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Abstract: Although geologically constrained sandy beaches are ubiquitous along wave-exposed
coasts, there is still a limited understanding of their morphological response, particularly under storm
conditions, which is mainly due to a critical lack of nearshore bathymetry observations. This paper
examines the potential to derive bathymetries from video imagery under challenging wave conditions
in order to investigate headland control on morphological beach response. For this purpose, a video-
based linear depth inversion algorithm is applied to three consecutive weeks of frames collected
during daylight hours from a single fixed camera located at La Petite Chambre d’Amour beach
(Anglet, SW France). Video-derived bathymetries are compared against in situ topo-bathymetric
surveys carried out at the beginning and end of the field experiment in order to assess the performance
of the bathymetric estimates. The results show that the rates of accretion/erosion within the surf
zone are strongly influenced by the headland, whereas the beach morphological response can be
classified into three main regimes depending on the angle of wave incidence θp: (1) under deflection
configuration (θp > 0°), the alongshore sediment transport was trapped at the updrift side of the
headland, promoting sand accretion. (2) Under shadowed configuration (θp < 0°), the interruption
of the longshore current drove a deficit of sand supply at the downdrift side of the headland, leading
to an overall erosion in the surf zone. (3) Under shore-normal configuration (θp = 0°), rip channels
developed, and up-state beach transition was observed. A comparison between video-derived
bathymetries and surveys shows an overall root mean square error (RMSE) around 0.49 to 0.57 m
with a bias ranging between −0.36 and −0.29 m. The results show that video-derived bathymetries
can provide new insight into the morphological change driven by storm events. The combination
of such inferred bathymetry with video-derived surface current data is discussed, showing great
potential to address the coupled morphodynamics system under time-varying wave conditions.

Keywords: video monitoring; beach morphodynamics; geological control; depth inversion; cBathy

1. Introduction

Morphological changes of the beach profile are spread over a wide range of spatio-
temporal scales that vary from a few hours (storm) to several weeks (changes in swell
regimes) at the scale from ripples to sandbars [1]. Such morphological changes are driven by
the interactions between flow (waves and currents), sediment transport and the evolving
morphology that feeds back into the hydrodynamics, forming the coupled morphody-
namic system. Decisions on coastal zone management are mainly based on understanding
sediment budgets, which include the subaerial and subtidal zones [2]. Critical to beach
response and sediment budget is the nearshore bathymetry, which is the primary source
of morphological variability, but it is challenging and expensive to survey in situ. In situ
bathymetric data are traditionally obtained using an echo sounder mounted behind a jet
ski [3] or a small vessel [4] equipped with a Real-Time Kinematic Differential Global Posi-
tioning System sensor (RTK-DGPS) that can retrieve depths within a couple of centimeters
of accuracy under calm wave conditions [5]. At best, such a monitoring approach can be
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performed twice a month on beaches with common periods of low wave conditions and
access to the sea for small vessels [6]. Consequently, it is of great interest to find more
accessible alternatives to obtain bathymetric data with high spatial and temporal resolution.

A wide range of remote sensing approaches have been proposed to infer subtidal
bathymetry by exploiting different signatures associated with water depth. Among these
groups of methods are the one based on light penetration in the water column and the
subsequent reflection of the seabed (e.g., multi- and hyperspectral depth inversion meth-
ods [7–10]) and the one based on sea surface characteristics. The latter group can broadly
be subdivided into methods that rely on wave dissipation patterns caused by depth-
induced wave breaking [11–15] and changes in local wave celerity over a varying depth
profile [16–21]. Much effort has been dedicated to derive bathymetry maps from video
imagery through the linear dispersion relationship for free surface waves [18,19,22–29].
In particular, shore-based video systems have the capability to collect large volumes of data
with high temporal and spatial resolution over long periods with the advantage of being
relatively low cost [30,31].

The cBathy algorithm, developed by Holman et al. [19], is a spectral depth inver-
sion method that is nowadays the most popular algorithm to obtain two-dimensional
bathymetries from video stations [6,25,32–44]. cBathy is based on the linear wave disper-
sion relationship, and therefore, its validity is inherently bounded to the increasing degree
of wave non-linearity (finite amplitude effects) as waves approach the shore, leading to
larger propagation speeds for higher waves [45,46]. Although there are several studies
that have proposed the correction for the finite-amplitude dispersion in shallow water
(e.g., [47–49]), these non-linear depth inversion approaches require additional information
on wave height evolution, which is difficult to acquire remotely. In any case, the cBathy
algorithm still provides a good alternative to estimate robust bathymetry maps as it in-
corporates data assimilation through a Kalman filter to reduce instantaneous depth errors
related to the loss of optical wave signature.

The quality of bathymetric estimates derived from cBathy has previously been com-
pared with conventional bathymetric surveys obtained from echo sounders and acoustic
altimeters for a number of different beaches (summarized in Table 1). However, cBathy
has rarely been tested in beach environments under storm events with waves larger than
2 m and Tp >10 s due to the difficulty of conducting in situ surveys in the presence of
large waves [38]. Moreover, most video-based depth inversion studies have focused on
open beaches but not on geologically constrained beaches, which show more complex and
less understood morphodynamic processes [50–54]. Geologically constrained beaches are
characterized by significant geological controls due to headlands, reefs, platforms, rock
outcrops and islets, which determine beach boundaries, beach morphology and morphody-
namics [55,56], making them behave differently from unconstrained beaches [57–63].

