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Abstract. We introduce a distance-based neural network model for re-
gression, in which prediction uncertainty is quantified by a belief function
on the real line. The model interprets the distances of the input vector to
prototypes as pieces of evidence represented by Gaussian random fuzzy
numbers (GRFN’s) and combined by the generalized product intersec-
tion rule, an operator that extends Dempster’s rule to random fuzzy sets.
The network output is a GRFN that can be summarized by three num-
bers characterizing the most plausible predicted value, variability around
this value, and epistemic uncertainty. Experiments with real datasets
demonstrate the very good performance of the method as compared to
state-of-the-art evidential and statistical learning algorithms.

Keywords: Evidence theory, Dempster-Shafer theory, belief functions,
machine learning, random fuzzy sets.

1 Introduction

The Dempster-Shafer (DS) theory of evidence is a general mathematical frame-
work for reasoning and making decisions based on imprecise and uncertain in-
formation [14][7]. This framework is based on the representation of independent
pieces of evidence by belief functions, and on their combination by a conjunc-
tive operator called Dempster’s rule. The greater number of degrees of freedom
offered by belief functions, as compared to probabilities, makes it possible to
distinguish between two situations of high uncertainty: equally supported hy-
potheses on the one hand, and total lack of support on the other hand, the
latter situation characterizing complete ignorance.

In machine learning, DS theory has been mainly applied to classification and
clustering tasks, in which the set of elementary hypotheses (or frame of dis-
cernment) is finite. In particular, several methods have been proposed to learn
evidential classifiers, i.e., classifiers representing prediction uncertainty by belief
functions. In the first such classifier, the evidential K-nearest neighbor (EKNN)
rule [3], each neighbor of a feature vector to be classified is represented by a
simple mass function, and the mass functions from the K nearest neighbors are
combined by Dempster’s rule. The evidential neural network (ENN) introduced
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in [5] is based on the same principle, the elementary mass functions being com-
puted based on distances to prototypes. Recently, this distance-based approach
has been extended to deep networks [15][16][9], by adding a DS layer to a deep
architecture; output mass functions are then computed based on distances to
prototypes in the space of high-level features extracted by convolutional layers.

Applying DS theory to regression is more challenging, because in regression
tasks the frame of discernment is typically the real line or a real interval, whereas
most tools of DS theory have been developed for finite frames. This difficulty can
be circumvented by discretizing the response variable, as proposed in [4], in which
a neural network model for regression directly extending the ENN model was
introduced. The output of this model is a mass function with disjoint intervals
and the whole frame as focal sets. Another approach, introduced in [12][13], is
to modify the EKNN rule by combining simple mass functions focussed either
on a single real number, or on a fuzzy number in the case of learning data with
fuzzy response variable. The output mass function then has a finite number of
crisp or fuzzy focal sets. This method, called EVREG, was shown in [13] to
yield good results in the case of crisp data, and to efficiently handle uncertain
response data (such as provided by an unreliable sensor). However, the K nearest
neighbor approach breaks down as dimension grows, and it cannot compete with
state-of-the-art regression methods.

In this paper, we propose another evidential neural network model for regres-
sion inspired from the ENN model. This new model, called ENNreg, uses the
formalism of Gaussian random fuzzy numbers (GRFN’s) recently introduced in
[8]. A GRFN is a random fuzzy subset of the real line, which can be described as
a Gaussian possibility distribution whose mode is a Gaussian random variable.
GRFN’s induce belief functions and can be combined using a generalization of
Dempster’s rule. In ENNreg, GRFN’s associated to each of the prototypes are
combined to yield an output GRFN quantifying prediction uncertainty.

The rest of this paper is organized as follows. The general framework of
epistemic random fuzzy sets and the GRFN model are first recalled in Section
2. The proposed ENNreg model is then introduced in Section 3. Experimental
results are reported in Section 4, and Section 5 concludes the paper.

2 Epistemic Random Fuzzy Sets

The theory of epistemic random fuzzy sets (ERFS) was introduced in [6] and
[8] as a general framework encompassing both DS theory and possibility theory.
We first recall some important definitions in Section 2.1. Gaussian random fuzzy
numbers, a parametric family of ERFS’s on the real line are then described in
Section 2.2.

2.1 General Framework

Let (Ω,ΣΩ , P ) be a probability space and let (Θ,ΣΘ) be a measurable space.

