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ABSTRACT
For best medical imaging application results, learning-based
approaches such as deep learning necessitate specific, ex-
tensive and precise annotations. Outside well-curated public
benchmarks, these are rarely available in practice, and so it
becomes necessary to use less-than-perfect annotations. One
way of compensating for this is the embedding of anatomical
knowledge. Complementing this, there is the incremental
semi-supervised learning technique, whereby a small amount
of annotations can be used to derive more and superior labels.

In this article, we illustrate this approach on a deep learn-
ing system to help radiologists and rheumatologists finely and
interactively assess MRI scans of the sacro-iliac joint in or-
der to correctly diagnose Axial Spondyloarthritis. Our model
is trained initially on a relatively small set of images with
promising results, on par with expert opinion and generaliz-
able to new datasets.

Index Terms— MRI, deep learning, medical imaging, di-
agnosis, follow-up.

1. INTRODUCTION

An objective of this article is to show how relatively rare dis-
eases requiring a precise and difficult image-based diagnosis
can benefit from modern machine learning techniques. These
techniques can even be used in the presence of only weak and
sparse annotations, which are typically used by human practi-
tioners in a clinical context. As an example, we take the case
of Axial Spondyloarthritis (axSpA).

This disease, which is the most common inflammatory
rheumatism in young men, is painful and debilitating as it
includes a long-term inflammation of the spine. The most af-
fected area in the early stages of the disease is the joint where
the spine meets the pelvis: the sacro-iliac joint (SIJ). It is still
relatively rare, affecting approximately 0.6% of the popula-
tion to a varying degree, and does not have a cure. How-
ever, treatments for axSpA can improve symptoms and pre-
vent worsening if an early correct diagnosis is given. The As-
sessment of Spondyloarthritis International Society (ASAS)
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proposes a set of criteria for practitioners to detect and recog-
nize early axSpA from MRI. However, expertise in the read-
ing of MRI-SIJ is rare in both the rheumatology and radiology
communities as it requires extensive experience.

One potential solution to all this is the use of image-
based diagnosis through machine learning, and particu-
larly deep learning which has recently made considerable
progress [1, 2], [3, 4]. These systems can recognize the
ASAS patterns in a quantitative fashion, may improve diag-
nosis workflow efficiency, and could be useful in the eval-
uation of MRI-SIJ images in patients with axSpA, similar
to [5]. In fact, recent work by [6] has studied the use of
machine learning to detect axSpA with different sequences in
patients within the same hospital, with promising results.

We present a novel, ASAS-compliant medical imag-
ing and AI-based system to assess MRI scans of the SIJ
to help diagnose axSpA as early as possible. A proof-of-
concept is available online: https://github.com/
TheodoreAouad/IAxSpA-demo

2. DATA

The DESIR cohort [7] was built in order to study axSpA and
its evolution over a period of at least 10 years. Around 700
people suspected of having axSpA were recruited across 25
different centers. Only the MRI scans of patients were used
from the time of inclusion in the cohort. Each MRI scan in-
cludes between 12 and 18 semi-coronal slices of T1 and STIR
sequences (see example figure 2). Scans were weakly anno-
tated by 3 trained practitioners, called readers. Each reader
chose and annotated 6 consecutive slices for inflammatory
anomalies, and 6 slices for structural anomalies. In this study,
only inflammatory anomalies were considered.

To avoid ambiguity, we only used the patients where all
three readers agreed on the patient diagnosis and for which
the STIR and T1 sequences were registered. This reduced the
dataset to 288 patients.

No anatomical information, including the precise location
of inflammation was provided. Instead, each slice included
the right side (R) and left side (L) of the SIJ. Each joint was
divided into 4 quadrants. In each quadrant, readers indicated
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if an anomaly was present. Each reader gave an opinion con-
cerning the ASAS positiveness of the patient. As a test set,
we used an entirely separate ASAS dataset that follows the
DESIR protocol, with 47 patients evaluated by 6 readers, as
fully described in [8].

