove than those for compactly supported functions. Often the former estimates are called
global and the latter local. In this sense, the estimate in the present paper is local in space
but global in time. To our knowledge, this combination has not been studied previously.
Yet, it is of interest in applications, for example those in weather forecasting, where
repeated data assimilation tasks require a background state to initialize the simulation.

Proposition 5 (Preliminary three-cylinders inequality). Let x0 ∈ Ω and 0 < r1 < r2 <
d(x0, ∂Ω). Write Bj = B(x0, rj), j ∈ {1, 2}. Let 0 < ε < T . Then there are C > 0 and
κ ∈ (0, 1) such that for all u ∈ C2(R× Ω),

‖u‖L2(0,T−ε;H1(B2)) ≤ C(‖u‖L2(0,T ;H1(B1)) + ‖L(u)‖L2((0,T )×Ω) + ‖u|t=0‖H1(Ω))
κ‖u‖1−κ

L2(0,T ;H1(Ω))
.

(25)

Proof. The idea is to integrate the pointwise Carleman estimate (9) using adequate func-
tions ρ and w.
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Figure 1: Choice of the cutoff function χ.

Step 1. Choice of the function ρ. Let 0 < r0 < r1 and r2 < r3 < r4 < d(x0, ∂Ω).
Define Bj = B(x0, rj), j ∈ {0, 3, 4}. We choose a function ρ1 ∈ C∞(Ω) such that −r0/2 ≥
ρ1 > −r0 in B0 and that ρ1(x) = −d(x, x0) outside B0 (notice that ρ1 < 0). Setting
I := (0, T ), I1 := (0, T − ε), and I2 := (0, T − ε/2), we choose a function ρ2 ∈ C∞(R)
such that ρ2(s) ≤ −r3 for s ≥ T − ε/2 and ρ2 = 0 in I1 (notice that ρ2 ≤ 0). We define
ρ(t, x) := ρ1(x) + ρ2(t). Notice that |∇ρ| = 1 outside B0. We use the notation (see
Figure 1)

Q1 := I2× (B1 \B0), Q2 := ((I \I2)× (B4 \B0))∪ (I× (B4 \B3)), Q3 := I2× (B3 \B1).

We also define Φ(r) := e−αr. Recalling that φ = eαρ, we observe that the following bounds
hold true:

φ ≤ Φ(r3) in Q2,

φ ≥ Φ(r2) in I1 × (B2 \B1).

Indeed, the first bound is a consequence of the fact that ρ2(s) ≤ −r3 for s ≥ T − ε/2 and
ρ1(x) = −d(x, x0) outside B0. The second bound comes from ρ2 = 0 in I1 and ρ1(x) ≥ −r2

in B2 \B1.

Step 2. Choice of the function w. We define a cutoff function χ ∈ C∞0 ((−1, T ) ×
(B4 \ B0)) that satisfies χ = 1 in Q3 and 0 ≤ χ ≤ 1 in (−1, T ) × B4; see Figure 1. We
then set w := χu.

Step 3. Integrating (9) over I×Ω and observing that∇ρ does not vanish on I×(B4\B0),
we get for all τ > 0 large enough,∫ T

0

∫
Ω

(τ |∇w|2 + τ3|w|2)e2τφ dxdt =

∫ T

0

∫
B4\B0

(τ |∇w|2 + τ3|w|2)e2τφ dxdt

.
∫ T

0

∫
B4\B0

|L(w)|2e2τφ dxdt+

∫
B4\B0

(|∇w|2 + τ2|w|2)e2τφdx|t=0. (26)
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Indeed, the divergence terms on the right-hand side of (9) disappear since
∫
B4\B0

div(A) =∫
∂(B4\B0)An = 0 for any A that fulfills A = 0 on ∂(B4 \ B0). Moreover, concerning the

time-derivative on the right-hand side of (9), we used that for all τ > 0 large enough,
Q = a+ |∇`|2 + ˙̀ . τ2 so that

−
∫ T

0

∫
B4\B0

∂t(|∇v|2−Qv2)dxdt =

∫
B4\B0

(|∇v|2−Qv2)dx|t=0 .
∫
B4\B0

(|∇w|2+τ2|w|2)e2τφdx|t=0,

where the hidden constant depends in particular on the first-order derivatives of ρ in time
and in space.

Step 4. The next step is to replace w by u in (26). To this end, we define the commutator

[L, χ](u) := L(χu)− χL(u) = (∂tχ−∆χ)u− 2(∇u,∇χ). (27)

Since L(w) = L(χu) = χL(u) + [L, χ](u), we have |L(w)|2 . |L(u)|2 + |[L, χ](u)|2. More-
over, the commutator [L, χ] vanishes on Q3 since χ = 1 on Q3. Therefore, the first term
on the right-hand side of (26) satisfies∫ T

0

∫
B4\B0

|L(w)|2e2τφ dxdt .
∫

(0,T )×B4

|L(u)|2e2τφdxdt+

∫
Q1∪Q2

|[L, χ](u)|2e2τφdxdt

. e2τ‖L(u)‖2L2((0,T )×B4) + e2τ‖u‖2L2(0,T ;H1(B1)) + e2τΦ(r3)‖u‖2L2(0,T ;H1(B4)), (28)

where we used φ ≤ 1, φ ≤ Φ(r3) in Q2, and the fact that [L, χ](u) can be bounded by
L2- and H1-norms of u owing to (27). (Notice that the hidden constant above depends
on the first-order derivatives in time and first- and second-order derivatives in space of χ.
Therefore, the constant in (28) blows up as ε → 0, or if r4 → d(x0, ∂Ω).) Consider now
the second term on the right-hand side of (26). First, we notice that ‖∇w‖L2(B4\B0) .
‖u‖H1(B4\B0). For the low-order term, we observe that ρ ≤ −r0/2 implies φ < 1 and,

therefore, τ2e2τφ . e2τ for τ > 0 large enough. It follows that for τ > 0 large enough,∫
B4\B0