In this study, we explore the potential of the cBathy algorithm to derive nearly con-
tinuous (every 30 min during daylight hours) bathymetry maps during a 3-week field
experiment in order to examine the morphological evolution of a geologically constrained
beach under a wide range of energetic wave and tide conditions. Field measurements are
used to assess the capability of cBathy to reproduce underwater morphological features
before and after a storm event. Overall, this work aims to extend the limited knowledge
we have of cBathy performance under high-energy waves and to explore morphological
changes and their driving factors at a geologically constrained beach. The combination
of such video-derived nearshore bathymetry with other video-derived products to better
understand the morphodynamic system is further discussed.
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Table 1. cBathy performance statistics from prior work, organized by decreasing Hs. Positive (negative)
bias corresponds to cBathy underestimated (overestimated) depth relative to the survey. Note that
performance statistics are not all directly comparable, as validations were sometimes performed
in different areas (e.g., inner surf zone). Adapted from Brodie et al. [38], Copyright 2018, with
permission from Elsevier.

Date Hs Tp Bias RMSE Tide Location # Surveys Reference(m) (s) (m) (m) (m)

Oct/2013 to Feb/2015 <5.40 <18.6 - - 7 Porthtowan,
Cornwall, UK 16 Bergsma et al. [39]

Sep/2015 to Sep/2016 0.30–4.30 4–18 −0.26 0.75 <2 Duck, NC, USA 8 Brodie et al. [38]

2009–2011 0.25–2.00 - 0.19 0.51 0.98 Duck, NC, USA 16 Holman et al. [19]

Mar/2013 to Mar/2014 <1.65 - 0.59 0.79 - SandEngine,
The Netherlands 6 Rutten et al. [54]

Mar/2013 to Mar/2014 <1.65 - −0.01 0.34 - SandEngine,
The Netherlands 6 Rutten et al. [54]

Mar/2013 to Mar/2014 <1.65 - −0.92 0.34 - SandEngine,
The Netherlands 6 Rutten et al. [54]

4–13/Dec/2016 1.52 9.2 - 1.28 0.4–1.6 Saint Louis,
Senegal 1 Bergsma et al. [40]

13/Jul/2013 - 7.10 −0.41 0.56 >3 Agate Beach, OR,
USA 1 Holman et al. [19]

17/May/2012 1.19 5–7 0 0.52 - New River Inlet,
NC, USA 1 Holman and Stanley [32]

10/Apr/2014 1.16 10.5 - 1.06 2.78 Porthtowan,
Cornwall, UK 1 Bergsma et al. [36]

9–17/Sep/2010 0.50–1.00 - −0.26 0.49 - Duck, NC, USA 1 Honegger et al. [6]

Jul-Aug/2013 - - −0.11 0.35 - Benson Beach,
WA, USA 1 Honegger et al. [6]

Jun/2013 - - −0.16 0.45 - Egmond aan Zee,
The Netherlands 1 Sembiring et al. [35]

Feb/2017 0.70–0.97 - - 0.37–0.87 - Scheveningen,
The Netherlands 1 Aarnink [37]

20/Feb/2013 0.64 5.8 −0.18 1.01 1.4–1.9 Kijkduin,
The Netherlands 1 Wengrove et al. [33]

17/Abr/2014 0.52 10.4 - 2.05 6.03 Porthtowan,
Cornwall, UK 1 Bergsma et al. [36]

Jan-Mar/2018 0.52 8 0.01 0.38 0.2 Lido of Sète,
France 1 Bouvier et al. [42]

Jul-Dec/2018 0.52 8 0.02 0.37 0.2 Lido of Sète,
France 1 Bouvier et al. [42]

1–4/Jul/2013 <0.50 - - 0.48–0.66 - SandEngine,
The Netherlands 1 Radermacher et al. [34]

17/Feb/2013 0.22 8.5 −0.50 1.27 1.4–1.9 Kijkduin,
The Netherlands 1 Wengrove et al. [33]

2. Data and Methods
2.1. Study Site and Field Experiment

La Petite Chambre d’Amour, hereafter referred to as LPCA beach, is the last and south-
ernmost beach of Anglet located on the Basque coast in the southwest of France (Figure 1).
LPCA beach is bounded by a 500 m long rocky headland in the South (Saint-Martin head-
land) and characterized by the presence of a 20 m wide submerged rocky reef located
approximately 150 m from the headland. According to Wright and Short [64] classification,
Anglet is a high-energy intermediate beach with a bimodal sediment distribution with
a steep beach face (tan β ≈ 1/10 and D50 ≈ 2 mm) and a more gentle sloped surf zone
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(tan β ≈ 1/50 with D50 ≈ 0.3–0.4 mm) [65] with the presence of a seasonally modulated
single to double-bar system [66].

Figure 1. Location of the study site, LPCA beach (Anglet, SW France; blue rectangle). The video-
monitoring area is shown in red color.

An intensive field campaign was conducted at LPCA beach from 3 to 26 October 2018
with the objective to investigate the wave-induced circulation and the morphological
response of the beach under energetic wave conditions. The experiment involved the
deployment and data collection of a large array of instruments including current profilers,
surf-zone drifters, topo-bathymetric surveys and image acquisition from a fixed video-
camera station and a camera equipped Unmmaned Aerial Vehicle (UAV).

Wave and tide data were continuously retrieved (every 30 and 60 min, respectively)
from a 6 km offshore wave buoy and from the Bayonne–Boucau tide gauge, which is located
within the mouth of the Adour river, 4 km north of the study site. Figure 2 shows the
offshore wave and tide conditions during the field experiment. LPCA beach was exposed
to Atlantic W-NW long-period swells, where significant wave heights Hs ranged from
0.4 to 4.2 m and peak wave periods Tp ranged from 5 to 16 s (Figure 2a). Offshore wave
conditions were relatively energetic (average Hs of 1.5 m and average Tp of 12 s) with
several high-energy wave events exceeding 2 m. During the experiment, the tidal range
varied from 1.1 to 4.4 m for neap tides and spring tides, respectively.

