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Abstract

Modeling flows in domains containing obstacles becomes challenging when the

obstacles are very small compared to the domain. This problem is often known as

modeling flow through permeable or porous media. Darcy’s law is well-known to

provide a robust solution to this problem for viscous flows, given that the perme-

ability of the medium can be characterized. Solutions for inertial flows have not

been proposed yet.

In this paper, a principle multiscale virtual power is formulated for the computa-

tional homogenization of unsteady incompressible flows in domains containing small

obstacles. In this theory, the coarse scale of the domain is separated from the fine

scale of the obstacles. The Finite Element (FE) implementation of this theory is

developed in the form of a parallel FExFE (FE²) algorithm with two-way coupling

between the two scales. The incompressibility constraint is handled with special

care by introducing an independent pressure variable at both scales and relying on

the Taylor-Hood P2/P1 pair.

Simulations are conducted to analyze the accuracy and efficiency of the proposed
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multiscale approach. The results show that the method is robust and interesting

from both the points of view of computational cost and accuracy when the ratio

between the domain size and the obstacle size is larger than 100.

Keywords: unsteady flow, porous media, multiscale, homogenization, FE²

1 Introduction

While flows around obstacles have been widely studied and can be solved easily using

widely available finite volume or Finite Element (FE) codes, this becomes more difficult

when obstacles are small compared to the domain. This problem is often known as mod-

eling flow through permeable or porous media. It is well understood and can be modeled

accurately even when the small obstacles have a complex distribution and morphology

as long as the flow is steady and laminar [1].

Indeed, in the steady and laminar case, scale separation is often assumed. The domain,

which can be a reservoir for oil engineering applications, or a mold for material process-

ing applications, is considered as homogeneous. This is the coarse scale domain. The

heterogeneity due to the small obstacles, which can be pores for a reservoir or fibrous

reinforcements for a mold, is modeled through a fictitious heterogeneous domain. This is

the fine scale domain. This separation of scales avoids the discretization of the fine het-

erogeneity directly within the coarse scale domain. It is instead represented only within

the fine scale domain [1].

A common issue with scale separation is that governing equations are clear at the fine

scale, but not boundary conditions, while it is the opposite at the coarse scale. This is the

reason why scale separation has to be completed by a scale transition theory. This is only

possible with a principle of multiscale virtual power or a homogenization theory estab-

lishing the conservation of energy between the scales, and relating coarse scale variables

to their fine scale counterparts [2]. For viscous flows, the governing equations at the fine

scale are the Stokes equations. Numerous theories have been proposed to relate the fine

scale velocity and pressure fields to their coarse scale counterparts, with various choices

for the boundary conditions at the fine scale. These theories show that the governing

equations for the coarse scale involve Darcy’s law [1]. The latter relies on the definition of
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a permeability tensor, which can be computed analytically or numerically depending on

the complexity of the distribution and morphology of the heterogeneity at the fine scale.

It is generally not possible to use Darcy’s law for inertial flows. Extensions such as

Forchheimer’s law have been proposed to model inertial effects, but they are not based

on homogenization theory [3, 4]. Recently, Blanco et al. proposed a principle of multi-

scale virtual power for steady flows with obstacles and inertial effects [5]. The governing

equations at the fine scale were the Navier-Stokes equations for incompressible Newtonian

flows at the steady state but with the auto-advection term. Blanco et al. showed that

it is possible to use a wide range of boundary conditions for the fine scale and establish

the conservation of energy between the scales. In this approach, it was necessary to solve

a nonlinear fine scale problem for each point of the coarse scale domain. However, the

authors did not implement their approach with a full coupling between coarse and fine

scale variables. This simplification was possible because they only addressed steady flows.

Full or two-way coupling between coarse and fine scale variables is widely used in

computational solid mechanics, where it is known as computational homogenization [6],

concurrent multiscale method [7] or FExFE (FE2) scheme [8]. The basis for these tech-

niques is the same as for fluid mechanics: scale separation and scale transition. The

difference mainly resides in the numerical implementation of the multiscale theory.

In the present work, an extension of Blanco et al.’s approach to the unsteady case

is proposed, as well as a numerical implementation with full coupling between the two

scales. In this approach, the governing equations for the fine scale are the unsteady

Navier-Stokes equations for incompressible Newtonian flows with obstacles. A principle

of multiscale virtual power with Lagrange multipliers is presented in Sec. 2 to establish

the boundary conditions for the fine scale problem as well as the conservation of energy

between the scales. Details on the numerical implementation are given in Sec. 3, in

particular regarding the incompressibility constraint and the two-way coupling. Indeed,

at each time increment, a nonlinear problem has to be solved for the coarse scale, and at

each iteration of the coarse scale nonlinear solver, a nonlinear fine scale problem has to

be solved at each integration point of the coarse scale domain. This elaborate multiscale
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computational model is deployed and compared to single-scale models in Sec. 4.

2 Multiscale model

The coarse scale domain is denoted ΩM ⊂ Rd, with Dirichlet boundary conditions vM
D

on ΓM
D and Neumann boundary conditions tMN on ΓM

N . Regarding time, it is defined as

t ∈ [0, T ], with T ∈ R+∗. The variational equation to satisfy at the coarse scale is to find

vM(., t) ∈ VM(t), pM ∈ L2(ΩM), such that∫
ΩM

(
fM(x, t).δvM(x) + σM,dev(x, t) : ∇xδvM(x)

)
dx∫

ΩM

(
−pM(x)∇x.δvM(x)− δpM(x)∇x.vM(x)

)
dx

=

∫
ΓM

N

tMN (x, t).δvM(x)dx,

(1)

∀δvM ∈ VM(t),

∀δpM ∈ L2(ΩM),

with functional spaces

VM(t) =
{
w ∈

(
H1(ΩM)

)d
,w(x) = vM

D (x, t),∀(x, t) ∈ ΓM
D × [0, T ]

}
,

H1(ΩM) =
{
w ∈ L2(ΩM),∇xw ∈

(
L2(ΩM)

)d
}
,

L2(ΩM) =

{
w : ΩM 7→ R,

∫
ΩM

w(x)2dx < +∞
}
.

This is standard and easier to understand if incompressible Newtonian flow is modeled

directly at the coarse scale. Navier-Stokes equations then lead to: fM(x, t) = ρM(x)

(
∂vM

∂t
(x, t) + vM(x, t).∇xvM(x, t)

)
,

σM,dev(x, t) = 2µM(x)∇S,dev
x vM(x, t),

∀x ∈ ΩM ,∀t ∈ [0, T ],

where the deviatoric part is

∇S,devvM = ∇SvM − 1

d
tr
(
∇SvM

)
I,

and the symmetric part

∇SvM =
1

2

(
∇vM +∇TvM

)
.

The problem with this direct approach is that the computational cost is going to blow up

if there are obstacles of a small size compared to ΩM , as the element or cell size should be
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smaller than the obstacle size. The alternative proposed herein is a multiscale approach,

in which fM(x, t) and σM,dev(x, t) are unknown functions of vM(x, t) and ∇xvM(x, t),

while pM is still a Lagrange multiplier.

Consequently, a fine scale domain Ωm = Ωm(x) ⊂ Rd is introduced at each point x of

the coarse scale domain. Small obstacles are represented within this domain instead of

the coarse scale domain. The boundary of those obstacles is Γm
O = Γm

O (x) ⊂ ∂Ωm(x), and

Dirichlet boundary conditions 0 are imposed on Γm
O . The proposed multiscale approach

is kinematic, which means averaging constraints are going to be imposed on the velocity

field, while the expressions of fM(x, t) and σM,dev(x, t) are going to be derived from a

so-called principle of multiscale virtual power [2].

2.1 Kinematic averaging

The average of the fine scale velocity field is constrained to be equal to the coarse scale

velocity:

vM(x, t) =
1

|Ωm|

∫
Ωm

vm(y, t)dy.

