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Highlights  12 

• 1984-2020 satellite-derived shorelines (SDS) collected along 269 km of sandy coast 13 

• Gradients in longshore drift control shoreline trends away from estuary mouths 14 

• Space-averaged SDS interannual variability is correlated with some climate indices 15 

• Sectors downdrift of inlets and estuary mouths are affected by internal dynamics  16 

• SDS can guide the development and application of shoreline change models  17 

Abstract 18 

Understanding and predicting shoreline change along sandy coasts requires continuous (in both time 19 

and space) long-term (decades) shoreline data at good spatial (e.g. 100s of metres) and temporal 20 

(e.g. months) resolution. Publicly available satellite imagery can now provide such time series. 21 

However, satellite-derived shorelines (SDS) are associated with uncertainties, particularly at high-22 

energy meso-macrotidal coasts, which challenge the assessment of long-term trends and interannual 23 
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variability. In this paper we address the 1984-2020 time- and space-evolution of 269 km of high-24 

energy meso-macrotidal sandy coast in southwest France using uncertain (no tide and runup 25 

correction) SDS data. The shoreline trends are validated with field data collected over the period 26 

2008-2019. Over 1984-2020, the shoreline eroded by 0.55 m/yr with maximum erosion (accretion) 27 

reaching 15.61 m/yr (6.94 m/yr), with the largest changes observed along coasts adjacent to the inlet 28 

and estuary mouths. We show that, away from the presence of ebb-tide deltas and swash bars 29 

affecting offshore wave transformation and nearshore circulation, the long-term shoreline trend is 30 

well explained by the gradients in longshore drift computed from a regional wave hindcast and an 31 

empirical longshore transport formula. By averaging the yearly SDS along the entire coastline, we 32 

find that interannual shoreline variability is well correlated with the winter West Europe Pressure 33 

Anomaly (WEPA), which outscores the other conventional teleconnection pattern indices. WEPA 34 

even explains more than 80% of the space-averaged shoreline variability over the recent period 35 

2014-2020 when more and higher quality satellite images are available. A more local assessment of 36 

the links between climate indices and shoreline response shows that correlation with all climate 37 

indices dramatically drops downdrift of the large-scale estuary mouths and inlets. This suggests that 38 

along this 10-20 km stretch of downdrift coast, shoreline response is controlled factors internal to 39 

the estuary mouth / inlet system. The rest of the coast is mostly controlled by factors external to the 40 

system, which are primarily the variability in winter-mean wave height correlated to winter WEPA 41 

index. Overall, we demonstrate that an adapted space-averaging of uncorrected (noisy) SDS dataset 42 

can allow addressing the time- and space variability of shoreline change and their primary drivers 43 

including large-scale climate patterns of atmospheric variability. We also advocate that such SDS 44 

analysis can be performed along any coastline in the world in order to guide future model 45 

development and application. 46 

Keywords: satellite-derived shoreline; chronic erosion; interannual shoreline variability; wave climate 47 

indices;  internal and external controls; inlet and estuary mouth   48 

49 



 50 

1. Introduction 51 

Climate change, declining sediment supply, and global population growth in the coastal zone are 52 

projected to result in unprecedented socio-economic losses and environmental changes in the 53 

coming decades (Oppenheimer et al., 2019). This is particularly the case of sandy beaches 54 

(approximately one-third of the global ice-free coastline, Luijendijk et al., 2018) which are highly 55 

dynamic and provide outstanding recreation, tourism and ecosystem services, while acting as energy 56 

buffers in an increasingly stormy environment. Erosion has therefore become one of the biggest 57 

threats to coastal zones globally, both in developed (e.g. Southern California, Vitousek et al., 2017a) 58 

and less developed (e.g. North Africa Hzami et al., 2021) regions of the world, which calls for 59 

improved understanding of past and future shoreline evolution and its drivers. This motivated the 60 

recent development of a wealth of reduced-complexity, computationally cheap, shoreline models 61 

(e.g. Vitousek et al., 2017b; Robinet et al., 2018; Antonilez et al., 2019; Tran and Barthélemy, 2020) 62 

able to simulate shoreline change on timescales of decades of coastlines extending up to 10s to 100s 63 

of kilometres. However, model performance heavily relies on training datasets on similar spatial and 64 

temporal scales, and comparisons between multiple models on additional datasets are strongly 65 

needed (Montano et al., 2020). 66 

Free-of-charge publicly available optical satellite imagery can now be used to provide short-term to 67 

multi-decadal shoreline data from the local to the global scale using different techniques (e.g. Liu et 68 

al., 2017; Duarte et al., 2018; Toure et al., 2019; Sánchez-García et al., 2020; Bishop-Taylor et al., 69 

2021). On microtidal beaches, satellite-derived shoreline (SDS) errors are typically under 10 m (e.g. 70 

Vos et al., 2019a; Bishop-Taylor et al., 2019; Cuttler et al., 2020). Therefore in such environments SDS 71 

can be used to improve the understanding of, for instance, embayed beach rotation (Di Luccio et al., 72 