Let X̃ be a mapping from Ω to the set [0, 1]Θ of fuzzy subsets of Θ. For any
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α ∈ [0, 1], let αX̃ be the mapping from Ω to 2Θ defined as

αX̃(ω) = α[X̃(ω)],

where α[X̃(ω)] is the weak α-cut of X̃(ω). If for any α ∈ [0, 1], αX̃ is ΣΩ −ΣΘ
strongly measurable [11], the tuple (Ω,ΣΩ , P,Θ,ΣΘ, X̃) is said to be a random
fuzzy set (also called a fuzzy random variable) [2]. When there is no possible

confusion about the domain and codomain, we will refer to mapping X̃ itself as
a random fuzzy set.

In ERFS theory, random fuzzy sets represent unreliable and fuzzy evidence.
In this model, we see Ω as a set of interpretations of a piece of evidence about
a variable θ taking values in Θ. If interpretation ω ∈ Ω holds, we know that
“θ is X̃(ω)”, i.e., θ is constrained by the possibility distribution defined by X̃(ω).
We qualify such random fuzzy sets as epistemic, because they encode a state of
knowledge about some variable θ. If all images X̃(ω) are crisp, then X̃ defines an

ordinary random set. If mapping X̃ is constant, then it is equivalent to specifying
a unique fuzzy subset of Θ, which defines a possibility distribution.

Belief and plausibility functions. In the following, we will assume that random
fuzzy set X̃ is normalized, i.e., that it verifies the following conditions: (1) For

all ω ∈ Ω, X̃(ω) is either the empty set, or a normal fuzzy set, i.e., hgt(X̃(ω)) =

supθ∈Θ X̃(ω)(θ) ∈ {0, 1}; (2) P ({ω ∈ Ω : X̃(ω) = ∅}) = 0. For any ω ∈ Ω, let

ΠX̃(· | ω) be the possibility measure on Θ induced by X̃(ω):

ΠX̃(B | ω) = sup
θ∈B

X̃(ω)(θ), (1)

and let NX̃(· | ω) be the dual necessity measure:

NX̃(B | ω) =

{
1−ΠX̃(Bc | ω) if X̃(ω) 6= ∅
0 otherwise,

where Bc denotes the complement of B. The mappings BelX̃ and PlX̃ from ΣΘ
to [0, 1] defined as

BelX̃(B) =

∫
Ω

NX̃(B | ω)dP (ω) (2)

and

PlX̃(B) =

∫
Ω

ΠX̃(B | ω)dP (ω) = 1−BelX̃(Bc) (3)

are, respectively, belief and plausibility functions.

Combination. Consider two epistemic random fuzzy sets (Ωi, Σi, Pi, Θ,ΣΘ, X̃i),
i = 1, 2, encoding independent pieces of evidence. The independence assumption
means here that the relevant probability measure on the joint measurable space
(Ω1 ×Ω2, Σ1 ⊗Σ2) is the product measure P1 × P2. If interpretations ω1 ∈ Ω1
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and ω2 ∈ Ω2 both hold, we know that “θ is X̃1(ω1)” and “θ is X̃2(ω2)”. It is

then natural to combine the fuzzy sets X̃1(ω1) and X̃2(ω2) by an intersection
operator. As discussed in [6], the normalized product intersection operator �
is suitable for combining fuzzy information from independent sources and it
is associative. We thus consider the mapping X̃�(ω1, ω2) = X̃1(ω1) � X̃2(ω2),
assumed to be Σ1 ⊗Σ2-ΣΘ strongly measurable.

If hgt(X̃1(ω1)X̃2(ω2)) = 0, the two interpretations ω1 and ω2 are inconsistent

and they must be discarded. If hgt(X̃1(ω1)X̃2(ω2)) = 1, the two interpretations

are fully consistent. If 0 < hgt(X̃1(ω1)X̃2(ω2)) < 1, ω1 and ω2 are partially
consistent. The soft normalization proposed in [8] consists in conditioning the

product probability P1 × P2 by the fuzzy subset Θ̃∗ of consistent pairs of in-

terpretations, with membership function Θ̃∗(ω1, ω2) = hgt
(
X̃1(ω1) · X̃2(ω2)

)
.

Alternatively, we can use a hard normalization operation, which consists in
conditioning P1 × P2 by the crisp set Θ∗ of interpretations that are not fully
inconsistent, described formally as

Θ∗ = {(ω1, ω2) ∈ Ω1 ×Ω2 : hgt(X̃1(ω1)X̃2(ω2)) > 0}.

Both combination rules, with soft or hard normalization, are commutative and
associative, and both of them generalize Dempster’s rule. In the following, we will
use hard normalization as it leads to simpler calculations. This operation will be
referred to as the generalized product-intersection rule with hard normalization,
and the corresponding operator will be denoted by �.

