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A B S T R A C T

Mass customization (MC) is one of the leading strategies used in production industries in today’s market filled
with competition. MC is an oxymoron of controlling production costs and satisfying customers’ individual re-
quirements. It is well known that economy of scale and economy of scope is a pair of conflicts, and how to get the
balance between them is the key issue to promote enterprises’ competition. By analyzing and processing in-
formation of customer preference, product features and cost, this paper proposes a decision support model in
mass customization to obtain the optimized production solution. Genetic algorithm is used for optimization, and
the results of an illustrative example show that the model is efficient in production industries.

1. Introduction

With the rapid improvement of human’s production level and in-
formation processing ability, simply considering the mode of mass
production and/or personalized customization cannot meet people’s
requirements. New production paradigms are driving by changeable
markets and diverse evolved social needs (Koren, 2010). Companies
began to call for a comprehensive production mode considering both
customers’ personalized needs and low cost brought by mass produc-
tion, which can promise sustainable development of companies. With
continuous exploration and practice, a new production mode is gra-
dually applied in manufacturing industries, which is known as mass
customization. In “Future Shock”, Toffler, 1970 creatively proposed an
innovative idea which can meet the specified requirements of custo-
mers with cost close to that of standardized production. Davis, 1987
named the proposed production mode as mass customization in “Future
Shock”. Mass customization considers both the economics of scale and
economics of scope, in order to achieve personalized customer demand
at the cost of mass production. Mass customization (MC) is usually
referred as a term as an oxymoron of mass production and customized
goods (Kaplan &Haenlein, 2006), and it has become an undisputable
reality that MC is one of the leading strategies in satisfying customers
and assuring companies survival in today’s markets characterized by
constantly changing environment, rapid technology progress and fierce
market competition (Daaboul, DaCunha, Bernard, & Laroche, 2011).

With the improvement of peoples’ living standards, consumers no
longer simply focus on product function, but more and more prefer
personalized products, which can satisfy their subjective perception

(Trentin, Perin, & Forza, 2014). On the other hand, personalized pro-
duction will cause reduction of production scale, expansion of product
range and cost rising, because it is unable to make multiple products
with a single production template. Different modern production sys-
tems are used to solve the above mentioned problems, such as lean
manufacturing, cellular manufacturing and batch production. Lean
manufacturing is a management philosophy derived mostly from the
Toyota Production System (TPS). It is a systematic method for waste
minimization within a manufacturing system without sacrificing pro-
ductivity, by reducing everything which is not adding value (Onyeocha,
Khoury, & Geraghty, 2015). As a subsection of lean manufacturing and
just-in-time (JIT) manufacturing, cellular manufacturing is a process of
manufacturing which encompass group technology. It moves as quickly
as possible, while making a wide variety of similar products and, at the
same time, as little waste as possible (Bootaki, Mahdavi, & Paydar,
2016). Different from mass production, also called as flow production
or continuous production, which is a production mode to provide large
amounts of standardized products, batch production is a technique used
in manufacturing, in which a series of workstations stage by stage is
created, and different batches of products are made (Al-Salamah,
2016). Different from those modern production system, mass customi-
zation aims at providing diversified products and service to consumers,
and ensuring that each consumer can get the specific product he/she
needed with a reasonable price (Trentin, Forza, & Perin, 2015). Mass
customization will not meet all of consumers’ individual needs re-
gardless of cost, because relatively high cost is not economical for both
consumers and companies. The features of mass customization are:
reducing production cost by economics of scale and better meeting
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clients’ requirements by economics of scope. As a result, mass custo-
mization will become the main production mode used in manufacturing
industries.

2. Mass customization analysis

Mass customization refers to the capability to provide customized
product/service for a mass market. The essential value of mass custo-
mization is to satisfy customers’ individual preference at a low cost
brought by mass production (Wang, Zhang, Sun, & Zhu, 2016). High
quality and high efficiency are required in mass customization, and
customers are usually involved in the production and service process, so
as to get the products featured by their own personal attributes.

Mass customization makes high added-value products/services, and
enhances profitability by reducing the costs of production and logistics
and better satisfying the customer personalized requirements
(Grenci &Watts, 2007; Jiao, Ma, & Tseng, 2003). When an enterprise is
able to offer personalized or customized products, customer is then
involved in the product design process, which may increase the value of
the product – customer perceived value (CPV) (Gautam& Singh, 2008).
One of the most distinguished features of mass customization is to
provide customers with the possibility to co-design products/services
according to their personalized preferences and interests
(Ogawa & Piller, 2006). Products/services can be considered to be an
integration of different modules, and different features of these modules
can satisfy customers’ needs and provide value, which requires an ef-
ficient product family design strategy (Tyagi, Yang, Tyagi, & Verma,
2012). However, excess complexity in product configuration has a ne-
gative impact on performance, especially for small companies, as
Brunoe and Nielsen (2016) pointed out. Fang, Li, and Lu (2016) pointed
out that learning and innovation can also significantly influence process
automation so as to enhance performance.

Implementing mass customization in manufacturing industry is
quite challenging and a variety of elements such as customer require-
ment and preference, supply chain management, customer relationship
management, manufacturing process, price issues should be considered.
Information about all these elements is recognized as a manageable key
resource for enterprises to survive and develop
(Bernard & Tichkiewitch, 2008), and people are paying more and more
attention in knowledge and information processing during production
development (Xu, Bernard, Perry, Xu, & Sugimoto, 2014). How to pro-
cess production information in a quantitative way is very crucial to
improve decision support model in a given business context, for ex-
ample, mass customization. Scale effect is one of the primary means to
reduce costs (Easton & Sommers, 2003). A decision support model
should be applied to balance the two sides of scale effect and custo-
mized requirements. This paper will make a quantitative study to solve
the core problem in mass customization: to what extent the benefit
brought by customization can compensate the increased cost caused by
quantity reduction.

