
HAL Id: hal-03830604
https://hal.science/hal-03830604

Submitted on 26 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Benchopt: Reproducible, efficient and collaborative
optimization benchmarks

Thomas Moreau, Mathurin Massias, Alexandre Gramfort, Pierre Ablin,
Pierre-Antoine Bannier, Benjamin Charlier, Mathieu Dagréou, Tom Dupré La

Tour, Ghislain Durif, Cassio F Dantas, et al.

To cite this version:
Thomas Moreau, Mathurin Massias, Alexandre Gramfort, Pierre Ablin, Pierre-Antoine Bannier, et
al.. Benchopt: Reproducible, efficient and collaborative optimization benchmarks. NeurIPS 2022 -
36th Conference on Neural Information Processing Systems, Nov 2022, New Orleans, United States.
�hal-03830604�

https://hal.science/hal-03830604
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Benchopt: Reproducible, efficient and collaborative
optimization benchmarks

Thomas Moreau1,∗, Mathurin Massias2,∗, Alexandre Gramfort1,∗, Pierre Ablin3,
Pierre-Antoine Bannier, Benjamin Charlier4, Mathieu Dagréou1, Tom Dupré la Tour6,
Ghislain Durif4, Cassio F. Dantas7, Quentin Klopfenstein8, Johan Larsson9, En Lai1,

Tanguy Lefort4, Benoit Malézieux1, Badr Moufad2, Binh T. Nguyen10, Alain Rakotomamonjy11,
Zaccharie Ramzi12, Joseph Salmon4,5, Samuel Vaiter13

1 Université Paris-Saclay, Inria, CEA, 91120 Palaiseau, France
2 Univ Lyon, Inria, CNRS, ENS de Lyon, UCB Lyon 1, LIP UMR 5668, F-69342, Lyon, France

3 Université Paris-Dauphine, PSL University, CNRS, 75016, Paris, France
4 IMAG, Univ Montpellier, CNRS, Montpellier, France 5 Institut Universitaire de France (IUF)

6 University of California, Berkeley, CA 94720, USA 7 TETIS, Univ Montpellier, INRAE, Montpellier, France
8 University of Luxembourg, LCSB, Esch-sur-Alzette, Luxembourg

9 The Department of Statistics, Lund University 10 LTCI, Télécom Paris, 91120 Palaiseau, France
11 Criteo AI Lab, Paris, France 12 ENS Ulm, CNRS, UMR 8553, Paris, France

13 CNRS & Université Côte d’Azur, Laboratoire J.A. Dieudonné, CNRS, Nice, France

Abstract

Numerical validation is at the core of machine learning research as it allows to
assess the actual impact of new methods, and to confirm the agreement between
theory and practice. Yet, the rapid development of the field poses several challenges:
researchers are confronted with a profusion of methods to compare, limited trans-
parency and consensus on best practices, as well as tedious re-implementation work.
As a result, validation is often very partial, which can lead to wrong conclusions that
slow down the progress of research. We propose Benchopt, a collaborative frame-
work to automate, reproduce and publish optimization benchmarks in machine
learning across programming languages and hardware architectures. Benchopt
simplifies benchmarking for the community by providing an off-the-shelf tool for
running, sharing and extending experiments. To demonstrate its broad usability, we
showcase benchmarks on three standard learning tasks: ℓ2-regularized logistic re-
gression, Lasso, and ResNet18 training for image classification. These benchmarks
highlight key practical findings that give a more nuanced view of the state-of-the-art
for these problems, showing that for practical evaluation, the devil is in the details.
We hope that Benchopt will foster collaborative work in the community hence
improving the reproducibility of research findings.

1 Introduction

Numerical experiments have become an essential part of statistics and machine learning (ML). It
is now commonly accepted that every new method needs to be validated through comparisons with
existing approaches on standard problems. Such validation provides insight into the method’s benefits
and limitations and thus adds depth to the results. While research aims at advancing knowledge
and not just improving the state of the art, experiments ensure that results are reliable and support
theoretical claims (Sculley et al., 2018). Practical validation also helps the ever-increasing number
of ML users in applied sciences to choose the right method for their task. Performing rigorous and
extensive experiments is, however, time-consuming (Raff, 2019), particularly because comparisons

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

.PDF

.HTML

.CSV

Figure 1: A visual summary of Benchopt. Each Solver is run (in parallel) on each Dataset and
each variant of the Objective. Results are exported as a CSV file that is easily shared and can be
automatically plotted as interactive HTML visualizations or PDF figures.

against existing methods in new settings often requires reimplementing baseline methods from the
literature. In addition, ingredients necessary for a proper reimplementation may be missing, such as
important algorithmic details, hyperparameter choices, and preprocessing steps (Pineau et al., 2019).

In the past years, the ML community has actively sought to overcome this “reproducibility crisis”
(Hutson, 2018) through collaborative initiatives such as open datasets (OpenML, Vanschoren et al.
2013), standardized code sharing (Forde et al., 2018), benchmarks (MLPerf, Mattson et al. 2020),
the NeurIPS and ICLR reproducibility challenges (Pineau et al., 2019; Pineau et al., 2021) and new
journals (e.g., Rougier and Hinsen 2018). As useful as these endeavors may be, they do not, however,
fully address the problems in optimization for ML since, in this area, there are no clear community
guidelines on how to perform, share, and publish benchmarks.

Optimization algorithms pervade almost every area of ML, from empirical risk minimization, varia-
tional inference to reinforcement learning (Sra et al., 2012). It is thus crucial to know which methods
to use depending on the task and setting (Bartz-Beielstein et al., 2020). While some papers in
optimization for ML provide extensive validations (Lueckmann et al., 2021), many others fall short
in this regard due to lack of time and resources, and in turn feature results that are hard to reproduce
by other researchers. In addition, both performance and hardware evolve over time, which eventually
makes static benchmarks obsolete. An illustration of this is the recent work by Schmidt et al. (2021),
which extensively evaluates the performances of 15 optimizers across 8 deep-learning tasks. While
their benchmark gives an overall assessment of the considered solvers, this assessment is bound
to become out-of-date if it is not updated with new solvers and new architectures. Moreover, the
benchmark does not reproduce state-of-the-art results on the different datasets, potentially indicating
that the considered architectures and optimizers could be improved.

We firmly believe that this critical task of maintaining an up-to-date benchmark in a field
cannot be solved without a collective effort. We want to empower the community to take up
this challenge and build a living, reproducible and standardized state of the art that can
serve as a foundation for future research.

Benchopt provides the tools to structure the optimization for machine learning (Opt-ML) community
around standardized benchmarks, and to aggregate individual efforts for reproducibility and results
sharing. Benchopt can handle algorithms written in Python, R, Julia or C/C++ via binaries. It offers
built-in functionalities to ease the execution of benchmarks: parallel runs, caching, and automatical
results archiving. Benchmarks are meant to evolve over time, which is why Benchopt offers a
modular structure through which a benchmark can be easily extended with new objective functions,
datasets, and solvers by the addition of a single file of code.

The paper is organized as follows. We first detail the design and usage of Benchopt, before presenting
results on three canonical problems:

• ℓ2-regularized logistic regression: a convex and smooth problem which is central to the evaluation
of many algorithms in the Opt-ML community, and remains of high relevance for practitioners;

• the Lasso: the prototypical example of non-smooth convex problem in ML;

• training of ResNet18 architecture for image classification: a large scale non-convex deep learning
problem central in the field of computer vision.

2

The reported benchmarks, involving dozens of implementations and datasets, shed light on the
current state-of-the-art solvers for each problem, across various settings, highlighting that the best
algorithm largely depends on the dataset properties (e.g., size, sparsity), the hyperparameters, as well
as hardware. A variety of other benchmarks (e.g., MCP, TV1D, etc.) are also presented in Appendix,
with the goal to facilitate contributions from the community.

By the open source and collaborative design of Benchopt (BSD 3-clause license), we aim to open
the way towards community-endorsed and peer-reviewed benchmarks that will improve the tracking
of progress in optimization for ML.

2 The Benchopt library

The Benchopt library aims to provide a standard toolset and structure to implement benchmarks for
optimization in ML, where the problems depend on some input dataset D. The considered problems
are of the form

θ∗ ∈ argmin
θ∈Θ

f(θ;D,Λ) , (1)

where f is the objective function, Λ are its hyperparameters, and Θ is the feasible set for θ. The
scope of the library is to evaluate optimization methods in their wide sense by considering the
sequence {θt}t produced to approximate θ∗. We emphasize than Benchopt does not provide a fixed
set of benchmarks, but a framework to create, extend and share benchmarks on any problem of
the form (1). To provide a flexible and extendable coding standard, benchmarks are defined as the
association of three types of object classes:

benchmark/
objective.py
datasets/

dataset1.py
dataset2.py

solvers/
solver1.py
solver2.py

Figure 2: Standard
benchmark structure

Objective: It defines the function f to be minimized as well as the hy-
perparameters Λ or the set Θ, and the metrics to track along the iterations
(e.g., objective value, gradient norm for smooth problems, or validation
loss). Multiple metrics can be registered for each θt.

Datasets: The Dataset objects provide the data D to be passed to the
Objective class. They control how data is loaded and preprocessed.
Datasets are separated from the Objective, making it easy to add new
ones, provided they are coherent with the Objective.

Solvers: The Solver objects define how to run the algorithm. They are
provided with the Objective and Dataset objects and output a sequence
{θt}t. This sequence can be obtained using a single run of the method,
or with multiple runs in case the method only returns its final iterate.

Each of these objects can have parameters that change their behavior, e.g., the regularization
parameters for the Objective, the choice of preprocessing for the Datasets, or the step size for
the Solvers. By exposing these parameters in the different objects, Benchopt can evaluate their
influence on the benchmark results. The Benchopt library defines an application programming
interface (API) for each of these concepts and provides a command line interface (CLI) to make
them work together. A benchmark is defined as a folder that contains an Objective as well as
subfolders containing the Solvers and Datasets. Appendix B presents a concrete example on
Ridge regression of how to construct a Benchopt benchmark while additional design design choices
of Benchopt are discussed in Appendix C.

For each Dataset and Solver, and for each set of parameters, Benchopt retrieves a sequence {θt}t
and evaluates the metrics defined in the Objective for each θt. To ensure fair evaluation, the
computation of these metrics is done off-line. The metrics are gathered in a CSV file that can be used
to display the benchmark results, either locally or as HTML files published on a website that reference
the benchmarks run with Benchopt. This workflow is described in Figure 1.

This modular and standardized organization for benchmarks empowers the optimization community
by making numerical experiments easily reproducible, shareable, flexible and extendable. The
benchmark can be shared as a git repository or a folder containing the different definitions for the
Objective, Datasets and Solvers and it can be run with the Benchopt CLI, hence becoming a
convenient reference for future comparisons. This ensures fair evaluation of baselines in follow-up
experiments, as implementations validated by the community are available. Moreover, benchmarks
can be extended easily as one can add a Dataset or a Solver to the comparison by adding a single

3

file. Finally, by supporting multiple metrics – e.g., training and testing losses, error on parameter
estimates, sparsity of the estimate – the Objective class offers the flexibility to define the concurrent
evaluation, which can be extended to track extra metrics on a per benchmark basis, depending on the
problem at hand.

As one of the goal of Benchopt is to make benchmarks as simple as possible, it also provides a set
of features to make them easy to develop and run. Benchopt is written in Python, but Solvers run
with implementations in different languages (e.g., R and Julia, as in Section 4) and frameworks
(e.g., PyTorch and TensorFlow, as in Section 5). Moreover, benchmarks can be run in parallel with
checkpointing of the results, enabling large scale evaluations on many CPU or GPU nodes. Benchopt
also makes it possible to run solvers with many different hyperparameters’ values , allowing to assess
their sensitivity on the method performance. Benchmark results are also automatically exported as
interactive visualizations, helping with the exploration of the many different settings.

Benchmarks All presented benchmarks are run on 10 cores of an Intel Xeon Gold 6248 CPUs @
2.50GHz and NVIDIA V100 GPUs (16GB). The results’ interactive plots and data are available at
https://benchopt.github.io/results/preprint_results.html.

3 First example: ℓ2-regularized logistic regression

Logistic regression is a very popular method for binary classification. From a design matrix
X ∈ Rn×p with rows Xi and a vector of labels y ∈ {−1, 1}n with corresponding element yi,
ℓ2-regularized logistic regression provides a generalized linear model indexed by θ∗ ∈ Rp to discrim-
inate the classes by solving

θ∗ = argmin
θ∈Rp

n∑
i=1

log
(
1 + exp(−yiX

⊤
i θ)

)
+

λ

2
∥θ∥22 , (2)

where λ > 0 is the regularization hyperparameter. Thanks to the regularization part, Problem (2) is
strongly convex with a Lipschitz gradient, and thus its solution can be estimated efficiently using
many iterative optimization schemes.

The most classical methods to solve this problem take inspiration from Newton’s method (Wright
and Nocedal, 1999). On the one hand, quasi-Newton methods aim at approximating the Hessian
of the cost function with cheap to compute operators. Among these methods, L-BFGS (Liu and
Nocedal, 1989) stands out for its small memory footprint, its robustness and fast convergence in a
variety of settings. On the other hand, truncated Newton methods (Dembo et al., 1982) try to directly
approximate Newton’s direction by using e.g., the conjugate gradient method (Fletcher and Reeves,
1964) and Hessian-vector products to solve the associated linear system. Yet, these methods suffer
when n is large: each iteration requires a pass on the whole dataset.

In this context, methods based on stochastic estimates of the gradient have become standard (Bottou,
2010), with Stochastic Gradient Descent (SGD) as a main instance. The core idea is to use cheap and
noisy estimates of the gradient (Robbins and Monro, 1951; Kiefer and Wolfowitz, 1952). While SGD
generally converges either slowly due to decreasing step sizes, or to a neighborhood of the solution
for constant step sizes, variance-reduced adaptations such as SAG (Schmidt et al., 2017), SAGA
(Defazio et al., 2014) and SVRG (Johnson and Zhang, 2013) make it possible to solve the problem
more efficiently and are often considered to be state-of-the-art for large scale problems.

Finally, methods based on coordinate descent (Bertsekas, 1999) have also been proposed to solve
Problem (2). While these methods are usually less popular, they can be efficient in the context of
sparse datasets, where only few samples have non-zero values for a given feature, or when accelerated
on distributed systems or GPU (Dünner et al., 2018).