2.2 Gaussian Random Fuzzy Numbers

A Gaussian Fuzzy Number (GFN) is a fuzzy subset of R with membership func-
tion

ϕ(x;m,h) = exp

(
−h

2
(x−m)2

)
,

where m ∈ R is the mode and h ∈ [0,+∞] is the precision. Such a fuzzy num-
ber will be denoted by GFN(m,h). The normalized product intersection of two
GFN’s GFN(m1, h1) and GFN(m2, h2) is a GFN GFN(m12, h12) = GFN(m1, h1)�
GFN(m2, h2), with m12 = (h1m1 + h2m2)/(h1 + h2) and h12 = h1 + h2.

Let (Ω,ΣΩ , P ) be a probability space and let M : Ω → R be a Gaussian
random variable (GRV) with mean µ and variance σ2. The random fuzzy set

X̃ : Ω → [0, 1]R defined as

X̃(ω) = GFN(M(ω), h)

is called a Gaussian random fuzzy number (GRFN) with mean µ, variance σ2

and precision h, which we write X̃ ∼ Ñ(µ, σ2, h). A GRFN is, thus, defined by a
location parameter µ, and two parameters h and σ2 corresponding, respectively,
to possibilistic and probabilistic uncertainty.

A GRFN can be seen either as a generalized GRV with fuzzy mean, or as
a generalized GFN with random mode. In particular, a GRFN X̃ with infinite
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precision h = +∞ is equivalent to a GRV with mean µ and variance σ2, which we
can write: Ñ(µ, σ2,+∞) = N(µ, σ2). If σ2 = 0, M is a constant random variable

taking value µ, and X̃ is a possibilistic variable with possibility distribution
GFN(µ, h). Another case of interest is that where h = 0, in which case X̃(ω)(x) =

1 for all ω ∈ Ω and each x ∈ R, and the belief function induced by X̃ is vacuous.

As shown in [8], the plausibility and belief of any real interval [x, y] are given
by the following formulas:

PlX̃([x, y]) = Φ

(
y − µ
σ

)
− Φ

(
x− µ
σ

)
+

plX̃(x)Φ

(
x− µ

σ
√
hσ2 + 1

)
+ plX̃(y)

[
1− Φ

(
y − µ

σ
√
hσ2 + 1

)]
, (4a)

and

BelX̃([x, y]) = PlX̃([x, y])− plX̃(x)Φ

(
(x+ y)/2− µ
σ
√
hσ2 + 1

)
−

plX̃(y)

[
1− Φ

(
(x+ y)/2− µ
σ
√
hσ2 + 1

)]
, (4b)

where Φ is the standard normal cumulative distribution function (cdf), and

plX̃(x) =
1√

1 + hσ2
exp

(
− h(x− µ)2

2(1 + hσ2)

)
(4c)

is the contour function. Denoting by F X̃(x) = BelX̃((−∞, x]) and F X̃(x) =

PlX̃((−∞, x]), respectively, the lower and upper cdf’s of X̃, its lower and upper
expectations are

E∗(X̃) =

∫ +∞

−∞
x dF X̃(x) = µ−

√
π

2h

and

E∗(X̃) =

∫ +∞

−∞
x dF X̃(x) = µ+

√
π

2h
.

The usefulness of GRFN’s as a model of uncertain information about a real
quantity arises from the fact that GRFN’s can easily be combined by the gen-
eralized product-intersection rule, with soft or hard normalization [8]. Here,
we only consider hard normalization, which is used in the proposed regres-
sion model described in Section 3. Given two GRFN’s X̃1 ∼ Ñ(µ1, σ

2
1 , h1) and

X̃2 ∼ Ñ(µ2, σ
2
2 , h2), we have X̃1 � X̃2 ∼ Ñ(µ12, σ

2
12, h12), with

µ12 =
h1µ1 + h2µ2

h1 + h2
, σ2

12 =
h21σ

2
1 + h22σ

2
2

(h1 + h2)2
, and h12 = h1 + h2.
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3 Neural network model

The ENN (Evidential Neural Network) model introduced in [5] for classification
is based on prototypes in input space, each one having degrees of membership to
the different classes. In this model, each prototype provides a piece of evidence
regarding the class of a test instance. This evidence is represented by a DS mass
function defined from the class membership degrees of the prototype and the
distance from the input vector. The mass functions induced by the prototypes
are then combined by Dempster’s rule. Here, we propose a similar model for
regression, called ENNreg. The propagation equations and the loss function are
given, respectively, in Sections 3.1 and 3.2.