An important parameter governing beach morphological changes is the wave energy
flux P (also referred to as “wave power” [67,68]) which can be approximated [69,70] by:

P =
ρg2

64π
H2

s Tp, (1)

where ρ is the seawater density (1025 kg/m3) and g is the gravity acceleration (9.81 m/s2).
The longshore component of the energy flux Py can be obtained as:

Py = P sin(θp) cos(θp), (2)
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where θp is the offshore peak wave incidence (angle of wave incidence relative to the
shore normal). Py represents the portion of wave power available to drive longshore
currents in the surf zone [65,71]. Therefore, Py can be used as a proxy of sediment transport
along the coast [67]. The sign of Py depends on θp; high positive (negative) values of
Py correspond to high-energy swell that arrives obliquely to the shore to the right (left)
of the shore normal, whereas near-zero values of Py indicate shore-normally incident
waves. As the LPCA beach is geologically constrained by the headland in the south,
three main regimes of wave-induced circulation are identified based on the angle of wave
incidence [65,72,73]: (1) a headland-directed longshore current that evolves into a rip
current along the headland under deflection configuration (θp > 0° and Py > 0 kW/m),
(2) an onshore-directed current and a weak oscillating eddy induced under a shadowed
configuration (θp < 0° and Py < 0 kW/m), and (3) cross-shore motions with rip cells’
circulation under a shore-normal configuration (θp ≈ 0° and Py ≈ 0 kW/m). Figure 2b
shows the filtered values of the offshore peak wave incidence (−13 < θp < 22°) and the
longshore component of wave power (−7 < Py < 21 kW/m). θp and Py time series were
smoothed using a 12 h window moving average.

Figure 2. Field conditions during the October 2018 field experiment. (a) Tidal elevation (black line;
see top right axis) and offshore significant wave height (Hs; dots) time-series associated with offshore
peak period (Tp) depicted with different colors (top left axis). (b) Offshore 12 h averaged angle of
peak wave incidence (θp) relative to the shore normal (purple line; bottom left axis) and offshore
12 h averaged alongshore wave energy flux (green line; bottom right axis). Non-shaded regions in
the time series indicate video recording during daylight hours. Polygons defined with black solid
(dashed) lines show the time during bathymetric (topographic) surveys.
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2.2. Topo-Bathymetric Surveys

During October 2018, several surveys were conducted with the purpose to quantify
intertidal and subtidal morphological variations throughout the experiment (see Figure 2).
Two mono-beam bathymetric surveys with 50 m spaced cross-shore transects were carried
out at the beginning (5/Oct/2018) and end (26/Oct/2018) of the field experiment. All
bathymetries were obtained through Real-Time Kinematic Global Navigation Satellite
System (RTK-GNSS) surveyed from a boat. The upper and intertidal beach topography
were surveyed using a Post Processing Kinematic Differential Global Navigation Satellite
System (PPK-GNSS) carried in on foot on 15 October 2018. In addition, a high-resolution
topographic survey employing photogrammetry [74] obtained by a UAV was performed
at spring low tide on 24 October 2018 to measure the headland topography as well as the
upper shore-face topography. The vertical uncertainty (95% CI) from bathymetric and
topographic surveys is estimated to be less than 0.20 and 0.07 m, respectively [65].

It was decided not to merge the bathymetry data collected on 5 October with the
topography collected on 15 October, as a high-energy wave event occurred between the
two dates (Hs up to 4 m on 7 October 2018; see Figure 2), potentially inducing changes in the
seabed morphology. On the other hand, the topographic and bathymetric data collected on
24 and 26 October 2018, respectively, were combined and gridded using a natural neighbor
interpolation approach accounting for anisotropy to produce a single bathy-topo map.
Thus, only the bathymetry data (5/Oct/2018), as well as the topo-bathymetric ensemble
(24,26/Oct/2018) representing the morphological conditions during the beginning and
end of the experiment, respectively, will be used as ground truth to further validate
cBathy estimations.

2.3. Video Data

Images capturing LPCA beach were collected from a single camera installed on top
of the Biarritz lighthouse (70 m above mean sea level) located near the tip of Saint-Martin
headland (Figure 1). Then, 1 Hz sampled images recorded at 1624 × 1234 px were con-
tinuously collected during daylight hours on 5,8–15,18–30/Oct/2018 (Figure 2). Images
containing fog, sun glare and raindrops were visually identified and manually excluded.
The remaining images were stabilized [75] and rectified [76] into local coordinates using
16 ground control points (GCPs) spatially distributed both on land and water.

2.4. cBathy Algorithm

The cBathy algorithm (Holman et al. [19]; https://github.com/Coastal-Imaging-
Research-Network/cBathy-toolbox [44], accessed on 20 January 2020) is based on the
linear wave dispersion relationship to estimate depth and thus requires a time series of
images with the presence of waves in intermediate or shallow water depths. Images are typ-
ically sampled at 1 or 2 Hz over a 17 min collection to yield a burst or stack of images. Data
runs are typically collected hourly but can be reduced to half-hourly for field experiments
or places where conditions, such as tide or morphology, change rapidly. The image spatial
resolution should be adequate to resolve the anticipated dominant wavelengths. For the
case of LPCA beach, the wavelength for a typical 10 s wave in 1 m depth is ∼31 m. This
means that for a cross-shore spacing (∆xp) of 5 m, six points will be provided to resolve
the wavelength, which is fine to keep the computation time reasonable. As alongshore
scales are longer, they can be well resolved with a larger sample spacing (e.g., ∆yp = 10 m).
Once the stack of images is recorded, the analysis is carried out sequentially at a series
of user-selected analysis points (xm, ym) for which a group of neighboring pixels is used
within a user-specified range (xm ± Lx, ym ± Ly) or tile (Figure 3).

https://github.com/Coastal-Imaging-Research-Network/cBathy-toolbox
https://github.com/Coastal-Imaging-Research-Network/cBathy-toolbox
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Figure 3. Pixel array used for cBathy analysis. Time series are collected at every pixel. Analysis at any
example location (e.g., red dot) is based on data from the surrounding tile of pixels (green dots) of
size +/− Lx and Ly. The image is rotated, since cBathy assumes that the x-axis increases offshore.