The code for the benchmark is available at https://github.com/benchopt/benchmark_logreg_
l2/. To reflect the diversity of solvers available, we showcase a Benchopt benchmark with 3 datasets,
10 optimization strategies implemented in 5 packages, leveraging GPU hardware when possible.
We also consider different scenarios for the objective function: (i) scaling (or not) the features, a
recommended data preprocessing step, crucial in practice to have comparable regularization strength
on all variables; (ii) fitting (or not) an unregularized intercept term, important in practice and making
optimization harder when omitted from the regularization term (Koh et al., 2007); (iii) working (or

4

https://benchopt.github.io/results/preprint_results.html
https://github.com/benchopt/benchmark_logreg_l2/
https://github.com/benchopt/benchmark_logreg_l2/

scikit-learn[liblinear]

scikit-learn[lbfgs]

scikit-learn[newton-cg]

cuML[gpu]

snapML[gpu=False]

snapML[gpu]

lightning[cd]

lightning[sag]

lightning[saga]

tick[svrg]

scikit-learn[sgd]

scikit-learn[sag]

scikit-learn[saga]

10−2 10−1 100 101

104

100

10−4

10−8

ijc
nn

1

Raw

10−2 10−1 100 101

Scaled

10−2 10−1 100 101

Intercept

10−3 10−2 10−1 100 101 102 103

104

100

10−4

10−8

m
ad

el
on

10−3 10−2 10−1 100 101 102 103 10−3 10−2 10−1 100 101 102 103

10−1 100 101 102 103

104

100

10−4

10−8ne
w

s2
0.

bi
na

ry

10−1 100 101 102 103 10−1 100 101 102 103

100 101 102 103

Time (s)

104

100

10−4

10−8

cr
it

eo

100 101 102 103

Time (s)
100 101 102 103

Time (s)

Figure 3: Benchmark for the ℓ2-regularized logistic regression, on 13 solvers, 4 datasets (rows),
and 3 variants of the Objective (columns) with λ = 1. The curves display the suboptimality of the
iterates, f(θt)− f(θ∗), as a function of time. The first column corresponds to the objective function
detailed in Problem (2). In the second column, datasets were preprocessed by normalizing each
feature to unit standard deviation. The third column is for an objective function which includes an
unregularized intercept.

not) with sparse features, which prevent explicit centering during preprocessing to keep memory
usage limited. Details on packages, datasets and additional scenarios are available in Appendix D.

Results Figure D.1 presents the results of the benchmarks, in terms of suboptimality of the iterates,
f(θt) − f(θ∗), for three datasets and three scenarios. Here, because the problem is convex, θ∗ is
approximated by the best iterate across all runs (see Section C.1). Overall, the benchmark shows the
benefit of using GPU solvers (cuML and snapML), even for small scale tasks such as ijcnn1. Note that
these two accelerated solvers converge to a higher suboptimality level compared to other solvers, due
to operating with 32-bit float precision. Another observation is that data scaling can drastically change
the picture. In the case of madelon, most solvers have a hard time converging for the scaled data. For
the solvers that converge, we note that the convergence time is one order of magnitude smaller with
the scaled dataset compared to the raw one. This stems from the fact that in this case, the scaling
improves the conditioning of the dataset.1 For news20.binary, the stochastic solvers such as SAG
and SAGA have degraded performances on scaled data. Here, the scaling makes the problem harder.2

1The condition number of the dataset is divided by 5.9 after scaling.
2The condition number is multiplied by 407 after scaling.

5

On CPU, quasi-Newton solvers are often the most efficient ones, and provide a reasonable choice in
most situations. For large scale news20.binary, stochastic solvers such as SAG, SAGA or SVRG –that
are often considered as state of the art for such problem– have worst performances for the presented
datasets. While this dataset is often used as a test bed for benchmarking new stochastic solvers, we
fail to see an improvement over non-stochastic ones for this experimental setup. In contrast, the last
row in Figure D.1 displays an experiment with the larger scale criteo dataset, which demonstrates a
regime where variance-reduced stochastic gradient methods outperform quasi-Newton methods. For
future benchmarking of stochastic solvers, we therefore recommend using such a large dataset.

Finally, the third column in Figure D.1 illustrates a classical problem when benchmarking different
solvers: their specific (and incompatible) definition and resolution of the corresponding optimization
problem. Here, the objective function is modified to account for an intercept (bias) in the linear
model. In most situations, this intercept is not regularized when it is fitted. However, snapML and
liblinear solvers do regularize it, leading to incomparable losses.

4 Second example: The Lasso

The Lasso, (Tibshirani, 1996; Chen et al., 1998), is an archetype of non-smooth ML problems,
whose impact on ML, statistics and signal processing in the last three decades has been considerable
(Bühlmann and van de Geer, 2011; Hastie et al., 2015). It consists of solving

θ∗ ∈ argmin
θ∈Rp

1
2 ∥y −Xθ∥2 + λ ∥θ∥1 , (3)

where X ∈ Rn×p is a design matrix containing p features as columns, y ∈ Rn is the target vector,
and λ > 0 is a regularization hyperparameter. The Lasso estimator was popularized for variable
selection: when λ is high enough, many entries in θ∗ are exactly equal to 0. This leads to more
interpretable models and reduces overfitting compared to the least-squares estimator.

Solvers for Problem (3) have evolved since its introduction by Tibshirani (1996). After generic
quadratic program solvers, new dedicated solvers were proposed based on iterative reweighted least-
squares (IRLS) (Grandvalet, 1998), followed by LARS (Efron et al., 2004), a homotopy method
computing the full Lasso path3. The LARS solver helped popularize the Lasso, yet the algorithm
suffers from stability issues and can be very slow for worst case situations (Mairal and Yu, 2012).
General purpose solvers became popular for Lasso-type problems with the introduction of the iterative
soft thresholding algorithm (ISTA, Daubechies et al. 2004), an instance of forward-backward splitting
(Combettes and Wajs, 2005). These algorithms became standard in signal and image processing,
especially when accelerated (FISTA, Beck and Teboulle 2009).

In parallel, proximal coordinate descent has proven particularly relevant for the Lasso in statistics.
Early theoretical results were proved by Tseng (1993) and Sardy et al. (2000), before it became the
standard solver of the widely distributed packages glmnet in R and scikit-learn in Python. For
further improvements, some solvers exploit the sparsity of θ∗, trying to identify its support to reduce
the problem size. Best performing variants of this scheme are screening rules (e.g., El Ghaoui et al.,
2012; Bonnefoy et al., 2015; Ndiaye et al., 2017) and working/active sets (e.g., Johnson and Guestrin
2015; Massias et al. 2018), including strong rules (Tibshirani et al., 2012).

While reviews of Lasso solvers have already been performed (Bach et al., 2012, Sec. 8.1), they are
limited to certain implementation and design choices, but also naturally lack comparisons with more
recent solvers and modern hardware, hence drawing biased conclusions.

The code for the benchmark is available at https://github.com/benchopt/benchmark_lasso/.
Results obtained on 4 datasets, with 9 standard packages and some custom reimplementations, possi-
bly leveraging GPU hardware, and 17 different solvers written in Python/numba/Cython, R, Julia or
C++ (Table E.1) are presented in Figure 4. All solvers use efficient numerical implementations, pos-
sibly leveraging calls to BLAS, precompiled code in Cython or just-in-time compilation with numba.

The different parameters influencing the setup are

• the regularization strength λ, controlling the sparsity of the solution, parameterized as a fraction
of λmax =

∥∥X⊤y
∥∥
∞ (the minimal hyperparameter such that θ∗ = 0),

3The Lasso path is the set of solutions of Problem (3) as λ varies in (0,∞).

6

https://github.com/benchopt/benchmark_lasso/

• the dataset dimensions: MEG has small n and medium p; rcv1.binary has medium n and p;
news20.binary has medium n and very large p while MillionSong has very large n and small p
(Table E.2).

blitz

cuML[qn]

glmnet

noncvx-pro

snapML[gpu]

celer

FISTA

ISTA

scikit-learn

coordinate descent

FISTA[adaptive-1]

LARS

skglm

cuML[cd]

FISTA[greedy]

lasso jl

snapML[cpu]

10−2 10−1 100 101 102 103

101

10−2

10−5

10−8

M
E

G

λ = 0.1λmax

10−2 10−1 100 101 102 103

λ = 0.01λmax

10−2 10−1 100 101 102 103

λ = 0.001λmax

10−2 10−1 100 101

107

104

101

10−2

10−5

M
ill

io
nS

on
g

10−2 10−1 100 101 10−2 10−1 100 101

10−2 10−1 100 101 102

103

100

10−3

10−6rc
v1

.b
in

ar
y

10−2 10−1 100 101 102 10−2 10−1 100 101 102

10−1 100 101 102 103

Time (s)

103

100

10−3

10−6

ne
w

s2
0.

bi
na

ry

10−1 100 101 102 103

Time (s)
10−1 100 101 102 103

Time (s)

Figure 4: Benchmark for the Lasso, on 17 solvers, 4 datasets (rows), and 3 variants of the Objective
(columns) with decreasing regularization λ. The curves display the suboptimality of the objective
function, f(θt)− f(θ∗), as a function of time.

Results Figure 4 presents the result of the benchmark on the Lasso, in terms of objective subopti-
mality f(θt)− f(θ∗) as a function of time.

Similarly to Section 3, the GPU solvers obtain good performances in most settings, but their advantage
is less clear. A consistent finding across all settings is that coordinate descent-based methods
outperform full gradient ones (ISTA and FISTA, even restarted), and are improved by the use of
working set strategies (blitz, celer, skglm, glmnet). This observation is even more pronounced
when the regularization parameter is large, as the solution is sparser.

When observing the influence of the dataset dimensions, we observe 3 regimes. When n is small
(MEG), the support of the solution is small and coordinate descent, LARS and noncvx-pro perform
the best. When n is much larger than p (MillionSong), noncvx-pro clearly outperforms other solvers,
and working set methods prove useless. Finally, when n and p are large (rcv1.binary, news20.binary),
CD and working sets vastly outperforms the rest while noncvx-pro fails, as it requires solving a
linear system of size min(n, p). We note that this setting was not tested in the original experiment of
Poon and Peyré (2021), which highlights the need for extensive, standard experimental setups.

7

When the support of the solution is small (either small λ, either small n since the Lasso solution has
at most n nonzero coefficients), LARS is a competitive algorithm. We expect this to degrade when
n increases, but as the LARS solver in scikit-learn does not support sparse design matrices we
could not include it for news20.binary and rcv1.binary.

This benchmark is the first to evaluate solvers across languages, showing the competitive behavior
of lasso.jl and glmnet compared to Python solvers. Both solvers have a large initialization time,
and then converge very fast. To ensure that the benchmark is fair, even though the Benchopt library
is implemented in Python, we made sure to ignore conversion overhead, as well as just-in-time
compilation cost. We also checked the timing’s consistency with native calls to the libraries.

Since the Lasso is massively used for it feature selection properties, the speed at which the solvers
identify the support of the solution is also an important performance measure. Monitoring this with
Benchopt is straightforward, and a figure reporting this benchmark is in Appendix E.

5 Third example: How standard is a benchmark on ResNet18?

As early successes of deep learning have been focused on computer vision tasks (Krizhevsky et al.,
2012), image classification has become a de facto standard to validate novel methods in the field.
Among the different network architectures, ResNets (He et al., 2016) are extensively used in the
community as they provide strong and versatile baselines (Xie et al., 2017; Tan and Le, 2019;
Dosovitskiy et al., 2021; Brock et al., 2021; Liu et al., 2022). While many papers present results
with such model on classical datasets, with sometimes extensive ablation studies (He et al., 2019;
Wightman et al., 2021; Bello et al., 2021; Schmidt et al., 2021), the lack of standardized codebase
and missing implementation details makes it hard to replicate their results.

The code for the benchmark is available at https://github.com/benchopt/benchmark_resnet_
classif/. We provide a cross-dataset –SVHN, Netzer et al. (2011); MNIST, LeCun et al. (2010) and
CIFAR-10, Krizhevsky (2009)– and cross-framework –TensorFlow/Keras, Abadi et al. (2015) and
Chollet et al. (2015); PyTorch, Paszke et al. (2019)– evaluation of the training strategies for image
classification with ResNet18 (see Appendix F for details on architecture and datasets). We train the
network by minimizing the cross entropy loss relatively to the weights θ of the model. Contrary to
logistic regression and the Lasso, this problem is non-convex due to the non-linearity of the model fθ.
Another notable difference is that we report the evolution of the test error rather than the training loss.

Because we chose to monitor the test loss, the Solvers are defined as the combination of an
optimization algorithm, its hyperparameters, the learning rate (LR) and weight decay schedules, and
the data augmentation strategy. This is in contrast to a case where we would monitor the train loss,
and therefore make the LR and weight decay schedules, as well as the data augmentation policy, part
of the objective. We focus on 2 standard methods: stochastic gradient descent (SGD) with momentum
and Adam (Kingma and Ba, 2015), as well as a more recently published one: Lookahead (Zhang et al.,
2019). The LR schedules are chosen among fixed LR, step LR4, and cosine annealing (Loshchilov
and Hutter, 2017). We also consider decoupled weight decay for Adam (Loshchilov and Hutter,
2019), and coupled weight decay (i.e., ℓ2-regularization) for SGD. Regarding data augmentation, we
use random cropping for all datasets and add horizontal flipping only for CIFAR-10, as the digits
datasets do not exhibit a mirror symmetry. We detail the remaining hyperparameters in Table F.2, and
discuss their selection as well as their sensitivity in Appendix F.

Aligning cross-framework implementations Due to some design choices, components with the
same name in the different frameworks do not have the same behavior. For instance, when it comes
to applying weight decay, PyTorch’s SGD uses coupled weight decay, while in TensorFlow/Keras
weight decay always refers to decoupled weight decay. These two methods lead to significantly
different performance and it is not straightforward to apply coupled weight decay in a post-hoc
manner in TensorFlow/Keras (see further details in Section F.3). We conducted an extensive effort to
align the networks implementation in different frameworks using unit testing to make the conclusions
of our benchmarks independent of the chosen framework. We found additional significant differences
(reported in Table F.3) in the initialization, the batch normalization, the convolutional layers and the
weight decay scaling.

4decreasing the learning rate by a factor 10 at mid-training, and again at 3/4 of the training

8

https://github.com/benchopt/benchmark_resnet_classif/
https://github.com/benchopt/benchmark_resnet_classif/

Vanilla SGD

SGD + data aug.

SGD + data aug. + momentum

SGD + data aug. + momentum + cosine LR sched.

