EBEN: Extreme bandwidth extension network applied to speech signals captured with noise-resilient body-conduction microphones - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

EBEN: Extreme bandwidth extension network applied to speech signals captured with noise-resilient body-conduction microphones

Résumé

In this paper, we present Extreme Bandwidth Extension Network (EBEN), a Generative Adversarial network (GAN) that enhances audio measured with body-conduction microphones. This type of capture equipment suppresses ambient noise at the expense of speech bandwidth, thereby requiring signal enhancement techniques to recover the wideband speech signal. EBEN leverages a multiband decomposition of the raw captured speech to decrease the data time-domain dimensions, and give better control over the full-band signal. This multiband representation is fed to a U-Net-like model, which adopts a combination of feature and adversarial losses to recover an enhanced audio signal. We also benefit from this original representation in the proposed discriminator architecture. Our approach can achieve state-of-the-art results with a lightweight generator and real-time compatible operation.
Fichier principal
Vignette du fichier
2210.14090.pdf (3.34 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03830649 , version 1 (20-03-2023)

Identifiants

Citer

Julien Hauret, Thomas Joubaud, Véronique Zimpfer, Éric Bavu. EBEN: Extreme bandwidth extension network applied to speech signals captured with noise-resilient body-conduction microphones. ICASSP 2023 : 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE Signal Processing Society, Jun 2023, Rhodes, Greece. ⟨10.1109/ICASSP49357.2023.10096301⟩. ⟨hal-03830649⟩
171 Consultations
82 Téléchargements

Altmetric

Partager

More