2019) or the dominant timescales of shoreline variability (Vos et al., 2019a). However, SDS accuracy 73 

dramatically worsens at high-energy and/or meso to macrotidal low-gradient beaches with errors 74 



potentially exceeding 30 m (Castelle et al., 2021) due to the action of breaking waves affecting the 75 

total water level at the coast and blurring the dry sand / water limit. Recently, Castelle et al. (2021) 76 

investigated the uncertainties associated with SDS on a high-energy meso-macrotidal beach in 77 

southwest France. They proposed a new total water level threshold accounting for wave runup 78 

which, combined with a horizontal correction of shoreline position based on average beach slope 79 

estimated from in situ data, halves shoreline error (decreasing to around 10 m) and doubles the 80 

number of usable satellite images, thus dramatically improving shoreline reconstruction. However, 81 

and despite fair remotely-sensed beach slope datasets can now be generated (Vos et al., 2020), long-82 

term breaking wave condition hindcast is challenging to generate and such runup correction ideally 83 

needs detailed wave modelling combined with accurate bathymetric data, particularly in complex 84 

coastal settings (e.g., sheltered zones, offshore bathymetric anomalies affecting wave 85 

transformation). 86 

Global assessment of long-term sandy shoreline trends at 500-m spaced transects has been 87 

performed using annual composite of cloud-free images (Luijendijk et al., 2018), i.e. disregarding tide 88 

and runup correction. Despite the apparent simplicity of the composite SDS approach (in contrast to 89 

the synoptic SDS approach), the spatially-averaged, regional analyses provided fairly accurate insights 90 

into chronic shoreline trends for sandy beaches across the globe (Luijendijk et al., 2018). The ability 91 

of SDS without tide and runup correction to provide accurate long-term shoreline trends along entire 92 

stretches of coast with contrasting evolution pathways has not been fully validated, particularly at 93 

high-energy meso-macrotidal environments. In addition, the strong links between interannual 94 

shoreline response and large-scale climate patterns of atmospheric variability has been explored only 95 

locally, based in situ monitoring program (e.g. Dodet et al., 2019). The recent work of Vos et al. 96 

(2022) is a notable exception, where SDS anomaly around the Pacific Basin was computed during 97 

extreme (El Niño/Southern Oscillation) ENSO index phases (multivariate index larger than half of its 98 

standard deviation). The authors found significant and coherent regional variability in coastal 99 

response to ENSO. The space-averaging of uncorrected (noisy) SDS datasets could, by smoothing the 100 



errors, allow addressing the regional variability of the links between shoreline response and different 101 

modes of climate variability. However, this has never been tested.  102 

The southwest coast of France is made of high-energy meso-macrotidal beaches. The coast has been 103 

eroding over the last decades although erosion and accretion can alternate in both time and space 104 

particularly near large-scale tidal inlets and estuary mouths (Castelle et al., 2018a). So far, continuous 105 

large-scale (~250 km) long-term (~70 years) shoreline analysis along this coast has only been 106 

performed at low-frequency (~10 years) using historical orthophotos (Bernon et al., 2016; Castelle et 107 

al., 2018a), while high-frequency (daily to monthly) data (<20 years) are limited to a couple of sites 108 

(e.g. Coco et al., 2014; Biausque and Sénéchal, 2019; Castelle et al., 2020). In this paper 269 km of 109 

sandy coast in southwest France are studied using, uncorrected, SDS data from 1984 to 2020. We 110 

explore if time- and/or space-averaging of such SDS data can be used to describe shoreline change, 111 

including long-term trends and interannual variability, and their primary driver. To do so, we validate 112 

the SDS trends with in situ data and further use wave hindcast, longshore drift estimations and 113 

climate indices to link the observed changes with external forcing. We will show that the processing 114 

of such SDS data can provide new insight into shoreline response and their primary, thus indicating 115 

guidelines for future model development and application.  116 

2. Study area: the sandy coast of Nouvelle-Aquitaine 117 

The present study focuses on a large sector of the sandy coast of the Nouvelle-Aquitaine region, 118 

southwest France, from the mouth of the Adour River in the south to the south of Oléron Island in 119 

the north (Figure 1a). The role of the inherited geology on coastline shape and landscape is 120 

extensively described in Castelle et al. (2018a). The coast is disrupted by two major inlets 121 

(Maumusson and Arcachon), associated with two prominent updrift sandspits (Gatseau and Cap 122 

Ferret), and one large estuary mouth (Gironde). The coast is mostly composed of relatively straight 123 

sandy beaches backed by coastal dunes (Figure 1d, Bossard and Nicolae Lerma, 2020), with only a 124 

few, isolated, coastal towns built on the dune although with limited coastal defences (e.g. Royan, 125 



Soulac, Montalivet, Lacanau, Mimizan, Capbreton, Figure 1a). The coast is also slightly disrupted by 126 

the small-scale wave-dominated inlets of Mimizan, Contis-les-Bains, Capbreton and Huchet, with only 127 

the latter being not trained by jetties. In the south of the study area, the jetties and groins of the 128 

coastal town of Capbreton, the Capbreton submarine canyon, and the northern training wall of the 129 

Adour river mouth also disrupt the sediment pathways.  130 

Beaches are made of fine to medium quartz sand slightly coarsening southwards. It is a meso-131 

macrotidal environment with the tidal range increasing northwards due to the widening continental 132 

shelf (Le Cann, 1990), with the highest astronomical tide peaking around 6.5 m in the north. The 133 

coast is exposed to an energetic wave climate generated by extratropical cyclones tracking eastwards 134 

in the North Atlantic Ocean, driving waves predominantly with a west to northwest incidence. While 135 

offshore significant wave height  can exceed 10 m during severe storms, the monthly-averaged  136 

in the centre of the study area ranges from 1.11 m in July to 2.4 m in January (Castelle et al., 2017a). 137 

Winter-mean incident wave energy shows dramatic interannual variability enforced by natural large-138 

scale climate modes of atmospheric variability, primarily the West Europe Pressure Anomaly 139 

(Castelle et al., 2017b). Overall, the wave height at breaking slightly increases southwards because of 140 

the narrowing continental shelf reducing the bottom friction and resulting in less offshore energy 141 

dissipation of the incoming ocean waves. The dominant west-northwest wave climate drives a net 142 

southerly longshore drift (Bertin et al., 2008; Idier et al., 2013), except locally at northwest-facing 143 

sectors where the longshore drift reverses. The longshore drift also locally reverses north of 144 

Capbreton owing to offshore wave refraction across the Capbreton canyon (Abadie et al., 2006; 145 