Best SGD

Best SGD (TF/Keras)

Best Adam

Lookahead

0 1000 2000 3000

Time (s)

5

10

15

20
T

es
t

er
ro

r
(%

)
CIFAR-10

0 2000 4000

Time (s)

4

6

8
SVHN

0 1000 2000

Time (s)

0

1

2

3
MNIST

Figure 5: ResNet18 image classification benchmark with PyTorch Solvers. The best SGD
configuration features data augmentation, momentum, cosine learning rate schedule and weight decay.
In dashed black is the state of the art for the corresponding datasets with a ResNet18 measured by
Zhang et al. (2019) for CIFAR-10, by Zheng et al. (2021) for SVHN with a PreAct ResNet18, by
PapersWithCode for MNIST with all networks considered. Off-the-shelf ResNet implementations
in TensorFlow/Keras do not support images smaller than 32 × 32 and is hence not shown for
MNIST.Curves are exponentially smoothed.

Results The results of the benchmark are reported in Figure 5. Each graph reports the test error
relative to time, with an ablation study on the solvers parameters. Note that we only report selected
settings for clarity but that we run every possible combinations.5.

Firstly, reaching the state of the art for a vanilla ResNet18 is not straightforward. On the popular
website Papers with code it has been so far underestimated. It can achieve 4.45% and 2.65% test error
rates on CIFAR-10 and SVHN respectively (compared to 4.73% and 2.95% – for a PreAct ResNet18 –
before that). Our ablation study shows that a variety of techniques is required to reach it. The most
significant one is an appropriate data augmentation strategy, which lowers the error rate on CIFAR-10
from about 18% to about 8%. The second most important one is weight decay, but it has to be used in
combination with a proper LR schedule, as well as momentum. While these techniques are not novel,
they are regularly overlooked in baselines, resulting in underestimation of their performance level.

This reproducible benchmark not only allows a researcher to get a clear understanding of how to
achieve the best performances for this model and datasets, but also provides a way to reproduce and
extend these performances. In particular, we also include in this benchmark the original implementa-
tion of Lookahead (Zhang et al., 2019). We confirm that it slightly accelerates the convergence of the
Best SGD, even with a cosine LR schedule – a setting that had not been studied in the original paper.

Our benchmark also evaluates the relative computational performances of the different frameworks.
We observe that PyTorch-Lightning is significantly slower than the other frameworks we tested,
in large part due to their callbacks API. We also notice that our TensorFlow/Keras implementation
is significantly slower (≈ 28%) than the PyTorch ones, despite following the best practices and our
profiling efforts. Note that we do not imply that TensorFlow is intrinsically slower than PyTorch,
but a community effort is needed to ensure that the benchmark performances are framework-agnostic.

A recurrent criticism of such benchmarks is that only the best test error is reported. In Figure 6, we
measure the effect of using a train-validation-test split, by keeping a fraction of the training set as
a validation set. The splits we use are detailed in Table F.1. Our finding is that the results of the
ablation study do not change significantly when using such procedure, even though their validity is
reinforced by the use of multiple trainings. Yet, a possible limitation of our findings is that some of
the hyperparameters we used for our study, coming from the PyTorch-CIFAR GitHub repository,
may have been tuned while looking at the test set.

5The results are available online as a user-friendly interactive HTML file

9

https://paperswithcode.com/sota/image-classification-on-mnist
https://paperswithcode.com/
https://github.com/kuangliu/pytorch-cifar
https://benchopt.github.io/results/benchmark_resnet_classif_benchmark_resnet_classif_benchopt_run_2022-05-03_10h31m54.html

Best SGD with step LR schedule (no val test)

Best SGD with step LR schedule (val test)

Best SGD with cosine LR schedule (no val test)

Best SGD with cosine LR schedule (val test)

1000 1500 2000 2500

Time (s)

4

6

8

10
T

es
t/

V
al

er
ro

r
(%

)
CIFAR-10

1000 2000 3000

Time (s)

4

6

8
SVHN

1000 2000

Time (s)

0

1

2
MNIST

Figure 6: ResNet18 image classification benchmark with a validation split. In dashed black is the
state of the art (see caption of Figure 5 for more details). In addition, we show in colored horizontal
dashed lines, the test results for early stopping on the validation and on the test set for the different
solvers, the square mark indicating the moment this stopping would happen. The curves for the
train-val splits show the exponentially smoothed median results for five different random seeds.

6 Conclusion and future work

We have introduced Benchopt, a library that makes it easy to collaboratively develop fair and extensive
benchmarks of optimization algorithms, which can then be seamlessly published, reproduced, and
extended. In the future, we plan on supporting the creation of new benchmarks, that could become
the standards the community builds on. This work is part of a wider effort to improve reproducibility
of machine learning results. It aims to contribute to raising the standard of numerical validation for
optimization, which is pervasive in the statistics and ML community as well as for the experimental
sciences that rely more and more on these tools for research.

7 Acknowledgements

It can not be stressed enough how much the Benchopt library relies on contributions from the
community and in particular the Python open source ecosystem. In particular, it could not exist
without the libraries mentioned in Appendix A.

This work was granted access to the HPC resources of IDRIS under the allocation 2022-
AD011011172R2 and 2022-AD011013570 made by GENCI, which was used to run all the bench-
marks. MM also gratefully acknowledges the support of the Centre Blaise Pascal’s IT test platform
at ENS de Lyon (Lyon, France) for Machine Learning facilities. The platform operates the SIDUS
solution (Quemener and Corvellec, 2013).

TL, CFD and JS contributions were supported by the Chaire IA CaMeLOt (ANR-20-CHIA-0001-01).
AG, EL and TM contributions were supported by the Chaire IA ANR BrAIN (ANR-20-CHIA-0016).
BMa contributions were supported by a grant from Digiteo France. MD contributions were supported
by a public grant overseen by the French National Research Agency (ANR) through the program
UDOPIA, project funded by the ANR-20-THIA-0013-01 and DATAIA convergence institute (ANR-
17-CONV-0003). BN work was supported by the Télécom Paris’s Chaire DSAIDIS (Data Science
& Artificial Intelligence for Digitalized Industry Services). BMo contributions were supported by a
grant from the Labex MILYON.

References
Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, S. Corrado, A. Davis, J. Dean,

M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L.
Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng (2015). TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org.

10

Akiba, T., S. Sano, T. Yanase, T. Ohta, and M. Koyama (2019). Optuna: A Next-generation Hyperpa-
rameter Optimization Framework.

Bach, F., R. Jenatton, J. Mairal, and G. Obozinski (2012). “Optimization with sparsity-inducing
penalties”. In: Foundations and Trends in Machine Learning 4.1, pp. 1–106.

Bacry, E., M. Bompaire, S. Gaïffas, and S. Poulsen (2017). “Tick: A Python Library for Statistical
Learning, with a Particular Emphasis on Time-Dependent Modeling”. In: ArXiv e-prints.

Barbero, A. and S. Sra (2018). “Modular Proximal Optimization for Multidimensional Total-Variation
Regularization”. In: Journal of Machine Learning Research 19.56, pp. 1–82.

Barlow, R. E. and H. D. Brunk (1972). “The Isotonic Regression Problem and Its Dual”. In: Journal
of the American Statistical Association 67.337, pp. 140–147.

Bartz-Beielstein, T., C. Doerr, D. van den Berg, J. Bossek, S. Chandrasekaran, T. Eftimov, A. Fis-
chbach, P. Kerschke, W. La Cava, M. Lopez-Ibanez, et al. (2020). “Benchmarking in optimization:
Best practice and open issues”. In: arXiv preprint arXiv:2007.03488.

Beck, A. and M. Teboulle (2009). “A fast iterative shrinkage-thresholding algorithm for linear inverse
problems”. In: SIAM J. Imaging Sci. 2.1, pp. 183–202.

Bello, I., W. Fedus, X. Du, E. D. Cubuk, A. Srinivas, T.-Y. Lin, J. Shlens, and B. Zoph (2021). “Re-
visiting ResNets: Improved Training and Scaling Strategies”. In: Advances in Neural Information
Processing Systems.

Bergstra, J. and Y. Bengio (2012). “Random search for hyper-parameter optimization”. In: J. Mach.
Learn. Res. 13.2.

Bergstra, J., D. Yamins, and D. Cox (2013). “Making a Science of Model Search: Hyperparameter
Optimization in Hundreds of Dimensions for Vision Architectures”. In: ICML. Vol. 28. 1, pp. 115–
123.

Bertin-Mahieux, T., D. P. Ellis, B. Whitman, and P. Lamere (2011). “The Million Song Dataset”. In:
Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR 2011).

Bertrand, Q., Q. Klopfenstein, P.-A. Bannier, G. Gidel, and M. Massias (2022). “Beyond L1: Faster
and Better Sparse Models with skglm”. In: arXiv preprint arXiv:2204.07826.

Bertsekas, D. P. (1999). Nonlinear programming. Athena Scientific.

Bezanson, J., A. Edelman, S. Karpinski, and V. B. Shah (2017). “Julia: A fresh approach to numerical
computing”. In: SIAM Review 59.1, pp. 65–98.

Bleakley, K. and J.-P. Vert (2011). “The group fused Lasso for multiple change-point detection”. In.

Blondel, M. and F. Pedregosa (2016). Lightning: Large-Scale Linear Classification, Regression and
Ranking in Python.

Boisbunon, A., R. Flamary, and A. Rakotomamonjy (2014). “Active set strategy for high-dimensional
non-convex sparse optimization problems”. In: ICASSP. IEEE, pp. 1517–1521.

Bolte, J., S. Sabach, and M. Teboulle (2014). “Proximal alternating linearized minimization for
nonconvex and nonsmooth problems”. In: Mathematical Programming 146.1, pp. 459–494.

Bonnefoy, A., V. Emiya, L. Ralaivola, and R. Gribonval (2015). “Dynamic screening: accelerating
first-order algorithms for the Lasso and Group-Lasso”. In: IEEE Trans. Signal Process. 63.19,
p. 20.

Bottou, L. (2010). “Large-Scale Machine Learning with Stochastic Gradient Descent”. In: COMP-
STAT. Physica-Verlag, pp. 177–186.

Boyd, S., N. Parikh, E. Chu, B. Peleato, and J. Eckstein (2011). “Distributed Optimization and
Statistical Learning via the Alternating Direction Method of Multipliers”. In: Foundations and
Trends in Machine Learning 3.1.

Boyd, S. P. and L. Vandenberghe (2004). Convex Optimization. Cambridge, UK ; New York: Cam-
bridge University Press.

11

Boykov, Y., O. Veksler, and R. Zabih (2001). “Fast approximate energy minimization via graph cuts”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 23.11, pp. 1222–1239.

Brandl, G. (2010). “Sphinx documentation”. In: URL http://sphinx-doc. org/sphinx. pdf.

Bredies, K., K. Kunisch, and T. Pock (2010). “Total generalized variation”. In: SIAM J. Imaging Sci.
3.3, pp. 492–526.

Breheny, P. and J. Huang (2011). “Coordinate descent algorithms for nonconvex penalized regression,
with applications to biological feature selection”. In: Ann. Appl. Stat. 5.1, p. 232.

Brock, A., S. De, S. L. Smith, and K. Simonyan (2021). “High-performance large-scale image
recognition without normalization”. In: ICML. PMLR, pp. 1059–1071.

Bühlmann, P. and S. van de Geer (2011). Statistics for high-dimensional data. Springer Series in
Statistics. Methods, theory and applications. Heidelberg: Springer.

Candès, E. J., M. B. Wakin, and S. P. Boyd (2008). “Enhancing Sparsity by Reweighted l1 Minimiza-
tion”. In: J. Fourier Anal. Applicat. 14.5-6, pp. 877–905.

Chambolle, A. and P.-L. Lions (1997). “Image recovery via total variation minimization and related
problems”. In: Numerische Mathematik 76.2, pp. 167–188.

Chambolle, A. and T. Pock (2011). “A first-order primal-dual algorithm for convex problems with
applications to imaging”. In: Journal of Mathematical Imaging and Vision 40.1.

Chen, S. S., D. L. Donoho, and M. A. Saunders (1998). “Atomic decomposition by basis pursuit”. In:
SIAM J. Sci. Comput. 20.1, pp. 33–61.

Cherkaoui, H., T. Moreau, A. Halimi, and P. Ciuciu (2019). “Sparsity-Based Semi-Blind Decon-
volution of Neural Activation Signal in fMRI”. In: IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). Brighton, UK.

Chollet, F. et al. (2015). Keras.

Clark, A. (2015). Pillow (PIL Fork) Documentation.

Combettes, P. L. and V. Wajs (2005). “Signal recovery by proximal forward-backward splitting”. In:
Multiscale modeling & simulation 4.4, pp. 1168–1200.

Combettes, P. L. and L. E. Glaudin (2021). “Solving Composite Fixed Point Problems with Block
Updates”. In: Advances in Nonlinear Analysis.

Condat, L. (2013a). “A Direct Algorithm for 1-D Total Variation Denoising”. In: IEEE SIGNAL
PROCESSING LETTERS 20.12.

Condat, L. (2013b). “A primal-dual splitting method for convex optimization involving Lipschitzian,
proximable and linear composite terms”. In: Journal of Optimization Theory and Applications,
Springer Verlag.

Criteo-Labs (2015). “Criteo releases industry’s largest-ever dataset for machine learning to academic
community”. In.

Daubechies, I., M. Defrise, and C. De Mol (2004). “An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint”. In: Commun. Pure Appl. Math. 57.11, pp. 1413–1457.

Defazio, A., F. Bach, and S. Lacoste-Julien (2014). “SAGA: A Fast Incremental Gradient Method
With Support for Non-Strongly Convex Composite Objectives”. In: Advances in Neural Information
Processing Systems. Vol. 28, pp. 1646–1654.

Dembo, R. S., S. C. Eisenstat, and T. Steihaug (1982). “Inexact Newton Methods”. In: SIAM J. Numer.
Anal. 19.2, pp. 400–408.

Dosovitskiy, A., L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby (2021). “An Image is Worth
16x16 Words: Transformers for Image Recognition at Scale”. In: ICLR.

12

Dünner, C., T. Parnell, D. Sarigiannis, N. Ioannou, A. Anghel, G. Ravi, M. Kandasamy, and H.
Pozidis (2018). “Snap ML: A hierarchical framework for machine learning”. In: Advances in
Neural Information Processing Systems. Vol. 31.

Efron, B., T. J. Hastie, I. M. Johnstone, and R. Tibshirani (2004). “Least angle regression”. In: Ann.
Statist. 32.2. With discussion, and a rejoinder by the authors, pp. 407–499.

El Ghaoui, L., V. Viallon, and T. Rabbani (2012). “Safe feature elimination in sparse supervised
learning”. In: J. Pacific Optim. 8.4, pp. 667–698.

Elad, M., P. Milanfar, and R. Rubinstein (2006). “Analysis versus synthesis in signal priors”. In: 2006
14th European Signal Processing Conference.