One important issue to be discussed is how to determine the cus-
tomization degree in mass customization from the point of view of
product lifecycle. Manufacturers should take into account clients’ re-
quirements and production cost to decide what categories of product
should be produced at what quantity, then make production plan of
each stage of the whole product lifecycle. Taking clothing industry as
example, apart from luxurious product such as customized suit, clothing
industry is mainly based on mass production strategy. However, as new
brands are emerging on the market, more competitors are dividing the
market, so that personalized production directed by distinguished
customer groups is a trend. Therefore, it is necessary to consider using
mass customization model in clothing industry, and to integrate factors
like diverse customers’ needs gathered through market research, pro-
duction cost, time delay, etc. By constructing a quantitative model,
producers can decide the best balance point between customers’ pre-
ference and product cost.

Due to the diversity of market and the limit of enterprise resource,
enterprise can hardly meet any needs of all the customers. A relatively
rational strategy for enterprise is to make market division so as to fix
the target markets and potential consumers, and then clarify market
and consumer positioning. On one hand, enterprises should concentrate
resources to meet part of customers’ needs, and on the other hand,
enterprises should consider alternative choice to substitute the other
part of customers’ need, in order to maximize company’s profit by re-
ducing costs and promoting sales.

Due to the fixed costs and technique development, economies of
scale would reduce the average cost of products to some extent, so mass
production strategy is usually chosen by companies. However, homo-
genous products can hardly meet consumers’ diverse needs. Taking
sport clothing industry as example, it is a buyer’s market and consumers
have many choices as alternatives that are quite available.

If enterprises choose mass production mode without specifying
customers’ requirements and personal preferences, it will likely lead to
the loss of customers, or the decrease of customer’s satisfaction and
loyalty. In such cases, significant decline in sales will reduce company’s
profit, or even lead to losses. Potential impacts may include harm to
corporate image. So choosing traditional mode of production or mar-
keting is not appropriate. On the other hand, although to provide cli-
ents with fully customized product will meet their personal needs and
ensure high customer satisfaction and loyalty, product sales quantity
will be quite few, especially in luxury industry. Further, fully custo-
mized product leads to high costs. Clients have a diversity of require-
ments, mapping to diverse products, and each type of product has
quasi-fixed cost (cost which will happen if this type of product is pro-
duced, otherwise no cost is needed), so if production quantity of each
type of product is too small, income may not cover cost and overall
profit will drop. As for sport clothing industry, apart from special cus-
tomization for professional athletes, most companies rely on large
quantity sales, so pure customization mode is not appropriate either. As
insightful results in mass customization application, Yao and Liu (2009)
set up a dynamic and multi-objective optimization mathematical model
and appropriate solving algorithm to solve optimization and scheduling
problems in mass customization. Yang, Dong, and Chang (2012) pre-
sented a direct approach to encoding configuration models into the
Dynamic Constraint Satisfaction Problems (DCSP), where low-level
components join in the solving process only after its high-level com-
ponent is selected in the configuration. Dou, Zhang, and Nan (2016a)
proposed an approach to customer-oriented product collaborative cus-
tomization for manufacturer to improve the design process, and ex-
perimental results demonstrated that the approach could effectively
identify customers’ preference and obviously improve their customi-
zation efficiency. Dou, Zong, and Nan (2016b) proposed a multi-stage
interactive genetic algorithm (MS-IGA) to ameliorate user experience
and evaluation process, and when it is applied to the conceptual design
system, the knowledge of users’ personalized requirements is better
captured.

From analysis above, we may infer that traditional mass production
method and pure customization mode are either appropriate choice for
sport clothing companies, so mass customization, which is a balance
between them, could be an ideal choice to maximize companies’ profit.

In spite of a certain degree of risk caused by the attempt of applying
mass customization, it is worth making this choice as customer sa-
tisfaction and loyalty can be greatly improved without increasing too
much cost, especially in today’s society characterized by in-
dividualization and differentiation.

The most interesting task of mass customization is how to increase
product diversification and customization without too much increase of
product costs. Thus, mass customization is applied by more and more
enterprises to attract customers and make more profits. A survey based
on market investigation shows that customers are willing to pay more
to get customized sport clothes (different colors, logos, words, graphics,
etc., which can be determined by customers) rather than homogeneous
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clothes. Another result got from the investigation is that customers are
willing to pay more for personalized requirements but they would like
to pay extra fees as less as possible (Xu, 2015). Consequently, an ob-
vious conclusion can be made: enterprises which can apply mass cus-
tomization to provide customized product and/or service with a lower
price will win in the fierce market competition.

The following sections will discuss about the modeling and testing
process of the decision support model based on mass customization. In
the modeling section, assumptions and variables are given, and in
testing section, a case on numerical simulation will be studied and
discussed.

3. Mass customization modeling

Sportswear manufacturing will be chosen as the object of case study,
and both modeling and testing processing will consider the feature of
that industry. The case of sportswear is supposed to be a mono-
polistically competitive market, as in real world practice, there is no
dominant vendor, but individual manufacturers have still control on
prices. In case study, different clients have different preference on
different T-shirt classes, so the core problem is to help companies de-
termine which production solution be chosen. For the objective func-
tion of decision making, it is modeled according to the total sales in-
come and production cost. Detail assumptions about the case is
illustrated as follows.

3.1. Assumptions

Assumption 1. The industry of sportswear is a monopolistically
competitive market, which is between the monopoly market and
competitive market, including both competition and monopoly.

In a perfectly competitive market, all companies are price takers.
Price is determined by market supply and demand, and the industry
achieves a balance of supply and demand. All manufacturers can sell
products at the equilibrium price, so there is no incentive to cut the
price. As the products from every manufacturer have exactly the same
characteristics, small price increase will cause loss of all the customers.
In other words, individual manufacturer has no control on prices.

In a monopoly market, only one or a few dominant vendors, and the
products have few alternatives for clients, so customer loyalty is often
quite high. In such cases, vendors have great influence on the market
price, and the elasticity of demand curve is often quite low. When
vendors raise product prices within a certain range, the loss of customer
is quite small, and thus the profit increase with increase in price.

In a monopolistically competitive market, products are sets of close
substitutes of all vendors for the customers. From the point of view of
vendors, every product is unique, but from the point of view of clients,
each product is a substitute to some extents. In such cases, vendors have
a certain influence on product prices, and when prices increase, vendors
will lose some customers, but not all. These losses of clients depends on
to what extent the customers consider the similarity of different pro-
ducts, in other words, they depend on the elasticity of the demand
curve faced by the vendors.