Mazieres et al., 2014). 146 

Castelle et al. (2018a) used 15 geo-referenced orthomosaics photos between 1950 to 2014  from 147 

which shoreline position was manually retrieved using as proxy the dune foot and the limit of the 148 

vegetated foredune in eroding and accreting sectors, respectively. The authors showed that, 149 

averaged across the entire sandy coast, the shoreline has eroded by 1.12 m/yr at a relatively steady 150 



rate. Maximum rates of shoreline change are observed along sectors adjacent to the inlets and 151 

estuary mouths. In these sectors, erosion and accretion typically alternate over time on the timescale 152 

of decades (e.g. Cap Ferret sandspit, Figure 1e). Computed shoreline change rates range from -11 153 

m/yr (+6 m/yr) in eroding (accreting) sectors, which is evidenced by the coastal landscape in rapidly 154 

chronically accreting (e.g. Cape Verdon sector, Figure 1b) and eroding (e.g. Cap Négade, Figure 1c) 155 

sectors. Although not captured by the, low-frequency, historical orthophoto analysis in Castelle et al. 156 

(2018a), observation along the coast also shows occasional dramatic shoreline erosion driven by 157 

severe winters. The most striking example is the winter of 2013/2014, characterised by extreme 158 

storm clustering (Davies, 2015), which drove widespread erosion along the Atlantic coast of Europe 159 

(Masselink et al., 2016), including the southwest coast of France (Castelle et al., 2015).  160 



 161 

Figure 1. Study area (delimited by the southern and northern black dashed segments) mostly 162 

composed of sandy coasts, with indication of the inherited geology. The grey squares show the 163 

location of the small coastal towns with their seafront more or less built on the coastal dune, and the 164 

alongshore arrows show the net longshore drift patterns. The right-hand photos display some 165 

representative coastal settings: (b) accreting sector south of Cape Verdon (@Observatoire de la Côte 166 

de Nouvelle-Aquitaine); (c) chronically eroding Cape Négade where the dune has disappeaered (Ph. 167 



B. Castelle); (d) typical landscape of long and straight beach-dune systems (@Observatoire de la Côte 168 

de Nouvelle-Aquitaine); (e) the tip of the Cap Ferret sandspit, adjacent to the Arcachon Lagoon inlet, 169 

which has a long history of alternatively eroding and accreting phases as evidenced by the Second 170 

World War German bunkers, formerly built on the top of the coastal dune, now lost to coastal 171 

erosion (@Observatoire de la Côte de Nouvelle-Aquitaine).   172 

3. Methods 173 

3.1 Shoreline detection from publicly available satellite images 174 

We used the CoastSat toolkit developed by Vos et al. (2019a, 2019b). The toolkit allows extracting 175 

waterlines from publicly available optical satellite data through Google Earth Engine, namely Landsat 176 

5, 7 & 8 (L5, L7, L8, 30-m spatial resolution) and Sentinel-2 (S2, 10-m spatial resolution) images. In 177 

brief, for a given RGB (+ infrared) satellite image (Figure 2a), image classification into four classes is 178 

performed based on a Neural Network classifier (Figure 2b) which, combined with a global threshold 179 

on the Modified Normalised Difference Water Index (MNDWI), provides a waterline using a sub-pixel 180 

resolution contouring algorithm (Figure 2c). For an extensive description of the CoastSat toolkit, the 181 

reader is referred to Vos et al. (2019b). Following Castelle et al. (2021) who used CoastSat at Truc 182 

Vert beach on this coast, images with cloud cover larger than 50% were automatically disregarded. 183 

Additional images were manually removed by visual inspection when the algorithm failed to depict 184 

shoreline position due to e.g. flawed detection of the water/sand limit in the saturated intertidal 185 

domain or shadows cast by clouds affecting waterline detection. Contrary to Castelle et al. (2021), 186 

tide and runup SDS correction was not performed because accurate runup estimation was not 187 

possible at many sectors affected by offshore wave refraction / breaking that strongly affect 188 

nearshore breaking wave conditions. Disregarding such correction and thus using off-the-shelf 189 

CoastSat toolkit also allowed us to explore if and how spatial or temporal averaging can provide 190 

accurate and new information on shoreline change along this coast. 191 



 192 

Figure 2. Outputs from the CoastSat toolkit of Vos (2019b): (a) RGB image of a stretch of coast north 193 

of Lacanau (S2 on April 18, 2020); (b) corresponding output of image classification where each pixel is 194 

labelled as ‘sand’, ‘water’, ‘white-water’ or ‘other’; (c) corresponding pseudocolour image of the 195 

MNDWI pixel values. In all panels, the black line indicates the waterline detected by CoastSat. 196 

The southwest coast of France was subdivided into boxes to which satellite images were cropped and 197 

processed with CoastSat. A total of 126, approximately 20% overlapping, boxes were designed (area 198 

ranging from 5.53 km2 to 14.65 km2, with a mean of 9.34 km2) ranging from the Spanish border to the 199 

entire Oléron Island (Figure 3a). The resulting 512-km shoreline baseline is made of 1024 500-m-200 

spaced cross-shore transects. Each box contains eight central transects used for analysis (Figure 201 

3b,c), the other transects overlapping those in the two neighbouring boxes. In order to focus on open 202 

sandy coast sectors, we disregarded the beaches (1) of the Basque coast south of the Adour River 203 

mouth, (2) inside the Arcachon Lagoon, (3) in predominantly muddy, trained or rocky sectors within 204 

the Gironde estuary mouth and (4) in Oléron island sectors which are sheltered from ocean waves 205 

and/or with thin beaches mostly perched on rocky basement, thus with limited dynamics (Figure 3a). 206 

Overall, 269 km of sandy shoreline (538 transects) were analysed, for a total of 104,444 individual 207 

shoreline positions between April 12, 1984 and December 31, 2020.  208 



 209 

Figure 3. (a) Location map of the southwest coast of France, with colour indicating shoreline type, 210 

and with the bathymetry contoured. The boxes (numbered) indicate Coastsat image extraction zones 211 

along the entire coast with the cyan dots indicating the corresponding wave hindcast grid points in 212 

approximately 50-m depth where wave time series were extracted. The thick black boxes show the 213 

boxes used in the present analysis. Middle and right-hand panels show a zoom onto boxes 011 and 214 

