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1. Models of contact mechanics1

In this section, we briefly recall the hypotheses and consequences associated to2

the different models of contact mechanics, that are used to analyze the measurements3

(reviews can be found in [1–4]). All the models presented here rely on a common set of4

hypotheses or approximations. The two solid bodies in contact are supposed (i) semi-5

infinite, (ii) composed of linear (no plasticity) homogeneous (no stack of layers) isotropic6

(not crystalline) and purely elastic (no viscosity) materials, (iii) with perfectly smooth7

and frictionless surfaces, and (iv) in a regime where the contact radius is much smaller8

than their radius of curvature: a� R. These models differ in the way adhesion is taken9

into account. In the following, we consider the simple geometry of two cylinders of10

same radius of curvature R and material that are crossed at 90 degrees (or equivalently11

a sphere of radius of curvature R and a plane of same material), with the top solid12

controlled in position and the bottom solid mounted on a spring of stiffness k (see sketch13

in Figure 1(b)).14

In Hertz model [5], it is hypothesized that there are no attractive forces between the15

surfaces (hard wall interaction, acting inside the contact area only). The normal force16

(or load) F, contact radius a and indentation δ (defined positive for compression and17

negative for dilatation) are related by:18 
F =

Ka3

R

δ =
a2

R

, (1)

where K = 2
3

E
1−ν2 is the elastic modulus, with E the Young’s modulus and ν the Poisson’s19

ratio. At lateral scale |x| � R, the distance z between the surfaces is given by:20

z =
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]
for |x| ≥ a

0 for |x| < a

. (2)

When moving up the top solid, the surfaces separate at Fs = 0, as = 0, δs = 0, with no21

jump-out.22

In Derjaguin-Muller-Toporov (DMT) model [6], attractive forces of finite range are23

added (sticky hard wall interaction, acting inside the contact area and in a ring-shaped24

zone outside the contact area), but adhesion is assumed not to deform the surfaces,25

leading to a discontinuity of the normal stress at the edge of the contact area. The normal26

force (or load) F, contact radius a and indentation δ are related by:27 
F =

Ka3

R
− 2πRW

δ =
a2

R

, (3)

where W is the adhesion energy (per unit area, taken positive), and the deformation28

profile z(x) is the same than in the Hertz model. When moving up the top solid, the sur-29

faces separate at Fs = −2πRW, as = 0, δs = 0, with a jump-out over a distance 2πRW/k30

due to the spring instability. Note that the relationship between the jump-out force and31

the adhesion energy coincides with the one given by the Derjaguin approximation [1,7],32
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because the surfaces are not deformed at the point of minimum force in the DMT model,33

and supposed undeformable in the context of the Derjaguin approximation.34

In Johnson-Kendall-Roberts (JKR) model [8], attractive forces of zero range are35

added (Baxter i.e. infinitely short range square interaction, acting only inside the contact36

area), and adhesion can deform the surfaces, leading to a divergence of the normal37

stress at the edge of the contact area. The normal force (or load) F, contact radius a and38

indentation δ are related by:39 
F =
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with as =
(

3πR2W
2K

)1/3
. At lateral scale |x| � R, the distance z between the surfaces is40

given by:41

z =
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When moving up the top solid, the surfaces separate at the point where dF
dδ = −k. If42

the spring constant is low enough, this condition can be approximated by dF
dδ = 0, and43

the surfaces separate at Fs = − 3
2 πRW, as =

(
3πR2W

2K

)1/3
, δs = −

(
π2RW2

12K2

)1/3
, with a44

jump-out over a distance 3
2 πRW/k.45

In Maugis model [3], attractive forces of finite range d are added (Dugdale i.e.46

square-well interaction, acting inside the contact area and in a ring-shaped zone outside47

the contact area), and adhesion can deform the surfaces, leading to a normal stress that48

presents no singularity at the edge of the contact area. The normal force (or load) F,49

contact radius a and indentation δ are related by implicit equations, together with a50

dimensionless parameter here denoted as Ma:51

Ma =

(
8RW2

πK2d3

)1/3

. (6)

