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ON BERNOULLI TRIALS WITH UNEQUAL HARMONIC

SUCCESS PROBABILITIES

THIERRY HUILLET AND MARTIN MÖHLE

Abstract. A Bernoulli scheme with unequal harmonic success probabilities

is investigated, together with some of its natural extensions. The study in-
cludes the number of successes over some time window, the times to (between)

successive successes and the time to the first success. Large sample asymp-

totics, statistical parameter estimation, and relations to Sibuya distributions
and Yule–Simon distributions are discussed. This toy model is relevant in sev-

eral applications including reliability, species sampling problems, record values

breaking and random walks with disasters.

1. Introduction

Introduce two weights w1 > 0 and w2 ≥ 0, put w := w1 +w2 > 0, and let I1, I2, . . .
be independent Bernoulli random variables with ‘harmonic’ success probabilities

(1) P(Im = 1) :=
w1

w +m− 1
, m ∈ N := {1, 2, . . .},

decreasing inversely proportional to the number m of the trial. We note the fol-
lowing property of Bernoulli trials with such success probabilities: the first success
time K+

1 := inf{m ∈ N : Im = 1} is either a small units number or a very large one
due to power-law tails of this random variable, see (19) below. In words indeed, if
the Im’s fail to take the value 1 in the first steps, this tendency will be enhanced
in the forthcoming steps resulting, for such models, in large (heavy-tailed) values
of K+

1 . So K+
1 either will take small values close to 1 (the mode of K+

1 is at 1 with
probability mass w1/w decreasing with w2/w1 if w2 > 0) or very large values (re-
sponsible of its heavy-tailedness with tail index w1): small values of w2/w1 favors
early first success time while small values of w1 favors late first success. So, the
larger the number of steps for which no success was observed, the smaller the prob-
ability to see a success in the next step even though this probability is relatively
large (harmonic decay in our case). This may be seen from the following argument:

Let Jm := 1− Im, m ∈ N, and let Mn =
∏n
m=1 Jm. The event Mn = 1 is realized

when no success was observed till time n. Mn is a multiplicative random walk

Mn+1 = MnJn+1, M0 = 1,

for which the probability of a success at step n + 1 given no success till n is
P(Mn+1 = 0 | Mn = 1) = P(In+1 = 1). If w2 = 0, then the probability
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P(Mn = 1) =
∏n
m=1 P(Im = 0) of no success by time n ∈ N is obviously equal to

0, since I1 = 1 in this case. If w2 > 0 then this probability is equal to

n∏
m=1

P(Im = 0) =

n∏
m=1

w2 +m− 1

w +m− 1
=

Γ(w)Γ(w2 + n)

Γ(w2)Γ(w + n)
∼ Γ(w)

Γ(w2)

1

nw1
, n→∞,

since Γ(c + n) ∼ ncΓ(n) as n → ∞ for any c > 0. Thus, the probability of no
success by time n is small for large n, since w1 > 0.

Examples of such enhancement mechanisms are

• Im = 1 if some paper is cited the day m after its publication. Oversight.
• Im = 1 if some new species is discovered the day m after a systematic daily

sampling campaign. Rareness.
• Im = 1 if some new word is used (or created) as the m-th word of some

ongoing book. Scarcity.
• Im = 1 if some individual renews its support to some political party the

day (month) m after its creation. Weariness.
• Time unit increases by 1 when some athlete attempts to improve some

record previously established. Im = 1 if he/she succeeds at m-th trial:
higher records become more and more difficult to break.

In several situations a success is actually a failure. Examples are

• Im = 1 if some device breaks down the day m after it was put into service.
Resilience.
• Im = 1 if some population collapses the day m after it came to birth.

Resilience.
• Im = 1 if some patient contracts some illness the day m after birth date.

Immunity.
• Im = 1 if some driver has an accident the day m after obtaining its driving

licence. Experience.

The number n of observations can be finite (possibly large though, depending on the
time scale) or infinite. For instance, a typical driver only has finitely many driving
days in his life (possibly randomly finite), but the attempts to break a record are
potentially infinitely many.