110 and examples of corresponding satellite image. (b,c) Each box consists of eight 500-m spaced 215 

cross-shore transects, with in each thick black box the greyish transects disregarded from the analysis 216 

(e.g. outside of the domain, located in a sheltered area). S2 images on (d) June 22, 2020 and (e) June 217 

13, 2019. 218 

3.2 Satellite-derived shoreline trend computation and validation 219 

At each transect, time series of shoreline deviation from the mean  was retrieved from the CoastSat-220 

derived shoreline position . Given that shoreline trends are sometimes based on the entire 221 

shoreline time series (e.g. Vos et al., 2019), or sometimes from annual composite images (Luijendijk 222 

et al., 2018), two approaches for computing long-term shoreline trends were tested here: by linearly 223 



regressing (1) raw  giving trend  and (2) yearly-mean SDS  giving trend . Figure 4 224 

shows examples of  time series at representative transects showing contrasting variability in both 225 

pattern and amplitude, e.g. from a quasi-steady erosion (Figure 4b) to strong interannual variability 226 

with an amplitude of 100s of metres and net accreting long-term trend (Figure 4d). Trends from the 227 

two methods are shown for two different periods, i.e. the entire 1984-2020 time series and for the 228 

2008-2019 period which will be used for validation with field data. The two methods show similar 229 

results, with a root-mean-square error RMSE and coefficient of determination R2 of 0.59 m/yr and 230 

0.95, respectively, for the 1984-2020 period (Figure 5a), changing to 1.06 m/yr and 0.92 for the 2008-231 

2019 period (Figure 5b). In the following, long-term trend using raw  is used throughout ( ). 232 

We also computed the  standard deviation around the long-term trend , which is composed of all 233 

the components of errors and variability, namely : seasonal and particularly interannual variability 234 

and  SDS detection uncertainties (e.g. shoreline detection algorithm, tide effects) .   235 



 236 

Figure 4. Time series of SDS position deviation from the mean at different representative transects 237 

along the coast (a) 025-7 south of Contis, (b) 110-8 near the southern tip of Oléron Island, (c) 011-4 238 

immediately to the north of the Adour estuary training wall and (d) 039-7 between Biscarrosse and 239 

the Arcachon Lagoon inlet. In each panel blue bars show yearly mean ( ) and the dots show 240 

individual ( ) shoreline data (grey <2008, black 2018). The dotted (solid) lines depict the long-term 241 

trend  (in green) (  (in dark blue)) computed on the entire 1984-2020 (limited 2008-242 

2019) period, with the 2008-2019 period corresponding to the available in situ data collected for 243 

validation. Raw shoreline trend values  are given in each panel.  244 



 245 

Figure 5. Long-term shoreline trend computed using yearly-mean shoreline  versus that 246 

computed using raw shorelines  over the (a) 1984-2020 and (b) 2008-2019 periods 247 

In order to validate the SDS trends, we used the field dataset described in Nicolae Lerma et al. (2022) 248 

collected by the Observatoire de la Côte de Nouvelle-Aquitaine (OCNA) between 2008 and 2019 and 249 

we computed the SDS trends over the same period. The dataset consists of 11 years of beach-dune 250 

profiles along 41 transects surveyed yearly in spring between the Adour River mouth in the south, 251 

and the Gironde estuary mouth in the north (Figure 6a,b), completed by interspersed autumn LiDAR 252 

surveys (2014, 2016, 2017, 2018, 2019). The in situ shoreline  was extracted from this dataset 253 

as the intersection of the beach-dune profile with elevation  NGF, which roughly corresponds 254 

to the time and space average dune foot elevation along the coast (Nicolae Lerma et al., 2019). 255 

Figure 6b shows the comparison between observed trend  and SDS trend  and its 256 

2500-m moving average . Trends are in fair agreement, with RMSE 1.61 m/yr and R2 = 0.54 for 257 

the raw trends ( , Figure6c), and RMSE = 1.05 m/yr and R2 = 0.64 for its 2500-m moving average 258 

( , Figure 6d). It is important to note that: (1)  and  are not based on the same shoreline 259 

proxy and thus trends are not robustly comparable ; (2)  is collected at single transects and is 260 

thus affected by the presence of alongshore-non uniform features such as megacusp embayments 261 

cutting the dune with a cross-shore amplitude locally exceeding 20 m (Castelle et al., 2015), which 262 

result in shoreline estimation uncertainties. Additional tests were performed using lower in situ 263 

shoreline proxies, including the MSL shoreline which should be close to the, time-averaged, SDS 264 

proxy. However, the tests showed that the agreement between the trends computed from  265 



and  worsens. The two primary reasons are that: (1) the presence of rip channels in the lower 266 

profile results in an increased alongshore beach non-uniformity and thus increased    267 

uncertainties ; (2) beach slope progressively decreases seaward, which also results in more uncertain 268 

shoreline detection from the intersection of the beach profile with a given elevation datum. 269 

Therefore, the comparison shown in Figure 6 between the trends derived from  and   (using 270 

 NGF) is fair and can be considered as a validation of our computed SDS trends. 271 