(|∇w|2 + τ2|w|2)e2τφdx|t=0 . e2τ‖u|t=0‖2H1(Ω). (29)

Furthermore, using χ = 1, i.e. w = u, as well as φ ≥ Φ(r2) in I1× (B2 \B1), we infer that,
for τ ≥ 1, the left-hand side of (26) can be bounded from below by∫

I1×(B2\B1)

(
τ |∇u|2 + τ3|u|2

)
e2τφ dxdt ≥ e2τΦ(r2)‖u‖2L2(0,T−ε;H1(B2\B1)). (30)

Altogether, the inequalities (26) and (28)-(30) imply that, for τ > 0 large enough,

‖u‖L2(0,T−ε;H1(B2)) . eτ
(
‖L(u)‖L2((0,T )×B4) + ‖u‖L2(0,T ;H1(B1)) + ‖u|t=0‖H1(Ω)

)
+ e−pτ‖u‖L2(0,T ;H1(B4)),

with p := Φ(r2)− Φ(r3) > 0. Here, we used that e2τ(1−Φ(r2)) < e2τ since Φ(r2) > 0.
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Step 5. Finally, the claim follows by a direct application of [11, Lemma 5.2], the idea
being to optimize in τ , under the constraint τ ≥ τ0 for some τ0 > 0 large enough (see also
[14]).

3.2 End of the proof

In this last step of the proof of Theorem 1, we improve the norms on the right-hand side
of (25) to ‖u|t=0‖L2(Ω), ‖L(u)‖L2(0,T ;H−1(Ω)), ‖u‖L2((0,T )×ω), and ‖u‖L2((0,T )×Ω).

Step 1. We set T1 := T − ε for some 0 < ε < T . Upon replacing ω by a smaller set, we
may assume without loss of generality that it is a ball of the form B1 := B(x0, r1) for some
x0 ∈ Ω. We will show the following local version of the conditional stability estimate (5)
where B is replaced by a ball of the form B2 := B(x0, r2) with 0 < r1 < r2 < d(x0, ∂Ω):
For all u ∈ C∞(R× Ω),

‖u‖L2(0,T1;H1(B2)) . (‖u‖L2((0,T )×B1) + F (u))κ(‖u‖L2((0,T )×Ω) + F (u))1−κ, (31)

where F (u) := ‖u|t=0‖L2(Ω) + ‖L(u)‖L2(0,T ;H−1(Ω)). The general case for B follows by
covering B by a finite chain of balls starting from ω, and by iterating the local result (see
[13]), up to some rescaling in ε. Since smooth functions are dense in the space defined in
(4), it is sufficient to consider the case where u ∈ C∞(R×Ω). In the rest of this proof, we
consider B0 := B(x0, r0) and B3 := B(x0, r3) with 0 < r0 < r1 and r2 < r3 < d(x0, ∂Ω).

Step 2. Let us first weaken the norm of L(u) and u0. To this end, let w ∈ L2(0, T ;H1(B3))∩
H1(0, T ;H−1(B3)) solve

L(w) = L(u) in (0, T )×B3,

w|∂B3 = 0, w|t=0 = u|t=0,

and set v := u|(0,T )×B3
− w ∈ L2(0, T ;H1(B3)) ∩H1(0, T ;H−1(B3)). Since L(v) = 0 and

v|t=0 = 0, Proposition 5 (with B0 instead of B1 and with B3 instead of Ω) implies that

‖v‖L2(0,T1;H1(B2)) ≤ C‖v‖κL2(0,T ;H1(B0))‖v‖
1−κ
L2(0,T ;H1(B3))

. (32)

Using the standard energy estimate for the heat equation on w, ‖w‖L2(0,T ;H1(B3)) . F
with F := ‖u|t=0‖L2(Ω) + ‖L(u)‖L2(0,T ;H−1(Ω)) together with the triangle inequality, we
infer that

‖v‖L2(0,T1;H1(Bi)) . ‖u‖L2(0,T1;H1(Bi)) + F, i ∈ {0, 3}, (33)

and
‖u‖L2(0,T1;H1(B2)) . ‖v‖L2(0,T1;H1(B2)) + F. (34)

Applying (32) to the right-hand side of (34) and (33) to the right-hand side of (32) we
obtain

‖u‖L2(0,T1;H1(B2)) . (‖u‖L2(0,T ;H1(B0)) + F )κ(‖u‖L2(0,T ;H1(B3)) + F )1−κ.
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Step 3. Let us finally weaken the norms of u|(0,T )×B0
and u|(0,T )×B3

. Choosing χ ∈
C∞0 (B1) such that χ = 1 in B0, we see that χu satisfies

L(χu) = χL(u) + [L, χ](u), (χu)|∂B1 = 0.

Since [L, χ](u) is of first-order in space and zeroth-order in time (with respect to u),
standard energy estimates yield the following bounds:

‖u‖L2(0,T ;H1(B0)) = ‖χu‖L2(0,T ;H1(B0)) ≤ ‖χu‖L2(0,T ;H1(B1))

. ‖χu|t=0‖L2(B1) + ‖L(χu)‖L2(0,T ;H−1(B1))

. F + ‖[L, χ](u)‖L2(0,T ;H−1(B1)) . F + ‖u‖L2((0,T )×B1).

Reasoning analogously, we obtain

‖u‖L2(0,T ;H1(B3)) . F + ‖u‖L2((0,T )×Ω).

Putting everything together establishes (31). This ends the proof.
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