For ‘harmonic’ Bernoulli sequences of the form (1) we study the number Sn :=∑n
m=1 Im of successes among the first n ∈ N0 trials, the time K+

l := inf{m ∈ N :

Sm = l} of the l-th success, l ∈ N0, and the times L+
l := K+

l − K+
l−1 elapsed

between successive successes, l ∈ N, and analyse the associated Markov chains. It
turns out that Sibuya distributions play an important role in this context. The two-
parameter (w1, w2)-Sibuya distribution arises as the distribution of the waiting time
till the first success. The shifted (w1, w2)-Sibuya distribution has many appealing
properties, among them discrete self-decomposability and heavy-tailedness, [11]. It
includes the ‘bare’ Sibuya distribution (w1 +w2 = 1, see [21]) and the Yule–Simon
distribution (w2 = 1, see [27]). The case w2 = 0 is degenerate as far as the waiting
time for the first success is concerned, but it appears to make sense from the point
of view of the number of successes in the Ewens species sampling problem [4]. The
case (w1, w2) = (1, 0) also appears in the study of the number of record values
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stemming from an arbitrary independent and identically distributed (iid) sequence
of observations, see [13, 18, 19].

2. Number of successes

In this section we are mainly interested in the number Sn :=
∑n
m=1 Im of successes

among the first n ∈ N0 trials. Note that 0 ≤ Sn ≤ n for n ∈ N0. In particular,
S0 = 0.

In the following, s(n, k), n, k ∈ N0 := {0, 1, . . .}, denote the Stirling numbers of
the first kind. Recall that the unsigned Stirling numbers of the first kind |s(n, k)|
are characterized via [z]n =

∑
k≥0 |sn,k|zk, z ∈ R, n ∈ N0, where [z]0 := 1 and

[z]n := z(z+1) · · · (z+n−1), n ∈ N. These numbers satisfy the recursion |sn+1,k| =
n|sn,k|+ |sn,k−1| with |sn,k| = 0 for k > n, |sn,n| = 1 and |sn,0| = δn,0 (Kronecker
symbol).

2.1. The Markov chain (Sn, n ∈ N0).

Clearly, (Sn, n ∈ N0) is a time-inhomogeneous Markov chain with state-space N0

and transition probabilities

(2) P(Sn+1 = k + 1 | Sn = k) = 1−P(Sn+1 = k | Sn = k) =
w1

w + n
, n, k ∈ N0.

Note that the probability (2) that the chain moves from state k at time n to state
k + 1 at time n + 1 does not depend on the current state k. The increments
Sn−Sn−1 = In, n ∈ N, are independent but not identically distributed. The chain
(Sn, n ∈ N0) also coincides with the chain studied in the restaurant process with
a cocktail bar [12, Section 6.1] with parameters (α, θ1, θ2) := (0, w1, w), where Sn
counts the number of occupied tables after n customers have entered the restaurant.
The probability-generating function (pgf) z 7→ fn(z) := E(zSn) of Sn is given by

fn(z) =

n−1∏
m=0

w1z + w2 +m

w +m
=

[w1z + w2]n
[w]n

=
[w1(z − 1) + w]n

[w]n
, z ∈ R,

Clearly, fn is a polynomial of degree n of the form

fn(z) =
1

[w]n

n∑
l=0

|sn,l|(w1z + w2)l =
1

[w]n

n∑
k=0

zkwk1

n∑
l=k

(
l

k

)
|sn,l|wl−k2 .

Denoting by [zk]fn(z) the coefficient in front of zk of fn yields

(3) P(Sn = k) = [zk]fn(z) =
wk1

[w]n

n∑
l=k

(
l

k

)
|sn,l|wl−k2 , k ∈ {0, . . . , n}.

With (n)0 := 1 and (n)l := n(n − 1) · · · (n − l + 1) for l ∈ N, Sn has the l-th
descending factorial moment

(4) E((Sn)l) = l![(z − 1)l]fn(z) =
wl1

[w]n

n∑
k=l

(k)l|sn,k|wk−l, l ∈ N0.