3. METHODOLOGY

Given the weak nature of the annotation, we propose to enrich
our architecture with anatomical information. The diagnostic
inflammation, if any, should occur near the sacro-iliac joint,
which is our region of interest (ROI). In our two-step method,
we first gather the anatomical data by training a pair of U-
Nets [9] to segment iliac and sacrum bones, from which we
derive the ROI. We subsequently train a Mask-RCNN [10] to
learn both the ROI detection as well as whether or not the ROI
is inflamed (binary classification). A summary of our method
is in figure 1.

Fig. 1. Schema of our method. In step 1, we augment binary
labels with ROI labels. In step 2, we train a Mask-RCNN
using ROIs + binary slice label. At inference, we aggregate
the slices of each patient to do a diagnosis.

3.1. Region-of-interest generation for training

3.1.1. Pre-processing

The raw data are MRI sequences of varying quality, from
multiple sources and manufacturers, representing the clini-
cal practice of 10 years ago. Older MRIs typically feature
a global bias, which are low frequency variations that affect
the gray-levels of the image [11]. To correct for this bias,
we divide each slice by a Gaussian smoothing with a stan-
dard variation of σ = 0.05 × image size. We also apply
histogram equalization using CLAHE [12] to improve con-
trast. We reduce noise with a median filter on 4-connected
neighborhoods. The result of this preprocessing is shown in
Fig. 2.

Fig. 2. Preprocessing applied to a slice.

Fig. 3. Example of a segmentation and an obtained ROI after
morphological post-processing.

3.1.2. Incremental segmentation of iliac and sacrum bones

To help locate the sacro-iliac joint, first we detect the sacrum
and iliac bones. They are easy to annotate for any radiologist;
by contrast, recognizing the ROIs necessitates expert knowl-
edge about the disease. 51 patients are manually segmented
by trained radiologists, yielding 706 segmented slices. These
are then used to train a pair of U-Nets, one for each bone. For
this step, we only use the T1 sequence, and apply the prepro-
cessing described above in section 3.1.1.

During training, we augment the data with horizontal flip
as well as random rotations within [−15◦,+15◦]. We use the
RMSprop [13] optimizer with a learning rate of 10−4 and
a weight decay of 10−8. Additionally, we use a weighted
cross entropy loss with weight wbg = 0.1 for background
and wfg = 1 − wbg = 0.9 for foreground (either the iliac or
sacrum bone).

3.1.3. Finding regions of interest

In this paper, the ROI is the area around the joint between
the sacrum and the iliac. We use classical mathematical mor-
phology operators on the segmentation to find these regions
in each slice. The procedure is given in algorithm 1: we first
check all the potential joint parts, so all the iliac pixels that
are close to a sacrum pixel, then we select the largest candi-
date. The iliac bone has so-called ”wings”, thin regions above
the joint that are ignored. A morphological opening of the il-
iac is performed in order to separate it into two connected
components, then the largest is retained. See figure 3 for the
resulting ROI.

3.2. Automatic diagnosis of axSpA

3.2.1. Detection of inflammation

We perform joint detection and classification for each ROI by
training an end-to-end Mask-RCNN [10] with a ResNet-50
backbone. We use the ROI generated in 3.1.3 as ground-truth



Algorithm 1: Joint Extraction
Result: A mask of the image containing the joint
for all slices do

When slice contains both iliac Il and sacrum Sac;
for all iliac connected components do

Check if there is a sacrum next to it;
Delete wings of the iliac bone;
Dilate iliac with a disk → D(Il);
Dilate iliac horizontally → DH(Il);
Take joint: J = D(Il) ∪ (DH(Il) ∩ Sac);
Close the joint: J = Closing(J);
Fill Holes;

end
for each side do

Take the largest of the potential joints
end

end

mask, and the readers’ opinions for the label of the ROI, then
apply the same pre-processing as in section 3.1.1 to the input
image. Additionally, we resample the images so that pixels
represent (0.5 mm, 0.5 mm) on all images.

We use a network pre-trained on ImageNet, which im-
poses a three-channel input. The first channel and second
channels are the T1 and STIR sequence, the latter being du-
plicated. The STIR channel highlights the inflammation in-
formation, while the T1 channel is used for more anatomical
knowledge. The target is described in figure 1. During train-
ing, for each image, we provide the two ROIs as binary masks,
and the inflammation information. An example of an ROI is
given in figure 3. The standard Mask-RCNN loss [10] and the
Detectron2 implementation [14] are used and we apply ran-
dom rotation with angles between [−15◦,+15◦], and random
horizontal flip as augmentation. We use the standard solver,
with a constant learning rate of 2.5 ∗ 10−4.