On one hand, vendors have some autonomy in deciding the price,
compared to perfectly competitive market makers where they could
only passively accept the market price. On the other hand, vendors
must compete in terms of price, quality and range of products provided
in order to obtain and retain consumers. Due to the different brand
effect and the different style, quality, location, products provided by
various manufacturers, customers have different preferences and eval-
uate the products differently. At the same time, as there are many si-
milar clothing brands on the market, due to some price advantage and
large-scale publicity, each may occupy a certain market share. In such
situation, the clothing industry is a monopoly (a limited number of
competitive firms) and also competing (competitions among companies

exist for prices, product quality, etc.). Therefore, the hypothesis about
monopolistic competition market is reasonable.

Assumption 2. The objective function of producers is to maximize
profits.

In real world production activities, companies often have to con-
sider a variety of factors when setting target, such as market share,
profit, customer satisfaction and loyalty, brand concept, and corporate
image and culture. For long-term development, enterprises may even
choose loss of business in some cases. However, in order to focus on the
main objective of this paper and simplify the model, a single target to
maximize profit is set, so the objective function is noted as:

∑= ∗ −π P x Q x Cmax ( ) ( )i i

where π means enterprise profit, which is obtained by total revenue
minus the cost. Companies tend to produce a variety of products to
meet the different individual needs of customers. So, xi represents the
amount of the ith product, and P x( )i represents the price of the xth
product determined by the production yield. As manufacturers cannot
guarantee that all the products can be sold out, so the number of actual
sales is represented by a function of yield, noted by Q x( )i . Thus
∑ ∗P x Q x( ) ( )i i represents the total revenue, and C represents the total
cost, including fixed and variable costs. In order to maximize profits,
enterprises should determine the production yield according to ba-
lanced marginal cost and marginal revenue. Explicit definition of the
total cost part of the objective function, i.e. C , is illustrated in detail in
the following section of modeling.

3.2. Modeling

Quantitative models can help searching for the optimal solution to
maximize profits. The model parameters mainly include consumer
preferences and the demand function for each type of product, which
can both be obtained from market investigation.

3.2.1. Consumer preferences
Consumer preferences mainly indicate the degree of preference for

each product. A product can have different aspects and features, and
thus can be designed differently. The problem is how to combine and
integrate those kinds of design to meet consumers’ preferences mostly
(Pillera & Blazekb, 2014). Suppose there are n factors to consider when
designing a product, and each factor can have gi (i=1, 2, 3, … , n)
options, thus the manufacturer can provide ∏ = gi

n
i1 types of T-shirt in

all. Take T-shirt design as example, cloth weave can be knitted and non-
knitted; fabric can be cotton, yarn, and chemical fiber; collar design can
be crew-neck, V-neck, square-neck, and polo-neck, so there are

× × =2 3 4 24 types of shirt designed.
By market investigation, the proportion of consumer preferences

about various factors of different design options can be obtained. Due to
the independence of each factor, we can calculate the ratio of consumer
preferences for different products by multiplication. Using pji to re-
present the consumer preference ratio of the ith alternative of the jth
factor, the proportion of the market demand for each product can be
calculated by ∏ji

p . Specific application will be introduced in the case
study section.

3.2.2. Cost analysis
The composition of production cost is very diverse, and its ac-

counting is very complex. It may include procurement costs of raw
materials, manufacturing costs, human resource costs, transportation
costs, depreciation of fixed assets, marketing costs, etc. Some of its
content is beyond the limit of our research, so this model mainly con-
siders the following costs:

• Fixed costs. Costs required once the manufacturing process is
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activated. The rent or purchased cost of factory and machine is a
kind of such cost. Fixed cost does not vary with changes of yield, and
thus can be considered as sunk cost. When companies are making
production decisions about yield, it is not considered. However, it
will affect the average cost of the product, thus change the total
profit. It determines whether or not to withdraw the product family
from company’s supply.

• Quasi-fixed costs. Costs required once a specific type of product is
planned to be manufactured, and independent on the yield. R & D
cost of a specific type of product belongs to this kind of cost. Quasi-
fixed costs depend on which types of product the company decides
to provide.

• Variable costs. It is closely related with the product yield. Such costs
include the cost of raw materials for one product unit, packaging
costs per product, etc. Some costs that cannot be explicitly desig-
nated can be shared equally in variable cost of each product, such as
human resource cost, depreciation of fixed assets, and maintenance
fee. Variable cost is one of the most critical parameter when com-
panies are making decisions.

3.2.3. Modeling process
Based on analysis above, cost of a chosen solution is represented as

follows.

∑ ∑= + ∗ +C x F n x FCC ( ) ( )i i i i

= ⎧
⎨⎩

>
=x

x
xn( )

1, 0
0, 0i

i

i

where C represents the total cost of the chosen solution. C x( )i i re-
presents the variable cost of the ith product when its yield is xi ( >x 0)i .
When =x 0i , there is no production of the ith product. Fi represents the
Quasi-fixed cost of the ith product. FC represents fixed cost.

For the income part, corporate earnings can be expressed as follows.

∑= P x Q xR ( ) ( )i i

where R is revenue of the chosen solution, which is the production
result of P, price of each product, and Q, quantity of the related pro-
duct.

The marginal revenue (MR) when one unit of product is manu-
factured is:

⎜ ⎟= = + = × ⎛
⎝

+ ⎞
⎠

= × ⎛
⎝

− ⎞
⎠

dR
dq

p q q
dp
dq

p q
q

p q
dp
dq

p q
ε

MR ( ) ( ) 1
( )

( ) 1 1
| |

ε is the price elasticity of demand, which gives the percentage change in
quantity demanded in response to one percent change in price. As price
elasticity is usually negative, the model uses their absolute values for all
ε.As optimal yield is obtained when the marginal cost equals marginal
revenue, we have:

⎜ ⎟= × ⎛
⎝

− ⎞
⎠

=p q
ε

MR ( ) 1 1
| |

MC
i

and we get:

⎜ ⎟= × ⎛
⎝

+
−

⎞
⎠

p q
ε

( ) MC 1 1
| | 1i

The price is thus calculated as follow.

= ′ ∗ +P x C x r( ) ( ) (1 )i i i i

where ′C x( )i i is the marginal cost of the ith product, and = −ri ε
1

| | 1i
.