Falcon, W., J. Borovec, A. Wälchli, N. Eggert, J. Schock, J. Jordan, N. Skafte, Ir1dXD, V. Bereznyuk,
E. Harris, T. Murrell, P. Yu, S. Præsius, T. Addair, J. Zhong, D. Lipin, S. Uchida, S. Bapat, H.
Schröter, B. Dayma, A. Karnachev, A. Kulkarni, S. Komatsu, Martin.B, J.-B. SCHIRATTI, H.
Mary, D. Byrne, C. Eyzaguirre, cinjon, and A. Bakhtin (May 2020). PyTorchLightning/pytorch-
lightning: 0.7.6 release. Version 0.7.6.

Fan, J. and R. Li (2001). “Variable selection via nonconcave penalized likelihood and its oracle
properties”. In: J. Amer. Statist. Assoc. 96.456, pp. 1348–1360.

Fan, R.-E., K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin (2008). “LIBLINEAR: A Library
for Large Linear Classification”. In: J. Mach. Learn. Res. 9.

Farrens, S., A. Grigis, L. El Gueddari, Z. Ramzi, G. Chaithya, S. Starck, B. Sarthou, H. Cherkaoui,
P. Ciuciu, and J.-L. Starck (2020). “PySAP: Python Sparse Data Analysis Package for multidisci-
plinary image processing”. In: Astronomy and Computing 32, p. 100402.

Fletcher, R. and C. M. Reeves (Jan. 1964). “Function Minimization by Conjugate Gradients”. In: The
Computer Journal 7.2, pp. 149–154.

Forde, J., T. Head, C. Holdgraf, Y. Panda, G. Nalvarete, B. Ragan-Kelley, and E. Sundell (2018).
Reproducible research environments with repo2docker. Tech. rep.

Friedman, J., T. Hastie, and R. Tibshirani (2010). “Regularization paths for generalized linear models
via coordinate descent”. In: J. Stat. Softw. 33.1, pp. 1–22.

Gao, F. and L. Han (2012). “Implementing the Nelder-Mead simplex algorithm with adaptive
parameters”. In: Computational Optimization and Applications 51.1, pp. 259–277.

Glorot, X. and Y. Bengio (2010). “Understanding the difficulty of training deep feedforward neural
networks”. In: AISTATS. Vol. 9, pp. 249–256.

Golub, T. R., D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh,
J. R. Downing, M. A. Caligiuri, et al. (1999). “Molecular classification of cancer: class discovery
and class prediction by gene expression monitoring”. In: science 286.5439, pp. 531–537.

Gong, P., C. Zhang, Z. Lu, J. Huang, and J. Ye (2013). “A general iterative shrinkage and thresholding
algorithm for non-convex regularized optimization problems”. In: ICML, pp. 37–45.

Gramfort, A., M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier, C. Brodbeck, L. Parkkonen, and
M. S. Hämäläinen (2014). “MNE software for processing MEG and EEG data”. In: NeuroImage
86, pp. 446–460.

Grandvalet, Y. (1998). “Least absolute shrinkage is equivalent to quadratic penalization”. In: Interna-
tional Conference on Artificial Neural Networks. Springer, pp. 201–206.

Guyon, I., S. Gunn, A. Ben-Hur, and G. Dror (2004). “Result analysis of the nips 2003 feature
selection challenge”. In: Advances in neural information processing systems 17.

Hansen, N., A. Auger, R. Ros, O. Mersmann, T. Tušar, and D. Brockhoff (2021). “COCO: A Platform
for Comparing Continuous Optimizers in a Black-Box Setting”. In: Optimization Methods and
Software 36.1. ArXiv e-prints, arXiv:1603.08785, pp. 114–144.

Hansen, N. and A. Ostermeier (2001). “Completely derandomized self-adaptation in evolution
strategies”. In: Evolutionary computation 9.2, pp. 159–195.

13

Harris, C. R., K. J. Millman, S. J. Van Der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser,
J. Taylor, S. Berg, N. J. Smith, et al. (2020). “Array programming with NumPy”. In: Nature
585.7825, pp. 357–362.

Hastie, T. J., R. Tibshirani, and M. Wainwright (2015). Statistical Learning with Sparsity: The Lasso
and Generalizations. CRC Press.

He, K., X. Zhang, S. Ren, and J. Sun (2015). “Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification”. In: CVPR, pp. 1026–1034.

He, K., X. Zhang, S. Ren, and J. Sun (2016). “Deep residual learning for image recognition”. In:
CVPR.

He, T., Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li (2019). “Bag of tricks for image classification
with convolutional neural networks”. In: CVPR. Vol. 2019-June, pp. 558–567.

Hunter, J. D. (2007). “Matplotlib: A 2D graphics environment”. In: Computing in Science & Engi-
neering 9.3, pp. 90–95.

Hutson, M. (2018). “Artificial intelligence faces reproducibility crisis”. In: Science 359.6377, pp. 725–
726.

Inc., P. T. (2015). Collaborative data science. URL: https://plot.ly.

Ioffe, S. and C. Szegedy (2015). “Batch normalization: Accelerating deep network training by
reducing internal covariate shift”. In: ICML, pp. 448–456.

Johnson, R. and T. Zhang (2013). “Accelerating Stochastic Gradient Descent Using Predictive
Variance Reduction”. In: Advances in Neural Information Processing Systems. Vol. 26.

Johnson, T. B. and C. Guestrin (2015). “Blitz: A Principled Meta-Algorithm for Scaling Sparse
Optimization”. In: ICML. Vol. 37, pp. 1171–1179.

Karahanoğlu, F. I., C. Caballero-Gaudes, F. Lazeyras, and D. Van De Ville (June 2013). “Total
Activation: fMRI Deconvolution through Spatio-Temporal Regularization”. In: NeuroImage 73,
pp. 121–134.

Keerthi, S. S., D. DeCoste, and T. Joachims (2005). “A modified finite Newton method for fast
solution of large scale linear SVMs.” In: Journal of Machine Learning Research 6.3.

Kiefer, J. and J. Wolfowitz (1952). “Stochastic estimation of the maximum of a regression function”.
In: Ann. Math. Stat., pp. 462–466.

Kingma, D. P. and J. Ba (2015). “Adam: A Method for Stochastic Optimization”. In: ICLR, pp. 1–10.

Koh, K., J. Kim, and S. Boyd (2007). “An interior-point method for large-scale l1-regularized logistic
regression.” In: J. Mach. Learn. Res. 8.8, pp. 1519–1555.

Kolmogorov, V. and R. Zabin (2004). “What energy functions can be minimized via graph cuts?” In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 26.2, pp. 147–159.

Komodakis, N. and J.-C. Pesquet (2015). “Playing with Duality: An overview of recent primal-dual
approaches for solving large-scale optimization problems”. In: IEEE Signal Processing Magazine,
Institute of Electrical and Electronics Engineers.

Kornblith, S. (Oct. 28, 2021). Lasso.jl. Version 0.6.3. JuliaStats.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Tech. rep.

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). “Imagenet Classification with Deep Convo-
lutional Neural Networks”. In: Advances in Neural Information Processing Systems. South Lake
Tahoe, NV, USA, pp. 1097–1105.

Lalanne, C., M. Rateaux, L. Oudre, M. P. Robert, and T. Moreau (July 2020). “Extraction of
Nystagmus Patterns from Eye-Tracker Data with Convolutional Sparse Coding”. In: Annual
International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC).
Montreal, QC, Canada: IEEE, pp. 928–931.

14

https://plot.ly

LeCun, Y., C. Cortes, and C. Burges (2010). “MNIST handwritten digit database”. In: ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist 2.

Lewis, D. D., Y. Yang, T. Russell-Rose, and F. Li (2004). “Rcv1: A new benchmark collection for
text categorization research”. In: Journal of machine learning research 5.Apr, pp. 361–397.

Liang, J., T. Luo, and C.-B. Schöenlieb (2022). “Improving “Fast Iterative Shrinkage-Thresholding
Algorithm”: Faster, Smarter, and Greedier”. In: SIAM J. Sci. Comput. 44.3, A1069–A1091.

Liu, D. C. and J. Nocedal (Aug. 1989). “On the Limited Memory BFGS Method for Large Scale
Optimization”. In: Math. Program. 45.1-3, pp. 503–528.

Liu, Z., H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie (2022). “A ConvNet for the
2020s”. In: CVPR.

Loshchilov, I. and F. Hutter (2017). “SGDR: Stochastic Gradient Descent with Warm Restarts”. In:
ICLR.

Loshchilov, I. and F. Hutter (2019). “Decoupled Weight Decay Regularization”. In: ICLR.

Lueckmann, J.-M., J. Boelts, D. S. Greenberg, P. J. Gonçalves, and J. H. Macke (2021). “Benchmark-
ing Simulation-Based Inference”. In: AISTATS. Vol. 130. PMLR, pp. 343–351.

Mairal, J. and B. Yu (2012). “Complexity analysis of the Lasso regularization path”. In: ICML,
pp. 353–360.

Mairal, J. (2019). “Cyanure: An open-source toolbox for empirical risk minimization for python, c++,
and soon more”. In: arXiv preprint arXiv:1912.08165.

Massias, M., A. Gramfort, and J. Salmon (2018). “Celer: a fast solver for the lasso with dual
extrapolation”. In: ICML, pp. 3315–3324.

Mattson, P., V. Reddi, C. Cheng, C. Coleman, G. Diamos, D. Kanter, P. Micikevicius, D. Patterson, G.
Schmuelling, H. Tang, et al. (2020). “MLPerf: An industry standard benchmark suite for machine
learning performance”. In: IEEE Micro 40.2, pp. 8–16.

Mazumder, R., J. H. Friedman, and T. Hastie (2011). “Sparsenet: Coordinate descent with nonconvex
penalties”. In: J. Amer. Statist. Assoc. 106.495, pp. 1125–1138.

McKinney, W. et al. (2010). “Data structures for statistical computing in python”. In: Proceedings of
the 9th Python in Science Conference. Vol. 445. Austin, TX, pp. 51–56.

Moreau, T., P. Glaser, R. Yurchak, and O. Grisel (June 2017). Loky. Version 3.0. URL: https:
//github.com/joblib/loky.

Nájera, Ó., E. Larson, L. Estève, G. Varoquaux, L. Liu, J. Grobler, E. S. de Andrade, C. Holdgraf,
A. Gramfort, M. Jas, J. Nothman, O. Grisel, N. Varoquaux, E. Gouillart, M. Luessi, A. Lee,
J. Vanderplas, T. Hoffmann, T. A. Caswell, B. Sullivan, A. Batula, jaeilepp, T. Robitaille, S.
Appelhoff, P. Kunzmann, M. Geier, Lars, K. Sunden, D. Stańczak, and A. Y. Shih (May 2020).
sphinx-gallery/sphinx-gallery: Release v0.7.0. Version v0.7.0.

Ndiaye, E., O. Fercoq, A. Gramfort, and J. Salmon (2017). “Gap Safe screening rules for sparsity
enforcing penalties”. In: J. Mach. Learn. Res. 18.128, pp. 1–33.

Nesterov, Y. E. (1983). “A method for solving the convex programming problem with convergence
rate O(1/k2)”. In: Dokl. akad. nauk Sssr. Vol. 269, pp. 543–547.

Netzer, Y., T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng (2011). “Reading Digits in Natural
Images with Unsupervised Feature Learning”. In: Advances in Neural Information Processing
Systems.

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B.
Steiner, L. Fang, J. Bai, and S. Chintala (2019). “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”. In: Advances in Neural Information Processing Systems, pp. 8024–8035.

Pedregosa, F., G. Negiar, and G. Dresdner (2020). “copt: composite optimization in Python”. In.

15

https://github.com/joblib/loky
https://github.com/joblib/loky

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, et al. (2011). “Scikit-learn: Machine learning in Python”. In: J. Mach.
Learn. Res. 12, pp. 2825–2830.

Pineau, J., P. Vincent-Lamarre, K. Sinha, V. Larivière, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and
H. Larochelle (2021). “Improving reproducibility in machine learning research: a report from the
NeurIPS 2019 reproducibility program”. In: J. Mach. Learn. Res. 22.

Pineau, J., K. Sinha, G. Fried, R. N. Ke, and H. Larochelle (2019). “ICLR reproducibility challenge
2019”. In: ReScience C 5.2, p. 5.

Poon, C. and G. Peyré (2021). “Smooth Bilevel Programming for Sparse Regularization”. In: Ad-
vances in Neural Information Processing Systems. Vol. 34, pp. 1543–1555.

Powell, M. J. (1964). “An efficient method for finding the minimum of a function of several variables
without calculating derivatives”. In: The computer journal 7.2, pp. 155–162.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2007). Numerical recipes 3rd
edition: The art of scientific computing. Cambridge university press.

Prokhorov, D. (2001). “IJCNN 2001 neural network competition”. In: Slide presentation in IJCNN
1.97, p. 38.

Quemener, E. and M. Corvellec (2013). “SIDUS—the solution for extreme deduplication of an
operating system”. In: Linux Journal 2013.235, p. 3.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing. Vienna, Austria.

Raff, E. (2019). “A step toward quantifying independently reproducible machine learning research”.
In: Advances in Neural Information Processing Systems. Vol. 32, pp. 5486–5496.

Rapin, J. and O. Teytaud (2018). Nevergrad - A gradient-free optimization platform. https://
GitHub.com/FacebookResearch/Nevergrad.

Raschka, S., J. Patterson, and C. Nolet (2020). “Machine Learning in Python: Main Developments
and Technology Trends in Data Science, Machine Learning, and Artificial Intelligence”. In:
Information-an International Interdisciplinary Journal 11.4, p. 193.

Robbins, H. and S. Monro (1951). “A stochastic approximation method”. In: Ann. Math. Stat.,
pp. 400–407.

Rodola, G. (2016). “Psutil package: a cross-platform library for retrieving information on running
processes and system utilization”. In: Google Scholar.

Rougier, N. P. and K. Hinsen (2018). “ReScience C: a journal for reproducible replications in compu-
tational science”. In: International Workshop on Reproducible Research in Pattern Recognition.
Springer, pp. 150–156.

Rudin, L. I., S. Osher, and E. Fatemi (1992). “Nonlinear total variation based noise removal algo-
rithms”. In: Physica D: Nonlinear Phenomena 60.1-4, pp. 259–268.

Sardy, S., A. G. Bruce, and P. Tseng (2000). “Block coordinate relaxation methods for nonparametric
wavelet denoising”. In: J. Comput. Graph. Stat. 9.2, pp. 361–379.

Schmidt, M., N. Le Roux, and F. Bach (2017). “Minimizing Finite Sums with the Stochastic Average
Gradient”. In: Math. Program. 162.arXiv:1309.2388, pp. 83–112.