The cBathy algorithm consists of three processing steps. The objective of step 1 is
to estimate a wavenumber k at the point (xm, ym) for a user-defined set of candidate
frequencies fb. These frequencies fb are typically defined between 0.056 and 0.250 Hz and
correspond to wave periods ranging from 4 to 18 s. Each pixel within the analysis tile
(xm ± Lx, ym ± Ly) is treated as an individual pixel intensity time series and converted to
the frequency domain through a Fourier transformation. A cross-spectral matrix is then
computed between all possible pixel pairs inside the tile for each of the desired frequency
bands fb. A selection of the most coherent frequencies (commonly four; cBathy default
value) are identified and extracted through spatial empirical orthogonal function (EOF) to
determine the dominant spatial phase of the wave. The corresponding wavenumbers k are
derived by fitting the wave patterns of the observed spatial phase to a forward modeled
wave train. A skill value is provided to indicate the percentage of the variance explained
by the fit, where a skill score of 1 corresponds to a perfect match. Finally, for each fb − k
pair, a depth h̃(xm, ym) can be estimated using the linear dispersion relationship:

ω2 = gk tanh(kh)⇐⇒ h =
tanh−1( 4π2 f 2

gk )

k
, (3)

where ω(2π f ) is the radial frequency, f is the linear frequency, k is the wavenumber, h is
the water depth and g is the gravitational acceleration. Since cBathy estimates depth, not
bathymetry, tidal elevations must be subtracted from estimates to yield depths relative to a
fixed tidal datum.

In step 2, a single depth ĥ(xm, ym) is computed by combining the multiple fb − k
pairs estimated from step 1 through a weighted non-linear least squares fit so that the best
correspondence to the linear dispersion relationship is found. Step 2 depths, similar to
those of step 1, must be tide-corrected to yield bathymetry data referenced with respect to
a tidal datum.

Step 3 uses a Kalman filter [77] to smooth and average the datum-referenced depths
in order to provide a robust and reliable depth estimate, h(xm, ym). As the Kalman filter
depends on both the current and the previous cBathy-estimated bathymetry, this step only
works if more than one video-derived bathymetry is available. The purpose of the Kalman
filter is to provide an estimate of beach morphology over certain areas even when in situ
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conditions are not favorable by filling gaps in coverage and objectively averaging new
estimates with prior estimates.

cBathy Settings

The image time series were rotated and rearranged into stacks of ∼17 min (1024 s)
duration, yielding one image stack every 30 min. All images within a stack were rectified
by setting the reference level (tidal elevation) according to the time of the middle image
of the stack. This was completed to avoid rectifcation inaccuracies (i.e., horizontal pixel
shifting) induced by large tidal level changes, as described by Bergsma et al. [36]. The
cBathy algorithm was then applied to a total of 330 image stacks. The parameters used for
cBathy are shown in Table 2. Time series of water depth were estimated on a 25 × 10 m
analysis grid (alongshore × cross-shore spacing) and further referenced to NGF-IGN69
(Global French Levelling) to produce bathymetry maps. For future reference, the zero-
elevation contour relative to NGF-IGN69 is located 0.43 m below MSL. The Kalman filter
was then consecutively applied over time to yield a stable running average depth by
automatically weighting better estimates from prior information. In addition to the Kalman
filter, a moving average was applied with a temporal window of two (daylight) days over
the whole bathymetry time series in order to remove a spurious depth-diurnal signal,
which was probably related to a rectification inaccuracy. It should be noted that for the 5th
of October 2018 (the same day as the first bathymetry survey), only one image stack was
available, meaning that the Kalman filter could not be applied during that day.

Table 2. cBathy parameters used for October 2018 field experiment.

Description Value

Pixel cross-shore spacing (∆xp) 5 m
Pixel alongshore spacing (∆yp) 10 m
Cross-shore depth analysis spacing (∆xm) 10 m
Alongshore depth analysis spacing (∆ym) 25 m
Cross-shore analysis smoothing scale (Lx) 30 m
Alongshore analysis smoothing scale (Ly) 75 m
Temporal resolution (∆t) 1 s
Record length of each stack (τ) 1024 s
Number of stacks (Nstack) 330
Minimum acceptable depth (hmin) 0.25 m
Analysis frequency bins ( fb)

[
1

18 s : 1
100 s : 1

4 s

]
Number of frequency bins to retain (Nkeep) 4

3. Results
3.1. Topo-Bathymetric Surveys Comparison

As shown in Figure 4, a comparison between the October 5 and 26 surveys indicates
the formation of an alongshore uniform sandbar centered at x = 300 m with a net deposition
of sand (around 1 m of accretion) at the respectively cross-shore and longshore position:
x = 300 m, y = 400 m. Moreover, there is an overall erosion at x = 400–600 m as well as beach
accretion around x = 100 m. The development of a shallow rip channel is also observed
at x = 250 m, y = 400–500 m. Based solely on these survey observations, it is difficult to
determine under what specific hydrodynamic conditions the morphology responded in
relation to the time between wave events and the pre-existing geology. Hence, it highlights
the importance of estimating bathymetry more frequently using remote sensing techniques,
the results of which are presented in the following subsections.
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Figure 4. Topo-bathymetric surveys comparison. (a) Interpolated bathymetry (5/Oct/2018) and
intertidal topography (15/Oct/2018). (b) Interpolated bathymetry (26/Oct/2018) and intertidal
topography (24/Oct/2018) merged together into a single bathy-topo map. (c) Difference between
surveys where red colors indicate sand accretion and blue colors sand erosion.