In most cases, quasi-fixed costs exist when a given type of product is
manufactured, so if all types of products are produced in full ac-
cordance with the individual needs, there will be a relatively small
number of products of each type, and that will greatly increase the
overall production costs, resulting in lower profits or even negative
profit. Therefore, an optimal production strategy is usually to

manufacture some of the product types, not all, so as to reduce quasi-
fixed costs. As substation can usually be made (especially in clothes
market) when clients cannot find what exactly meet their requirements,
similar product are chosen instead. Often, the more a type of product is
produced, a lower price can be provided, and more demands appear.

In order to determine xQ( )i , a third hypothesis is proposed as follow.

Assumption 3. When the yield of a given type of product is less than a
threshold, all products of this type can be sold out; when the yield
exceeds the threshold, a certain percentage of the excess part cannot be
sold out, and the more the yield exceeds, the ratio of product that
cannot be sold out is higher.

Thus, the final sales amount can be regarded as an increasing
function of yield, with a growth rate slowing down.

Based on the analysis above, the total sales quantity of the ith
product is defined as follows.

= ⎧
⎨⎩

⩾ ∗
< ∗

x g x x M w
x x M w

Q( ) ( ),
,i

i

i

where M represents the manufacturer’s production capacity, in other
words, how many products in all the manufacturer can produce, and wi
represents the proportion of client requirement. Also, we have

′ >g x( ) 0i and ″ <g x( ) 0i
In all, the objective function is noted as follow.

∑ ∑ ∑
∑

= ∗ − = ′ ∗ + ∗ −

− ∗ −

P x Q x C x r Q x C x

F n x FC

π ( ) ( ) C ( ) (1 ) ( ) ( )

( )

i i i i i i i i

i i

The aim is to calculate the maximum value of this function and
obtain the optimal quantity of each product.

4. Model testing and analysis

In order to make numerical simulation of the model, relevant
functions and parameters should be given.

The following function is used to characterize the demand curve.

= − −Pq
σ
w 1i

where P is the product price, wi is its demand ratio, and σ is a constant
value.

Thus, we have:

= = − − = +ε
w w

| | σ· 1 1 σ· 1 1i

d
q

dp
p

i i

q

The cost function of the ith product is defined as follows, shown in
Fig. 1.

Fig. 1. Function C x( )i i .
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= ∗⎛
⎝

+ ⎞
⎠

C x x c a
e

( )i i i i
i

b xi i

where ci represents material cost of each product, and ebx is used to
characterize technical maturity level (with the increment of x, techni-
ques will be more mature, at a speed of exponential function). As the
value of b will be assigned differently for different techniques, and it
doesn’t have impact in the optimization process, thus it could be re-
garded as a constant ant its actual value is beyond the limit of this
paper. a

e
i

bixi
represents the cost equally shared by of each product (such

as human resource cost and technical cost). With the expansion of
production quantity of a commodity, relevant technologies (including
workers experience, etc.) become more mature, so the fixed costs
shared by each product become less.

The sales amount of the ith product is given as follows, shown in
Fig. 2.

= ⎧
⎨⎩

− + ⩾
<

Q x
x k l x M w

x x M w
( )

log ( ) , ·
, ·i i

m i i i i

i

As two functions tangent to the point M w M w( · , · )i i , we have

⎧
⎨
⎩

= − +

′ = =−

M w M w k l

Q M w

· log ( · )

( · ) 1
i m i i i

i M w k m
1

( · )lni i

So we get

⎧
⎨
⎩

= −

= −

k M w

l M w

·

· log

i i m

i i m m

1
ln

1
ln

In the equation above, ki and li are two parameters to characterize
the translation of the logarithmic function, to make the two parts of the
Function Q x( )i i at the point M w M w( · , · )i i . For the parameter m, it char-
acterizes the shape of the logarithmic function. As ki, li and m will not
affect the optimization process of the objective function of MC model,
their values could be assigned randomly.

The model will be tested on a case of T-shirt production, and Table 1
shows preference percentage of different design options.

From Table 1, we may obtain preference percentage of different
product types, shown in Table 2.

For mathematical simulation, the parameters are given values as
follows.

∑
= = = = = =

= = =

a b c i m

x

50, 0.01, 100 ( 1,2,3,4,5,6,7,8), σ 0.1, 1.06 , F

5000 , M 1000 ( 1000)
i i i

i

For fixed costs, as they will not affect production strategy, in order
to simplify the calculation process, it is assigned with 0.

In all, the optimization problem of the model is to maximize the

objective function subjected to the constraints, which are characterized
as follows.

The objective function:

∑

∑ ∑

= ⎛
⎝

+ − ⎞
⎠

× ⎛
⎝

+ ⎞
⎠

×

− × ⎛
⎝

+ ⎞
⎠

− ×

e
x

e
w Q x

x
e

n x

π 50 100 0.5 1
0.1

( )

50 100 5000 ( )

x
i

x
i

i

x i

0.01 0.01

1 0.01

i i

i

where = ⎧
⎨⎩

>
=x

x
xn( )

1, 0
0, 0i

i

i
( =i 1,2,3,4,5,6,7,8), =w 0.3361 , =w 0.1442 ,

=w 0.2243 , =w 0.0844 , =w 0.0565 , =w 0.0366 , =w 0.0967 , =w 0.0248 ,

=
⎧
⎨
⎩

− + + − >

⩽
( ) ( )Q x x x

x x
( ) log 336 336 log , 336

, 336
,1

1.06 1
1

ln1.06 1.06
1

ln1.06 1

1 1

=
⎧
⎨
⎩

− + + − >

⩽
( ) ( )Q x x x

x x
( ) log 144 144 log , 144

, 144
,2

1.06 2
1

ln1.06 1.06
1

ln1.06 2

2 2

=
⎧
⎨
⎩

− + + − >

⩽
( ) ( )Q x x x

x x
( ) log 224 224 log , 224

, 224
,3

1.06 3
1

ln1.06 1.06
1

ln1.06 3

3 3

=
⎧
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In order to obtain the maximum value of the objective function
introduced above, there is a need to apply an optimization algorithm.

Fig. 2. Function Q x( )i i .

Table 1
Preference percentage of different design options.