Note that E((Sn)l) = 0 for l > n. The distribution πn(k) := P(Sn = k) of Sn can
be recursively computed via π0(k) = δk,0 and

(5) πn+1(k) =
w1

w + n
πn(k − 1) +

w2 + n

w + n
πn(k), n, k ∈ N0.
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Note that πn(k) = 0 for k /∈ {0, . . . , n}. Comparing (5) with the recursion [7,
Theorem 1] sr(n+ 1, k) = sr(n, k− 1) + (n+ r)sr(n, k) for the generalized Stirling
numbers sr(n, k) := S(n, k;−1, 0, r), n, k ∈ N0, r ∈ R, in the notation of [7]
having vertical generating functions [7, Theorem 2] k!

∑
n≥0 sr(n, k)tn/n! = (1 −

t)−r(− log(1 − t))k, r ∈ R, k ∈ N0, |t| < 1, it follows that (3) can be alternatively
expressed in terms of these generalized Stirling numbers as

(6) πn(k) =
wk1

[w]n
sw2(n, k), k ∈ {0, . . . , n},

in agreement with [12, Eq. (14)] for (α, θ1, θ2) := (0, w1, w). Similarly, (4) can be
written as

(7) E((Sn)l) =
wl1

[w]n
l!sw(n, l), l ∈ N0.

Introducing the superdiagonal stochastic transition matrices

Πn :=


w2+n
w+n

w1

w+n 0 · · ·
0 w2+n

w+n
w1

w+n 0

0 0 w2+n
w+n · · ·

...
... 0

. . .

 , n ∈ N0,

the distributions πn := (πn(k), k ∈ N0) of Sn, n ∈ N0, satisfy the recursion πn+1 =

πnΠn, n ∈ N0. Thus, πn = π0
∏n−1
m=0 Πm, n ∈ N0, with π0 = (1, 0, 0, . . .).

Remark 1. The pgf fn of Sn has only real zeros −(w2 +m)/w1, m ∈ {0, . . . , n−1}.
By [15, Proposition 1], (πn(0), . . . , πn(n)) is a Pólya frequency sequence. Thus,
the infinite matrix M := (πn(k − l))k,l∈N0

(where πn(k) = 0 for k /∈ {0, . . . , n})
is totally positive of any arbitrary order, i.e., all principal minors of any arbitrary
order of M have nonnegative determinant.

2.2. Special cases.

- w = 1: fn(z) = E(zSn) = [w1(z−1)+1]n
n! = 1

n!

∑n
k=0 |sn+1,k+1|wk1 (z − 1)k showing

that Sn has k-th descending factorial moment

E((Sn)k) = k![(z − 1)k]fn(z) =
k!

n!
|sn+1,k+1|wk1 , k ∈ N0.

Note that in that case, necessarily w1 ∈ (0, 1).

- w2 = 1: fn(z) = E(zSn) = [w1z+1]n
[w]n

= [w1z]n+1

z[w1]n+1
= 1

[w1]n+1

∑n+1
k=0 |sn+1,k|wk1zk−1

showing that (|sn,0| = δn,0)

πn(k) = P(Sn = k) =
|sn+1,k+1|wk+1

1

[w1]n+1
, k ∈ {0, . . . , n}.

- w2 = 0: fn(z) = E(zSn) = [w1z]n
[w]n

= 1
[w1]n+1

∑n
k=0 |sn,k|wk1zk showing that

πn(k) = P(Sn = k) =
|sn,k|wk1

[w1]n
, k ∈ {0, . . . , n}.

If in addition w1 = 1, then Sn is the number of record values of an arbitrary iid
sequence of observations appearing before n; [13, 18, 19]. In this case the law
πn(k) = |sn,k|/n!, k ∈ {0, . . . , n}, of Sn coincides with the distribution of the
number of cycles of a permutation of size n chosen uniformly at random.
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2.3. Poisson approximation.