3.2. cBathy Video-Derived Bathymetries vs. Surveys

Figure 5 presents the non-filtered cBathy bathymetry estimation computed for the
same day as the first bathymetry survey (5/Oct/2018). Wave and tide conditions during
cBathy computation (Hs = 0.6 m; Tp = 13 s; θp = 4°; Tide = 1.6 m) showed no wave breaking
as illustrated in the standard deviation image (Figure 5a). The bulk performance of cBathy
to reproduce morphological features present in the first bathymetry survey achieves 0.57 m
root mean square error (RMSE) with a −0.36 m bias. The intermediate water region
comprised between x = 300–450 m and y = 350–800 m is well reproduced by cBathy.
However, the remaining shallow water regions, including the sandbar, are fairly reproduced
in shape but overestimated in depth (inaccuracies around 1 m), as shown in Figure 5d and
the cross-shore and alongshore profile transects in Figure 5e,f.

Figure 6 shows the estimated Kalman-filtered cBathy bathymetry corresponding to the
topo-bathymetry survey conducted at the end of the field experiment (24,26/Oct/2018).
The standard deviation image (Figure 6a) depicts an oblique rip channel within the surf
zone range of y = 400–500 m, which is consistent with the surveyed topo-bathy map
(Figure 6c). This rip channel is resolved by cBathy estimations but underestimated in depth.
cBathy shows an overall RMSE and bias of 0.49 and −0.29 m, respectively, with larger
errors near the steep shoreline and reef location, as shown in Figure 6d and the cross-shore
and alongshore profile transects in Figure 6e,f. cBathy performance is hypothesized to be
lowered by wave breaking due to low tide and relatively large waves (Hs = 0.8 m; Tp = 11 s;
θp = 14°; tide = −1.5 m).
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Figure 5. cBathy vs. surveyed bathymetry for 5 October 2018. (a) Standard deviation image showing the
amount of change in pixel intensity over the record length of the stack in order to highlight preferential
wave breaking. The magenta line indicates the zero-elevation contour relative to NGF-IGN69. Elevation
contours are spaced at 0.5 m intervals relative to NGF-IGN69. (b) cBathy-derived bathymetry,
(c) surveyed bathymetry and (d) difference between both, where red (blue) colors indicate depth
underestimation (overestimation) in cBathy results. (e) Cross-shore and (f) alongshore transects,
indicated by the black dashed lines in panel (c), showing the comparison between cBathy (black solid
line) and the surveyed profile (red solid line).

Figure 6. cBathy (26/Oct/2018) vs. interpolated topo- (24/Oct/2018) bathymetry (26/Oct/2018)
survey. (a) Standard deviation image showing the amount of change in pixel intensity over the record
length of the stack in order to highlight preferential wave breaking. The magenta line indicates
the zero-elevation contour relative to NGF-IGN69. Elevation contours are spaced at 0.5 m intervals
relative to NGF-IGN69. (b) Kalman-filtered cBathy-derived bathymetry, (c) surveyed topo-bathy and
(d) difference between both, where red (blue) colors indicate depth underestimation (overestimation)
in cBathy results. (e) Cross-shore and (f) alongshore transects, indicated by the black dashed lines in
panel (c), showing the comparison between cBathy (black solid line) and the surveyed profile (red
solid line). The red dashed lines indicate the limits of video-monitoring coverage.
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3.3. cBathy Error Assessment

Following the approach proposed by Bouvier et al. [42], a quality assessment was
computed for each of the non-filtered cBathy-derived bathymetries ĥ(xm, ym) by counting
the number of points for which the cBathy algorithm returns a physical value (skill higher
than 0.5 with associated depth errors lower than 1 m). The quality assessment (Qual) of
video-derived bathymetries was assessed in percentage terms in relation to the total number
of grid points inside the camera viewfield delimited by values below the zero-elevation
contour line. In other words, the quality assessment counts how many non-NaN depth
estimates are retrieved from cBathy within the sampled area. Figure 7 shows the cBathy
quality assessment for the 330 computed bathymetries according to their corresponding
tidal elevation and offshore significant wave heights (Hs).

Figure 7. Bathymetric inversion quality (Qual) as a function of tidal elevation (with respect to MSL)
and offshore significant wave height (Hs).

Tidal elevation has an influence on the quality of depth inversion with appreciable
errors associated with low tide stage. During low tide, waves break over the reef and
sandbar affecting the readability of the wave signature and resulting depth estimates.
In addition, non-linear effects affect the estimation of the bathymetry in the outer and inner
surf zone as the depth range decreases at low tide. Surprisingly, large waves (Hs > 2 m)
do not appear to significantly reduce cBathy estimations in the sampled area as opposed
to the results of Bouvier et al. [42]. Nevertheless, it is important to note that this quality
assessment is based only on the total number of individual depth outputs within the grid,
whose performance at the end is given by the same cBathy algorithm.

3.4. cBathy Video-Derived Morphological Evolution

Figure 8 shows the LPCA beach morphological up-state transition from a Low-Tide
Terrace (LTT) to a Transverse Bar and Rip (TBR) beach state according to Wright and
Short [64] classification. Table 3 shows the field conditions corresponding to Figure 8.
Timex images (Figure 8a–e) computed at low tide provide visual aid to detect surfzone
morphological features as they highlight preferential wave breaking and complement
the results obtained from the video-derived bathymetries (Figure 8f–j) and their corre-
sponding changes over time (Figure 8k–o) with respect to 8 October 2018 video-derived
bathymetry. A movie showing the video-derived morphological evolution is also provided
as Supplementary Material (Video S1).
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Figure 8. LPCA beach morphological evolution during October 2018 field experiment. (a–e) Time
exposure (timex) image consisting of averaged pixel intensity over the record length of the stack.
The magenta line indicates the zero-elevation contour relative to NGF-IGN69 and the white arrows
indicate the angle of wave incidence θp. (f–j) Kalman-filtered cBathy video-derived bathymetries. Ele-
vation contours are spaced at 0.5 m intervals relative to NGF-IGN69. (k–o) Bathymetric change maps;
difference between cBathy-derived bathymetries (panels: f–j) and the cBathy-derived bathymetry
from 8 October 2018 07:30:00 GMT, where red colors indicate sand accretion and blue colors sand
erosion with respect to 8 October 2018 video-derived bathymetry. The red dashed lines indicate the
limits of video-monitoring coverage.