 272 

Figure 6. (a) Zoom onto the southern part of the study area where OCNA in situ profiles have been 273 

collected for validation of shoreline trends, with the thick black shoreline indicating the sections used 274 

for analysis. (b) Spatial distribution of 2008-2019 shoreline change trend  and its 2500-m 275 

moving average , with the grey dots showing the measured shoreline trends at the OCNA 276 

transects . (c)  and (d)  versus .       277 

3.3 Wave data, climate indices and longshore drift computation 278 

We used wave data from a regional wave hindcast (Boudière et al., 2013; Michaud et al., 2015), 279 

which showed excellent skill against interspersed buoy measurements (see Castelle et al., 2020 for 280 

details). For each box, hourly time series (2012-2020) of wave conditions was extracted at the grid 281 



point the closest to both the box and to the 50-m isobath (cyan dots in Figure 3a). Significant wave 282 

height , peak period  and angle of incidence  in water depth  were transformed into 283 

wave conditions at breaking  in water depth  (Figure 7) using the Larson et al. (2010) 284 

empirical formula which assumes nearly shore-parallel offshore bathymetric iso-contours. The local 285 

orientation of the shoreline baseline-normal transect was used to compute the wave angle at 286 

breaking  (Figure 7). These breaking wave conditions were used to force an empirical longshore 287 

transport model (Kaczmarek et al., 2015) which is based on an estimation of the mean longshore 288 

current :  289 

 (1) 290 

where  is the gravitational acceleration,  is the breaker parameter and  = 2.9 is a free 291 

parameter previously validated in the north of the study area (Bertin et al., 2008). The longshore 292 

sand transport  is then computed at each wave time step depending on V as: 293 

 (2) 294 

 (3) 295 

Hourly hindcast (2012-2020)  was then time averaged for each transect to compute the spatial 296 

distribution of the longshore drift . Alongshore gradients of  are then computed and further 297 

compared with shoreline trends . 298 

 299 



Figure 7. Schematics of longshore drift computation approach: wave hindcast data ( ) in 300 

water depth  are transformed into breaking wave conditions ( ) using 301 

Larson et al. (2010) from which breaking wave angle to the shore  can be computed according to 302 

local transect orientation. 303 

Correlation between SDS interannual variability and large-scale climate modes of atmospheric 304 

variability was also explored. Previous work indicates that the winter (DJFM) West Europe Pressure 305 

Anomaly (WEPA, Castelle et al., 2017b), defined as the normalised gradient of sea-level pressure 306 

between Valentia (Ireland) and Santa Cruz de Tenerife (Canary Islands, Spain) stations, is the primary 307 

climate index explaining the interannual variability of e.g. winter wave activity, beach volume 308 

changes, precipitation and river discharge in the Bay of Biscay (e.g. Dodet et al., 2019; Jalon-Rojas et 309 

al., 2021). A positive winter WEPA corresponds to an intensified and southward shifted Icelandic low 310 

/ Azores high dipole driving severe storms funnelling high-energy waves towards the west coast of 311 

Europe southward of 52° N down to the Moroccan coat (Castelle et al., 2017b, Malagon et al., 2017). 312 

The normalised 1942-2020 WEPA time series was computed from in situ sea level pressure data 313 

measured at the Valentia and Santa Cruz de Tenerife weather stations. In addition, winter-mean 314 

values of the conventional teleconnection indices in this region of the world, North Atlantic 315 

Oscillation (NAO), Scandinavia (SCAND) and East Atlantic (EA) indices, were also used here. These 316 

climate indices, which represent primary intrinsic modes of variability in atmospheric circulation, are 317 

derived from rotated EOF analysis of the monthly mean standardized 500-mb height anomalies 318 

hindcast in the Northern Hemisphere (Barnston and Livezey, 1987). Amongst these three indices, the 319 

NAO has long been known to be the dominant mode of variability in the North Atlantic climate 320 

(Hurrel, 1995). Similar to WEPA, a positive NAO reflects an intensified Icelandic low / Azores high 321 

dipole, but without southward shift, which limits its influence on winter wave energy in the Bay of 322 

Biscay (Castelle et al., 2017b). These indices were downloaded from the National Oceanic and 323 

Atmospheric Administration (NOAA) Climate Prediction Centre (www.cpc.ncep.noaa.gov).  324 



4. Results 325 

4.1 Spatial distribution of shoreline change trends and gradients in longshore drift 326 

Figure 8 shows the spatial distribution shoreline change rate over the period 1984-2020 along 269 327 

km of sandy shoreline (Figure 8a). Shoreline change rate shows a large spatial variability (Figure 8b,c) 328 

with, on average, the shoreline eroding by 0.55 m/yr. The 2500-m moving average shoreline change 329 

rate  peaks at 6.94 m/yr (accretion near Verdon, Figure 1a) and drops to 15.61 m/yr (erosion at 330 

Gatseau sandspit, Figure 1a), with the largest changes observed along coasts adjacent to inlet and 331 

estuary mouths, although with contrasting patterns depending on both the inlet/estuarine system 332 

and downdrift or updrift location (Figure 8b,c). Shoreline standard deviation around the long-term 333 

trend  is also maximised near inlets and estuary mouths (Figure 8d,e), further indicating that 334 

shoreline interannual variability is the largest in these sectors.  335 



336 

 337 

Figure 8. 1984-2020 SDS statistics: (a) Sandy shoreline used in the analysis (thick black line); (b) 2500-338 

m moving averaged shoreline change trend  coloured; (c) raw shoreline change trend (thin red, 339 

) and its 2500-m moving average (thick blue, ); (d) 2500-m moving averaged shoreline 340 

standard deviation around the trend ; (e) . 341 



The relationship between long-term shoreline change rate and longshore drift gradient was explored. 342 

In some of the areas adjacent to tidal inlets and estuary mouths, the presence of ebb tidal shoals and 343 

swash bars deeply affects the incident wave field and, in turn, breaking wave conditions. For such 344 

regions the underlying assumptions of the Larson et al. (2010) empirical formula are not tenable. 345 

Accordingly, the longshore drift computation and subsequent longshore drift analysis were restricted 346 

to the coastline shown in Figure 10a. The latitudinal distribution of shoreline change rate , 347 

longshore drift  and gradient of longshore drift  are shown in Figures 10b, 10c and 10d, 348 

respectively. Consistent with previous work (Idier et al., 2013), the longshore drift is mainly directed 349 

southwards, except locally at northwest-facing sectors. The resulting gradients are weak, except 350 

where shoreline orientation varies substantially, i.e. near inlets and estuary mouth (Figure 10d). 351 