3.1 Propagation Equations

We consider J prototypes wj ∈ Rp, j = 1, . . . , J , where p is the dimension of
the input space. The activation of prototype j for input x is

aj(x) = exp(−γ2j ‖x−wj‖2),

where γj is a positive scale parameter. The evidence of prototype j is represented

by a GRFN Ỹj(x) ∼ Ñ(µj(x), σ2
j , aj(x)hj), where σ2

j and hj are variance and
precision parameters for prototype j; the mean µj(x) is defined as µj(x) =

βTj x+ αj , where βj is a p-dimensional vector of coefficients, and αj is a scalar
parameter. The vector ψj of parameters associated to prototype j is, thus, ψj =
(wj , γj ,βj , αj , σ

2
j , hj).

The output Ỹ (x) for input x is computed by combining the GRFN’s Ỹj(x),
j = 1, . . . , J induced by the J prototypes using the � operator. It is a GRFN
Ỹ (x) ∼ Ñ(µ(x), σ2(x), h(x)), with

µ(x) =

∑J
j=1 aj(x)hjµj(x)∑J

k=1 ak(x)hk
, σ2(x) =

∑J
j=1 a

2
j (x)h2jσ

2
j(∑J

k=1 ak(x)hk

)2 ,
and h(x) =

∑J
j=1 aj(x)hj . Some special cases are of interest:

1. If βj = 0 for all j, then µj(x) = αj , and µ(x) is identical to the output of a
radial basis function (RBF) neural network with hidden-to-output weights
hjαj and normalized outputs;

2. If J = 1 and γ1 = 0, µ(x) = βT1 x + α1, σ2(x) = h1σ
2
1 and h(x) = h1. We

then have a linear model with constant variance.

3.2 Loss Function

We want to fit the model described in the previous section in such a way that
the observed values of the response variable have a high degree of belief and a
high plausibility. Because the degree of belief is zero for a single real value, we
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consider a small interval [y−ε, y+ε], denoted as [y]ε, around each observed value
y, and we define the following loss function:

Lλ,ε(y, Ỹ ) = −λ lnBelỸ ([y]ε)− (1− λ) lnPlỸ ([y]ε), (5)

where y is the true response, Ỹ ∼ Ñ(µ, σ2, h), and λ ∈ [0, 1] is a hyperparameter.
This loss function is minimal for a perfect forecast, such that µ = y, h = +∞
and σ2 → 0. With a fixed variance σ2, the term BelỸ ([y]ε) is maximized for
µ = y and h = +∞, while the term PlỸ ([y]ε) is maximized for h = 0, whatever
µ. Hyperparameter λ thus determines the precision of the predictions. We can
also remark that, when ε is small, we have, for a probabilistic GRFN Ỹ ∼
Ñ(µ, σ2,+∞), Lλ,ε(y, Ỹ ) ≈ − lnφ(y−µσ ) − ln ε, where φ denotes the standard
normal probability density function; loss function (5) then becomes equivalent
to minus the log-likelihood.

Using a training set T = {(x1, y1), . . . , (xn, yn)}, we minimize the regularized
average loss

C(Ψ) =
1

n

n∑
i=1

Lλ,ε(yi, Ỹ (xi)) +
ξ

J

J∑
j=1

hj ,

where Ψ = (ψ1, . . . , ψJ) is the vector of all parameters, and ξ is a regularization
coefficient. We note that setting hj = 0 amounts to removing prototype j, as

the GRFN Ỹj(x) becomes vacuous for any input x. Increasing ξ results in more
cautious predictions and a more parsimonious model.

4 Experimental results

We first give an illustrative example in Section 4.1. Results from a comparative
experiment are then reported in Section 4.2.

4.1 Illustrative example

As an illustrative example, we consider data with p = 1 input from the following
distribution:

1. The input X is drawn from a mixture of two uniform distributions on
[−3,−1] and [1, 4]: X ∼ 0.5Unif(−3,−1) + 0.5Unif(1, 4);

2. Given X = x, Y = x + sin 3x + η, where η is a Gaussian random variable
with zero mean and variance σ2 = 0.01 if x < 0 and σ2 = 0.3 otherwise.