Factors Options Preference percentage

Cloth weave Knitted (A) 0.7
Non-knitted (a) 0.3

Fabric Cotton (B) 0.6
Chemical fiber (b) 0.4

Neck design Square-neck (C) 0.8
V-Neck (c) 0.2

Note: the addition of each factor is 1.

Table 2
Preference percentage of different product types.

Product type Type
1
(ABC)

Type
2
(aBC)

Type
3
(AbC)

Type
4
(ABc)

Type
5
(Abc)

Type
6
(aBc)

Type
7
(abC)

Type
8
(abc)

Preference
percen-
tage

0.336 0.144 0.224 0.084 0.056 0.036 0.096 0.024
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The optimization example here is a non-linear and discrete combina-
torial optimization problem. The most basic characteristic of the com-
binatorial optimization problem is that the variables are discrete, which
leads to the fact that the objective function and the constraint function
in the mathematical model are discrete in their feasible domain. In the
real world, many of the practical problems are essentially discrete
events rather than continuous events. Most of these problems are
usually NP-hard (Gary & Johnson, 1979). These problems are still a
computable problem, that is, there is an algorithm to solve. The
methods for solving such kinds of combinatorial optimization problems
are divided into two types: exact algorithm and approximate algorithm.
The exact algorithms can only solve some small-scale problems with an
acceptable computation time. Approximation algorithms are widely
adopted to solve large scale problems to get a satisfactory solution with
acceptable computation cost though they cannot guarantee the global
optimal solution of the problem. However, this is a commonly accepted
compromise in practice when facing large scale problems. In this ex-
ample, for simplicity and computation comparison analysis, the vari-
ables are limited to [0, 1000]. But, it still cost nearly two days of
computation time to touch the optimal solution by using enumeration
method. For future users of the proposed decision model, the intervals
of variables can be redefined, which may lead to large scale problems.
Therefore, to be generic, approximate algorithms are preferred. Ap-
proximation algorithms usually include mathematical programming
algorithms, heuristic algorithms and evolutionary algorithms. Among
these algorithms, the evolutionary algorithms have an advantage that
they use a common algorithm framework but are not limited to problem

contexts, which is convenient for adaptation with minimum local
changes based on the algorithm framework. Hence, a popular tool for
solving integer programing problems, evolutionary algorithm (EA), is
proposed to deal with this example for demonstration due to their ad-
vantages against other algorithms (Dorigo, Caro, & Gambardella, 1999;
Gen & Cheng, 2000; Rajeev & Krishnamoorthy, 1992).

In this paper, Genetic Algorithm (GA), a representative of EA, is
adopted. A basic genetic algorithm using integer encoding is designed
and implemented to solve an example optimization problem for model
testing. Fig. 3 shows the main architecture of the developed GA. Details
on the design and implementation of the GA as well as the optimization
result are introduced in as follows.

To design a GA, the most important step is to design a chromosome
that represents a valid solution structure for a targeted optimization
problem. Then, fitness function usually derived from objective function
should be set for evaluating alternative solutions from the solution
space during the evolutionary procedure. To advance the global
searching by improving the diversity of alternative solutions and im-
proving local searching, genetic operators including Crossover op-
erator, Mutation operator and Selection operator, should be designed.

• Encoding: the designed chromosome is a sequence of integers
which contains the complete variables of the objective function. For
a chromosome, each variable takes up a fixed gene position to re-
present a gene type, and each gene’s phenotypes are the integer
values within the interval of [0, 1000]. Regarding the constraint of
the optimization problem, a valid chromosome must meet the

Fig. 3. Flowchart of the developed GA.
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requirement that the sum of variables’ values should be less than or
equal to 1000. Fig. 4 shows the chromosome structure with integer
encoding and an example of an individual or alternative solution.

• Fitness function: in GA, fitness function is used to evaluate alter-
native solutions. For many optimization problems, the objective
function can be directly used as fitness function. However, to fa-
cilitate the design of selection operator, the fitness function value is
better to fall in the interval of [0, 1]. Hence, in this paper, the ob-
jective function is transferred as = ∑ =fit j j k( ) Π( )/ (Π( ))k

n
1 , which

enables the fitness value to be within [0, 1]. In the formula, fit j( ) is
the jth individual’s, alternative solution’s, fitness value,

= …j n1,2,3, , , and n is the number of a population, one generation’s
individuals. jΠ( ) is the jth individual’s objective value.

• Selection operator: in the given case, there is only one objective
function in optimization. Therefore, the Roulette selection operator,
which is widely-used in Single-objective optimization problem, is
adopted for selection operation. For more details about this selector,
readers are referred to some representative works in literature (Deb,
2000; Goldberg & Deb, 1991).

• Crossover operator: Crossover operation is used to improve the
diversity of the population so as to advance the global searching in
the evolutionary optimization. This operation applies different rules
to identify a cross point of two selected individuals and exchange
their segments of chromosomes. By doing this operation, two parent
chromosome can generate a pair of child chromosomes. However,
when dealing with classical TSP or other combinatorial optimization
problems, one of the main difficulties of applying EA methods is the

design of a suitable crossover operator. Since the child chromosomes
directly generated by exchanging a set of genes usually cannot
guarantee that they are valid chromosomes representing valid al-
ternative solutions. In this paper, the optimization problem also has
this characteristic due to the constraint that the sum of variables’
values should be no more than 1000. Hence, an additional operation
to check and amend invalid individuals within a population after
crossover operation should be designed. In this paper, two methods
were tested. The first one is to check all the children chromosomes
after crossover operation and then use the original population
generation method, which can generate valid chromosomes, to
generate a new chromosome to replace any one that is invalid. This
method can simplify the GA program by improving code reuse and
improve the population diversity. However, it would cause that
some children chromosomes miss the potential good ‘patterns’ from
their parent chromosomes. To compensate this, another method is
designed. The main idea is to reset only one or several variable’s
values to ensure that the sum of variables’ values does not surpass
1000. When a child chromosome is invalid after crossover opera-
tion, then reset its variable with the maximum value. If the reset
chromosome is still invalid, then reset two or more variables in
order of their values until to meet the constraint. By doing this, good
‘patterns’ of parent chromosomes have more chance to be passed to
their children chromosomes. Fig. 5 shows the single-point crossover
operation and the resetting of a variable’s value (in red1 color) for an

Fig. 4. Chromosome and an example of an individual.