Similarly, the average of the fine scale velocity gradient field is constrained to be equal

to the coarse scale velocity gradient:

∇xvM(x, t) =
1

|Ωm|

∫
Ωm

∇yvm(y, t)dy.

While it is theoretically possible to add constraints on the higher order derivatives and

introduce additional terms in the virtual powers, it is assumed that a first order approach

is enough for unsteady incompressible Newtonian flows with obstacles. This will be

verified in Sec. 4.

2.2 Kinematic admissibility

Kinematic admissibility requires the averaging constraints for the velocity field to be

satisfied. These constraints will all be added using Lagrange multipliers except for the

Dirichlet boundary conditions on the obstacles, thus the functional spaces for the fine

scale unknowns are

vm(., t) ∈ Vm,

5



Vm =
{
w ∈

(
H1(Ωm)

)d
,w(y) = 0, ∀y ∈ Γm

O

}
.

Given that additional Lagrange multipliers are set, these functional spaces can also be

used for virtual variations.

2.3 Virtual powers

The coarse scale virtual power PM is based on the coarse scale problem stated in Eq. (1):

PM(δV M , δGM , δpM) = fM .δV M + σM,dev : δGM − pM tr(δGM)− δpM∇x.vM ,

∀
(
δV M , δGM , δpM

)
∈ Rd × Rd×d × R.

It is interesting to see that thanks to the Lagrange multiplier pM , the space for the virtual

variation δGM is simple and very large.

The averaged fine scale virtual power Pm is based on unsteady Navier-Stokes equations

for incompressible Newtonian flow written at the fine scale:

Pm(δV M , δGM , δvm, δpm, δα, δβ) =

1

|Ωm|

∫
Ωm


ρm(y)

(
∂vm

∂t
(y, t) + vm(y, t).∇yvm(y, t)

)
.δvm(y)

+2µm(y)∇S,dev
y vm(y, t) : ∇yδvm(y)

−pm(y)∇y.δvm(y)− δpm(y)∇y.vm(y, t)

 dy

−δα.
(

1

|Ωm|

∫
Ωm

vm(y, t)dy − vM(x, t)

)
−δβ :

(
1

|Ωm|

∫
Ωm

∇yvm(y, t)dy −∇xvM(x, t)

)
−α.

(
1

|Ωm|

∫
Ωm

δvm(y)dy − δV M

)
−β :

(
1

|Ωm|

∫
Ωm

∇yδvm(y)dy − δGM

)
,

∀
(
δV M , δGM

)
∈ Rd × Rd×d,

∀ (δvm, δpm) ∈ Vm × L2(Ωm),

∀ (δα, δβ) ∈ Rd × Rd×d.

The divergence constraint on the fine scale velocity gradient has been added through

Lagrange multiplier pm ∈ L2(Ωm) and the kinematic averaging constraints on the fine
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scale velocity field and its gradient have been added through Lagrange multipliers

(α,β) ∈ Rd × Rd×d.

Similarly, Lagrange multipliers have been added for the variations of the fine scale un-

knowns. This allows keeping the solutions and variations spaces simple and very large.

2.4 Principle of multiscale virtual power

The principle of multiscale virtual power establishes the balance between the two scales.

Therefore, the problem is to find (vm(., t), pm,α,β) ∈ Vm × L2(Ωm) × Rd × Rd×d, with(
vM(., t), pM

)
∈ VM(t)× L2(ΩM) such that

PM(δV M , δGM , δpM) = Pm(δV M , δGM , δvm, δpm, δα, δβ),

⇔

fM .δV M + σM,dev : δGM − pM tr(δGM)− δpM∇x.vM =

1

|Ωm|

∫
Ωm


ρm(y)

(
∂vm

∂t
(y, t) + vm(y, t).∇yvm(y, t)

)
.δvm(y)

+2µm(y)∇S,dev
y vm(y, t) : ∇yδvm(y)

−pm(y)∇y.δvm(y)− δpm(y)∇y.vm(y, t)

 dy

−δα.
(

1

|Ωm|

∫
Ωm

vm(y, t)dy − vM(x, t)

)
−δβ :

(
1

|Ωm|

∫
Ωm

∇yvm(y, t)dy −∇xvM(x, t)

)
−α.

(
1

|Ωm|

∫
Ωm

δvm(y)dy − δV M

)
−β :

(
1

|Ωm|

∫
Ωm

∇yδvm(y)dy − δGM

)
,

∀
(
δV M , δGM , δpM

)
∈ Rd × Rd×d × R,

∀ (δvm, δpm) ∈ Vm × L2(Ωm),

∀ (δα, δβ) ∈ Rd × Rd×d.

(2)

By taking arbitrary variations from Eq. (2), it is possible to derive the problem to solve

at the fine scale with all necessary boundary conditions, and also to derive the expressions

of the missing terms for the coarse scale problem in Eq. (1).

2.5 Fine scale problem

As the spaces for the variations are very large, it is possible to zero out δV M , δGM , δpM .

This leads to the problem of finding (vm(., t), pm,α,β) ∈ Vm×L2(Ωm)×Rd×Rd×d, with
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(
vM(., t), pM

)
∈ VM(t)× L2(ΩM) such that

1

|Ωm|

∫
Ωm


ρm(y)

(
∂vm

∂t
(y, t) + vm(y, t).∇yvm(y, t)

)
.δvm(y)

+2µm(y)∇S,dev
y vm(y, t) : ∇yδvm(y)

−pm(y)∇y.δvm(y)− δpm(y)∇y.vm(y, t)

 dy

−δα.
(

1

|Ωm|

∫
Ωm

vm(y, t)dy − vM(x, t)

)
−δβ :

(
1

|Ωm|

∫
Ωm

∇yvm(y, t)dy −∇xvM(x, t)

)
−α.

(
1

|Ωm|

∫
Ωm

δvm(y)dy

)
−β :

(
1

|Ωm|

∫
Ωm

∇yδvm(y)dy

)
= 0,

∀ (δvm, δpm) ∈ Vm × L2(Ωm),

∀ (δα, δβ) ∈ Rd × Rd×d.

(3)

This system of variational equations will be solved for each fine scale domain using

the FE method. In a strong form it can be written as

ρm(y)

(
∂vm

∂t
(y, t) + vm(y, t).∇yvm(y, t)

)
−∇y.

(
2µm(y)∇S,dev

y vm(y, t)
)

+∇ypm(y)−α

 = 0,∀y ∈ Ωm,

vm(y, t) = 0,∀y ∈ Γm
O ,(

2µm(y)∇S,dev
y vm(y, t)− pm(y)I

)
.nm(y) = β.nm(y), ∀y ∈ ∂Ωm\Γm

O ,

∇y.vm(y, t) = 0,∀y ∈ Ωm,
1

|Ωm|

∫
Ωm

vm(y, t)dy = vM(x, t),

1

|Ωm|

∫
Ωm

∇yvm(y, t)dy = ∇xvM(x, t),

where nm(y) is the outgoing normal vector at the fine scale domain boundary. It can

be observed that α is the force per unit volume and β is the stress. This dimensional

analysis is important because there is an error in Ref. [5] which leads to inconsistencies.

In addition, it should be pointed out that β is not deviatoric.
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2.6 Coarse scale force per unit volume and stress

By zeroing out all variations except δV M in Eq. (2), one obtains

fM .δV M = −α.
(
−δV M

)
= α.δV M , ∀δV M ∈ Rd ⇔ fM = α.

This is consistent for the dimensional analysis as α is indeed the force per unit volume.

Similarly, it is possible to obtain

σM,dev : δGM − pM tr(δGM) = −β :
(
−δGM

)
= β : δGM , ∀δGM ∈ Rd×d,

⇔ σM,dev = β + pMI,

which is also consistent with the dimensional analysis. This expression shows again that

β is not deviatoric, so a small treatment is necessary in order to compute the deviatoric

stress σM,dev. The role of pM is important in that regard, which distinguishes the present

work from other approaches where the pressure field is treated as a homogenized variable

instead of a Lagrange multiplier [9, 10].