We generated a learning set of size n = 200 and a test set of size nt = 1000
from that distribution. We trained a network with J = 10 prototypes initialized
by the k-means algorithm, with λ = 0.95, ξ = 10−3 and ε = 0.01. Figure 1
shows the expected values µ(x), together with the lower and upper expectations

E∗(Ỹ (x)), E∗(Ỹ (x)), as well as prediction intervals of the form

[F
−1
Ỹ (x)(α/2), F−1

Ỹ (x)
(1− α/2)], (6)
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for 1−α ∈ {0.5, 0.9, 0.99}. The estimated coverage probabilities of these intervals
are, respectively, 0.76, 0.96 and 0.997, which suggests that expression (6) provides
conservative prediction intervals. As can be seen from Figure 1, the prediction
intervals are wider when the variance of the data is larger, and in regions of the
input space where there is no data.

-5.0

-2.5

0.0

2.5

5.0

7.5

-2.5 0.0 2.5 5.0

x

y

Fig. 1. Learning data and predictions for the illustrative example. The red solid and
broken lines correspond, respectively, to the expected values µ(x), and to the lower

and upper expectations E∗(Ỹ (x)), E∗(Ỹ (x)). Prediction intervals at levels 1 − α ∈
{0.5, 0.9, 0.99} are shown as grey areas.

4.2 Comparative experiment

The performance of ENNreg model was compared to those of six alternative re-
gression methods on four datasets from the UCI Machine Learning Repository1.
The methods are:

– The two evidential regression algorithms published so far: the neural network
model introduced in [4] (referred to as ENN97) and EVREG [13]:

– Three state-of-the-art nonlinear regression algorithms with Radial Basis Func-
tion Kernel: Relevance Vector Machines (RVM), Support Vector Machines
(SVM), and Gaussian Process (GP);

– The Random Forest (RF) algorithm, which is often considered as one of the
best statistical learning procedures.

1 Available at https://archive.ics.uci.edu/ml/.
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For all methods, except ENN97 and EVREG, we used the implementation in
the R package caret [10]. Each dataset was split randomly into a training set
and a test set containing, respectively, 2/3 and 1/3 of the observations. All
predictors were scaled to have zero mean and unit standard deviation. For each
method, hyperparameters were tuned by 10-fold cross-validation. For ENN97,
the number M of classes was set to 10. For ENNreg, we used J = 30, λ = 0.9
and ε = 0.01σy (where σy is the standard deviation of the response variable) for
all the simulations; only ξ was tuned by cross-validation.

The results are reported in Table 1. We can see that ENNreg performs much
better than the two other evidential methods on all datasets, and also better
that the state-of-the-art methods for most datasets (it was only outperformed
by RF on the Concrete dataset). From these results, it appears that ENNreg not
only provides informative outputs with uncertainty quantification, but is also
very competitive in terms of prediction accuracy.

Table 1. Test mean squared errors of ENNreg and six alternative algorithms on four
UCI datasets. (See the description of the methods in the text).

n p ENNreg ENN97 EVREG RVM SVM GP RF

Boston 506 13 8.72 15.78 19.82 14.86 9.74 17.10 10.68
Energy 768 9 0.342 5.303 4.266 0.721 0.440 2.324 0.462
Concrete 1,030 8 28.32 62.0 71.4 42.3 29.6 52.7 25.6
Yacht 308 6 0.462 6.662 42.045 2.771 3.295 33.721 0.908

5 Conclusions

The evidential distance-based neural network described in this paper can be seen
as regression counterpart of the ENN model introduced in [5] for classification.
Both models are based on prototypes, and interpret the distances of the input
vector to the prototypes as pieces of evidence. In ENN, pieces of evidence are
represented by mass functions on the finite frame of discernment and are com-
bined by Dempster’s rule. In ENNreg, the frame of discernment is the real line;
pieces of evidence are represented by GRFN’s and combined by the generalized
product-intersection rule with hard normalization, which generalizes Dempster’s
rule to random fuzzy sets.

The output of ENNreg for input vector x is a GRFN defined by three num-
bers: a point prediction µ(x), a variance σ2(x) measuring random uncertainty,
and a precision h(x), which can be seen as representing epistemic uncertainty.
Experimental results show that the method outperforms previous evidential re-
gression models in terms of mean squared error, and that it also performs better
than or as well as some of the state-of-the-art nonlinear regression models. In
future work, we will further investigate the calibration properties of the output
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belief functions, and study their potential to faithfully represent prediction un-
certainty, particularly in information fusion contexts. We will also compare our
approach to that of Cella and Martin [1], who propose a method, applicable to
any regression algorithm, for constructing a predictive possibility distribution
with some well-defined frequentist properties.
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