Fig. 5. Single-point crossover operation and example of adjusting invalid
child chromosome by resetting two variables’ values. Note: xki is the ith
variable of the kth chromosome in a generation.

Fig. 6. Single point mutation operation.

1 For interpretation of color in ‘Fig. 5’, the reader is referred to the web version of this
article.
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invalid child chromosome.

To conduct the crossover operation, a crossover point on the chro-
mosome structure is randomly selected, then the two segments of the
parent chromosomes after the crossover point exchange with each other
to generate two new child chromosomes. As shown in Fig. 4, a child
chromosome, Child Chromosome 2, is invalid since it cannot meet the
constraint. Then two variables’ values of that child chromosome are
reset, which makes it valid. Actually, in this research, the testing results
for applying the two methods dealing with invalid chromosomes are
similar. The main reason may be that the complexity scale of the op-
timization problem in this paper is not high. However, the bench-
marking study for the two methods is out of the scope of this paper.

Mutation operator: mutation operation is conducted by applying a

mutation operator. This operator is mainly used to improve the local
searching during the evolutionary procedure. It is different with
crossover selection which is used to improve the global search by
changing large part of genes of chromosomes. While the mutation op-
eration only slightly changes the genes of a chromosome, which can
protect good ‘patterns’ to help convergence and avoid to be trapped by
local optimal. In this paper, a single point mutation operator is adopted.
At first, a mutation point is randomly selected; then reset the gene’s
value after the selected point. To ensure that the newly generated
chromosome is valid, a value is randomly selected from an integer set
with a dynamic up boundary, maximum integer value, for the gene on
the mutation position. The integer set is given as follow.

= …+S Z N( ) {0,1,2,3 }s0

where Ns is the difference between 1000 and the sum of all the vari-
ables’ values of a chromosome except the value of the gene on the
mutation position. For different chromosomes, the values of Ns are
different. Hence, the integer set is dynamic. The mutation operation is
described by Fig. 6.

In this research, the designed genetic algorithm is implemented in
Matlab environment, where optimization can be conducted. Besides of
the design of fitness function and genetic operators, other running
parameters (population size, probabilities of crossover operation and
mutation operation, etc.) of GA should also be determined. The de-
termination of these parameters is dependent on specific optimization
problem and testing of optimization performance. Setting of these
running parameters and the optimization result are presented in the
following part.

After a couple of computational tests on Matlab platform, the run-
ning parameters for the optimization problem are set as follows.

Chromosome length=8, the number of variables;
Population size=800, number of individuals of each generation;
Pc= 0.75, probability of crossover operation;
Pm= 0.15, probability of mutation operation;
Generation=500, iteration times.

20 times of optimization were conducted by using the designed GA.
The average computation time is 4.038 s (computer configuration: Inter
Core i3 CPU, 2.53 GHz; RAM, 2.00 GB) and the average optimal value
of the objective function is 1.6553e+05. One of the optimization re-
sults is presented by Fig. 7.

In the optimization shown in Fig. 7, the obtained optimal value is
1.6671e+05, and the computation time is 4.065 s. After decoding the

Fig. 7. Optimization result. Note: Red line: best objective function value of each gen-
eration. Blue line: average objective function value of each generation. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Table 3
Experimental results.

x1 x2 x3 x4 x5 x6 x7 x8

413 152 247 87 0 0 101 0

Table 4
Comparison of different production solutions.

Solutions MC EQ PP S1 S2 S3 S4 S5 S6 S7 S8

Total profit (×105) 1.67 0.35 1.45 0.69 −0.53 −0.11 −0.77 −0.85 −0.91 −0.73 −0.93

Note:
• Solution MC: To manufacture based on the mass customization model. Its calculation process is shown in the above sections.
• Solution EQ: To manufacture the different products equally. Its calculation process is as follows.

∵The quantity of each product type is equal.
∴ = = …x i125, 1,2, ,8i .
∴Total profit = 0.35 * 105.

• Solution PP: To manufacture based on the preference percentages in Table 2. Its calculation process is as follows.
According to Table 2, =x 3361 , =x 1442 , =x 2243 , =x 844 , =x 565 , =x 366 , =x 967 , =x 248 , substituting into the total profit function, we get: Total profit = 1.45 * 105.

• Solution Si: To only manufacture Product of type i. Its calculation process is as follows.
■ For Solution S1, =x 10001 , = = = = = = =x x x x x x x 02 3 4 5 6 7 8 , so Total profit = 0.69 * 105.
■ For Solution S2, =x 10002 , = = = = = = =x x x x x x x 01 3 4 5 6 7 8 , so Total profit =−0.53 * 105.
■ For Solution S3, =x 10003 , = = = = = = =x x x x x x x 01 2 4 5 6 7 8 , so Total profit =−0.11 * 105.
■ For Solution S4, =x 10004 , = = = = = = =x x x x x x x 01 2 3 5 6 7 8 , so Total profit =−0.77 * 105.
■ For Solution S5, =x 10005 , = = = = = = =x x x x x x x 01 2 3 4 6 7 8 , so Total profit =−0.85 * 105.
■ For Solution S6, =x 10006 , = = = = = = =x x x x x x x 01 2 3 4 5 7 8 , so Total profit =−0.91 * 105.
■ For Solution S7, =x 10007 , = = = = = = =x x x x x x x 01 2 3 4 5 6 8 , so Total profit =−0.73 * 105.
■ For Solution S8, =x 10008 , = = = = = = =x x x x x x x 01 2 3 4 5 6 7 , so Total profit =−0.93 * 105.
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identified genetic chromosome with the best fitness function value, the
best chromosome, optimal solution, for the optimization problem is
shown in Table 3.

From this solution, the profit gained can be evaluated. A comparison
of profits offered by different production solutions are shown in
Table 4.