Figure 10e-h shows that along the southern coast of Oléron island (Figure 10e) and the Gironde coast 352 

(Figure 10g), where some of the largest shoreline trends are observed, there is a statistically 353 

significant relationship (p-value < 0.05) between  and  (  and , 354 

respectively). Along the Landes coast (Figure 10h) the southerly longshore drift is quasi-homogenous 355 

(Figure 10c,d), resulting in a mostly stable shoreline position, and thus a weak correlation between 356 

 and . Despite the statistical relationships are much weaker in Figure 10f,h, similar 357 

linear relationships are found with  for the four sub-sectors, which will be 358 

further discussed in Section 5. 359 



 360 

Figure 9.  Satellite images showing complex offshore wave transformation and breaking wave 361 

patterns around (a) Maumusson inlet (S2 image on January 24, 2019) and (b) Arcachon Lagoon inlet 362 

(S2 image on April 19, 2018).  363 



 364 

Figure 10. 1984-2020 SDS change trends and longshore drift characteristics: (a) shoreline sectors 365 

addressed here; (d) 2500-m moving average shoreline trend  (c) computed longshore drift  366 

(negative southwards) and (d) its alongshore gradients ; (e-h)   versus  for the 367 

four sub-sectors and corresponding coefficient of determination R2. Shoreline latitude is coloured in 368 

all panels. 369 

4.2 Time evolution of spatially-averaged shoreline position 370 

In Section 4.1 we found that the space- and time-averaged erosion along the 269 km of sandy coast is 371 

0.55 m/yr, however the interannual variability was not explored. Previous work at specific sites along 372 

this coast and more broadly along the Atlantic coast of Europe (Dodet et al., 2019) showed large 373 

interannual shoreline variability that is well correlated with some climate indices. However, the 374 

hypothesis that this can apply to entire stretches of coastline has never been investigated. To further 375 

test this hypothesis, we addressed the evolution of the yearly shoreline position around the mean , 376 

averaged along the entire 269-km coast, and compared it with some dominant winter (DJFM) climate 377 



indices in this region. We used the yearly-mean, and not the mean from April 1 to November 30 378 

which would be more consistent to address the impact of winter wave conditions on shoreline 379 

change, because some existing shoreline datasets are based on yearly composites (Luijendijk et al., 380 

2018). This approach is also supported by the fact that most of the cloud-free satellite images in 381 

southwest France are collected in spring-summer-fall. This is shown in Figure 11 that displays the 382 

monthly percentage of satellite images used over 1984-2000, with 82% of the yearly SDS data 383 

collected between April 1 and November 30. The yearly mean shoreline is therefore close to the 384 

AMJJASON mean shoreline position. The yearly mean shorelines were systematically computed at 385 

each transect, with their 1984-2021 average further removed to obtain yearly shoreline position 386 

around the mean . The time series of  averaged along the entire 269-km coast is shown in Figure 387 

12c. In order to only account for years when enough spatial coverage was obtained, we computed 388 

the yearly percentage  of transects where SDS data are available showing that years with 389 

consistently  are from 1999 onwards (Figure 12a). However, it is important to note that the 390 

space-averaged number of available images per year  has varied quite a lot over the years (Figure 391 

12b) depending on the ongoing Earth observation missions, with a dramatic increase since 2016 392 

thanks to Sentinel-2 mission. Hereafter the 1999-2020  time series is thus used to explore the 393 

correlation between climate indices and shoreline response. 394 

  395 

Figure 11. Percentage of SDS data available per month  computed over 1984-2020 in southwest 396 

France.   397 



 398 

Figure 12. Time series of (a) yearly percentage  of transects where SDS data are available; (b) space-399 

averaged (along the entire sandy coast, Figure 8a) number of available SDS data , (c) space-400 

averaged (along the entire sandy coast, Figure 8a) yearly-mean shoreline deviation from the mean , 401 

with the thick black dots indicating years with ; (d) winter WEPA climate index (coloured 402 

bars) and superimposed  (black dots) since 1999 showing a coefficient of determination 403 

. Note that in (d) the  axis is flipped, with positive WEPA generally driving shoreline 404 

erosion ( <0) 405 

Figure 12d shows a relationship between  and WEPA over 1999-2020, with , and 406 

with erosion (accretion) observed for positive (negative) WEPA. A similar analysis was performed for 407 

the other climate indices (not shown) indicating poorer correlation, with by decreasing skill EA (  = 408 



0.25), NAO (  = 0.04) and SCAND (  = 0).  A closer inspection of the link between WEPA and 409 

 in Figure 12d suggests that the relationship increases when considering more recent periods 410 

as the number of available images increases (Figure 12b) and higher resolution (10 m) satellites 411 

operate (L8, S2). 412 

Figure 13 further demonstrates this increase in correlation between SDS interannual change and 413 

winter climate indices by computing correlation between  and 2020, with varying . Correlation is 414 

systematically statistically significant and the largest with WEPA, once again followed by EA and NAO, 415 

and with SCAND systematically showing poor correlation ( ). In addition  systematically 416 

increases with increasing  which is in line with the hypothesis of larger correlation in recent years 417 

with more and higher quality images. Importantly, between 2014 and 2020 ( ), , 418 

meaning that WEPA explains more than 80% of the observed space-averaged SDS interannual 419 

response in southwest France.  420 

 421 

Figure 13. Coefficient of determination R2 between yearly-mean shoreline deviation from the mean 422 

change  and different climate indices computed between  (varied) and 2020. Thick filled 423 

circles indicate correlation statistically significant correlation ( ).   424 

This space-averaging of the yearly shoreline response masks a considerable alongshore variability. 425 