Figure 8a,f,k corresponding to 9 October 2018 capture LPCA beach morphological
configuration after the high-energy wave event of 7 October 2018 (Hs up to 4 m; see
Figure 2). Despite the storm, the sandy bed morphology remained reasonably uniform
alongshore, showing a subdued terrace bar still attached to the shore. Figure 8b,g,l shows
the beach morphology following the second energetic wave event (14/Oct/2018; Hs ≈ 3 m)
that occurred under a shadowed configuration. Overall, the large waves eroded the surf
zone, yielding little more than a pronounced terrace bar. On 22 October 2018, shore-
normally incident waves led to a state transition in between LTT and TBR (e.g., [78])
with the formation of rip channels that did not incise the outer edge bar but increased the
trough continuity (see Figure 8c,h,m).

After 23 October 2018, the angle of wave incidence augmented under a deflection
configuration, inducing a longshore current towards the headland. This period was char-
acterized by persistent accretion, as the sediment supply from the longshore drift was
probably trapped by the headland. During the high-angle wave event, the rip channel
orientation became more oblique, and the successive infilling of the trough caused part of
the sandbar to weld to the shore (see Figure 8d,i,n). The latter description coincides with
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an erosive Transverse Bar and Rip (eTBR) state, as proposed by Price and Ruessink [71]
who related the offshore dominant oblique angle of wave incidence with a discontinuous
trough and the presence of oblique rip channels.

By the end of the experiment, LPCA beach was characterized by a TBR state with
the presence of two deep skewed rip channels (Figure 8e,j,o). Interestingly, the relatively
high-energy wave event of 28 October 2018 (Hs = 3 m; θp = 12°; Py = 7 kW/m) resulted
in accretion rather than erosion; an overall sand deposition along the bar and the region
around the reef is observed in accordance with survey measurements from Figure 4c.

Table 3. Field conditions for Figure 8.

9/Oct/2018 15/Oct/2018 22/Oct/2018 26/Oct/2018 30/Oct/2018

Time (GMT) 11:00 13:00 10:00 11:30 14:00
Configuration Deflection Shadowed Shore-normal Deflection Deflection

θp (°) 11 −9 −1 14 8
Py (kW/m) 2.2 −3.2 −0.1 0.8 0.2

Hs (m) 1.3 1.9 1.1 0.8 0.5
Tp (s) 13 13 12 11 6

Tide (m) −1.2 −0.8 −0.8 −1.5 −1.1
Beach state LTT LTT LTT–TBR eTBR TBR

3.5. cBathy Video-Derived Profile Response

Different cross-shore transects were selected (Figure 9a–c) to investigate the temporal
evolution of the seabed over the 3-week field experiment. Wave and tide conditions are
presented in order to associate morphological evolution to hydrodynamic conditions at
LPCA beach (Figure 9d). The 2-day smoothed cross-shore profile time-evolution shows
progressive sand accumulation along the bar (Figure 9f,g) and the reef (Figure 9e) linked by
the increasingly obliquely incident wave conditions after 23 October. Sand deposition is also
observed during the energetic wave event of 28 October 2018, which is consistent with the
sand accretion observed for the same region in the topo-bathymetric survey conducted at
the end of the experiment (Figure 4c). The temporal evolution of the smoothed cross-shore
profile transect centered at y = 700 m (Figure 9g) illustrates the temporary dissection of the
low tide terrace leading to a rip channel formation on 20–22/Oct/2018, which coincides
with the transition to shore-normal incident waves. Overall, the cBathy-derived cross-shore
transects (Figure 9h–j) are consistently below the surveyed profiles (negative bias around
1 m depth) and show an offshore migration of the sandbar crest location with a 40 m offset
relative to the last survey conducted on 26 October 2018.