To summarize:

• The coarse scale problem in Eq. (1) is similar to the well-known Navier-Stokes

equations for unsteady incompressible Newtonian flows, except that it is written in

terms of an unknown force per unit volume and an unknown deviatoric stress.

• Small obstacles are not represented directly within the coarse scale. Instead, they

are embedded in fine scale domains, which are placed at each point of the coarse

scale domain.

• For each fine scale domain, the boundary value problem in Eq. (3) should be solved.

The boundary conditions for this problem come from averaging constraints relating

the fine scale velocity field and its gradient to their coarse scale counterparts.

• The force per unit volume and deviatoric stress for the coarse scale are computed

from the solution of the fine scale problem.
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Because the fine scale problem in Eq. (3) is nonlinear, it is not possible to compute

some kind of constant permeability tensor or tangent modulus beforehand and use it

for running coarse scale simulations. An FExFE (FE2) strategy with two-way coupling

between the scales should be implemented.

3 Numerical method

Under different names, computational homogenization, concurrent multiscale methods or

FE2 strategies are quite popular in solid mechanics. This means an FE mesh is used for

the coarse scale and for each fine scale domain (multiple geometries may be used for the

fine scale domains, for instance if the obstacles are not evenly distributed). In the present

work, there are two main difficulties to tackle:

• Incompressible flows are considered. Thankfully, mixed weak forms have been in-

troduced at both scales, so it is only a matter of using compatible discretization

spaces.

• Because of the auto-advection term in Eq. (3), the boundary value problem for

the fine scale is nonlinear and may be very hard to solve depending on the applied

coarse scale velocity and velocity gradient.

3.1 FE discretization

The Taylor-Hood P2/P1 pair is chosen to tackle the first difficulty. At both scales,

quadratic interpolation is used for the velocity and linear interpolation for the pressure.

This requires a special care for numerical integration, which is chosen to be of order 4,

resulting in 6 integration points per triangle in two dimensions (2D), and 16 per tetrahe-

dron in three dimensions (3D). This is of particular importance because it means there

are 6 fine scale domains per element in 2D, and 16 in 3D. This is illustrated for the 2D

case in Fig. 1.

To avoid introducing an additional level of complexity, no stabilization nor turbulence

model is used. The two-way coupling algorithm to solve simultaneously the coarse and
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coarse scale velocity nodes
coarse scale pressure nodes
coarse scale integration points

fine scale velocity nodes
fine scale pressure nodes
fine scale integration points

Figure 1: FE2 discretization with the Taylor-Hood P2/P1 pair showing the coarse scale

mesh, one of the coarse scale mesh elements, one of the fine scale meshes and one of

the fine scale mesh elements. In the example shown herein, there are 2, 048 coarse scale

mesh elements, 2, 048 × 6 = 12, 288 coarse scale integration points and thus fine scale

meshes, 12, 288× 1, 524 = 18, 726, 912 fine scale mesh elements and 12, 288× 3, 172× 2 =

77, 955, 072 fine scale velocity degrees of freedom.

fine scale problems is however quite evolved.

3.2 Fine scale problem

For a given fine scale domain, Eq. (3) may actually be considered independently from the

coarse scale problem. At a given instant tn, the solution at tn+1 can be computed for any

imposed vM(x, tn+1) ∈ Rd but regarding ∇xvM(x, tn+1) ∈ Rd×d a pre-processing step in

necessary to ensure that it is trace-less. Then, solving the fine scale problem requires

finding the zeros of the following residuals:
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Rvm(vm, pm,α,β, δvm) =

1

|Ωm|

∫
Ωm


ρm(y)

(
∂vm

∂t
(y, tn+1) + vm(y, tn+1).∇yvm(y, tn+1)

)
.δvm(y)

+2µm(y)∇S,dev
y vm(y, tn+1) : ∇yδvm(y)

−pm(y)∇y.δvm(y)

 dy

−α.
(

1

|Ωm|

∫
Ωm

δvm(y)dy

)
−β :

(
1

|Ωm|

∫
Ωm

∇yδvm(y)dy

)
,

(4)

Rpm(vm, δpm) = − 1

|Ωm|

∫
Ωm

δpm(y)∇y.vm(y, tn+1)dy,

Rα(vm, δα) = −δα.
(

1

|Ωm|

∫
Ωm

vm(y, tn+1)dy − vM(x, tn+1)

)
,

Rβ(vm, δβ) = −δβ :

(
1

|Ωm|

∫
Ωm

∇yvm(y, tn+1)dy −∇xvM(x, tn+1)

)
,

where all solutions vm, pm,α,β are computed at time tn+1. The Newton-Raphson scheme

to find the zeros of these residuals starts from initial guesses vm
0 , p

m
0 ,α0,β0. A Newton-

Raphson iteration j → j + 1 requires solving the linear system

∂Rvm

∂vm
(vm

j , p
m
j ,αj,βj, δv

m)∆vm
j+1

+
∂Rvm

∂pm
(vm

j , p
m
j ,αj,βj, δv

m)∆pm
j+1

+
∂Rvm

∂α
(vm

j , p
m
j ,αj,βj, δv

m)∆αj+1

+
∂Rvm

∂β
(vm

j , p
m
j ,αj,βj, δv

m)∆βj+1


= −Rvm(vm

j , p
m
j ,αj,βj, δv

m),

∂Rpm

∂vm
(vm

j , δp
m)∆vm

j+1 = −Rpm(vm
j , δp

m
j ),

∂Rα
∂vm

(vm
j , δα)∆vm

j+1 = −Rα(vm
j , δαj),

∂Rβ
∂vm

(vm
j , δβ)∆vm

j+1 = −Rβ(vm
j , δβj),

for the unknowns

∆vm
j+1 = vm

j+1 − vm
j ,∆p

m
j+1 = pm

j+1 − pm
j ,∆αj+1 = αj+1 −αj,∆βj+1 = βj+1 − βj.

There is no particular difficulty in computing those derivatives since all terms are linear

except the auto-advection term. It is linearized using

∂ (vm.∇vm)

∂vm
(vm

j )∆vm
j+1 = ∆vm

j+1.∇vm
j + vm

j .∇∆vm
j+1.
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After FE discretization, the linear system has the following form:
Avmvm Avmpm Avmα Avmβ

AT
vmpm 0 0 0

AT
vmα 0 0 0

AT
vmβ 0 0 0




∆Uvm

∆Upm

∆Uα

∆Uβ

 =


Bvm

Bpm

Bα

Bβ

 (5)

where ∆Uvm is a vector whose size is the number of P2 nodes of the FE mesh times d,

∆Upm is a vector whose size is the number of P1 nodes of the FE mesh, ∆Uα is a vector

whose size is d, and ∆Uβ is a vector whose size is d× d.

Rows and columns of the linear system in Eq. (5) that are associated to nodes on Γm
O are

modified to set the velocity to zero at those nodes.

Although it is symmetric, the linear problem in Eq. (5) is poorly conditioned because

of the presence of zeros on the diagonal. This is typical of Taylor-Hood FEs, but it is

aggravated here due to the additional Lagrange multipliers for the kinematic constraints.

In particular, Avmα and Avmβ are dense matrices. A direct LU solver is used throughout

this work to solve this problem.

To summarize, at each time increment, a new coarse scale velocity and velocity gradi-

ent are imposed. The fine scale problem is solved using a Newton-Raphson scheme to deal

with the nonlinearity of the auto-advection term. Each iteration of the Newton-Raphson

scheme requires solving a linear problem of the form given in Eq. (5), which is achieved

using a direct solver.

Any time discretization can be used for the
∂vm

∂t
term. The backward differentiation

formula of order 2 is used in this work.