Schmidt, R. M., F. Schneider, and P. Hennig (2021). “Descending through a Crowded Valley -
Benchmarking Deep Learning Optimizers”. In: ICML. Vol. 139. PMLR, pp. 9367–9376.

Sculley, D., J. Snoek, A. Wiltschko, and A. Rahimi (2018). “Winner’s curse? On pace, progress, and
empirical rigor”. In.

Silva, T. S. (2019). “How to Add Regularization to Keras Pre-trained Models the Right Way”. In:
https://sthalles.github.io.

16

https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad

Simonyan, K. and A. Zisserman (2015). “Very Deep Convolutional Networks for Large-Scale Image
Recognition”. In: ICLR.

Sra, S., S. Nowozin, and S. J. Wright (2012). Optimization for machine learning. MIT Press.

Tan, M. and Q. Le (2019). “Efficientnet: Rethinking model scaling for convolutional neural networks”.
In: ICML, pp. 6105–6114.

Tibshirani, R., J. Bien, J. Friedman, T. Hastie, N. Simon, J. Taylor, and R. J. Tibshirani (2012).
“Strong rules for discarding predictors in lasso-type problems”. In: J. R. Stat. Soc. Ser. B Stat.
Methodol. 74.2, pp. 245–266.

Tibshirani, R. (1996). “Regression shrinkage and selection via the lasso”. In: J. R. Stat. Soc. Ser. B
Stat. Methodol. 58.1, pp. 267–288.

Tibshirani, R. J. (Feb. 2014). “Adaptive Piecewise Polynomial Estimation via Trend Filtering”. In:
The Annals of Statistics 42.1.

Tibshirani, R. J. and J. Taylor (2011). “The solution path of the generalized lasso”. In: Ann. Statist.
39.3, pp. 1335–1371.

Tseng, P. (1993). “Dual coordinate ascent methods for non-strictly convex minimization”. In: Math.
Program. 59.1, pp. 231–247.

Vanschoren, J., J. van Rijn, B. Bischl, and L. Torgo (2013). “OpenML: networked science in machine
learning”. In: SIGKDD Explorations 15.2, pp. 49–60.

Virtanen, P., R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,
P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N.
Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore,
J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris,
A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors (2020).
“SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”. In: Nature Methods 17,
pp. 261–272.

Wales, D. J. and J. P. Doye (1997). “Global optimization by basin-hopping and the lowest energy
structures of Lennard-Jones clusters containing up to 110 atoms”. In: The Journal of Physical
Chemistry A 101.28, pp. 5111–5116.

Wightman, R., H. Touvron, and H. Jégou (2021). ResNet strikes back: An improved training procedure
in timm. Tech. rep., pp. 1–22.

Wright, S. and J. Nocedal (1999). Numerical Optimization. Science Springer.

Xie, S., R. Girshick, P. Dollár, Z. Tu, and K. He (2017). “Aggregated residual transformations for
deep neural networks”. In: CVPR, pp. 1492–1500.

Zhang, . (2010a). “Nearly unbiased variable selection under minimax concave penalty”. In: Ann.
Statist. 38.2, pp. 894–942.

Zhang, M., J. Lucas, J. Ba, and G. E. Hinton (2019). “Lookahead optimizer: k steps forward, 1 step
back”. In: Advances in Neural Information Processing Systems. Vol. 32.

Zhang, T. (2010b). “Analysis of multi-stage convex relaxation for sparse regularization”. In: J. Mach.
Learn. Res. 11.Mar, pp. 1081–1107.

Zheng, Y., R. Zhang, and Y. Mao (2021). “Regularizing neural networks via adversarial model
perturbation”. In: CVPR, pp. 8156–8165.

17

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] These are specified in Appendix, on a per-benchmark basis.
(c) Did you report error bars (e.g., with respect to the random seed after running

experiments multiple times)? [No] Error bars are not reported for clarity, but
Benchopt allows this in particular in html versions of the plots that can be found
in https://benchopt.github.io/results/preprint_results.html.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] In the introduction.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

18

https://benchopt.github.io/results/preprint_results.html

A Software ecosystem acknowledgement

The command line interface and API use the click, pyyaml and psutil (Rodola, 2016) libraries.

Numerical computations involve numpy (Harris et al., 2020) and scipy (Virtanen et al., 2020). For
cross-language processing, we used rpy2 for calling R (R Core Team, 2017) libraries and PyJulia
for interfacing with Julia (Bezanson et al., 2017). The benchmark runs extensively use joblib,
loky (Moreau et al., 2017) and submitit for parallelization.

The results are stored and processed for visualizations using pandas (McKinney et al., 2010),
matplotlib (Hunter, 2007) for static rendering, mako and plotly (Inc., 2015) for interactive web-
pages. The participative results website relies partially on pygithub.

Our documentation is generated by multiple sphinx-based (Brandl, 2010) libraries
(sphinx-bootstrap-theme, sphinx-click, sphinx-gallery (Nájera et al., 2020) and
sphinx-prompt), and also the numpydoc and pillow (Clark, 2015) libraries.

19

B A complete Benchmark example: Objective, Dataset and Solver classes
for Ridge regression

Here, we provide code examples for a simple benchmark on Ridge regression. The Ridge regression
– also called ℓ2-regularized least-squares or Tikhonov regression – is a popular method to solve
least-square problems in the presence of noisy observations or correlated features. The problem
reads:

min
θ

1

2
∥y −Xθ∥22 +

λ

2
∥θ∥22 , (4)

where X ∈ Rn×p is a design matrix, y ∈ Rn is the target vector and λ is the regularization parameter.
This problem is strongly convex and many methods can be used to solve it. Direct computation of the
close form solution θ∗ = (X⊤X + λId)−1X⊤y can be obtained using matrix factorization methods
such as Cholesky decomposition or the SVD (Press et al., 2007) or iterative linear solver such as
Conjugate-Gradient (Liu and Nocedal, 1989). One can also resort on first order methods such as
gradient descent, coordinate descent (known as the Gauss-Seidel method in this context), or their
stochastic variant.

The code for the benchmark is available at https://github.com/benchopt/benchmark_ridge/.
The following code snippets are provided in the documentation as a template for new benchmarks.

B.1 Objective class

The Objective class is the central part of the benchmark, defining the objective function. This class
allows us to monitor the quantities of interest along the iterations of the solvers, amongst which the
objective function value. An Objective class should define 3 methods:

• set_data(**data): it allows specifying the nature of the data used in the benchmark. The data
is passed as a dictionary of Python variables, so no constraint is enforced to what can be passed
here.

• compute(theta): it allows evaluating the objective function for a given value of the iterate, here
called θ. This method should take only one parameter, the output returned by the Solver. All
other parameters should be stored in the class with the set_data method. The compute function
should return a float (understood as the objective value) or a dictionary. If a dictionary is returned
it should contain a key called value (the objective value) and all other keys should correspond to
float values allowing tracking more than one quantity of interest (e.g. train and test errors).

• to_dict(): a method that returns a dictionary to be passed to the set_objective() method of a
Solver.

An Objective class needs to inherit from a base class, benchopt.BaseObjective. Below is the
implementation of the Ridge regression Objective class.

from benchopt import BaseObjective

class Objective(BaseObjective):
name = "Ridge regression"
parameters = {"reg": [0.1, 1, 10]}

def __init__(self , reg=1):
self.reg = reg

def set_data(self , X, y):
self.X, self.y = X, y

def compute(self , theta):
res = self.y - self.X @ theta
return .5 * res @ res + 0.5 * self.reg * theta @ theta

def to_dict(self):
return dict(X=self.X, y=self.y, reg=self.reg)

20

https://github.com/benchopt/benchmark_ridge/

B.2 Dataset class

A Dataset class defines data to be passed to the Objective. More specifically, a Dataset class
should implement one method:

• get_data(): A method outputting a dictionary that can be passed as keyword arguments **data
to the set_data method of the Objective.

A Dataset class also needs to inherit from a base class, benchopt.BaseDataset.

If a Dataset requires some packages to function, Benchopt allows listing some requirements. The
necessary packages should be available via conda or pip.

Below is an example of a Dataset definition using the libsvmdata library, which exposes datasets
from libsvm, such as leukemia, bodyfat and gisette – described in Table B.1.

from benchopt import BaseDataset
from benchopt import safe_import_context

This context allow to manipulate the Dataset object even if
libsvmdata is not installed. It is used in ‘benchopt install ‘.
with safe_import_context () as import_ctx:

from libsvmdata import fetch_libsvm

class Dataset(BaseDataset):
name = "libsvm"
install_cmd = "conda"
requirements = ["libsvmdata"]
parameters = {"dataset": ["bodyfat", "leukemia", "gisette"]}

def __init__(self , dataset="bodyfat"):
self.dataset = dataset

def get_data(self):
X, y = fetch_libsvm(self.dataset)
return dict(X=self.X, y=self.y)

B.3 Solver class

A Solver class must define three methods:

• set_objective(**objective_dict): This method will be called with the dictionary
objective_dict returned by the method to_dict from the Objective. The goal of this method
is to provide all necessary information to the Solver so it can optimize the objective function.

• run(stop_value): This method takes only one parameter that controls the stopping condition of
the Solver. Typically this is either a number of iterations n_iter or a tolerance parameter tol.
Alternatively, a callback function that will be called at each iteration can be passed. The callback
should return False once the computation should stop. The parameter stop_value is controlled
by the stopping_strategy, see below for details.

• get_result(): This method returns a variable that can be passed to the compute method from
the Objective. This is the output of the Solver.

If a Python Solver requires some packages such as scikit-learn, Benchopt allows listing some
requirements. The necessary packages must be available via conda or pip.

Below is a simple Solver example using scikit-learn implementation of Ridge regression with
different optimization algorithms.

21

from benchopt import BaseSolver
from benchopt import safe_import_context

This context allow to manipulate the Solver object even if
scikit -learn is not installed. It is used in ‘benchopt install ‘.
with safe_import_context () as import_ctx:

from sklearn.linear_model import Ridge

class Solver(BaseSolver):
name = "scikit -learn"
install_cmd = "conda"
requirements = ["scikit -learn"]
parameters = {

"alg": ["svd", "cholesky", "lsqr", "sparse_cg", "saga"],
}

def __init__(self , alg="svd"):
self.alg = alg

def set_objective(self , X, y, reg=1):
self.X, self.y = X, y
self.clf = Ridge(

fit_intercept=False , alpha=reg , solver=self.alg ,
tol=1e-10

)

def run(self , n_iter):
self.clf.max_iter = n_iter + 1
self.clf.fit(self.X, self.y)

def get_result(self):
return self.clf.coef_

B.4 Results from the benchmark

Descriptions of datasets Table B.1 describes the datasets used in this benchmarks.

Table B.1: List of the datasets used in Ridge regression in Appendix B

Datasets References Samples (n) Features (p)

leukemia Golub et al. (1999) 38 7129
bodyfat Guyon et al. (2004) 252 8
gisette Guyon et al. (2004) 6000 5000

We also run the solvers on the simulated data described bellow.

Generation process for simulated dataset We generate a linear regression scenario with decaying
correlation for the design matrix, i.e., the ground-truth covariance matrix is a Toeplitz matrix, with
each element Σij = ρ|i−j|. As a consequence, the generated features have 0 mean, a variance of 1,
and the correlation structure as:

E[Xi] = 0 , E[X2
i] = 1 and E[XiXj] = ρ|i−j| . (5)

Our simulation scheme also includes the parameter density = 0.2 that controls the proportion of
non-zero elements in θ∗. The target vector is generated according to linear relationship with Gaussian
noise:

y = Xθ∗ + ε ,

such that the signal-to-noise ratio is snr = ∥Xθ∗∥2

∥ε∥2
.

22

We use a signal-to-noise ratio snr = 3, a correlation ρ of 0 or 0.6 with n = 500 samples and
p = 1000 features.

Description of the solvers Table B.2 describes the different solvers compared in this benchmark.

Table B.2: List of solvers used in the Ridge benchmark in Appendix B

Solver References Description Language

GD Boyd and Vandenberghe (2004) Gradient Descent Python
Accelerated GD Nesterov (1983) Gradient Descent + ac-

celeration
Python

scikit-learn[svd] Pedregosa et al. (2011) SVD (Singular Value
Decomposition)

Python (Cython)

scikit-learn[cholesky] Pedregosa et al. (2011) Cholesky decomposi-
tion

Python (Cython)

scikit-learn[lsqr] Pedregosa et al. (2011) regularized least-
squares

Python (Cython)

scikit-learn[saga] Pedregosa et al. (2011) SAGA (Varianced
reduced stochastic
method)

Python (Cython)

scikit-learn[cg] Pedregosa et al. (2011) Conjugate Gradient Python (Cython)
CD Bertsekas (1999) Cyclic Coordinate De-

scent
Python (Numba)

lightning[cd] Blondel and Pedregosa (2016) Cyclic Coordinate De-
scent

Python (Cython)

snapML[cpu] Dünner et al. (2018) CD Python, C++
snapML[gpu] Dünner et al. (2018) CD + GPU Python, C++

Results Figure B.1 presents the performance of the different methods for different values of the
regularization parameter in the benchmark. The algorithms based on the direct computation of
the closed-form solution outperform iterative ones in a majority of presented datasets. Among
closed-form algorithms, the Cholesky solver converges faster.

23

scikit-learn[cholesky]

scikit-learn[svd]

scikit-learn[cg]

scikit-learn[saga]

scikit-learn[lsqr]

snapML[cpu]

GD

Accelerated GD

snapML[gpu]

CD

lightning[cd]

10−510−410−310−210−1 100 101 102

104

100

10−4

10−8

b
od

yf
at

λ = 0.01

10−510−410−310−210−1 100 101 102

λ = 0.1

10−510−410−310−210−1 100 101 102

λ = 1

10−510−410−310−210−1 100 101 102

104

100

10−4

10−8

le
uk

em
ia

10−510−410−310−210−1 100 101 102 10−510−410−310−210−1 100 101 102

10−510−410−310−210−1 100 101 102

104

100

10−4

10−8

gi
se

tt
e

10−510−410−310−210−1 100 101 102 10−510−410−310−210−1 100 101 102

10−5 10−4 10−3 10−2 10−1 100 101

104

100

10−4

10−8

S
im

ul
at

ed

10−5 10−4 10−3 10−2 10−1 100 101 10−5 10−4 10−3 10−2 10−1 100 101

10−5 10−4 10−3 10−2 10−1 100 101

Time (s)

104

100

10−4

10−8

S
im

ul
at

ed
[ρ

=
0.