Similarly, Figure 10 shows the LPCA beach 2-day time-averaged vertical profile re-
sponse over time for three different alongshore transects depicted in Figure 10a–c. A sys-
tematic change in seabed elevation is evident after 23 October 2018 with more sand accu-
mulation close to the reef (y ≈ 300 m; Figure 10f,g,i,j). This decrease in depth appears to
be related to the transition of the angle of wave incidence from a shadowed configuration
to a deflection configuration (see θp and Py in Figure 10d). The temporal evolution of the
alongshore transect corresponding to the shallowest subtidal region (Figure 10e,h) shows
an overall bias with respect to the ground truth surveys that might be related to non-linear
effects resulting in depth overestimation.
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Figure 9. LPCA beach cross-shore profile morphological evolution over October 2018 derived from
2-day time-averaged Kalman-filtered cBathy estimates. (a–c) The cross-shore profile transects are
indicated by the black dashed lines. The red polygon shows the domain used for analysis and the red
dashed lines indicate the limits of video-monitoring coverage. (d) Offshore significant wave height
Hs (red line; top axis), tidal elevation (blue line; bottom axis), 12 h averaged alongshore wave energy
flux (green line; bottom axis) and 12 h averaged angle of peak wave incidence θp (purple line; bottom
axis) time series corresponding to the computed cBathy Kalman-filtered stacks. (e–g) cBathy-derived
timestacks along with (h–j) the time evolution of each cBathy cross-shore profile (shown with different
colors). The solid and black dashed lines correspond, respectively, to profile transects obtained from
bathymetry (5/Oct/2018) and topo-bathymetry (24,26/Oct/2018) surveys. For better visualization,
the time is concatenated during available cBathy stacks (i.e., nightlight hours and absent data from
16 and 17 October are removed).
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Figure 10. LPCA beach alongshore profile morphological evolution over October 2018 derived from
2-day time-averaged Kalman-filtered cBathy estimates. (a–c) The alongshore profile transects are
indicated by the black dashed lines. The red polygon shows the domain used for analysis and the red
dashed lines indicate the limits of video-monitoring coverage. (d) Offshore significant wave height
Hs (red line; top axis), tidal elevation (blue line; bottom axis), 12 h averaged alongshore wave energy
flux (green line; bottom axis) and 12 h averaged angle of peak wave incidence θp (purple line; bottom
axis) time series corresponding to the computed cBathy Kalman-filtered stacks. (e–g) cBathy-derived
timestacks along with (h–j) the time evolution of each cBathy alongshore profile (shown with different
colors). The solid and black dashed lines correspond, respectively, to profile transects obtained from
bathymetry (5/Oct/2018) and topo-bathymetry (24,26/Oct/2018) surveys. For better visualization,
the time is concatenated during available cBathy stacks (i.e., nightlight hours and absent data from
16 and 17 October are removed).

4. Discussion
4.1. cBathy Performance and Sources of Errors

Video-derived bathymetries were obtained under challenging wave conditions. Nev-
ertheless, the comparison between surveys and cBathy estimates revealed typical errors
(RMSE = 0.49 to 0.57 m and bias =−0.36 to−0.29 m) similar to previous works (see Table 1).
The very upper part of the beach face was related with less accurate results, as analysis
tiles may have contained partly wet/dry pixels at the sea–land interface, mixing unuseful
subaerial and acceptable subaqueous signals [54]. The systematic shallow water bias (over-
estimation of true depth) can also be explained by finite amplitude effects that increase
wave celerity as waves shoal and break, reducing the validity of the linear dispersion
relationship [38,46].

The current cBathy version does not include the effects of currents and Doppler shifting
in the dispersion relation (Equation (3)). For the case of LPCA beach, persistent rip currents
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(e.g., near the headland and within the rip channels) can potentially interact with incident
short-period waves, shortening their wavelength (k increases) and thus underestimating
local depth. However, with cBathy typical settings (Table 2), short-period waves and rapid
cross-shore depth changes over the sample domain cannot be resolved unless a denser
pixel spacing is defined and more (higher) frequencies are accounted for analysis, thus
requiring more computational effort [19].

Several studies have reported a significant variation in cBathy performance with
increasing wave height [19,36,38,39,42] since breaking waves are spread over a wider surf
zone, obscuring the optical wave signal and leading to incorrect estimates of f and k
from imagery. Moreover, during storm conditions, the Kalman filter is not designed to
account for the systematically biased errors that occur on the timescale as real bathymetric
change [38], thus resulting in greater faith deterioration of the previous video-derived
bathymetry estimate under energetic conditions compared to calm conditions [39]. Despite
this issue, the quality assessment computed using the approach of Bouvier et al. [42]
indicates the capability of cBathy to return depth estimates for more than 70% of the domain
even under waves larger than 2 m.

As previously suggested by Brodie et al. [38], we acknowledge the fact that the
cBathy algorithm should preferably not be used during storm events, as video-derived
bathymetries may not be quantitatively reliable. Nevertheless, we believe that cBathy is still
capable of providing qualitative insight into the morphological evolution of the seabed in
between storms despite challenging wave conditions when beach measurements are often
intermittent. This is supported based on the timex images computed throughout the field
experiment, in which cBathy was able to reproduce the morphological features fairly well
and match them qualitatively with the surveys.

4.2. LPCA Beach Morphological Response to Changes in Wave Direction

The 3-week video-derived bathymetry evolution showed that the morphological vari-
ability at LPCA beach was essentially influenced by the wave direction regime and the
headland control. In contrast to expectations, the high-energy wave events did not nec-
essarily correspond to abrupt erosional state transitions, as evidenced by the wave event
of 28 October 2018. Remarkably, a previous study at LPCA beach [66] has even reported
steadily onshore migration of the inner bar despite the extreme storms (Hs > 5 m) during
the outstanding winter of 2013/2014. The latter highlights the complexity of beach morpho-
dynamics in such environments that are geologically controlled, as outlined by different
authors [50–53]. In the case of LPCA beach, it has been demonstrated that the submerged
reef and the headland play an important role in determining the wave-induced circula-
tion patterns within the surf zone depending on offshore wave obliquity [65,72,73,79,80].
Obliquely incident waves approaching from the right side of the headland (θp > 0°) induce
a strong longshore current that transports sediment along the surf zone (Py > 0 kW/m)
toward the headland that eventually end up being retained by this geological boundary.
Although the sediment is assumed to remain accumulated on the updrift side of the head-
land, strong wave-induced deflection rips can lead to sand bypassing toward the adjacent
beach [80]. On the other hand, when obliquely incident waves approach from the left side
of the headland (θp < 0°), the lee of the headland remains protected from these incident
waves, but the longshore sediment transport is inhibited. This deficit of sediment supply is
the cause of downdrift erosion within the shadowed zone (Py < 0 kW/m). Direct expo-
sition of shore-normally incident waves (θp ≈ 0° and Py ≈ 0 kW/m) during low tide are
associated with rip current activity and rip cell circulations [65,73], resulting in rip channel
formation and morphological discontinuities in the surf zone, as shown in Figure 11.
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Figure 11. Optical flow image-derived surf-zone circulation (red arrows) superimposed on cBathy-
estimated bathymetry for the same time period when the rip channel was present (22/Oct/2018).