3.3 Coarse scale problem

The weak form of the coarse scale problem has already been given in Eq. (1). At a given

instant tn, the solution at tn+1 can be computed for any imposed vM
D and tMN . It requires

finding the zeros of the following residuals:

RvM (vM , pM) =


∫

ΩM

(
fM(x, tn+1).δvM(x) + σM,dev(x, tn+1) : ∇xδvM(x)

)
dx

−
∫

ΩM

pM(x)∇x.δvM(x)dx−
∫

ΓM
N

tMN (x, tn+1).δvM(x)dx,
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RpM (vM) = −
∫

ΩM

δpM(x)∇x.vM(x)dx,

where all solutions vM , pM are computed at time tn+1. The Newton-Raphson scheme to

find the zeros of these residuals starts from initial guesses vM
0 , p

M
0 . A Newton-Raphson

iteration i→ i+ 1 requires solving the linear system
∂RvM

∂vM
(vM

i , p
M
i , δv

M)∆vM
i+1

+
∂RvM

∂pM
(vM

i , p
M
i , δv

M)∆pM
i+1

 = −RvM (vM
i , p

M
i , δv

M),

∂RpM

∂vM
(vM

i , δp
M)∆vM

i+1 = −RpM (vM
i , δp

M
i ),

for the unknowns

∆vM
i+1 = vM

i+1 − vM
i ,∆p

M
i+1 = pM

i+1 − pM
i .

The derivatives are not as trivial as for the fine scale:

∂RvM

∂vM
(vM

i , p
M
i , δv

M)∆vM
i+1 =


∫

ΩM

(
∂fM

∂vM
(x, tn+1).∆vM

i+1(x, tn+1)

)
.δvM(x)dx

+

∫
ΩM

(
∂σM,dev

∂∇xvM
(x, tn+1) : ∇x∆vM(x, tn+1)

)
: ∇xδvM(x)dx,

∂RvM

∂pM
(vM

i , p
M
i , δv

M)∆pM
i+1 = −

∫
ΩM

∆pM(x)∇x.δvM(x)dx,

∂RpM

∂vM
(vM

i , δp
M)∆vM

i+1 = −
∫

ΩM

δpM(x)∇x.∆vM(x)dx.

The two terms that are difficult to compute are
∂fM

∂vM
(x, tn+1) and

∂σM,dev

∂∇xvM
(x, tn+1).

In fact, both fM and σM,dev already require some implementation details. Concretely, at

each iteration i → i + 1, it is necessary to compute the derivatives once per integration

point (and hence per fine scale domain) and the residuals should be computed multiple

times depending on whether a line search procedure is used.

Computing the residuals requires solving the fine scale problem once per fine scale domain

by imposing vM
i (x, tn+1) and ∇dev

x vM
i (x, tn+1). From those fine scale solutions, it is im-

portant to collect α = fM(x, tn+1) and βdev = σM,dev(x, tn+1). It is then straightforward

to compute the coarse scale residuals.

The derivatives
∂fM

∂vM
(x, tn+1) and

∂σM,dev

∂∇xvM
(x, tn+1) can be computed by inverting the

first line in Eq. (5) and injecting it in the third and fourth lines. This method has not

been chosen in this work because it might not always be possible to invert the first line

14



separately, for instance in the steady case. Automatic differentiation has been preferred,

although it requires solving the fine scale problem multiple times, each with a different

small fluctuation added to vM
i (x, tn+1) and ∇dev

x vM
i (x, tn+1).

The linear system to solve after FE discretization is no different from the standard Taylor-

Hood saddle point problem: AvMvM AvM pM

AT
vM pM 0

 ∆UvM

∆UpM

 =

 BvM

BpM

 . (6)

In fact, once the residuals and their derivatives are computed, there is no specific difficulty

in assembling and solving this linear system as compared to standard Taylor-Hood FEs.

This is also true for setting up the Dirichlet boundary conditions.

3.4 Two-way coupling

The coupling algorithm stems naturally from the coarse scale Newton-Raphson algorithm.

Both coarse and fine scale solutions at instant tn+1 are simultaneously computed using

the following process:

1. Setup initial guesses vM
0 , p

M
0 for the coarse scale Newton-Raphson algorithm from

the last computed solutions

2. For each coarse scale Newton-Raphson algorithm iteration i→ i+ 1

(a) For each fine scale domain

i. Setup initial guesses vm
0 , p

m
0 ,α0,β0 for the fine scale Newton-Raphson al-

gorithm from the last computed solutions.

ii. For each fine scale Newton-Raphson algorithm iteration j → j + 1

A. Compute the fine scale residuals and their derivatives.

B. Assemble and solve the linear system of the form given in Eq. (5).

C. Test for convergence and go back to 2(a)ii if necessary.

iii. Get the converged α = fM(x, tn+1) and βdev = σM,dev(x, tn+1).

(b) Compute the coarse scale residuals and their derivatives.

(c) Assemble and solve the linear system of the form given in Eq. (6).
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(d) Test for convergence and go back to 2 if necessary.

(e) Get the converged coarse scale velocity-pressure solutions.

In practice, advanced procedures such as line search or sub-stepping might be added to

improve the convergence of this algorithm, especially regarding the solution of the fine

scale problems.

Finally, the multiscale FE2 algorithm presented in this section has been implemented

in the FEMS software [11]. It is expected to require a significant amount of computa-

tional resources, both regarding computation time and memory consumption. For some

problems, the discretization of the fine scale domains might not even fit in the memory

of a recent workstation.

To avoid such issue, the coarse scale mesh is partitioned among several processes using

the Message Passing Interface (MPI) standard and the METIS mesh partitioning library

[12]. Each coarse mesh element and its integration points belong to a single partition,

while communications for coarse mesh nodes shared by different partitions are handled

by FEMS.

Regarding the solution of linear problems, it is performed at the coarse scale using either

the Schur complement solver available in the PETSc suite [13] or the MUMPS sparse

direct solver [14], which is also available through the PETSc suite. Since each coarse

scale integration point belongs to a single partition, this is also true for each fine scale

domain. Therefore, the fine scale domains are not partitioned and the solution of fine

scale problems is completely sequential. They are performed using UMFPACK ’s direct

solver [15].

4 Numerical results

To keep the computational cost reasonable, only 2D simulations are considered in this

section. All multiscale simulations use 2D square fine scale domains of size l. For solving

linear problems at the coarse scale, the Schur complement solver is used for the first

problem presented in Subsec. 4.1, and the direct solver for the second problem presented
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in Subsec. 4.2.

4.1 Lid-driven cavity

The well-known lid-driven cavity problem is considered for the coarse scale. The domain

is the square of area 1 m2 shown in Fig. 2(a), discretized with a reference mesh size

of 0.031 25 m. Unless otherwise mentioned, the fluid mass density is fixed to 1 kg m−3,

gravity is neglected and the fluid dynamic viscosity is fixed to 0.2 Pa s so that the Reynolds

number is equal to 5. The problem is solved with a time step of ∆t = 1 s and the steady

state is considered as reached when the L2 norm of the relative velocity change between

two time increments is below 10−6.

Two reference fine scale domains are considered hereafter. The first one is homogeneous,

has a size l = 0.08 m and is discretized with a mesh size of 2.5 mm, as shown in Fig.

2(b). The second one has the same size but has a circular obstacle of radius R = 0.012 m

placed at its center, and is discretized with a mesh size of 3.2 mm, as shown in Fig. 2(c).

1

1

vx=vy=0

vx=1,vy=0

v x
=

v y
=

0

v x
=

v y
=

0

l

l

l

l

(a) (b) (c)

vx=vy=0

Figure 2: Domains and boundary conditions used for the lid-driven cavity problem: (a)

coarse scale domain, (b) homogeneous fine scale domain, (c) holed fine scale domain.

Lengths are in meters and velocities in meters per second.