3.2.2. Aggregation of all half-slices

At inference, having detected the presence of inflammation
on the half-slices of a patient, we aggregate these results to
provide a global response for each patient. We choose a crite-
rion based on clinical practice: if the number of positive ROIs
is higher or equal to 2, the patient is considered positive. Note
that it is possible for the model to predict multiple bounding
boxes per half-slice: we sum the results of all bounding boxes.

4. RESULTS

4.1. Incremental segmentation

We manually segmented 51 patients, uniformly chosen
amongst the different centers and keeping the same pro-
portion of positive patients of the DESIR dataset at baseline.

We split them into 31 for training, 6 for validation and 14
for evaluation. Each U-net took 23 minutes of training on a
Nvidia Geforce GTX 1080ti and used 9.5 GB of GPU mem-
ory. On the evaluation set, we report a DICE [15] of 0.67 for
the sacrum, and 0.84 for the iliac bone.

Note that this number of patients is too low for training a
deep classification network with good performance. Patients
with good segmentations on most slices (according to clini-
cians on our team) were selected so we could incrementally
augment the number of segmented patients. Out of the 237
remaining patients, 205 patients were deemed successfully
segmented (86%). We declare a failure when our pipeline
(described in section 3.1) does not detect the SIJ on the slices
provided by the readers on two or more half-slices. An exam-
ple of success is in figure 3. Because of this, the segmented
patients base is augmented to 256 (= 205 + 51).

4.2. Classification results

We train 10 models with identical hyperparameters that es-
timate uncertainty on the performance of our network. Ad-
ditionally, we are able to propose an ensembling model that
can perform a vote. In terms of the annotation, we consider
consensus to be the majority vote between all readers.

The train - validation - evaluation patient split is as fol-
lows, with half-slices in parenthesis: 178 patients (2035), 25
patients (281) and 53 patients (597). The number of half-
slices is not exactly equal to (2 ∗ 6 ∗ |patients|), since some
half-slices may not contain a joint. We train the model over
8000 iterations (48 min on a RTX 6000), keeping only the
weights with the lowest validation loss, and used 1.3 GB of
GPU memory.

Results are reported as the Matthews Correlation Coeffi-
cient (MCC) instead of the accuracy metric due to class im-
balance. The results for ROIs detection are shown on table 1.
For around 10% of half-slices, the Mask-RCNN fails to pre-
dict the correct number of regions. In the metrics computa-
tion, for each half-slice with the wrong number of bounding
boxes, we assume failure. The aggregated results for patient
diagnosis are shown in table 2.

To measure the impact of the addition of the incremental
segmentation described in 4.1 and the added preprocessing,
we performed an ablation study and report the results on the
ASAS dataset in table 4.

5. DISCUSSION

5.1. Annotation augmentation

While this step is only used to augment annotations for our
training set, we observe that using two independent U-Nets
for each bone yields better results than a single U-Net. This
is due to the fact that some slices do not contain any sacrum.
For these, the single U-Net fails to differentiate the iliac from
the sacrum. Although the segmentation results for the sacrum



Table 1. Matthews Correlation Coefficient (x100 for clarity).
Cross results on half-slices on the 53 evaluation patients of
multiple sources. How to read: annotations from reader 1 vs
those from reader 2: MCC= 0.76. Consensus GT vs results
from M-RCNN: MCC=0.59 ± 0.03. Underlined: worst re-
sults. bold: best results.

Readers 1 2 3 M-RCNN (k=10)
1 - 76.34 63.40 61.28± 1.87
2 - - 66.96 60.04± 3.34
3 - - - 44.34± 2.5

Consensus 85.14 63.41 75.24 59.16± 2.59

Table 2. (MCC × 100). Results on DESIR evaluation set on
patient diagnosis (N=53). We also give the MCC of readers
against each other, on the 689 original patients. Decision rule:
|pos half slices| ≥ 2. Consensus is not given as all readers
agree on the evaluation set.