To measure the performance of the designed GA, a set of testing
computations are conducted in different parameter setups and the re-
sults are compared with the real optimal solution, 1.6703e+05, which
is obtained by using an enumeration method with a computation time
of nearly 2 days (using the same computer configuration). Fig. 8 pre-
sents the computation results comparing with the real optimal solution.
Four sets of GA running parameters are tested in 100 computation runs
respectively. It is easy to observe from the testing computation results
that the GA optimization cannot always touch the real optimal solution.
But, it can provide solutions which are very close to the real optimal
value and the computation teach for each run is less than 5 s. By in-
creasing the size of population without changing GA operators, the
obtained optimal solutions are improved in average as shown in
Fig. 8(d), where the solutions are closer to the real optimal value.
However, this may also increase the computation cost. To widen the
comparison analysis, the optimization example is also sent to tradi-
tional popular optimization tools, e.g. LINGO, CPLEX, MATLAB Opti-
mization Tool Box, in operation and logistics domains. However, the
ordinary versions of these tools have difficulty to solve this non-linear-
discrete problem. As claimed by a commercial optimization software
company (http://www.lindo.com/doc/online_help/lingo15_0/solver_
status_window.htm), ‘in general, this class of model (MINLP, Integer

Nonlinear Program) will be very difficult to solve for all but the smallest
cases.’ Hence, the future users of the proposed MC model are advised to
adopt EA methods to search for acceptable solutions for their applica-
tion contexts.

The computation testing results and comparison analysis show that
the GA’s performance is sufficient for the current example since the

Fig. 8. GA performance testing.

Table 5
Preference percentage of different design options.

Factors Options Preference percentage

Cloth weave Knitted (A) 0.63
Non-knitted (a) 0.37

Fabric Cotton (B) 0.54
Chemical fiber (b) 0.46

Neck design Square-neck (C) 0.72
V-Neck (c) 0.28

Table 6
Preference percentage of different product types.

Product type Type
1
(ABC)

Type
2
(aBC)

Type
3
(AbC)

Type
4
(ABc)

Type
5
(Abc)

Type
6
(aBc)

Type
7
(abC)

Type
8
(abc)

Preference
percen-
tage

0.245 0.144 0.209 0.095 0.081 0.056 0.122 0.048
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solution space and numbers of variables are not very large. For large
scale computation problems with multi-objective functions, the pro-
posed basic GA can be improved by adding advanced heuristic
searching schemes or more advanced GA operators to improve the
searching efficiency. However, this is out of the scope of this paper
where the main contribution is the proposed decision model for MC. In
future real industrial case studies, an improved GA will be developed.

5. Discussions

The results obtained (Table 4) show that the Mass Customization
model offers the best profit overall production solutions tested. A gain
of 15% is observed in relation to the solution PP (Preference Percen-
tages) which represents the second best solution and which is usually
implemented as production strategy. The MC model may provide sub-
stantial additional profits to this current solution.

Table 1 shows the preference percentage of different design options
and those data sets can be obtained by market survey or statistical
analysis based on the previous sales. The data used in this paper is
based on a very small-scale survey, and in case of the possible in-
accuracy, a. There is a risk of inaccuracy of the preference percentages
evaluated. This can also be the case in larger-scale problems. In order to
assess the sensitivity of the MC model to the variation of the preference
percentages, a comparable test is also implemented. In Table 5, the
preference percentage of the first option of each factor is modified by
10% less than in relation to the data in Table 1.

From Table 5, we may obtain preference percentages of different
product types, shown in Table 6.

Table 7 shows the results in terms of profit obtained with the
modified data.

The results show that the MC model gives the best profit. A gain of
13% can be observed in relation to the solution PP. The variation of the
preference percentages may modify the gain in terms of profit, but the
MC model permits to optimize the production strategy. The MC model
proposed by this paper can lead to a production decision which has
higher profit.

In real world practice, it is not suitable for companies to provide all
possible product/service that may have potential buyers in the market.
On the other hand side, clients would mostly not pay a relatively ex-
tremely high price for what he/she want. In most cases, clients would
give up a part of requirements for lower product/service price. In other
words, companies should decide what to produce and the quantity of
each product by taking into account the willingness to pay of clients.
Experimental results shows the proposed MC model can help companies
to make production decision and have a better profit compared to other
possible solutions.

6. Conclusions

One of the key issues of the proposed mass customization model is
to determine what types of product and how many should be provided
to clients. Customization does not mean to satisfy all customer re-
quirements without any constraint. Not only the production cost or
manufacturing activities should be controlled, but the customer re-
quirements should also be controlled. In other words, customization in
our model does not refer to original creativity of customer, and the
range of customization is controlled by the company, so as to make the
production platform realizable and efficient.

In order to increase the impacts of customers’ preference and

control customers’ requirements in a reasonable range, customers are
required to give weights to their different options during the customer
information gathering model. On one hand, companies may have a
deeper understanding of customers’ preference which can help com-
panies to adjust their commercial activities; on the other hand, custo-
mers’ preferences are better respected.

This paper proposes a decision support model based on mass cus-
tomization. Mass customization aims at solving contradictions between
mass production and customized requirements, which lead to reduce
cost and increase price respectively. Most existed researches in the lit-
erature on mass customization are lack of quantitative modeling and
calculation for solution optimization in the production process, which is
the main contribution of this paper. Based on processing information
about products and customers, the quantitative MC model can be ap-
plied to maximize total profit and make optimized production decision.
Further research opportunities could include taking more consideration
on supply chain management as material stock, which will greatly af-
fect product cost and issues of dynamic orders. Client co-design pro-
blem is also a challenge to the mass customization issues.

References

Al-Salamah, M. (2016). Economic production quantity in batch manufacturing with im-
perfect quality, imperfect inspection, and destructive and non-destructive acceptance
sampling in a two-tier market. Computers & Industrial Engineering, 93, 275–285.

Bernard, A., & Tichkiewitch, S. (2008). Methods and tools for effective knowledge lifecycle
management. Berlin: Springer.

Bootaki, B., Mahdavi, I., & Paydar, M. M. (2016). New criteria for configuration of cellular
manufacturing considering product mix variation. Computers & Industrial Engineering,
98, 413–426.

Brunoe, T. D., & Nielsen, K. (2016). Complexity management in mass customization
SMEs. Procedia CIRP, 51, 38–43.

Daaboul, J., DaCunha, C., Bernard, A., & Laroche, F. (2011). Design for mass customi-
zation: Product variety VS process variety. CIRP Annals – Manufacturing Technology,
60, 169–174.