4.1.1 Influence of mesh size

To verify the robustness of the principle of multiscale virtual power in Eq. (2), the lid-

driven cavity problem is solved using a multiscale model with the homogeneous fine scale

domain. Because there is no obstacle at the fine scale, the solution should be equivalent
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to that obtained using a single-scale model.

In addition to the reference multiscale model, both the coarse and fine mesh sizes are

doubled to generate an intermediate discretization, and they are doubled again to generate

a coarse discretization. The comparison between the three results is shown in Fig. 3.

Clearly, for this low Reynolds number of 5, there is no need to use an excessively refined

mesh, especially since a quadratic interpolation is used for the velocity.
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Figure 3: Velocity curves at steady state using different coarse and fine meshes for the

lid-driven cavity problem with homogeneous fine scale: (a) vM
x along the vertical line

going through the center of the cavity, (b) vM
y along the horizontal line going through

the center of the cavity. Lengths are in meters and velocities in meters per second.

4.1.2 Influence of fine scale domain size

In addition to the reference model, two simulations are run; the one with a fine scale

domain size l = 0.04 m and the other with l = 0.16 m. Note that the fine scale mesh size

is modified proportionally to l so that the number of elements remains constant. The

three results are compared in Fig. 4.

The size effect is clearly negligible when all fine scale domains are homogeneous. This

should be investigated again with the second reference fine scale domain to see the effect

of the obstacle.
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Figure 4: Velocity curves at steady state using different fine scale domain sizes l for the

lid-driven cavity problem with homogeneous fine scale: (a) vM
x along the vertical line

going through the center of the cavity, (b) vM
y along the horizontal line going through

the center of the cavity. Lengths are in meters and velocities in meters per second.

4.1.3 Comparison with single-scale models: influence of Reynolds number

Finally, to validate the multiscale model, a comparison with two single-scale simulations

at different Reynolds numbers is considered. The first one solves the Navier-Stokes equa-

tions for Newtonian incompressible flow using the Taylor-Hood P2/P1 pair directly at the

coarse scale, while the second one adds stabilization terms based on the Residual-Based

Variational MultiScale (RBVMS) formulation [9], which has been implemented in FEMS

in a previous work [16].

Simulations are run with a different dynamic viscosity in order to obtain a Reynolds

number of 5 and 50. All results are shown in Fig. 5.

The curves coincide, which suggests that for these low Reynolds numbers the effect of the

RBVMS formulation is negligible, and also that the multiscale model agrees well with

single-scale simulations.

4.1.4 With obstacles: influence of fine scale domain size

The reference fine scale domain with an obstacle is now considered. Similarly to Par.

4.1.1, a prior analysis (not reported herein) showed that the reference mesh size of 3.2 mm

is fine enough for the fine scale domain. Three simulations are run by varying the fine
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Figure 5: Velocity curves at steady state compared with single-scale simulations at dif-

ferent Reynolds numbers for the lid-driven cavity problem with homogeneous fine scale:

(a) vM
x along the vertical line going through the center of the cavity, (b) vM

y along the

horizontal line going through the center of the cavity. Lengths are in meters and velocities

in meters per second.

scale domain size following the same procedure as in Par. 4.1.2. Note that this means

that the obstacle size also changes, while the obstacle area fraction relative to the fine

scale domain area remains constant. The three results are compared in Fig. 6.

Although it has not been observed for the simulations with homogeneous fine scale do-

main, it is clear that the fine scale domain size has an effect when there is an obstacle at

the fine scale. Increasing the length l has the consequence of smoothing the velocity field,

as the boundary layer in Fig. 6(a) becomes more pronounced when l is decreased. Addi-

tionally, as shown in Fig. 6(b), the fluid motion imposed at the top penetrates deeper in

the cavity when l is increased.

4.1.5 With obstacles: influence of fine scale obstacle area fraction

In previous simulations, the fine scale obstacle area fraction has been kept constant. It

is interesting to investigate also the effect of this fraction on the results, at a constant

l. Two additional fine scale domains are generated. All parameters are kept identical to

the reference domain with obstacle, but the obstacle radius is changed to R ≈ 0.0085 m

to have half the obstacle area fraction, and R ≈ 0.0170 m to have twice the obstacle area
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Figure 6: Velocity curves at steady state using different fine scale domain sizes l for the

lid-driven cavity problem with an obstacle at the fine scale: (a) vM
x along the vertical line

going through the center of the cavity, (b) vM
y along the horizontal line going through

the center of the cavity. Lengths are in meters and velocities in meters per second.

fraction. The comparison is shown in Fig. 7.

Once again, the multiscale approach predicts a size effect. When the obstacle area fraction

is low, the fluid motion penetrates deep in the cavity. The result is then similar to the no

obstacle case shown in Fig. 4(b). On the opposite, with a higher obstacle area fraction,

the space for the fluid flow becomes smaller, resulting in a slower flow deep in the cavity,

as shown in Fig. 7(b).

4.1.6 With obstacles: comparison with single-scale models

As in Par. 4.1.3, a multiscale simulation with a circular obstacle of radius R = 0.015 m

and a fine scale domain size l = 0.1 m is compared with a single-scale model with stabi-

lization. Note that for this problem, a single-scale simulation without stabilization was

also conducted but it did not converge. The difference with Par. 4.1.3 is that there are

obstacles that should be modeled and discretized directly at the coarse scale in the single-

scale simulations, as shown in Fig. 8. The mesh size for these single-scale simulations is

identical to that used at the fine scale in the multiscale model, i.e., 4 mm. The obstacle

size is intentionally quite large (one tenth) compared to the coarse scale domain size in

order to keep the computational cost of the single-scale simulations reasonable.
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Figure 7: Velocity curves at steady state using different fine scale obstacle sizes for the

lid-driven cavity problem with an obstacle at the fine scale: (a) vM
x along the vertical line

going through the center of the cavity, (b) vM
y along the horizontal line going through

the center of the cavity. Lengths are in meters and velocities in meters per second.

The comparison between the single-scale simulation and the multiscale model is shown

in Fig. 9. The coarse scale velocity field is relatively smooth because of scale separation.

The fluctuation due to the obstacle is captured at the fine scale. Overall, the isocontours

match well between the multiscale simulation and the single-scale simulation.

The velocity curves are shown in Fig. 10. We can see that the multiscale model’s

prediction is accurate but only in an average sense, with the size of the averaging win-

dow being defined by the fine scale domain size l. The error relative to the single-scale

model is large in this case because l is only one tenth of the coarse scale domain size. An

assessment of the evolution of this error with respect to l is proposed in Par. 4.2.1.

In the multiscale model, there are 2, 048 coarse scale mesh elements, 2, 048× 6 = 12, 288

coarse scale integration points and thus fine scale meshes, 12, 288× 1, 524 = 18, 726, 912

fine scale mesh elements and 12, 288× 3, 172× 2 = 77, 955, 072 fine scale velocity degrees

of freedom. In comparison, there are only 159, 164 elements and 328, 627× 2 = 657, 254

velocity degrees of freedom in the single-scale model. The multiscale model is clearly not

relevant when the obstacle size is large.
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Figure 8: Domain and boundary conditions used for the single-scale lid-driven cavity

problem with obstacles. Lengths are in meters and velocities in meters per second.

(a) (b)

Figure 9: Velocity component vx (m s−1) at steady state compared with a single-scale

simulation with stabilization for the lid-driven cavity problem with an obstacle at the

fine scale: (a) single-scale simulation with stabilization, (b) multiscale simulation with

fine scale domains at two different locations (fine scale domains are enlarged for the

visualization).
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Figure 10: Velocity curves at steady state compared with a single-scale simulation for the

lid-driven cavity problem with an obstacle at the fine scale: (a) vM
x along the vertical line

going through the center of the cavity, (b) vM
y along the horizontal line going through

the center of the cavity. Lengths are in meters and velocities in meters per second.