6]

10−5 10−4 10−3 10−2 10−1 100 101

Time (s)
10−5 10−4 10−3 10−2 10−1 100 101

Time (s)

Figure B.1: Benchmark for the Ridge regression, on 10 solvers, 5 datasets (rows), and 3 variants of
the Objective (columns) each with a different regularization value λ ∈ {0.01, 0.1, 1}. The curves
display the suboptimality of the iterates, f(θt)− f(θ∗), as a function of time.

24

C Design choices

Benchopt has made some design choices, while trying as much as possible to leave users free of
customizing the behavior on each benchmark. We detail the most important ones in this section.

C.1 Estimating θ∗ for convex problems

When the problem is convex, many solvers are guaranteed to converge to a global minimizer θ∗ of the
objective function f . To estimate θ∗ and f(θ∗), Benchopt approximates θ∗ by the iterate achieving
the lowest objective_value among all solvers for a given Dataset and Objective. This means
that the sub-optimality plot proposed by Benchopt are only valid if at least one solver has converged
to the optimal solution. Else, the curves are a lower bound estimate of the sub-optimality. In practice,
for most considered convex problems, running the Solver for long enough ensures that f(θ∗) is
correctly estimated.

C.2 Stopping solvers

Benchopt offers many ways to stop running a solver. The most common is to stop the solver when
the objective value does not decrease significantly between iterations. For some convex problems,
we also propose to track the duality gap (which upper bounds the suboptimality), as is done for the
Lasso. For non convex problems, criteria such as gradient norm or violation of first order conditions
can be used, as users do in practice. These criteria can easily be customized.

C.3 Wall-clock time versus number of iterations

Measuring time or iteration are two alternatives that make sense in their respective contexts. Practi-
tioners mostly care about the time it takes to solve their problem, while researchers in mathematical
optimization may want to abstract away the implementation and hardware details and only consider
iteration. The benchmarks we have presented showcase efficient implementations and are also
interested in hardware and implementation differences (e.g. CPU vs GPU solvers for ??, torch versus
tensorflow for Section F.4), hence our focus on time. However, Benchopt does not impose a choice
between the two measures: it is perfectly possible to create plots as a function of the number of
iterations as evidenced for example in ??.

25

D ℓ2-regularized logistic regression

D.1 List of solvers and datasets used in the benchmark in Section 3

Table D.1 and Table D.2 respectively present the Solvers and Datasets used in this benchmark.

Table D.1: List of solvers used in the ℓ2-regularized logistic regression benchmark in Section 3

Solver References Description Language

lightning[sag] Blondel and Pedregosa (2016) SAG Python (Cython)
lightning[saga] Blondel and Pedregosa (2016) SAGA Python (Cython)
lightning[cd] Blondel and Pedregosa (2016) Cyclic Coordi-

nate Descent
Python (Cython)

Tick[svrg] Bacry et al. (2017) Stochastic Vari-
ance Reduced
Gradient

Python, C++

scikit-learn[sgd] Pedregosa et al. (2011) Stochastic Gra-
dient Descent

Python (Cython)

scikit-learn[sag] Pedregosa et al. (2011) SAG Python (Cython)
scikit-learn[saga] Pedregosa et al. (2011) SAGA Python (Cython)
scikit-learn[liblinear] Pedregosa et al. (2011), Fan et al.

(2008)
Truncated New-
ton Conjugate-
Gradient

Python (Cython)

scikit-learn[lbfgs] Pedregosa et al. (2011), Virtanen
et al. (2020)

L-BFGS
(Quasi-Newton
Method)

Python (Cython)

scikit-learn[newton-cg] Pedregosa et al. (2011), Virtanen
et al. (2020)

Truncated New-
ton Conjugate-
Gradient

Python (Cython)

snapml[cpu] Dünner et al. (2018) CD Python, C++
snapml[gpu] Dünner et al. (2018) CD + GPU Python, C++
cuML[gpu] Raschka et al. (2020) L-BFGS + GPU Python, C++

Table D.2: List of the datasets used in ℓ2-regularized logistic regression in Section 3

Datasets References Samples (n) Features (p) Density

ijcnn1 Prokhorov (2001) 49 990 22 4.5× 10−2

madelon Guyon et al. (2004) 2000 500 2.0× 10−3

news20.binary Keerthi et al. (2005) 19 996 1 355 191 3.4× 10−4

criteo Criteo-Labs (2015) 45 840 617 1 000 000 3.9× 10−5

D.2 Results

Figure D.1 presents the performance results for the different solvers on the different datasets using
various regularization parameter values, on unscaled raw data. We observe that when the regulariza-
tion parameter λ increases, the problem tends to become easier and faster to solve for most methods.
Also, the relative order of the method does not change significantly for the considered range of
regularization.

26

scikit-learn[liblinear]

scikit-learn[lbfgs]

scikit-learn[newton-cg]

cuML[gpu]

snapML[gpu=False]

snapML[gpu]

lightning[cd]

lightning[sag]

lightning[saga]

tick[svrg]

scikit-learn[sgd]

scikit-learn[sag]

scikit-learn[saga]

10−2 10−1 100 101

104

100

10−4

10−8

ijc
nn

1

λ = 0.1

10−2 10−1 100 101

λ = 1

10−2 10−1 100 101

λ = 10

10−3 10−2 10−1 100 101 102

104

100

10−4

10−8

m
ad

el
on

10−3 10−2 10−1 100 101 102 10−3 10−2 10−1 100 101 102

10−1 100 101 102

104

100

10−4

10−8ne
w

s2
0.

bi
na

ry

10−1 100 101 102 10−1 100 101 102

10−2 10−1 100 101

104

100

10−4

10−8

rc
v1

.b
in

ar
y

10−2 10−1 100 101 10−2 10−1 100 101

10−3 10−2 10−1 100 101 102

Time (s)

104

100

10−4

10−8

ad
ul

t

10−3 10−2 10−1 100 101 102

Time (s)
10−3 10−2 10−1 100 101 102

Time (s)

Figure D.1: Additional benchmark for the ℓ2-regularized logistic regression on variants of the
Objective (columns) with fit_intercept=False. The curves display the suboptimality of the
iterates, f(θt)− f(θ∗), as a function of time. The columns correspond to the objective detailed in
Problem (2) with different value of λ: (first) λ = 0.1, (second) λ = 1 and (third) λ = 10.

27

E Lasso

E.1 List of solvers and datasets used in the Lasso benchmark in Section 4

Table E.1 and Table E.2 respectively present the Solvers and Datasets used in this benchmark.

Table E.1: List of solvers used in the Lasso benchmark in Section 4

Solver References Description Language

blitz Johnson and Guestrin (2015) CD + working set Python, C++
coordinate descent Friedman et al. (2010) (Cyclic) Minimization

along coordinates
Python (Numba)

celer Massias et al. (2018) CD + working set + dual
extrapolation

Python (Cython)

cuML[cd] Raschka et al. (2020) (Cyclic) Minimization
along coordinates

Python, C++

cuML[qn] Raschka et al. (2020) Orthant-Wise Limited
Memory Quasi-Newton
(OWL-QN)

Python, C++

FISTA Beck and Teboulle (2009) ISTA + acceleration Python
glmnet Friedman et al. (2010) CD + working set +

strong rules
R, C++

ISTA Daubechies et al. (2004) ISTA (Proximal GD) Python
LARS Efron et al. (2004) Least-Angle Regression

algorithm (LARS)
Python (Cython)

FISTA[adaptive-1] Liang et al. (2022, Algo 4), Far-
rens et al. (2020)

FISTA + adaptive restart Python

FISTA[greedy] Liang et al. (2022, Algo 5), Far-
rens et al. (2020)

FISTA + greedy restart Python

noncvx-pro Poon and Peyré (2021) Bilevel optim + L-
BFGS

Python (Cython)

skglm Bertrand et al. (2022) CD + working set + pri-
mal extrapolation

Python (Numba)

scikit-learn Pedregosa et al. (2011) CD Python (Cython)
snapML[gpu] Dünner et al. (2018) CD + GPU Python, C++
snapML[cpu] Dünner et al. (2018) CD Python, C++
lasso.jl Kornblith (2021) CD Julia

Table E.2: List of datasets used in the Lasso benchmark in Section 4

Dataset References Samples (n) Features (p) Density

MEG Gramfort et al. (2014) 305 7498 1.0
news20 Keerthi et al. (2005) 19 996 1 355 191 3.4× 10−4

rcv1 Lewis et al. (2004) 20 242 47 236 3.6× 10−3

MillionSong Bertin-Mahieux et al. (2011) 463 715 90 1

E.2 Support identification speed benchmark

Since the Lasso is massively used for its feature selection properties, the speed at which the solvers
identify the support of the solution is also an important performance measure. To evaluate the
behavior of solvers in this task, it is sufficient to add a single new variable in the Objective, namely
the ℓ0 pseudonorm of the iterate, allowing to produce Figure E.1 in addition to Figure 4.

E.3 Convergence in terms of iteration

??

28

blitz

cuML[qn]

glmnet

noncvx-pro

snapML[gpu]

celer

FISTA

ISTA

scikit-learn

coordinate descent

FISTA[adaptive-1]

LARS

skglm

cuML[cd]

FISTA[greedy]

lasso.jl

snapML[cpu]

10−2 10−1 100 101 102 103

100

10−1

10−2

10−3

M
E

G

λ = 0.1λmax

10−2 10−1 100 101 102 103

λ = 0.01λmax

10−2 10−1 100 101 102 103

λ = 0.001λmax

10−2 10−1 100 101 102

100

10−1

10−2

10−3

rc
v1

.b
in

ar
y

10−2 10−1 100 101 102 10−2 10−1 100 101 102

10−1 100 101 102 103

100

10−1

10−2

10−3

10−4

10−5

ne
w

s2
0.

bi
na

ry

10−1 100 101 102 103 10−1 100 101 102 103

10−2 10−1 100 101

Time (s)

100

10−1

10−2

M
ill

io
nS

on
g

10−2 10−1 100 101

Time (s)
10−2 10−1 100 101

Time (s)

Figure E.1: Additional benchmark for the Lasso on variants of the Objective (columns). The curves
display the fraction of non-zero coefficients in iterates θt (∥θt∥0/p), as a function of time.

While practitioners are mainly concerned with the time it takes to solve their optimization problem,
one may also be interested in the convergence as a function of the number of iterations. This is
particularly relevant to compare theoretical convergence rates with experiments. Benchopt natively
supports such functionality. Yet, this makes sense only if one iteration of each algorithm costs the
same. Figure E.2 presents such a case on the leukemia dataset, using algorithms for which one
iteration costs n × p. One can observe that cyclic coordinate descent as implemented in Cython
in scikit-learn or in Numba lead to identical results, while they outperform proximal gradient
methods.

29

coordinate descent FISTA ISTA scikit-learn

100 101 102 103

number of iterations

10−6

10−3

100

le
uk

em
ia

λ = 0.5λmax

100 101 102 103

number of iterations

λ = 0.1λmax

100 101 102 103

number of iterations

λ = 0.05λmax

Figure E.2: Convergence speed with respect to the number of iterations for some solvers of the Lasso
benchmark on the leukemia dataset.

30

F ResNet18

F.1 Description of the benchmark

Setting up the benchmark The three currently supported frameworks are
TensorFlow/Keras (Abadi et al., 2015; Chollet et al., 2015), PyTorch (Paszke et al., 2019)
and PyTorch Lightning (Falcon et al., 2020). We report here results for TensorFlow/Keras
and PyTorch. To guarantee that the model behaves consistently across the different considered
frameworks, we implemented several consistency unit tests. We followed the best practice of each
framework to make sure to achieve the optimal computational efficiency. In particular, we tried
as much as possible to use official code from the frameworks, and not third-party code. We also
optimized and profiled the data pipelines to make sure that our training was not IO-bound. Our
benchmarks were run using TensorFlow version 2.8 and PyTorch version 1.10.

Descriptions of the datasets

Table F.1: Description of the datasets used in the ResNet18 image classification benchmark

Dataset Content References Classes Train Size Val. Size Test Size Image Size RGB

CIFAR-10 natural images Krizhevsky (2009) 10 40k 10k 10k 32 ✓

SVHN digits in natural images Netzer et al. (2011) 10 58.6k 14.6k 26k 32 ✓

MNIST handwritten digits LeCun et al. (2010) 10 50k 10k 10k 28 ✗

In Table F.1, we present some characteristics of the different datasets used for the ResNet18 bench-
mark. In particular, we specify the size of each splits when using the train-validation-test split strategy.
The test split is always fixed, and is the official one.

While the datasets are downloaded and preprocessed using the official implementations of the
frameworks, we made sure to test that they matched using a unit test.

ResNet The ResNet18 is the smallest variant of the architecture introduced by He et al. (2016). It
consists in 3 stages:

1. A feature extension convolution that goes from 3 channels (RGB, or a repeated grayscale channel
in the MNIST case) to 64, followed by a batch normalization and a ReLU.

2. A series of residual blocks. Residual blocks are grouped by scale, and each individual group starts
with a strided convolution to reduce the image scale (except the first one). As the scale increases,
so does the number of features (64, 128, 256, 512). In the ResNet18 case, each scale group has
two individual residual blocks and there are four scales. A residual block is comprised of three
convolution operations, all followed by a batch normalization layer, and the first two also followed
by a ReLU. The input is then added to the output of the third batch normalization layer before
being fed to a ReLU.

3. A classification head that performs global average pooling, before applying a fully connected (i.e.
dense) layer to obtain logits.

Training’s hyperparameters

Table F.2: Hyperparameters used for each solver. If a hyperparameter’s value is not specified in the
table, it was set as the default of the implementation (checked to be consistent across frameworks).

Hyperparameter SGD Adam

Learning Rate 0.1 0.001
Momentum 0.9 N/A
Weight Decay 5× 10−4 0.02
Batch Size 128 128

31

0 1000 2000

10

20
1.0e-03 1.0e-02 1.0e-01 5.0e-01

SGD - Learning rate

0 1000 2000

10

20
5.0e-05 5.0e-04 1.0e-03 5.0e-03

SGD - Weight decay

0 1000 2000

10

20
1.0e-04 1.0e-03 5.0e-03 1.0e-02

Adam - Learning rate

0 1000 2000

10

20
2.0e-03 2.0e-02 2.0e-01 5.0e-01

Adam - Weight decay

T
es

t
er

ro
r

(%
)

Time (s)

Figure F.1: ResNet18 image classification benchmark on CIFAR-10 for different values of
learning rate and weight decay for SGD and Adam. The default values are that reported in
Table F.2. In dashed black is the state of the art for CIFAR-10 with a ResNet18 measured by Zhang
et al. (2019). Curves are exponentially smoothed.

In Table F.2, we specify the hyperparameters we used for the benchmark. For the SGD, the values
were taken from the pytorch-cifar GitHub repository, while for Adam we took the most relevant ones
from the work of Wightman et al. (2021).