Physically, Ma is the ratio between the elastic indentation due to adhesion and the52

range of the attractive forces themselves. The three previous models are special cases53

of Maugis model: Hertz limit corresponds to Ma = 0, DMT applies for Ma � 1, and54

JKR is recovered for Ma � 1. In the transition regime Ma ∼ 1, none of the DMT and55

JKR models are valid and the implicit equations from Maugis model have to be used to56

describe the contact mechanics.57

2. Method for the determination of surface deformations58

In this section, we explain in details the procedure of analysis of the FECO to deduce59

the apical distance D and the geometry of the surfaces, i.e. the radius of curvature R and60

the contact radius a (defined in Figure 1(b)). In general, the glue used to prepare the61

surfaces is heterogeneous in thickness, leading to a local radius of curvature of mica that62

is different from the radius of curvature of the supporting glass lens and differs from one63

surface to the other (by typically ∼ 10%); therefore crossing the two cylinders at right64

angle results in a contact zone of elliptic symmetry. During the experiments, we observe65

the FECO along only one direction x parallel to the axis of symmetry of one lens (typical66

FECO images for N2 and [C4C1Pyrr][NTf2] cases shown in Figures 2(a) and 2(c)), that is67

why to interpret the data we approximate the contact zone as a disk, i.e. we suppose68

that the surface deformation is the same in the perpendicular direction y.69
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In (wavelength λ)-(lateral distance x) space first, we measure the shape λp(x) of70

fringe of odd order p. For each line, the fringe position is detected by calculating the71

center of mass of the doublet (due to mica birefringence) after applying a threshold on the72

image (when the intensity is smaller than the threshold, it is set equal to the threshold).73

The threshold is chosen just above the intensity fluctuations of the background, to reduce74

the noise on the signal. Provided that the mica thickness is constant and known, the75

separation profile between the mica surfaces z(x) can then be deduced (typical profiles76

for N2 and [C4C1Pyrr][NTf2] cases shown in Figures 2(b) and 2(d)) [9]. The separation77

profile is measured up to a maximum scale zmax ∼ 50 nm� R ∼ 1 cm, that is why the78

undeformed shape (when the surfaces are far from contact), circular in theory, is here79

observed locally and very well described by a parabola. There, a fitting procedure is used80

to extract D, R and a. On one hand, a parabolic fit is done at small scale close to the apex81

(green curve in Figure 2(b) and Figure 2(d)), with 3 free parameters, giving the apical82

distance D (negative in the present cases shown in the Figures, as explained in details83

in the next section). On the other hand, R and a are obtained with different methods,84

depending whether the solid surfaces are separated by N2 or by [C4C1Pyrr][NTf2].85

In the case of [C4C1Pyrr][NTf2], the mechanical deformations are limited to a86

scale z � zmax, and the separation profile matches the undeformed shape at large87

measurable distances z ∼ zmax. A second parabolic fit is done at large scale only (blue88

curve in Figure 2(d)), with a function of the form:89

z = z0 +
(x− x0)

2

2R
, (7)

where x0 and z0 are 2 free parameters controlling the position of the parabola, and90

R = 0.92± 0.01 cm is the radius of curvature that is adjusted using one image when the91

surfaces are far from contact and then kept fixed. By definition, the contact radius is92

the lateral distance |x− x0| at which the extrapolated undeformed profile crosses the93

contact plane at z = D, and is simply given by a =
√

2R(D− z0). To do this parabolic94

fit at large scale only, the points associated to values |x− x0| < a are excluded from the95

fit, and the fitting procedure is repeated iteratively: on first iteration no point is excluded96

and a value a1 is deduced, on second iteration a1 is used to exclude some points from97

the fit and a2 is deduced, etc. In practice, 3 iterations are enough for the value of a to98

converge, as additional iterations lead to insensitive changes.99

In the case of N2, the mechanical deformations turn to be present at all measurable100

scales z ≤ zmax, and the undeformed region of the profile cannot be observed. That is101

why the general definition of the contact radius a cannot be used, and a model is needed102

to fit the deformation. A fit of the separation profile is done at all measurable scales103