This is emphasised in Figure 14 which divides the study area into three zones with contrasting 426 

behaviours. North of the Gironde estuary mouth (Figure 14a), the 34-km long sector shows a time- 427 



and space-averaged erosion of 3.05 m/yr with superimposed moderate (10-20 m amplitude) 428 

interannual variability linked with WEPA (  over 1999-2020, Figure 14b). Further south, the 429 

Gironde coast between the Gironde estuary in the north and Biscarrosse in the south (Figure 14c) 430 

shows moderate erosion (0.62 m/yr) with large (20-30 m amplitude) interannual variability also 431 

linked with WEPA (  over 1999-2020, Figure 14d). Further south, the Landes coast (Figure 432 

14e) shows a stable shoreline ( = 0, Figure 14f) with moderate interannual variability (10-20 m 433 

amplitude). Such alongshore variability will be further discussed in Section 5. 434 

 435 

Figure 14. Left-hand panels: sectors (thick blue line) and in the right-hand panels their corresponding 436 

space-averaged yearly-mean shoreline deviation from the mean , with the thick black dots 437 

indicating years with . In the right-hand panels the dotted black line is the long-term (20-yr) 438 

trend ( ) and  the coefficient of determination with winter WEPA over 1999-2000. (a,b) 439 

Charente-Maritime coast; (c,d) Gironde coast; (e,f) Landes coast. 440 

5. Discussion and conclusions 441 



Our SDS analysis (Figure 8) shows an overall eroding sandy coast with maximum shoreline evolutions 442 

located along sectors adjacent to the inlets and to the estuary mouth, where erosion and accretion 443 

alternate over time on the timescale of decades with an amplitude of 100s of metres. This is 444 

consistent with previous work based on historical orthophotos back to the 50s (Bernon et al., 2016; 445 

Castelle et al., 2018a). The time- and space-average shoreline evolution between 1984 and 2020 446 

indicates an overall erosion by 0.55 m/yr, which is half of the rate computed in Castelle et al. (2018a) 447 

between 1950 and 2014. However, in Castelle et al. (2018a) more than the half of the (stable) Landes 448 

coast was disregarded due to the absence of data in the 50s. Disregarding such sector in our SDS 449 

dataset shows an erosion of 0.7 m/yr, which is still under that computed over 1950-2014 in Castelle 450 

et al. (2018a), but closer to that computed between 1985 and 2014 (0.98 m/yr) in the same paper. 451 

The remaining difference may be explained by the uncertainties in both methods. Sea level rise (SLR) 452 

alone does not seem to explain such chronic large-scale erosion. For instance the Bruun rule (Bruun, 453 

1962), which is reasonable to apply along this coastline consisting of large beach-dune system with 454 

large accommodation space, predicts a SLR-driven shoreline retreat of approximately 0.14 m/yr using 455 

a SLR of 3.31 mm/yr over the last two decades and an active profile slope of 0.0235 according to 456 

D’Anna et al. (2020). The statistically significant increase of winter-mean wave height in this region 457 

associated with increased WEPA and NAO (Castelle et al., 2018b) can explain this larger observed 458 

erosion rate. Large-scale coastal sediment budget (Rosati, 2005), including variation in sediment 459 

supply by the rivers and the shelf, appears as another candidate to explain such long-term and large-460 

scale erosive trend.  461 

Long-term shoreline trend shows large spatial variability (Figure 8). Away from the tidal inlets and 462 

estuary mouths and away from stable sectors (e.g. the Landes coast in Figure 10h), long-term 463 

shoreline trends are fairly well correlated with the computed gradients in longshore drift with 464 

 (Figure 10). Following the one-line assumption that, on the long term, the 465 

profile translates parallel to itself without changing shape and with the longshore sand transport 466 

taking place uniformly over the entire beach profile from the depth of closure to the top of the dune, 467 



the conservation of sediment gives , with  the height of the active profile. 468 

Our computations therefore suggest an active profile height of approximately 142 m, which is much 469 

larger than that estimated at e.g. Truc Vert (around 37 m, D’Anna et al., 2021). Such difference may 470 

come from an overestimation of the longshore drift magnitude by a factor , which is unlikely 471 

given that our values are in line with previous work building on other empirical longshore transport 472 

formula (Idier et al., 2013). Another more plausible explanation is that other processes are at work, 473 

such SLR-driven erosion, sediment supply and others implying a source/sink term such as 474 

. Estimating such, space- (and potentially time-) varying  or any other 475 

plausible hypothesis is out of scope.  476 

Despite SDS are associated with relatively large uncertainties in meso-macrotidal high-energy 477 

environments (Castelle et al., 2021), space averaging allowed unravelling different yearly shoreline 478 

response modes and the links with large-scale climate patterns of atmospheric variability (Figures 12, 479 

13 and 14). Consistent with earlier work on specific sites along the Atlantic coast of Europe (e.g. 480 

Castelle et al., 2017a; Burvingt et al., 2018; Dodet et al., 2019), interannual shoreline variability is 481 

well correlated with winter WEPA climate index. During the positive phase of WEPA, which reflects 482 

an intensified and southward shifted Icelandic low / the Azores dipole funnelling higher energy waves 483 

towards western Europe, erosion is observed (Figure 11c). The other teleconnection patterns explain 484 

only a little amount of the SDS interannual variability, with the notable exception of EA which can 485 

explain up to 40% (Figure 13). This is not surprising as the SLP-based WEPA index contains some 486 

variability of EOF-based teleconnection patterns (Scott et al., 2021), primarily NAO and EA which 487 

explain 8% and 36% of WEPA variability (Castelle et al., 2017b). Interestingly enough, in contrast with 488 

many in situ monitoring programs that have demonstrated the dramatic erosion caused by the 489 

winter of 2013/2014 (e.g. Blaise et al., 2015; Masselink et al., 2016; Pye and Blott, 2016; Burvingt et 490 

al., 2018; Garrote et al., 2018), the space-averaged SDS erosion during that winter is limited (Figures 491 