As a summary, these first calculations on the lid-driven cavity problem show that:

• The multiscale model and its implementation are consistent and robust when the

fine scale domain is homogeneous. In this case, the fine scale domain size has a

negligible influence.

• When the fine scale domain includes an obstacle, the effects of the obstacle area

fraction and the fine scale domain size are well predicted by the model.

• The multiscale model agrees well with single-scale simulations, but only in an av-

erage sense.

For the Reynolds numbers considered herein, the lid-driven cavity problem converges to

a steady state. Although it is modeled with transient solvers, unsteady flow has not been

addressed yet.

4.2 L-shaped domain with obstacles

We now consider unsteady flow through an L-shaped channel at the coarse scale. The

domain is still the square of area 1 m2, but it is composed of a dark phase and a light
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phase as shown in Fig. 11(a). The domain is discretized with a reference mesh size of

0.04 m.

The traction vector is set to tMN (x, t) = (sin(2πt), 0) to obtain a time-varying pressure

at the left boundary, and the top and bottom boundaries are defined as non-penetrating

walls. Unless otherwise mentioned, the fluid mass density is fixed to 1 kg m−3, gravity is

neglected and the fluid dynamic viscosity is fixed to 1 Pa s. The problem is solved with a

time step of ∆t = 0.03 s for 100 time steps.

The reference fine scale domain for the dark phase is the same as that in Figure 2(c),

except that it has a size l = 0.1 m and an obstacle radius R = 0.015 m. It is discretized

with a mesh size of 4 mm, as shown in Fig. 11(b). The obstacle size is once again

quite large (one tenth) compared to the coarse scale domain size in order to keep the

computational cost of the single-scale simulations reasonable. The reference fine scale

domain for the light phase is the same as that in Figure 2(b), except that it has a size

l = 0.1 m and is discretized with a mesh size of 0.1 m. This is possible because we showed

in Pars. 4.1.2 and 4.1.1 that for a homogeneous fine scale domain both l and the mesh

size have a negligible influence on the computational results. A single-scale model could,

in fact, be used for this part of the coarse scale domain, but this is not possible in our

implementation.

4.2.1 Comparison with single-scale models: influence of fine scale domain

size

To assess the performance of the multiscale approach for increasing numbers of obstacles,

we introduce for the dark phase two fine scale domain sizes l = 0.05 m and l = 0.025 m

in addition to the reference one. We use the multiscale model and also the single-scale

models shown in Figure 12. Near obstacles in these single-scale models, the mesh size is

set to 4 mm for l = 0.1 m, 2 mm for l = 0.05 m, and 1 mm for l = 0.025 m. Away from

obstacles, it is set to 0.04 m. These values are chosen so that the multiscale models and

the single-scale models are comparable.

We end up with 48, 914 elements and 99, 662 × 2 = 199, 324 velocity degrees of free-

dom for l = 0.1 m (Figure 12(a)), 177, 528 elements and 359, 649 × 2 = 719, 298 ve-

locity degrees of freedom for l = 0.05 m (Figure 12(b)) and 673, 914 elements and
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Figure 11: Domains, boundary conditions and reference discretizations used for the L-

shaped domain problem: (a) coarse scale domain, (b) holed fine scale domain. Lengths

are in meters, velocities in meters per second and pressures in Pa.

1, 359, 871 × 2 = 2, 719, 742 velocity degrees of freedom for l = 0.025 m (Figure 12(c)).

For the dark phase in the multiscale model, for all values of l, there are 452 coarse scale

mesh elements, 452×6 = 2, 712 coarse scale integration points and thus fine scale meshes,

2, 712× 1, 524 = 4, 133, 088 fine scale mesh elements and 2, 712× 3, 172× 2 = 20, 133, 888

fine scale velocity degrees of freedom. For the light phase in the multiscale model, for all

values of l, there are 1, 298 coarse scale mesh elements, 1, 298 × 6 = 7, 788 coarse scale

integration points and thus fine scale meshes, 7, 788×2 = 15, 576 fine scale mesh elements

and 7, 788 × 9 × 2 = 140, 184 fine scale velocity degrees of freedom. This amounts to a

total of 4, 148, 664 fine scale mesh elements and 20, 274, 072 fine scale velocity degrees of

freedom.

On the one hand, although the single-scale model still involves less degrees of freedom

than the multiscale model, we can see that its computational cost would eventually blow

up with small obstacle sizes, as in 2D the number of degrees of freedom is multiplied by

nearly four when the fine scale domain size is divided by two. On the other hand, the

number of degrees of freedom in the multiscale model does not depend on the obstacle

size. From this analysis, we can estimate that in 2D the multiscale model would become
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interesting from the computational cost viewpoint for obstacles at least a hundred times

smaller than the coarse scale domain size. The resin transfer molding process, for in-

stance, is a process used to manufacture fiber-reinforced polymer composite parts. The

resin is injected progressively into the mold and permeates through the fiber reinforce-

ment. This process involves molds of a few meters and fibers of a few microns, the ratio

is hence around one million.

(a) (b) (c)

Figure 12: Domains and reference discretizations used for the single-scale models of the

L-shaped domain problem: (a) l = 0.1 m, (b) l = 0.05 m, (c) l = 0.025 m.

The velocity field at t = 0.36 s is shown in Figure 13. We can see that the dark phase

acts as a coarse obstacle, which is actually composed of a large number of fine obstacles.

Similarly as for the lid-driven cavity problem, we observe a slight decrease of the flow

velocity when the obstacle size is decreased, as the size of the high velocity region at the

top of the domain is smaller in Figures 13(c,f) as compared to 13(a,d).

The single-scale and the multiscale simulation results match well with each other

based on those figures. This can also be observed for the pressure fields shown in Figure

14. Note that these fields have been normalized so that the integral of the coarse scale

pressure field over the coarse scale domain is equal to zero. We can see in Figure 14(c)

that the small fluctuations of the pressure field due to the obstacles is less visible at the

coarse scale when the obstacles are smaller. As a result, the pressure fields in Figures

14(c) and 14(f) match very well.
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(a) (b) (c)

(d) (e) (f)

Figure 13: Velocity component vx (m s−1) at t = 0.36 s compared with single-scale sim-

ulations for the L-shaped domain problem: (a) single-scale simulation with l = 0.1 m,

(b) single-scale simulation with l = 0.05 m, (c) single-scale simulation with l = 0.025 m,

(d) multiscale simulation with l = 0.1 m, (e) multiscale simulation with l = 0.05 m, (f)

multiscale simulation with l = 0.025 m.
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(a) (b) (c)

(d) (e) (f)

Figure 14: Normalized pressure p at t = 0.36 s compared with single-scale simulations for

the L-shaped domain problem: (a) single-scale simulation with l = 0.1 m, (b) single-scale

simulation with l = 0.05 m, (c) single-scale simulation with l = 0.025 m, (d) multiscale

simulation with l = 0.1 m, (e) multiscale simulation with l = 0.05 m, (f) multiscale

simulation with l = 0.025 m.

This influence of the fine scale domain size on the error of the multiscale model is

analyzed quantitatively in Figure 15, where we report the evolution of the velocity along

a horizontal line at t = 0.36 s. On the one hand, we can see that the multiscale model’s

accuracy is always quite good away from obstacles, but that for large obstacles the error

is significant in the dark phase. On the other hand, the multiscale model becomes very

accurate even in the dark phase for very small obstacles as in Figure 15(c).
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We obtain a relative error in 2-norm between the multiscale and single-scale curves of

12% for l = 0.1 m, 4.1% for l = 0.05 m and 2.5% for l = 0.025 m. These results show that

the error of the multiscale model converges to zero with decreasing obstacle sizes. This

is interesting as the computational cost of the multiscale approach is also decreased for

very small obstacles as compared to the single-scale approach.
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Figure 15: Velocity component vx along the horizontal line y = 0.25 m curves at t =

0.36 s compared with single-scale simulations for the L-shaped domain problem using:

(a) l = 0.1 m, (b) l = 0.05 m, (c) l = 0.025 m. Note that in (a) the line goes through

obstacles, while it is not the case in (b,c). Lengths are in meters and velocities in meters

per second.