(blue curve in Figure 2(b)), with a function derived from the JKR model (equation 5):104

z =

∣∣∣∣∣∣∣∣∣∣∣
D +

a2

πR

√( x− x0

a

)2
− 1 +

((
x− x0

a

)2
− 2 +

8
3

( as

a

)3/2
)

arctan

√(
x− x0

a

)2
− 1


for |x− x0| ≥ a
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, (8)

where the contact radius a and the center of the contact zone x0 are 2 free parameters, the105

apical distance D is known from the small scale parabolic fit, the radius of curvature R =106

0.92± 0.01 cm is adjusted using one image when the surfaces are far from contact and107

then kept fixed, and the contact radius at the jump-out point as = 10.23 µm is adjusted108

using the image just before the jump-out of the surfaces and then kept fixed (see the109

corresponding FECO image and separation profile in Figure S1(a) and Figure S1(b)).110

It is clearly visible in Figure 2(b) that the JKR model doesn’t fit well the deformed111

profile at the edge of the contact zone, as it predicts a corner at right angle while the112

data exhibit a much smoother profile. The angular shape given by the JKR model is113

in fact non-physical, and is associated with the divergence of the normal stress at the114
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edge of the contact zone. This discrepancy was already mentioned in the seminal work115

by Horn, Israelachvili and Fribac [2], where the smooth measured profile was thought116

to be dominated by the flexural stiffness of the mica layer. This non perfect flattening117

is therefore well known, but is highlighted here compared to previous studies (see118

for example [10]) because of the use of a substantially thicker mica and of a sub-pixel-119

detection technique to characterize the fringe profile. Nonetheless, we keep the JKR120

fit as a first order determination of the contact radius, and we see in the main text that121

this provides a variation of the contact radius with the force that is consistently well122

described by the JKR model and an effective elastic modulus describing the layered solid123

surfaces.124

In order to obtain a reliable characterization of the geometry, note that all the images125

had to be rotated by the same angle (of the order of the degree) before this analysis,126

due to the fact that the camera is not perfectly aligned with the entrance slit of the127

spectrometer and so the raw image is not ideally symmetric. One image, corresponding128

to a situation when the surfaces are far from contact, is rotated by a given angle and the129

separation profile is fitted at all scales with a parabola. The values of rotation angles are130

scanned, and the optimum angle corresponds to the fit associated with the minimum131

sum of squared residuals.132

Finally, a is measured with a precision of 0.03 µm given by the standard deviation133

of the signal, and an accuracy of 1 µm due to the uncertainty on the value of R (mainly134

caused by the fact that the separation profile is observed up to a maximum scale zmax ∼135

50 nm� R ∼ 1 cm). This means that this method doesn’t provide reliable values of a136

when a . 1 µm, which is typically the case for [C4C1Pyrr][NTf2] under low loads.137

In the literature, the measured force F is generally rescaled by the radius of cur-138

vature R to compute an equivalent surface energy F/R, considering that mechanical139

deformations are negligible and that the Derjaguin approximation applies. In the oppo-140

site case when the surfaces are strongly flattened, it is reasonable to assume that the total141

force F is mainly due to the interaction in the flattened region, and so to rescale it by the142

contact area πa2 to compute the mean local pressure F/(πa2). In this study, we explore143

a broad range of situations from non measurable deformation to strong deformations,144

that is why we have chosen to simply use the force F without any rescaling in the plots.145

References
1. Israelachvili, J.N. Intermolecular and Surface Forces (Third Edition); Academic Press, 2011. doi:10.1016/B978-0-12-375182-9.10010-7.
2. Horn, R.G.; Israelachvili, J.N.; Pribac, F. Measurement of the Deformation and Adhesion of Solids in Contact. J. Colloid Interface

Sci. 1987, 115, 480–492. doi:10.1016/0021-9797(87)90065-8.
3. Maugis, D. Adhesion of spheres: The JKR-DMT transition using a dugdale model. J. Colloid Interface Sci. 1992, 150, 243–269.

doi:10.1016/0021-9797(92)90285-T.
4. Grierson, D.S.; Flater, E.E.; Carpick, R.W. Accounting for the JKR-DMT transition in adhesion and friction measurements with

atomic force microscopy. J. Adhes. Sci. Technol. 2005, 19, 291–311. doi:10.1163/1568561054352685.
5. Hertz, H. Ueber die Berührung fester elastischer Körper. J. für die Reine und Angew. Math. 1882, 19, p. 156. doi:10.1515/crll.1882.92.156.
6. Derjaguin, B.V.; Muller, V.M.; Toporov, Y.P. Effect of Contact Deformations on the Adhesion of Particles. J. Colloid Interface Sci.

