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Abstract

We are interested in resonance frequencies of
two dimensional dielectric cavities—a compo-
nent of optical micro-resonators—and more spe-
cifically in resonances corresponding to whis-
pering gallery modes (WGM). WGM are opti-
cal waves with high polar mode index, circling
around the cavity and almost perfectly guided
by total internal reflection. For a cavity of gen-
eral shape with a varying optical index n (grad-
ed index optical cavity), using a phase ampli-
tude ansatz, we have obtained asymptotic ex-
pansions of resonances as the polar mode index
becomes large. We have also found sufficient
conditions linking the curvature of the cavity
boundary and the optical index for such expan-
sions to hold.
Keywords: Helmholtz transmission problem;
Resonances; WKB method.

1 Problem setting

Resonant modes in an optical micro-cavity are
particular time-harmonic solutions to the source
free Maxwell equations inside and outside the
dielectric cavity. We consider a 2D setting, a
situation that arises as a simplification of the
3D resonance problem, e.g. by using the effec-
tive index approach. It is well know that the 2D
Maxwell setting is the combination of two sub-
systems of equations referred to as transverse
electric (TE) and transverse magnetic (TM). For
brevity we report here only for the TM case.

We denote by Ω the bounded domain in R2

describing the dielectric cavity. The optical in-
dex n is 1 outside Ω and coincides with a smooth
function n > 1 in Ω. The resonance problem can
be formulated as: Find (k, u) ∈ C × H2

loc(R2)
with u 6= 0 such that

−∆u− k2 n2 u = 0 in R2, (1a)

u(r, θ) =
∑
m∈Z

cmH(1)
m (kr) eimθ r > R0. (1b)

Here H
(1)
m refers to Hankel function of the first

kind of orderm. Equation (1b) expresses the ra-

diation condition at infinity in polar coordinates
for R0 large enough. For real k, it corresponds
to the outgoing Sommerfeld’s condition. It is
known that the solutions (k, u) to problem (1)
are such that k has a negative imaginary part.

For a circular cavity with constant index,
asymptotic expansions of the resonances can be
obtained using expansions of Bessel functions
[1]. When n is not constant in Ω, this approach
is not applicable.

2 Disk cavity with radially varying index

Let R be the radius of the disk and assume n
is a smooth radial function r 7→ n(r). Then
problem (1) can be reduced to a family of 1D
radial problems depending on an integer m ∈ Z
referred as the polar mode index :

− 1

m2
Lw + V w = λw (4)

where V (r) =
[
n(R)R
n(r) r

]2
−1 is an effective poten-

tial, k = m
Rn(R)

√
1 + λ and Lw = n(R)2R2

n(r)2 r
(rw′)′

is an elliptic operator. Since V (R−) = 0 and
V (R+) = n(R)2 − 1 > 0, we have a potential
barrier at r = R. We note that V ′(R−) = −2κ̆
where

κ̆ =
1

R
+
n′(R)

n(R)
. (5)

We have identified three typical behaviors [2] for
the solutions of (4), depending on the sign of
κ̆, relying on the spectral theory of Schrödinger
operators.
a) Half-triangular potential well. If κ̆ > 0
then V is decreasing in a left neighborhood of
R and has a local minimum at R. We have
obtained an asymptotic expansion of the reso-
nances in the form k = mKa(m

− 1
3 ) for a func-

tion Ka in C∞([0, 1]) with determined Taylor ex-
pansion at 0. Moreover, the (quasi)mode u lo-
calizes at the boundary.
b) Half-quadratic potential well. If κ̆ = 0,
under the additional condition 2

R2 − n′′(R)
n(R) > 0

the effective potential V has a local minimum
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at R. Our expansion is now k = mKb(m−
1
2 )

for another function Kb ∈ C∞([0, 1]). Again,
the (quasi)mode u localizes at the boundary.
c) Internal quadratic potential well. If κ̆ < 0,
since limr↘0 V (r) = +∞, the effective potential
V has at least a global minimum r0 in (0, R).
Under the condition 2

r20
− n′′(r0)

n(r0)
> 0 and that r0

is the unique global minimum of V , our expan-
sion has again the form k = mKc(m

− 1
2 ) with

a different function Kc ∈ C∞([0, 1]), and now u
localizes inside the cavity around r = r0.

3 General cavity with variable index

In the general case, the phase function is not
known and we have used a phase amplitude ansatz,
the famous WKB method, to find asymptotic
expressions of the resonances in tubular coordi-
nates along the boundary of Ω [2]. This leads to
an eikonal equation coupled with a Schrödinger
equation. A small parameter h appears natu-
rally, and has to be quantized so that the phase
is well-defined, giving rise to a generalized no-
tion of polar mode index. We have constructed
quasi-resonances (k, u) in the sense of [3] in a
similar, but more general, form than in case a)
above, when the condition κ + ∂νn

n > 0 is ful-
filled all along ∂Ω where κ is the curvature of
∂Ω. The asymptotic expansions are computed
using a computer algebra system.

The advantage of the asymptotic formulas
we have obtained is twofold. They provide ac-
curate approximations of resonances at high fre-
quencies when the use of standard numerical
approximation is difficult. For lower frequen-
cies, combined with finite element (FE) com-
putations, they provide information on the lo-
calization of the resonances in the FE matrix
spectrum.

4 Numerical Experiments

For numerical illustration we consider an elliptic
cavity with perimeter L and constant index n.
Our 4-term asymptotic expansion of k reads

k
[4]
j (m) =

2πm

Ln

[
1+

aj
2
〈κ

2
3 〉h

2
3
m−

n〈κ〉
2
√
n2 − 1

hm

+
a2j
12

(
〈κ

2
3 〉2 − 〈κ

4
3 〉

10
− 4

45
〈κ′2κ−

8
3 〉

)
h

4
3
m

− ajn0

12
√
n2 − 1

(
〈κ

2
3 〉〈κ〉+

〈κ
5
3 〉

n2 − 1

)
h

5
3
m

]

as m → +∞, where hm = L
πm and 〈·〉 is the

mean value along ∂Ω. Here j is a natural integer
(radial mode index) and aj is the j-th zero of the
reverse Airy function x 7→ Ai(−x).

On Figure 1, we have compared our N -terms
asymptotic expansion to FE computation for an
ellipse of semi-major axis 1 and eccentricity 0.5
with constant index n = 5. We have used a Per-
fectly Matched Layer with a structured quadran-
gular mesh of geometric degree 3 and a FE space
of degree 7 with 64156 dofs. For N = 0, k[0]0 (m)

is the principal term 2πm
Ln , for N = 1, k[1]0 (m) is

k
[0]
0 (m) plus one corrective term, etc. Note that,

problem (1) has two solutions for each m.
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Figure 1: Relative difference between FE reso-
nances and N -terms asymptotic expansions, for
j = 0. The slopes of the solid lines are −N+2
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