Davis, S. (1987). Future perfect. Boston: Addison-Wesley.
Deb, K. (2000). Introduction to selection. Evolutionary Computation, 1, 166–171.
Dorigo, M., Caro, G. D., & Gambardella, L. M. (1999). Ant algorithms for discrete opti-

mization. Artificial Life, 5(2), 137–172.
Dou, R., Zhang, Y., & Nan, G. (2016a). Customer-oriented product collaborative custo-

mization based on design iteration for tablet personal computer configuration.
Computers & Industrial Engineering, 99, 474–486.

Dou, R., Zong, C., & Nan, G. (2016b). Multi-stage interactive genetic algorithm for col-
laborative product customization. Knowledge-Based Systems, 92, 43–54.

Easton, P. D., & Sommers, G. A. (2003). Scale and the scale effect in market-based ac-
counting research. Journal of Business Finance & Accounting, 30(1–2), 25–56.

Fang, E. A., Li, X., & Lu, J. (2016). Effects of organizational learning on process tech-
nology and operations performance in mass customizers. International Journal of
Production Economics, 174, 68–75.

Gary, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of
NP-completeness. New York: W.H. Freeman and company.

Gautam, N., & Singh, N. (2008). Lean product development: Maximizing the customer
perceived value through design change (redesign). International Journal of Production
Economics, 114, 313–332.

Gen, M., & Cheng, R. (2000). Genetic algorithms and engineering optimization, Vol. 7.
Hoboken: John Wiley & Sons.

Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes used in
genetic algorithms. Foundations of Genetic Algorithms, 1, 69–93.

Grenci, R. T., & Watts, C. A. (2007). Maximizing customer value via mass customized e-
consumer services. Business Horizons, 50(2), 123–132.

Jiao, J., Ma, Q., & Tseng, M. M. (2003). Towards high value-added products and services:
Mass customization and beyond. Technovation, 23, 809–821.

Kaplan, A. M., & Haenlein, M. (2006). Toward a parsimonious definition of traditional
and electronic mass customization. The Journal of Product Innovation Management, 23,
168–179.

Koren, Y. (2010). The global manufacturing revolution: Product-process-business integration
and reconfigurable systems, Vol. 80. Hoboken: John Wiley & Sons.

Ogawa, S., & Piller, F. T. (2006). Reducing the risks of new product development. MIT
Sloan Management Review, 47(2), 65–71.

Onyeocha, C. E., Khoury, J., & Geraghty, J. (2015). Evaluation of multi-product lean

Table 7
Comparison of different production solutions.

Solutions MC EQ PP S1 S2 S3 S4 S5 S6 S7 S8

Total profit (×105) 1.11 0.43 0.98 0.02 −0.53 −0.20 −0.73 −0.78 −0.85 −0.62 −0.88

Y. Xu et al. Computers & Industrial Engineering 114 (2017) 11–21

20

http://refhub.elsevier.com/S0360-8352(17)30463-1/h0005
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0005
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0005
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0010
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0010
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0015
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0015
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0015
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0020
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0020
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0025
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0025
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0025
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0030
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0035
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0040
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0040
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0045
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0045
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0045
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0050
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0050
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0055
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0055
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0060
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0060
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0060
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0065
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0065
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0070
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0070
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0070
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0075
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0075
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0080
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0080
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0085
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0085
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0090
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0090
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0095
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0095
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0095
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0100
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0100
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0105
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0105
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0110


manufacturing systems with setup and erratic demand. Computers & Industrial
Engineering, 87, 465–480.

Pillera, F. T., & Blazekb, P. (2014). Core capabilities of sustainable mass customization. In
Felfernig, L. Hotz, C. Bagley, & J. Tiihonen (Eds.). Knowledge-based configuration (pp.
107–120). Burlington: Morgan Kaufmann.

Rajeev, S., & Krishnamoorthy, C. S. (1992). Discrete optimization of structures using
genetic algorithms. Journal of Structural Engineering, 118–5, 1233–1250.

Toffler, A. (1970). Future shock. New York: Random House.
Trentin, A., Forza, C., & Perin, E. (2015). Embeddedness and path dependence of orga-

nizational capabilities for mass customization and green management: A longitudinal
case study in the machinery industry. International Journal of Production Economics,
169, 253–276.

Trentin, A., Perin, E., & Forza, C. (2014). Increasing the consumer-perceived benefits of a
mass-customization experience through sales-configurator capabilities. Computers in
Industry, 65(4), 693–705.

Tyagi, S., Yang, K., Tyagi, A., & Verma, A. (2012). A fuzzy goal programming approach
for optimal product family design of mobile phones and multiple-platform archi-
tecture. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 42, 1519–1530.

Wang, Z., Zhang, M., Sun, H., & Zhu, G. (2016). Effects of standardization and innovation
on mass customization: An empirical investigation. Technovation, 48–49, 79–86.

Xu, Y. (2015). A survey on mass customization in restaurant industry. Technical reportPeking
University.

Xu, Y., Bernard, A., Perry, N., Xu, J., & Sugimoto, S. (2014). Knowledge evaluation in
product lifecycle design and support. Knowledge-Based Systems, 70, 256–267.

Yang, D., Dong, M., & Chang, X. K. (2012). A dynamic constraint satisfaction approach for
configuring structural products under mass customization. Engineering Applications of
Artificial Intelligence, 25(8), 1723–1737.

Yao, J., & Liu, L. (2009). Optimization analysis of supply chain scheduling in mass cus-
tomization. International Journal of Production Economics, 117, 197–211.

Y. Xu et al. Computers & Industrial Engineering 114 (2017) 11–21

21

http://refhub.elsevier.com/S0360-8352(17)30463-1/h0110
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0110
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0115
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0115
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0115
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0120
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0120
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0125
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0130
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0130
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0130
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0130
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0135
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0135
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0135
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0140
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0140
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0140
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0140
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0145
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0145
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0150
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0150
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0155
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0155
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0160
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0160
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0160
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0165
http://refhub.elsevier.com/S0360-8352(17)30463-1/h0165

	A decision support model in mass customization
	Introduction
	Mass customization analysis
	Mass customization modeling
	Assumptions
	Modeling
	Consumer preferences
	Cost analysis
	Modeling process


	Model testing and analysis
	Discussions
	Conclusions
	References