4.2.2 Comparison with single-scale models: influence of Reynolds number

Similarly as for the lid-driven cavity problem, we evaluate the accuracy of the multiscale

approach for different Reynolds numbers by varying the dynamic viscosity. Because the

pressure is imposed instead of the velocity, we can only compute the Reynolds number in

post-processing. To compute the Reynolds number, we use the maximum of the velocity

component vx throughout the time and space domains, and the coarse scale domain size

(1 m). We obtain the values given in Table 1. We denote each configuration according to

the table. Note that the fine scale domain size could have been used for the computation

of the Reynolds number, in which case the values given in Table 1 would have been ten

times smaller.

In Figure 16, we show the evolution of the velocity components at x = y = 0.6 m,
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Dynamic viscosity Reynolds number Reynolds number Denotation

(Pa s) (multiscale model) (single-scale model)

100 1.6× 10−1 1.7× 10−1 Re ≈ 10−1

10−1 3.6× 100 3.6× 100 Re ≈ 100

10−2 3.8× 101 3.8× 101 Re ≈ 101

10−3 3.7× 102 4.4× 102 Re ≈ 102

Table 1: Post-processed Reynolds numbers

which is a point located inside the light phase but near the corner of the dark phase. We

obtain a relative error in 2-norm between the multiscale and single-scale curves shown in

Figure 16(a) of 6.9% for Re ≈ 10−1, 4.4% for Re ≈ 100, 5.1% for Re ≈ 101 and 0.7% for

Re ≈ 102. The results are very good. Surprisingly, the accuracy even seems to improve

for higher Reynolds numbers.

As shown in Figure 16(b), this surprising observation is not confirmed when looking at

the second component. We obtain a relative error in 2-norm between the multiscale and

single-scale curves shown in Figure 16(b) of 4.0% for Re ≈ 10−1, 3.6% for Re ≈ 100, 9.7%

for Re ≈ 101 and 13% for Re ≈ 102. Since viscous flows can be modeled with Darcy’s

law, it is not surprising that our method is more accurate for small Reynolds numbers.

These results additionally show that the error increases with the Reynolds number.

Figure 16(b) also reveals that for higher Reynolds numbers the error increases during

the simulation. This is clear for the Re ≈ 102 simulations where we see the multiscale

curve slowly drifting away from the single-scale curve. To analyze the flow at the end

of the simulation, we show the velocity component vy computed by the multiscale and

single-scale models for Re ≈ 100 at t = 2.25 s, 2.40 s, 2.55 s, 2.70 s in Figures 17 and 18.

The multiscale model is very accurate in the light phase where there is no obstacle, except

for a slight underestimation of the velocity that is clearly visible in Figures 17(d,e). For

the comparison in the dark phase, we also show in Figures 17 and 18 the results for the

fine scale domain closest to x = y = 0.25 m, which corresponds to the position of the

obstacle at the center of the 5 × 5 array. These additional results show that the fine
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Figure 16: Velocity components evolution curves at x = y = 0.6 m compared with single-

scale simulations for the L-shaped domain problem using different Reynolds numbers: (a)

vx, (b) vy. Time is in seconds and velocities in meters per second.

fluctuations of the flow are well captured at the fine scale, while they are smoothed out

at the coarse scale in the multiscale approach.

The same results are shown for Re ≈ 101 in Figures 19 and 20. Although the multi-

scale simulation results still corresponds well to the single-scale ones, the differences are

more visible for this higher Reynolds number.

These results show that the multiscale approach is reliable for a wide range of inertial

flows, but not for turbulent flows. The approach in fact lacks not only a turbulence model

but also stabilization.

4.2.3 Computational cost

The obstacle size was previously kept large in order to limit the computational cost of the

single-scale simulations. In the following, we demonstrate the capabilities of the proposed

multiscale approach for a case which could not be solved using a single-scale model.

The fine scale domain for the light phase is the same as that presented in Figure 2(c),

except that it has a size l = 1 mm and an obstacle radius R = 0.15 mm. We use the same

fine scale domain for the dark phase, but with an obstacle radius changed to R = 0.39 mm.
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(a) (b) (c)

(d) (e) (f)

Figure 17: Velocity component vy (m s−1) evolution compared with single-scale simu-

lations for the L-shaped domain problem with Re ≈ 100: (a) single-scale simulation

at t = 2.25 s, (b) multiscale simulation at t = 2.25 s, (c) chosen fine scale domain

at t = 2.25 s, (d) single-scale simulation at t = 2.40 s, (e) multiscale simulation at

t = 2.40 s, (f) chosen fine scale domain at t = 2.40 s. The chosen fine scale domain

is at x = y = 0.25 m and is enlarged for the visualization.
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(a) (b) (c)

(d) (e) (f)

Figure 18: Velocity component vy (m s−1) evolution compared with single-scale simu-

lations for the L-shaped domain problem with Re ≈ 100: (a) single-scale simulation

at t = 2.55 s, (b) multiscale simulation at t = 2.55 s, (c) chosen fine scale domain

at t = 2.55 s, (d) single-scale simulation at t = 2.70 s, (e) multiscale simulation at

t = 2.70 s, (f) chosen fine scale domain at t = 2.70 s. The chosen fine scale domain

is at x = y = 0.25 m and is enlarged for the visualization.
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(a) (b) (c)

(d) (e) (f)

Figure 19: Velocity component vy (m s−1) evolution compared with single-scale simu-

lations for the L-shaped domain problem with Re ≈ 101: (a) single-scale simulation

at t = 2.25 s, (b) multiscale simulation at t = 2.25 s, (c) chosen fine scale domain

at t = 2.25 s, (d) single-scale simulation at t = 2.40 s, (e) multiscale simulation at

t = 2.40 s, (f) chosen fine scale domain at t = 2.40 s. The chosen fine scale domain

is at x = y = 0.25 m and is enlarged for the visualization.
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(a) (b) (c)

(d) (e) (f)

Figure 20: Velocity component vy (m s−1) evolution compared with single-scale simu-

lations for the L-shaped domain problem with Re ≈ 101: (a) single-scale simulation

at t = 2.55 s, (b) multiscale simulation at t = 2.55 s, (c) chosen fine scale domain

at t = 2.55 s, (d) single-scale simulation at t = 2.70 s, (e) multiscale simulation at

t = 2.70 s, (f) chosen fine scale domain at t = 2.70 s. The chosen fine scale domain

is at x = y = 0.25 m and is enlarged for the visualization.
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We obtain an obstacle area fraction of 7.1% in the light phase and 48% in the dark phase.

Both fine scale domains are discretized with a mesh size of 0.04 mm. The fluid dynamic

viscosity is changed to 1 µPa s to obtain a Reynolds number of 50, 000. As mentioned in

Par. 4.2.2, if the fine scale domain size was used for the computation of the Reynolds

number instead of the coarse scale domain size, a Reynolds number of only 50 would have

been obtained instead.

For the dark phase in the multiscale model, there are 2, 712× 844 = 2, 288, 928 fine scale

mesh elements and 2, 712×1, 852×2 = 10, 045, 248 fine scale velocity degrees of freedom.

For the light phase in the multiscale model, there are 7, 788 × 1, 524 = 11, 868, 912 fine

scale mesh elements and 7, 788 × 3, 712 × 2 = 57, 818, 112 fine scale velocity degrees of

freedom. This amounts to a total of 14, 157, 840 fine scale mesh elements and 67, 863, 360

fine scale velocity degrees of freedom. We estimate that for this problem the number of

elements in a single-scale model would be
844× 1 + 1, 524× 3

4
× 1, 000 × 1, 000 ≈ 109.