Readers 1 vs 2 1 vs 3 2 vs 3 M-RCNN ensembling
mcc 89.06 74.28 74.48 84.78± 3.05 90.24

are not as good as for the iliac, this is not critical since we
only need an approximate prediction of the sacroiliac joint.

5.2. Classification discussion

Our model succeeds in providing good classifications results.
Tables 1 and 2 show the correlation of the readers’ opinions
in the DESIR dataset for both the half-slices and the patients,
respectively. It also shows the inter-reader concordance. By
performing a vote on 10 trained Mask-RCNN, referred to here
as ensembling, we achieve an MCC on the evaluation set of
0.90, which is on par with the comparison of readers opinions
against each other. Note however, due to our inclusion crite-
rion explained in section 2, that all three readers agreed on the
53 patients used for the evaluation of our model whereas the
correlations for the readers were estimated using the whole
689 patients of our cohort. Nonetheless, this is a very promis-
ing result, especially when coupled with the accuracy of this
end-to-end approach, which is very high at 96%, with only 2
misclassified patients out of 53, in our test set.

These results translate acceptably well when we test with
a different dataset without retraining. As shown in table 3,
we still achieve an MCC of 0.62 with the consensus between
readers, even in the presence of higher inter-reader variability.
The model yields a valid opinion even on a completely new
dataset with no retraining.

Finally, for the ablation study (table 4),the importance of
performing the annotation augmentation with our segmenta-
tion approach is highlighted. For the DESIR dataset, this ap-
proach significantly improves the MCC from 0.69 to 0.9. On
the ASAS dataset, the improvement is much higher, with a
model three times as effective. Also note that while the mul-

Table 3. (MCC×100). Results on patient diagnosis on ASAS
dataset (N=47). We also give the MCC of readers against each
other. Decision rule: |pos half slices| ≥ 2.

Readers 1 2 4 5 6 7 M-RCNN ensembling
1 - 74 65 74 65 81 71.01± 5.34 80.89
2 - - 65 80 89 74 53.34± 3.82 58.01
4 - - - 58 55 65 45.73± 3.92 50.71
5 - - - - 71 91 64.8± 4.95 73.54
6 - - - - - 65 47.19± 3.4 50.71
7 - - - - - - 71.01± 5.34 80.89

Consensus 79 94 71 86 83 79 52.59± 7.67 62.40

Table 4. (MCC×100). Ablation study on ASAS (N=47) and
DESIR (N=53) datasets. We show the results on the ensem-
bling model.

Ablation ASAS (MCC*100) DESIR (MCC*100)
All included 62 90

No Constant Pixel 46 90
No Remove Gaussian Bias 53 85

No Local Median 63 90
No CLAHE 54 90

No Data Augmentation 53 85
Only manually 21 69

tiple preprocessing had limited effects on the evaluation set
of DESIR, they were really useful on the ASAS dataset. This
was expected as we applied the pre-processing for normaliz-
ing purposes. When the data is from a similar distribution,
it has little effect, but when the data comes from a different
source, it improves results. Applying the local median had
limited effect in all cases.

6. CONCLUSION

We present an approach to solve a challenging but useful
medical imaging classification problem. The dataset is real-
istic since it is typical in age and size for what is currently
available, with only weak annotations designed for clinicians.
We proposed a semi-supervised deep learning approach with
minimal anatomical annotation that not only demonstrates
the benefits of augmenting annotation via a segmentation
approach, but was also able to learn and detect clinically
relevant inflammation. In the final analysis, our end-to-end
approach was able to classify Axial Spondyloarthritis with a
MCC similar to a trained radiologist, thus providing a use-
ful opinion, even on a totally new dataset. In ongoing work,
larger datasets are being collected to confirm these results and
improve accuracy up to the level of human experts. We are
also working on the explainability of these models by high-
lighting inflamed regions to clinicians and plan to perform a
longitudinal study of the disease by using the DESIR state
of patients after 5 and 10 years. This research is paving the
way for further acceptance of Machine Learning methods in
clinical practice, allowing useful, highly specific expertise to
become more readily available in the near future.
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