F.2 Hyperparameter sensitivity

In the benchmark presented in Section 5, we consider fixed hyperparameters chosen from common
practices to train ResNet18 models for an image classification task. However, in practice, these
hyperparameters must be carefully set, either via a grid search, or via more adapted algorithms such as
random search (bergstra2012random) or bayesian optimization (Paszke et al., 2019). It is therefore
important to evaluate how sensitive an optimizer is to choosing the right parameters, as more sensitive
methods will require more exhaustive hyperparameters search. In Figure F.1, we study this issue
using Benchopt for image classification on CIFAR-10. Despite achieving the best results in terms of
accuracy, SGD is way more sensitive to the choice of hyperparameters than Adam.6

Another way to look at hyperparameter sensitivity is to evaluate how a given selection of hyperpa-
rameters performs for different tasks. Figure 5 shows that while SGD is sensitive to the choice of
learning rate and weight decay, the selected values work very well across 3 different datasets.

F.3 Aligning TensorFlow and PyTorch ResNet18 training

We summarized in Table F.3 the different elements that have to be considered to align the training of
a ResNet18 in PyTorch and TensorFlow. Let us detail here some lines of this table:

• Bias in convolutions: It can be seen in TensorFlow/Keras official implementation, that con-
volutions operations use a bias. This is in contrast to PyTorch’s official implementation in
torchvision which does not. Since the convolutions are followed by batch normalization layers,
with a mean removal, the convolutions’ bias is a spurious parameter, as was noted by Ioffe and
Szegedy (2015). We therefore chose to use unbiased convolutions.

• Decoupled weight decay scaling: this led us to scale manually the weight decay used in
TensorFlow by the learning rate when setting it. Moreover, because the weight decay is completely
decoupled from the learning rate, it is important to update it accordingly when using a learning
rate schedule, as noted in the TensorFlow documentation.

• Batch normalization momentum: an important note here is that the convention used to imple-
ment the batch normalization momentum is not the same in the 2 frameworks. Indeed we have the
relationship momentumTF = 1− momentumPT.

6We ran the same experiment on two other datasets obtaining similar figures.

32

https://github.com/kuangliu/pytorch-cifar
https://github.com/keras-team/keras/blob/master/keras/applications/resnet.py#L238
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py#L49
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py#L49
https://www.tensorflow.org/addons/api_docs/python/tfa/optimizers/extend_with_decoupled_weight_decay

Table F.3: Differences in off-the-shelf implementations of various components when training
ResNet18 for image classification in PyTorch and TensorFlow. The selected versions are put in bold
font for components that we were able to reconcile. This highlights the numerous details to consider
when comparing experimental results.

Component PyTorch TensorFlow/Keras

Bias in convolutions ✗ ✓

Decoupled weight decay scaling Multiplied by learning rate Completely decoupled
Batch normalization momentum 0.9 0.99
Conv2D weights init. Fan out, normal Fan average, uniform
Classification head init. (weights) Fan in, uniform Fan average, uniform
Classification head init. (bias) Fan in, uniform Zeros
Striding in convolutions Starts one off Ends one off
Variance estimation in batch norm unbiased (eval)/biased (training) biased

• Conv2D weights intialization: TensorFlow/Keras uses the default intialization which is a Glorot
uniform intialization (Glorot and Bengio, 2010). PyTorch uses a He normal initialization (He
et al., 2015). We used TensorFlow’s Variance Scaling framework to differentiate the 2.

• Striding in convolutions: when using a stride of 2 in convolutions on an even-size image, one
needs to specify where to start the convolution in order to know which lines (one in every two) in
the image will be removed. The decision is different between TensorFlow and PyTorch. This is
not expected to have an effect on the final performance, but it makes it more difficult to compare
the architectures when unit testing. We therefore decided to align the models on this aspect as
well.

• Variance estimation in batch normalization: in order to estimate the batch variance during
training for batch normalization layers, it is possible to chose between the unbiased and the biased
variance estimator. The unbiased variance estimator applies a Bessel correction to the biased
variance estimator, namely a multiplication by a factor m

m−1 , where m is the number of samples
used to estimate. It is to be noted that PyTorch does uses the biased estimator in training, but
stores the unbiased estimator for use during inference. TensorFlow does not allow for such a
behaviour, and the 2 are therefore not reconcilable7. Arguably this inconsistency should not play
a big role with large batch sizes, but can be significant for smaller batches, especially in deeper
layers where the feature map size (and therefore the number of samples used to compute the
estimates) is reduced.

Adapting official ResNet implementations to small images In addition to these elements, it
is important to adapt the reference implementations of both frameworks to the small image case.
Indeed, for the case of ImageNet, the ResNet applies two downsampling operations (a stride-2
convolution and a max pooling) at the very beginning of the network to make the feature maps size
more manageable. In the case of smaller images, it is necessary to do without these downsampling
operations (i.e. perform the convolution with stride 1 and get rid of the max pooling).

Coupled weight decay in TensorFlow In TensorFlow, the SGD implementation does not allow the
setting of coupled weight decay. Rather, one has to rely on the equivalence (up to a scale factor of 2)
between coupled weight decay and L2 regularization. However, in TensorFlow/Keras, adding L2
regularization on an already built model (which is the case for the official ResNet implementation), is
not straightforward and we relied on the workaround of Silva (2019).

F.4 VGG benchmark on CIFAR-10

In order to show how flexible Benchopt is, we also ran a smaller version of the ResNet benchmark
using a VGG16 (Simonyan and Zisserman, 2015) network instead of a ResNet18. In the Benchopt
framework, this amounts to specifying a different model in the objective, while all the other pieces of
code in the benchmark remain unchanged. Note that the VGG official implementations also need to

7It is possible to use the unbiased estimator in TensorFlow for the batch normalization, even if not documented,
but its application is consistent between training and inference unlike PyTorch.

33

https://www.tensorflow.org/api_docs/python/tf/keras/initializers/VarianceScaling

Best Adam

SGD + data aug. + momentum

Vanilla SGD

SGD + data aug. + momentum + step LR sched.

SGD + data aug.

Best SGD

0 200 400 600 800 1000 1200

Time (s)

25

50

75

100
T

es
t

er
ro

r
(%

)

CIFAR-10

Figure F.2: VGG16 image classification benchmark with PyTorch solvers. The best SGD configu-
ration features data augmentation, momentum, step learning rate schedule and weight decay.

be adapted to the CIFAR-10 case by changing the classification head. This was not specified in the
original paper, where no experiment was conducted on small-scale datasets, and we relied on available
open source implementations (cifar10-vgg16 and cifar-vgg) to make this decision. Importantly, these
implementations use batch normalization to make the training of VGG more robust to initialization,
which is not the case in the official framework implementations.

In Figure F.2, we see that for the case of VGG, the application of weight decay is so important that
without it, in cases with momentum, the model does not converge.

34

https://github.com/SeHwanJoo/cifar10-vgg16
https://github.com/geifmany/cifar-vgg

G ℓ1-regularized logistic regression

This additional benchmark is dedicated to ℓ1-regularized logistic regression, in the same setting as
Problem (2) but this time with an ℓ1-regularization for the parameters of the model:

θ∗ = argmin
θ∈Rp

n∑
i=1

log
(
1 + exp(−yiX

⊤
i θ)

)
+ λ∥θ∥1 . (6)

G.1 List of solvers and datasets used in the ℓ1-regularized logistic regression benchmark

The code for the benchmark is available at https://github.com/benchopt/benchmark_logreg_
l1/. Table G.1 and Table G.2 present the solvers and datasets used in this benchmark.

Table G.1: List of solvers used in the ℓ1-regularized logistic regression benchmark

Solver References Description Language

blitz Johnson and Guestrin
(2015)

CD + working set Python, C++

coordinate descent Friedman et al. (2010) (Cyclic) Minimization
along coordinates

Python (Numba)

coordinate descent
(Newton)

Friedman et al. (2010) CD + Newton Python (Numba)

celer Massias et al. (2018) CD + working set + dual
extrapolation

Python (Cython)

copt[FISTA line
search]

Pedregosa et al. (2020),
Beck and Teboulle (2009)

FISTA (ISTA + acceler-
ation) + line search

Python (Cython)

copt[PGD] Pedregosa et al. (2020),
Combettes and Wajs
(2005)

Proximal Gradient De-
scent

Python (Cython)

copt[PGD linesearch] Pedregosa et al. (2020),
Combettes and Wajs
(2005)

Proximal Gradient De-
scent + linesearch

Python (Cython)

copt[saga] Pedregosa et al. (2020) SAGA (Variance
reduced stochastic
method)

Python (Cython)

copt[svrg] Pedregosa et al. (2020) SVRG (Variance
reduced stochastic
method)

Python (Cython)

cuML[gpu] Raschka et al. (2020) L-BFGS + GPU Python, C++
cuML[qn] Raschka et al. (2020) Orthant-Wise Limited

Memory Quasi-Newton
(OWL-QN)

Python, C++

cyanure Mairal (2019) Proximal Minimiza-
tion by Incremental
Surrogate Optimization
(MISO)

Python, C++

lightning Blondel and Pedregosa
(2016)

(Cyclic) Coordinate De-
scent

Python (Cython)

scikit-learn[liblinear]Pedregosa et al. (2011),
Fan et al. (2008)

Truncated Newton
Conjugate-Gradient

Python (Cython)

scikit-learn[lbfgs] Pedregosa et al. (2011),
Virtanen et al. (2020)

L-BFGS (Quasi-
Newton Method)

Python (Cython)

scikit-learn[newton-cg]Pedregosa et al. (2011),
Virtanen et al. (2020)

Truncated Newton
Conjugate-Gradient

Python (Cython)

snapml[gpu=True] Dünner et al. (2018) CD + GPU Python, C++
snapml[gpu=False] Dünner et al. (2018) CD Python, C++

35

https://github.com/benchopt/benchmark_logreg_l1/
https://github.com/benchopt/benchmark_logreg_l1/

Table G.2: List of the datasets used in the ℓ1-regularized logistic regression benchmark

Datasets References Samples (n) Features (p) Density

gisette Guyon et al. (2004) 6000 5000 9.9× 10−1

colon-cancer Guyon et al., 2004 62 2000 1.0
news20.binary Keerthi et al. (2005) 19 996 1 355 191 3.4× 10−4

rcv1.binary Guyon et al., 2004 20 242 19 959 3.6× 10−3

blitz

copt (FISTA line search)

copt (SAGA)

liblinear

celer

copt (FISTA)

copt (SVRG)

lightning

coordinate descent

copt (PGD line search)

cuML[qn]

snapML[cpu]

coordinate descent (Newton)

copt (PGD)

cyanure

snapML[gpu]

10−2 10−1 100 101 102

103

100

10−3

10−6

gi
se

tt
e

λ = 0.1λmax

10−2 10−1 100 101 102

λ = 0.01λmax

10−2 10−1 100 101 102

λ = 0.001λmax

10−4 10−3 10−2 10−1 100 101 102

103

100

10−3

10−6

co
lo

n-
ca

nc
er

10−4 10−3 10−2 10−1 100 101 102 10−4 10−3 10−2 10−1 100 101 102

10−2 10−1 100 101 102

103

100

10−3

10−6rc
v1

.b
in

ar
y

10−2 10−1 100 101 102 10−2 10−1 100 101 102

10−1 100 101 102 103

Time (s)

103

100

10−3

10−6

ne
w

s2
0.

bi
na

ry

10−1 100 101 102 103

Time (s)
10−1 100 101 102 103

Time (s)

Figure G.1: Benchmark for the ℓ1-regularized logistic regression on variants of the Objective
(columns). The curves display the suboptimality of the iterates, f(θt)− f(θ∗), as a function of time.
The first column corresponds to the objective detailed in Problem (6) with λ = 0.1∥X⊤y∥∞/2, the
second one with λ = 0.01∥X⊤y∥∞/2 and the third column with λ = 0.001∥X⊤y∥∞/2.

G.2 Results

The results of the ℓ1-regularized logistic regression benchmark are in Figure G.1.

36

H Unidimensional total variation

The use of 1D Total Variation regularization takes its root in the taut-string algorithm (Barlow and
Brunk, 1972) and can be seen as a special case of either the Rudin-Osher-Fatemi model (Rudin et al.,
1992) or the Generalized Lasso (Tibshirani and Taylor, 2011) for a quadratic data fit term. It reads

θ∗ ∈ argmin
θ∈Rp

F (y,Xθ) + λ ∥Dθ∥1 , (7)

where F is a data fidelity term, X ∈ Rn×p is a design matrix with n samples and p features, y ∈ Rn

is the target vector, λ > 0 is a regularization hyperparameter, and D ∈ R(p−1)×p is a finite difference
operator defined by (Dθ)k = θk+1 − θk for all 1 ≤ k ≤ p − 1 (it is also possible to use cyclic
differences).

Most often, the data fidelity term is the ℓ2-loss F (y, z) = 1
2 ∥y − z∥22, following an additive Gaussian

noise hypothesis. But the data fit term can also account for other types of noises, such as noises with
heavy tails using the Huber loss F (y, z) = |y − z|µ where | · |µ is defined coordinate-wise by

|t|µ =

{
1
2 t

2 if |t| ≤ µ

µ|t| − µ2

2 otherwise.

Problem (7) promotes piecewise-constant solutions – alternatively said, solutions such that their
gradients is sparse – and was proved to be useful in several applications, in particular for change
point detection (Bleakley and Vert, 2011; Tibshirani, 2014), for BOLD signal deconvolution in
functional MRI (Karahanoğlu et al., 2013; Cherkaoui et al., 2019) or for detrending in oculomotor
recordings (Lalanne et al., 2020).

The penalty θ 7→ ∥Dθ∥1 is convex but non-smooth, and its proximity operator has no closed form.
Yet as demonstrated by Condat (2013a), the taut-string algorithm allows to compute this proximity
operator in O(p2) operations in the worst case, but it enjoys a O(p) complexity in most cases. Other
methods do not rely on this proximity operator and directly solve Problem (7), using either primal-dual
approaches (Chambolle and Pock, 2011; Condat, 2013b), or solving the dual problem (Komodakis
and Pesquet, 2015). Finally, for 1-dimensional TV regularization, one can also use the synthesis
formulation (Elad et al., 2006) to solve the problem. By setting z = Dθ and θ = Lz + ρ where
L ∈ Rp×p−1 is a lower trianglar matrix representing an integral operator (cumulative sum), the
problem is equivalent to a Lasso problem, and ρ∗ has a closed-form expression (see e.g., Bleakley
and Vert 2011 for a proof). As a consequence, any lasso solver can be used to obtain the solution of
the Lasso problem z∗ and the solution of the original Problem (7) u∗ is retrieved as u∗ = Lz∗ + ρ∗.