The number of velocity degrees of freedom would be of the same order. There is a reduc-

tion by 100 of the computational complexity using the proposed multiscale approach.

The multiscale approach is also theoretically more relevant for parallel computing.

We indeed observe in our simulations that 99% of the computation time is spent solving

fine scale problems, which are independent problems that can easily be solved in parallel

as mentioned in Subsec. 3.4. To demonstrate the efficiency of this parallel algorithm,

we conduct strong and weak scaling analyses by solving the first three time steps of

the simulation using different numbers of CPUs. We consider for these analyses only

the computation time spent in the multiscale scheme presented in Subsec. 3.4, but the

conclusions also apply for the total computation time since all other operations (pre-

processing, post-processing, writing outputs) have a negligible cost. These simulations

are run on specific nodes of a computing cluster which have an Intel(R) Xeon(R) E5-2630

v3 @ 2.40GHz multi-processor with 16 CPUs and 64 GB of RAM.

The results are reported in Table 2 for the strong scaling analysis. It is quite impressive

that we still benefit from parallel execution when we use 64 CPUs for a coarse mesh of

only 1,750 elements, as this leads to less than 30 coarse mesh elements per partition. We

could expect better results, however, in relation to our comments on the independence
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of the fine scale problems.

Number of CPUs Computation time Speedup Efficiency

per time step (h) (%)

1 45.84 1 100

2 25.29 1.81 91

4 15.16 3.02 76

8 8.24 5.56 70

16 4.78 9.58 60

32 2.50 18.34 57

64 1.28 35.81 56

Table 2: Strong scaling results. The efficiency is defined as the speedup divided by the

number of CPUs. All simulations use a single computing node, except for the one with

32 CPUs which uses two, and the one with 64 which uses four.

Weak scaling analysis results are reported in Table 3. We observe that distributed

computing can be exploited to solve larger problems with a limited increase of compu-

tation time. The results are again a little disappointing in relation to our comments on

the independence of the fine scale problems. This can be explained by the unbalance

in computational cost of the fine scale problems. In this problem for instance, there is

a singularity at the corner of the dark phase which leads to larger coarse scale velocity

gradients in this region. The fine scale problems, consequently, involve more Newton-

Raphson iterations.

The limited parallel efficiency with more CPUs can also be explained by the differ-

ence in the number of fine scale mesh elements and velocity degrees of freedom between

the two phases. With more CPUs, some partitions end up completely embedded in one

phase, which increases the unbalance of the computational cost of the fine scale solves

between partitions. To deal with this issue, it could be interesting to regularly and dy-

namically re-balance the partitions during the simulation based on the computation time
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Number of CPUs Number of coarse Computation time Efficiency

mesh elements per time step (h) (%)

1 482 13.11 100

2 982 14.92 88

4 2,008 16.95 77

8 4,196 18.31 71

16 7,582 18.80 70

32 15,972 17.74 74

64 32,966 27.03 49

Table 3: Weak scaling results. All simulations use a single computing node, except for

the one with 32 CPUs which uses four, and the one with 64 which uses eight.

spent solving fine scale problems.

For the simulation using 64 CPUs, in addition, we solve all time steps and show the

results in Figure 21. We observe spurious oscillations at the boundary layer between the

two phases. They can be explained by the discontinuity in obstacle area fraction between

the two phases, and by the Reynolds number as well.

To reduce the oscillations, the coarse scale mesh can be refined in the boundary layer.

An adapted coarse scale mesh with 3, 081 elements in the dark phase and 3, 149 in the

light phase is proposed in Figure 22(a). Simulation results using this mesh are shown in

Figure 22(b-f). The oscillations are drastically reduced. This indicates that for problems

involving different distributions of obstacles, a special care should be taken for the cre-

ation of the coarse scale mesh, even though obstacles are only discretized in the fine scale

domains.

Fine scale results are shown for different locations at t = 2.40 s in Figure 23. The com-

parison with Figure 22(d) shows that the different orientations of the flow are transferred

at the fine scale. As shown in Figure 23(c), in the boundary layer on the light phase
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(a) (b) (c)

(d) (e)

Figure 21: Velocity component vx (m s−1) evolution for the L-shaped domain problem

with l = 1 mm at: (a) t = 2.10 s, (b) t = 2.25 s, (c) t = 2.40 s, (d) t = 2.55 s, (e) t = 2.70 s.
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(a)
(b) (c)

(d) (e) (f)

Figure 22: Adapted coarse scale mesh (a) and velocity component vx (m s−1) evolution

for the L-shaped domain problem with l = 1 mm at: (b) t = 2.10 s, (c) t = 2.25 s, (d)

t = 2.40 s, (e) t = 2.55 s, (f) t = 2.70 s.
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side, in particular, we observe larger velocities at both scales. This demonstrates the

capabilities of the multiscale method to capture the features of the flow simultaneously

at the two scales.

5 Conclusions

In this paper, a new multiscale theory and, more importantly, its implementation in a

Finite Element (FE) context have been proposed for unsteady incompressible flows in

domains containing very small obstacles. In this theory, the obstacles are represented in

fine scale domains that are attached at each integration point of the coarse scale domain.

This avoids representing the obstacles directly at the coarse scale, which becomes com-

putationally intractable for very small obstacles.

The proposed method therefore involves a coarse scale mesh, a coarse scale velocity field,

and fine scale meshes and velocity fields. A principle of multiscale virtual power has been

formulated to relate the coarse scale velocity to its fine scale counterpart, and to provide

simultaneously the boundary conditions for the fine scale problems and the equations to

solve for the coarse scale problem. The boundary conditions at the fine scale are indeed

applied through Lagrange multipliers that directly provide the coarse scale force per unit

volume and stress for the equations to solve at the coarse scale. The incompressibility

constraint has been handled with special care by introducing an independent pressure

variable at both scales.

A two-way coupling algorithm has been proposed to implement the theory. This FExFE

(FE2) scheme relies on the Taylor-Hood P2/P1 pair at both scales to deal with the incom-

pressibility constraint. A fully-implicit Newton-Raphson procedure has been proposed to

solve the coarse and fine scale problems simultaneously. Automatic differentiation has

been used to linearize the coarse scale force per unit volume and stress.

The multiscale simulation method has been applied to two test problems involving in-

ertial flows. Comparisons with single-scale simulations where the obstacles are directly

discretized in the coarse scale domain mesh have shown that the proposed multiscale

approach is reliable. The proposed approach, in particular, captures well the influence

of the obstacle size and area fraction. Its accuracy increases when the ratio between the
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(a) (b)

(c) (d)

Figure 23: Velocity component vx (m s−1) for the L-shaped domain problem with l =

1 mm and an adapted mesh at t = 2.40 s within a fine scale domain located at: (a)

x = 0.45 m, y = 0.45 m, (b) x = 0.55 m, y = 0.45 m, (c) x = 0.45 m, y = 0.55 m, (d)

x = 0.55 m, y = 0.55 m.
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coarse scale domain size and the obstacle size increases, and decreases when the Reynolds

number increases.

An analysis of the computational cost of the method has also been conducted. The results

show that the method is not relevant when the ratio between the coarse scale domain size

and the obstacle size is small, whereas it becomes interesting from the point of view of

both accuracy and computational cost when this ratio is larger than 100. This method

is hence relevant for a wide range of applications involving flows in porous media such as

resin transfer molding or reservoir engineering.

The parallel implementation of the method in a distributed computing environment has

also been presented and the efficiency of this implementation has been analyzed. The

results show that the parallel efficiency is impressive with respect to the number of coarse

scale mesh elements, but that it could be improved. A re-balancing strategy based on the

computation time spent solving fine scale problems would in fact be worth considering.

Consequently, the proposed multiscale framework for unsteady flows opens a new avenue

for multiscale modeling in computational fluid dynamics. Other types of flows such as

non-Newtonian flows or multiphase flows could for instance be integrated in the multiscale

framework.
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