12c and 14). An explanation is that the SDS proxy, given that images taken at all tidal stages were 492 



considered, is around the intersection of the beach profile with mean sea level elevation. As shown 493 

by the bimonthly beach monitoring program at Truc Vert, the impact of the 2013/14 winter was 494 

mostly observed at the dry beach and embryo dune with limited impact in the lower intertidal 495 

domain (Castelle et al., 2020, their figure 3 at Truc Vert, see also Nicolae Lerma et al., 2019). Limiting 496 

satellite images to higher water levels should make the 2013/14 winter impact standing up, as 497 

evidenced at Truc Vert using only near high-tide data (Castelle et al., 2021, their figure 10).  498 

In our study WEPA explain > 40% of the interannual space-averaged shoreline variability over 1999-499 

2000, a statistical relationship increasing when considering more recent periods (> 80% over 2014-500 

2020) when the amount and quality of satellite images have both increased. In addition, over the last 501 

decade, the predominantly positive winter WEPA including some extremes like in 2013/14 (Figure 502 

11c) clearly resulted in an increased erosion with, on average, the shoreline retreating by over 20 m 503 

between 2012 and 2020 (Figure 11b). This may suggest that, in addition to SLR and large-scale 504 

sediment budget (Bruun, 1962; Rosati, 2005; Cooper et al., 2020), changes in the pattern and 505 

magnitude of winter wave height interannual variability may also impact long-term shoreline 506 

variability. This must be investigated on a longer term as such response may just be a cross-shore 507 

readjustment of the overall profile. Overall, such links between SDS interannual variability and 508 

climate indices calls for more research on the impact of climate change on wave height trends 509 

(Hemer et al., 2013; Morim et al., 2019, 2021) and on the climate modes of atmospheric variability 510 

(Smith et al., 2019, 2020).  511 

The space averaging of SDS has already been found to provide unprecedented global insight into 512 

regional variability of long-term shoreline trends (Luijendijk et al., 2018). We advocate that the 513 

pursuing collection of free and publicly-available Landsat and Sentinel 10-m imagery in the next years 514 

and decades will make possible an accurate global assessment of the links between the dominant 515 

modes of climate variability on shoreline response globally, similar to what has been done for e.g. 516 

wave height (e.g. Shimura et al., 2013). 517 



Figure 14 showed that the study area can be further divided into different sectors, revealing different 518 

long-term SDS trends and different relationships between winter WEPA and interannual SDS 519 

variability. To provide more insight into such alongshore variability in the correlation between 520 

climate indices and shoreline response, Figure 15 shows a similar analysis but with all climate indices 521 

(WEPA, NAO, EA and SCAND) and by applying a 20-km SDS moving averaged window over the period 522 

1999-2020. It confirms that WEPA is the dominant climate index in explaining shoreline interannual 523 

variability along most of the coast, followed by EA and well after NAO and SCAND. Results also show 524 

that correlation with WEPA (and the other indices) dramatically drops downdrift of the Gironde 525 

estuary mouth and Arcachon inlet, which is not observed updrift. This suggests that, along O(1-10 526 

km) of coast downdrift of large-scale inlets and estuary mouths, shoreline response is controlled by 527 

factors internal to the estuary mouth / inlet system such as quasi-cyclic ebb-tidal delta dynamics 528 

from the timescales of months to years and decades (Cayocca, 2001; Ridderinkhof et al., 2016; 529 

Weidman and Ebert, 1993; Burvingt et al., submitted). Along the rest of the coast, even updrift fairly 530 

close to the inlet or estuary mouth, the shoreline interannual variability superimposed onto the long-531 

term trend is controlled by factors external to the system which are primarily the variability in 532 

winter-mean wave height correlated to winter WEPA index. Noteworthy, less uncertain SDS data 533 

(e.g. through tide and/or runnup correction, Vos et al., 2019a, 2020; Castelle et al., 2021) should 534 

result in more accurate correlations with the climate indices. Castelle et al. (2021) showed that, at 535 

Truc Vert beach in southwest France, interranual shoreline change correlation with WEPA increases 536 

by nearly 60% using tide and runup correction. We hypothesize that such correction could allow 537 

narrowing the moving average window and thus provide higher spatial resolution information on 538 

shoreline response. For instance, it could be used to address in more detail the internal – external 539 

control transition at the updrift sectors of the estuary and inlet mouths that is hypothesized to occur 540 

at a short (e.g. a few kilometres) distance from the mouth. 541 



 542 

Figure 15. (a) Shoreline sector addressed here (thick blue line); (b) coefficient of determination R2 543 

between, 10-km moving averaged, yearly-mean shoreline deviation from the mean change   544 

and different climate indices on the period 1999-2020. 545 

The SDS analysis provided new insight into shoreline response and the primary drivers, which can 546 

guide future numerical model application. For instance, we hypothesize that reduced complexity 547 

models coupling cross-shore and longshore processes (e.g. Vitousek et al., 2017b; Robinet et al., 548 

2018; Antonilez et al., 2019) can be applied and further used for future shoreline prediction well 549 

away from the downdrift zones of the major inlets and estuary mouths. Such models can then be 550 

used to estimate sediment sources and sink through calibration with SDS. Further, prediction of 551 

future shoreline change and their uncertainties will be made possible using a similar approach as 552 

D’Anna et al. (2021).  553 



A similar SDS analysis can be performed along any coastline in the world in order to guide future 554 

model development and application. In this frame, SDS are also a promising input for coastal 555 

modelling through data assimilation (Turner et al., 2021). We advocate that, by keeping the reduced-556 

complexity model ‘on the track’, data assimilation will allow: (1) to both identifying the primary 557 

sources of model errors and understanding the links between time-varying free parameters and 558 

changes in environmental conditions but also (2) to impose shoreline boundary conditions at inlets 559 

and estuary mouths during hindcast thus extending their range of application.  560 
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