The code for the benchmark is available at https://github.com/benchopt/benchmark_tv_1d/
and Table H.1 details the different algorithms used in this benchmark.

Table H.1: List of solvers used in the 1D Total Variation benchmarks

Solver References Formulation Description

ADMM Boyd et al. (2011) Analysis Primal-Dual Augmented La-
grangian

ChambollePock Chambolle and Pock (2011) Analysis Primal-Dual Hybrid Gradient
CondatVu Condat (2013b) Analysis Primal-Dual Hybrid Gradient
DPGD Komodakis and Pesquet (2015) Analysis Dual proximal GD (+ acceleration)
PGD Condat (2013a) Analysis Proximal GD + taut–string

Barbero and Sra (2018) ProxTV (+ acceleration)

celer Massias et al. (2018) Synthesis CD + working set (lasso)
only for ℓ2 data-fit

FP Combettes and Glaudin (2021) Synthesis Fixed point with block updates
ISTA Daubechies et al. (2004) Synthesis Proximal GD (+ acceleration)
skglm Bertrand et al. (2022) Synthesis CD + working set

37

https://github.com/benchopt/benchmark_tv_1d/

ADMM (A)

Chambolle-Pock split (A)

celer (S)

skglm (S)

PGD (A)

Condat-Vu (A)

FP (S)

APGD (A)

Dual PGD (D)

PGD (S)

Chambolle-Pock (A)

Dual APGD (D)

APGD (S)

10−3 10−2 10−1 100 101 102 103

108

104

100

10−4

10−8

` 2
λ

=
0.

5λ
m

ax
n=400, K=10

10−3 10−2 10−1 100 101 102 103

n=400, K=50

10−3 10−2 10−1 100 101 102 103

n=750, K=10

10−3 10−2 10−1 100 101 102 103

108

104

100

10−4

10−8

` 2
λ

=
0.

1λ
m

ax

10−3 10−2 10−1 100 101 102 103 10−3 10−2 10−1 100 101 102 103

10−3 10−2 10−1 100 101 102 103

108

104

100

10−4

10−8H
ub

er
[µ

=
0.

9]

λ
=

0.
5λ

m
ax

10−3 10−2 10−1 100 101 102 103 10−3 10−2 10−1 100 101 102 103

10−3 10−2 10−1 100 101 102 103

Time (s)

108

104

100

10−4

10−8H
ub

er
[µ

=
0.

9]

λ
=

0.
1λ

m
ax

10−3 10−2 10−1 100 101 102 103

Time (s)
10−3 10−2 10−1 100 101 102 103

Time (s)

Figure H.1: Benchmark for the TV -regularized regression regression, on 13 solvers, 4 variants
of the Objective (rows), and 3 configurations for a simulated dataset (columns). The curves
display the suboptimality of the iterates, f(θt) − f(θ∗), as a function of time. The solvers in this
benchmark showcase the three resolution approaches with the Analysis (A), Dual (D) and Synthesis
(S) formulations.

Simulated dataset We use here simulated data, as applications based on fMRI and EOG signals
require access to open and preprocessed data that we will make available on OpenML Vanschoren
et al., 2013 in the future. The data are generated as follows: a block signal θ̄ ∈ Rp is generated by
sampling first a sparse random vector z ∈ Rp with K non-zero coefficients positioned randomly, and
taking random values following a N (0, 1) distribution. Finally, θ̄ is obtained by discrete integration
as θ̄i =

∑i
k=1 zk for 1 ≤ i ≤ p. The design matrix X ∈ Rn×p is a Gaussian random design with

Xij ∼ N (0, 1). The observations y are obtained as y = Xθ̄ + ϵ, with ϵ ∼ N (0, 0.01) a Gaussian
white noise. For all experiments, we used p = 500 and vary the number of non-zero coefficient K,
and the number of rows n of the matrix X .

Results Figure H.1 shows that the solvers using the synthesis formulation and coordinate descent-
based solvers for the Lasso (ℓ2 data fit term) work best on this type of problem. For the Huber data fit
term, the solver using the analysis formulation and the taut-string algorithm for the proximal operator
are faster. An interesting observation from this benchmark is the behavior of the solvers based on
primal-dual splitting or dual formulation. We observe that for all these solvers, the objective starts by
increasing. This is probably due to a sub-optimal initialization of the dual variable compared to the
primal one. While this initialization is seldom described in the literature, it seems to have a large

38

impact on the speed of these algorithms. This shows how Benchopt allows to reveal such behavior,
and could lead to practical guidelines on how to select this dual initialization.

Extensions We plan to extend this benchmark in the future to consider higher dimensional problems
– e.g., 2D TV problems for images – or higher order TV regularization, such as Total Generalized
Variation Bredies et al., 2010 or inf-convolution of TV functionals Chambolle and Lions, 1997 – used
of instance for change point detection (Tibshirani, 2014). Yet, for 2D or higher dimensional problems,
we can no longer use the synthesis formulation. It is however possible to apply the taut-string method
of Condat (2013a) and graph-cut methods of Boykov et al. (2001) and Kolmogorov and Zabin (2004)
for anisotropic TV, and dual or primal-dual methods for isotropic, such as Primal-Dual Hybrid
Gradient algorithm (Chambolle and Pock, 2011).

39

I Linear regression with minimax concave penalty (MCP)

The Lasso problem (Tibshirani, 1996) is a least-squares regression problem with a convex non-smooth
penalty that induces sparsity in its solution. However, despite its success and large adoption by the
machine learning and signal processing communities, it is plagued with some statistical drawbacks,
such as bias for large coefficients. To overcome these issues, the standard approach is to consider
non-convex sparsity-inducing penalties. Several penalties have been proposed: Smoothly Clipped
Absolute Deviation (SCAD, Fan and Li 2001), the Log Sum penalty (Candès et al., 2008), the
capped-ℓ1 penalty (Zhang, 2010b) or the Minimax Concave Penalty (MCP, Zhang 2010a).

This benchmark is devoted to least-squares regression with the latter, namely the problem:

θ∗ ∈ argmin
θ∈Rp

1
2n ∥y −Xθ∥2 +

p∑
j=1

ρλ,γ(θj) , (8)

where X ∈ Rn×p is a design matrix containing p features as columns, y ∈ Rn is the target vector,
and ρλ,γ the penalty function that reads as:

ρλ,γ(t) =

{
λ|t| − t2

2γ , if |t| ≤ γλ ,
λ2γ
2 , if |t| > γλ .

Similarly to the Lasso, Problem (8) promotes sparse solutions but the optimization problem raises
some difficulties due to the non-convexity and non-smoothness of the penalty. Nonetheless, several
efficient algorithms have been derived for solving it. The ones we use in the benchmark are listed in
Table I.1.

Table I.1: List of solvers used in the MCP benchmark

Solver References Short Description

CD Breheny and Huang (2011), Mazumder
et al. (2011)

Proximal coordinate descent

PGD Bolte et al. (2014) Proximal gradient descent
GIST Gong et al. (2013) Proximal gradient + Barzilai-Borwein rule
WorkSet CD Boisbunon et al. (2014) Coordinate descent + working set
skglm Bertrand et al. (2022) Accelerated coordinate descent + Working set

The code for the benchmark is available at https://github.com/benchopt/benchmark_mcp/. For
this benchmark, we run the solvers on the colon-cancer dataset and on the simulated dataset described
in Table B.4. We use a signal-to-noise ratio snr = 3, a correlation ρ = 0.6 with n = 500 observations
and p = 2000 features.

I.1 Results

The result of the benchmark is presented in Figure I.1 The problem is non-convex and solvers are
only guaranteed to converge to local minima; hence in Figure I.1 we monitor the distance of the
negative gradient to the Fréchet subdifferential of the MCP, representing the violation of the first
order optimality condition. Other metrics, such as objective of iterates sparsity, are monitored in the
full benchmark, allowing to compare the different limit points obtained by the solvers.

40

https://github.com/benchopt/benchmark_mcp/

coordinate descent

PGD accelerated

GIST

skglm

PGD

WorkSetCD

10−4 10−3 10−2 10−1 100 101 102

102

10−1

10−4

10−7

10−10

co
lo

n-
ca

nc
er

λ = 0.1λmax

10−4 10−3 10−2 10−1 100 101 102

λ = 0.01λmax

10−4 10−3 10−2 10−1 100 101 102

λ = 0.001λmax

10−3 10−2 10−1 100 101

102

10−1

10−4

10−7

10−10si
m

ul
at

ed
(s

ca
le

d)

10−3 10−2 10−1 100 101 10−3 10−2 10−1 100 101

10−3 10−2 10−1 100 101

Time (s)

102

10−1

10−4

10−7

10−10

si
m

ul
at

ed

10−3 10−2 10−1 100 101

Time (s)
10−3 10−2 10−1 100 101

Time (s)

Figure I.1: Benchmark for the MCP regression on variants of the Objective (columns). The curves
display the violation of optimality conditions, dist(−X⊤(Xθt − y)/n, ∂ρλ,γ(θt)), as a function of
time. γ is set to 3, and λ is parameterized as a fraction of the Lasso’s λmax,

∥∥X⊤y
∥∥
∞ /n.

41

J Zero-order optimization on standard functions

Zero-order optimization refers to scenarios where only calls to the function to minimize are possible.
This is in contrast with first-order optimization where gradient information is available. Grid search,
random search, evolution strategies (ES) or Bayesian optimization (BO) are popular methods to
tackle such a problem and are most commonly employed for hyperparameter optimization. This
setting is also known as black-box optimization.

This benchmark demonstrates the usability of Benchopt for zero-order optimization considering
functions classically used in the literature (Hansen et al., 2021). The functions are available in the
PyBenchFCN package https://github.com/Y1fanHE/PyBenchFCN/. In particular, among the 61
functions of interest we present here (see Figure J.1) a benchmark for three functions, defined for any
x = (x1, . . . , xN) ∈ RN :

f(x) =

N−1∑
i=1

[100(xi+1 − x2
i)

2 + (1− xi)
2] (Rosenbrock)

f(x) = 10 ·N +

N∑
i=1

[(x2
i − 10 · cos(2πxi)] (Rastrigin)

f(x) = −20 · exp

−0.2

√√√√1

d

N∑
i=1

x2
i

− exp

[
1

d

N∑
i=1

cos(2πxi)

]
+ e+ 20 (Ackley) .

For each function, the domain is restricted to a box: ∥x∥∞ ≤ 32 for Ackley, ∥x∥∞ ≤ 30 for
Rosenbrock and ∥x∥∞ ≤ 5.12 for Rastrigin. The algorithms considered in the benchmark are
listed in Table J.1. As BFGS requires first-order information, gradients are approximated with finite-
differences.

Table J.1: List of solvers used in the zero-order benchmark

Solver References Description

Basin-hopping Wales and Doye (1997) and
Virtanen et al. (2020)

Two-phase method: global step + local min.

Nevergrad-RandomSearch Rapin and Teytaud (2018)
and Bergstra and Bengio
(2012)

Sampler by random search

Nevergrad-CMA Rapin and Teytaud (2018)
and Hansen and Ostermeier
(2001)

CMA evolutionary strategy

Nevergrad-TwoPointsDE Rapin and Teytaud (2018) Evolutionary strategy
Nevergrad-NGOpt Rapin and Teytaud (2018) Adaptive evolutionary algorithm
Nelder-Mead Gao and Han (2012) and Vir-

tanen et al. (2020)
Direct search (downhill simplex)

BFGS Virtanen et al. (2020) BFGS with finite differences
Powell Powell (1964) and Virtanen

et al. (2020)
Conjugate direction method

optuna-TPE Akiba et al. (2019) and
Bergstra et al. (2013)

Sampler by Tree Parzen Estimation (TPE)

optuna-CMA Akiba et al. (2019) and
Hansen and Ostermeier
(2001)

CMA evolutionary strategy

The code for the benchmark is available at https://github.com/benchopt/benchmark_zero_
order/.

J.1 Results

The results of the benchmark are presented in Figure J.1. The functions are non-convex and solvers
are only guaranteed to converge to local minima; hence in Figure J.1 we monitor the value of the
function. The functions are designed such that the global minimum of the function is always 0. One

42

https://github.com/Y1fanHE/PyBenchFCN/
https://github.com/benchopt/benchmark_zero_order/
https://github.com/benchopt/benchmark_zero_order/

nevergrad[CMA]

nevergrad[ScrHammersleySearch]

optuna[TPE]

scipy[Powell]

nevergrad[NGOpt]

nevergrad[TwoPointsDE]

scipy[BFGS]

nevergrad[RandomSearch]

optuna[CMA]

scipy[Nelder-Mead]

10−4 10−2 100 102
0

10

20

A
ck

le
y

Zero-order test functions

10−4 100
0

200

R
as

tr
ig

in

10−4 101

Time (s)

0

2

R
os

en
br

oc
k

×108

Figure J.1: Benchmark for the zero-order optimization on the Ackley, Rosenbrock and Rastrigin
functions in dimension N = 20.

can observe that the CMA and TwoPointsDE implementations from nevergrad consistently reaches
the global minimum. In addition, the CMA implementation from optuna is a bit slower than the
one from nevergrad. Also one can notice that random search offers reasonable results. The TPE
method seems to suffer from the curse of dimensionality, as most kernel methods in non-parametric
estimation. Finally regarding the scipy solvers, Powell can be competitive, while Nelder-Mead and
BFGS suffer a lot from local minima.

43

	Introduction
	The Benchopt library
	First example: l2-regularized logistic regression
	Second example: The Lasso
	Third example: How standard is a benchmark on ResNet18?
	Conclusion and future work
	Acknowledgements
	Software ecosystem acknowledgement
	A complete Benchmark example: Objective, Dataset and Solver classes for Ridge regression
	Objective class
	Dataset class
	Solver class
	Results from the benchmark

	Design choices
	Estimating for convex problems
	Stopping solvers
	Wall-clock time versus number of iterations

	l2-regularized logistic regression
	List of solvers and datasets used in the benchmark in Section 3
	Results

	Lasso
	List of solvers and datasets used in the Lasso benchmark in Section 4
	Support identification speed benchmark
	Convergence in terms of iteration

	ResNet18
	Description of the benchmark
	Hyperparameter sensitivity
	Aligning TensorFlow and PyTorch ResNet18 training
	VGG benchmark on CIFAR-10

	l1-regularized logistic regression
	List of solvers and datasets used in the 1-regularized logistic regression benchmark
	Results

	Unidimensional total variation
	Linear regression with minimax concave penalty (MCP)
	Results

	Zero-order optimization on standard functions
	Results