1975, 53, 314–326. doi:10.1016/0021-9797(75)90018-1.
7. Derjaguin, B. Untersuchungen über die Reibung und Adhäsion, IV. Kolloid-Zeitschrift 1934, 69, 155–164. doi:10.1007/BF01433225.
8. Johnson, K.L.; Kendall, K.; Roberts, A.D.; Tabor, D. Surface energy and the contact of elastic solids. Proc. R. Soc. A 1971, 324,

301–313. doi:10.1098/rspa.1971.0141.
9. Israelachvili, J.N. Thin Film Studies Using Multiple-Beam Interferometry. J. Colloid Interface Sci. 1973, 44, 259–272.

doi:10.1016/0021-9797(73)90218-X.
10. Israelachvili, J.N.; Perez, E.; Tandon, R.K. On the adhesion force between deformable solids. J. Colloid Interface Sci. 1980, 78,

260–261. doi:10.1016/0021-9797(80)90520-2.



Version June 8, 2021 submitted to Lubricants S5 of S6

-40

-20

0

20

40

0.080.060.040.020

-40

-20

0

20

40

0.080.060.040.020

Figure S1. (a) Picture of the FECO when the two solid surfaces are in contact across N2, observed in (wavelength λ)-(lateral
distance x) space. (b) Corresponding profile of the distance z between the surfaces along the lateral coordinate x (in red).
A parabolic fit at small scale close to the apex (in green) allows to measure the apical distance D, while a fit with the JKR
profile (equation 5 in main text) at all measured scales (in blue) is used to extract the contact radius a. (c) Picture of the
FECO when the two solid surfaces are in contact across [C4C1Pyrr][NTf2], observed in (wavelength λ)-(lateral distance x)
space. (d) Corresponding profile of the distance z between the surfaces along the lateral coordinate x (in red). A parabolic
fit at small scale close to the apex (in green) allows to measure the apical distance D, while a parabolic fit at large scale (in
blue) is used to extract the contact radius a. The two particular cases shown here correspond to the jump-out points reached
in Figure 3 in main text.

0.6

0.5

0.4

0.3

0.2

0.1

0

-0.1
1086420

Figure S2. Force profile measured with [C4C1Pyrr][NTf2] between mica surfaces when approaching or retracting the top
surface with the piezoelectric tube at v = 0.5 nm/s, showing structuring with 5 distinguishable layers labeled by i. The
different colors stand for approach up to a given layer and retraction from this layer: i = 1 in red, i = 2 in green, i = 3 in
orange, i = 4 in purple, and i = 5 in yellow.
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Figure S3. Force profile measured with [C4C1Pyrr][NTf2] between mica surfaces when approaching or retracting the top
surface with the piezoelectric tube at v = 0.5 nm/s, showing structuring with 5 distinguishable layers labeled by i. For
clarity, only the full approach is shown (in red), together with retractions from layers i = 1 (in blue), i = 2 (in green),
i = 3 (in orange), i = 4 (in purple), i = 5 (in yellow). The gray curve is an exponentially decaying harmonic oscillation
(equation 10 in main text) with parameters F0 = Fmax

0 , D0 = Dmax
0 , ζ = ζmax and λ = λmax obtained from the fits of the

points of maximum force. The black curve is an exponentially decaying harmonic oscillation (equation 10 in main text)
with parameters F0 = Fmin

0 , D0 = Dmin
0 , ζ = ζmin and λ = λmin obtained from the fits of the points of minimum force (see

equations 11 and 12, and Figures 4(b) and 4(c) in main text).
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