In addition to the longshore drift blocked by the headland, it is hypothesized that
onshore sediment transport may have also contributed to the formation of the sandbar
throughout the experiment. The field experiment was characterized by long period swell
and moderately energetic constructive waves with low steepness that could promote slow
sandbar building. This would also explain the overall erosion in the cross-shore distance
between 400 and 600 m by the end of the experiment, as evidenced in Figure 4.

4.3. Perspectives and Future Challenges

The classic beach state classification based on the Dean’s parameter [64] and the
Relative Tidal Range (RTR) parameter [81] assumes that the cross-shore and alongshore
sediment exchange is unconstrained by geology [53]. Thus, traditional models are generally
not directly applicable in such complex settings where geological control has a fundamental
influence on their morphodynamics [52]. The use of improved morphodynamic models in
conjunction with remotely sensed data could help to better understand beach evolution
during storm events and assist coastal managers in effective management of geologically
controlled beach environments.

Nowadays, the increasing proliferation of low-cost and flexible new platforms such as
UAVs [82,83], swift cameras, CoastSnap [84] and online-streaming webcams [31,85,86] offer
an attractive option to collect image products and derive measurements of the nearshore.
In addition to image-processing techniques that allow estimating the nearshore bathymetry
(e.g., cBathy [19,43]), recent works have opened up the possibility to remotely estimate 2D
surface currents by tracking the drifting foam, left after the passage of breaking waves,
from video imagery (e.g., optical flow-based algorithms [73,87,88]). Future work could
be to apply both remote sensing techniques to provide fresh insight into the coupled
(hydrodynamic/morphology) morphodynamic system, which is key to the validation of
process-based morphodynamic models. So far, processed-based morphodynamic models
have been validated based only on surveyed morphological changes and at best with
concurrent local wave and flow punctual measurements [89]. However, sandy beach mor-
phodynamics is driven by the interaction of the evolving seabed and rip-cell systems [64].
Measuring in situ the spatial structure of rip current systems requires the deployment of
a large number of drifters, which is only possible during a limited duration and under
low- to moderate-energy wave conditions (e.g., [90]). In contrast, new optical flow-based
algorithms recently showed skill to infer surface currents in the surf zone and to address
rip cell circulation [73,88]. Figure 11 shows an example of a 17-min time-averaged im-
age combining both video-based techniques. It highlights the potential to address surf
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zone morphodynamic processes, i.e., the coupled morphology and hydrodynamics system,
at unprecedented frequency and spatial coverage.

5. Conclusions

Bathymetry maps were estimated every 30 min during daylight hours for three con-
secutive weeks using a video-based linear depth inversion algorithm in order to examine
LPCA beach morphological response under a wide range of wave and tide conditions.
The smoothed bathymetry time evolution showed that LPCA beach morphology was
controlled by the lateral boundary effects of the headland and was strongly dependent
on the incident wave direction. The assessment was carried out by comparing concurrent
video-derived bathymetries with in situ topo-bathymetric measurements collected during
the beginning and end of the field experiment, as well as with timex images computed
throughout the entire experiment. Comparisons between surveyed and video-derived
bathymetric estimates showed a similar performance with respect to previous studies with
an overall RMSE = 0.49 to 0.57 m and bias = −0.36 to −0.29 m. Overall, the morphological
features were in approximately the right places but presented a significant vertical offset
at the shallowest parts (reef and beach shore face) where depth was consistently overesti-
mated mainly due to non-linear effects. The results suggest that video-derived bathymetries
can provide qualitative information on beach morphology evolution in between storm
events when environmental conditions are challenging, but caution should be exercised as
morphological features may be quantitatively misrepresented. In conclusion, this study
highlights the necessity of further modeling and combining existing video-based techniques
to improve our understanding of beach morphodynamics near headlands, particularly
under extreme wave conditions.

Supplementary Materials: The following are available online at https://zenodo.org/record/661717
6#.Yp4WQerMLIU, accessed on 6 June 2022, Video S1: LPCA beach morphological evolution during
October 2018 field experiment. (a) Time exposure (timex) image consisting of averaged pixel intensity
over the record length of the stack and (b) standard deviation image showing the amount of change
in pixel intensity over the record length of the stack in order to highlight preferential wave breaking.
The magenta line indicates the zero-elevation contour relative to NGF-IGN69. (c) Kalman-filtered
cBathy video-derived bathymetries. Elevation contours are spaced at 0.5 m intervals relative to
NGF-IGN69. (d) Bathymetric change maps; difference between cBathy-derived bathymetries (panel c)
and the cBathy-derived bathymetry from 8/Oct/2018 07:30:00 GMT, where red colors indicate sand
accretion and blue colors sand erosion with respect to 8 October 2018 video-derived bathymetry. (e)
Offshore significant wave height Hs (red line; left axis), tidal elevation (blue line; right axis), 12 h
averaged alongshore wave energy flux (green line; right axis) and 12 h averaged angle of peak wave
incidence θp (purple line; right axis) time series.
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Abbreviations
The following abbreviations are used in this manuscript:

eTBR erosive Transverse Bar and Rip
GCPs Ground Control Points
LTT Low-Tide Terrace
LPCA La Petite Chambre d’Amour
PPK-GNSS Post Processing Kinematic Differential Global Navigation Satellite System
RMSE Root Mean Square Error
RTK-DGPS Real-Time Kinematic Differential Global Positioning System
RTK-GNSS Real-Time Kinematic Global Navigation Satellite System
RTR Relative Tidal Range
TBR Transverse Bar and Rip
UAV Unmanned Aerial Vehicle
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