Clearly, µn := E(Sn) =
∑n
m=1 P(Im = 1) = w1

∑n−1
m=0 1/(w+m) = w1 log n+O(1)

and

σ2
n := Var(Sn) =

n∑
m=1

P(Im = 0)P(Im = 1) = w1

n−1∑
m=0

w2 +m

(w +m)2
∼ w1 log n

as n → ∞. The law of Sn is in total variation distance close to the law of Nn
d∼

Poi(µn), (see [15] and [24]), because µn − σ2
n = w2

1

∑n−1
m=0 1/(w + m)2 � µn (see

[2, Theorems 1 and 2]) with LeCam Poisson approximation of the total variation
distance dTV (Sn, Nn) := 1

2

∑
k≥0 |πn(k)− µkne−µn/k!| given by (see [20])

(8)
1

32
min(1, µ−1n )(µn − σ2

n) ≤ dTV (Sn, Nn) ≤ (1− e−µn)
µn − σ2

n

µn
.

Therefore (and also by the Lindeberg–Feller central limit theorem), (Sn−µn)/σn →
N (0, 1) in distribution as n→∞, consistently with the fact that (Nn − µn)/σn →
N (0, 1) in distribution as n→∞. Since

∑
n≥2 P(In = 0)P(In = 1)/(log n)2 <∞,

it follows from well-known law of large numbers results for sums of independent, but
not identically distributed random variables, that (log n)−1

∑n
m=1(Im−E(Im))→ 0

almost surely or, equivalently, that Sn/µn → 1 almost surely as n→∞.

2.4. Maximum likelihood estimation.

With i := (i1, . . . , in) ∈ {0, 1}n an observed sequence of I := (I1, . . . , In) and
k :=

∑n
m=1 im,

(9) P(I = i) =

n∏
m=1

wim1 (w2 +m− 1)1−im

w +m− 1
=
wk1
∏n
m=1(w2 +m− 1)1−im

[w]n
.

This probability is not symmetric in i1, . . . , in since the random variables I1, . . . , In
are not exchangeable. Using ∂w log[w]n =

∑n−1
m=0 1/(w + m) = Ψ(w + n) − Ψ(w),

where Ψ denotes the digamma function obeying Ψ(z) = log z − 1/(2z) + O(1/z2)
as z →∞, the two equations ∂wj

logP(I = i) = 0, j ∈ {1, 2}, yield

(10)
k

ŵ1
=

n−1∑
m=0

1

ŵ +m
= Ψ(ŵ + n)−Ψ(ŵ)

and

(11)

n−1∑
m=0

1− im+1

ŵ2 +m
= Ψ(ŵ + n)−Ψ(ŵ),

where (ŵ1, ŵ2) is the maximum likelihood estimator (MLE) of (w1, w2) based on
the observed sequence i = (i1, . . . , in) and ŵ := ŵ1 + ŵ2. It is easily checked
that the 2 × 2 Hesse matrix J of the map (w1, w2) 7→ P(I = i) is negative semi-
definite at (ŵ1, ŵ2). As n → ∞, asymptotic normality of (ŵ1, ŵ2) is expected at
rate n−1/2, the limiting normal law having mean (w1, w2) and covariance matrix
either the inverse of the expected Fisher information matrix or the inverse J−1 of
the observed information matrix J evaluated at (ŵ1, ŵ2).

If the model has two independent parameters (w1, w2) that have to be estimated,
the first equation (10) gives ŵ1 = k/(Ψ(ŵ+ n)−Ψ(ŵ)) as a function of ŵ (and k)
and so ŵ2 = ŵ − ŵ1 as a function of ŵ. Plugging this expression of ŵ2 into the
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second equation (11) yields an equation in the single variable ŵ that can be solved
from the data i = (i1, . . . , in). An expression of both ŵ1 and ŵ2 then follows.

When w = w1 +w2 = 1, there is only one parameter to estimate, say w1, and (10)
and (11) yield

k

ŵ1
=

n∑
m=1

1− im
m− ŵ1

(entailing ŵ1 ∈ (0, 1)).

When w2 = 1 or 0, only this first equation (10) is needed and the searched ŵ1

solves
k

ŵ1
=

n−1∑
m=0

1

ŵ1 +m+ 1
or

k

ŵ1
=

n−1∑
m=0

1

ŵ1 +m
.

Note that Ψ(ŵ + n) − Ψ(ŵ) ∼ log n as n → ∞. Thus, by (10), ŵ1 ∼ k/ log n
as n → ∞ and, by (11), a large n approximation for ŵ2 is the solution w of the

equation
∑n−1
m=0(1− im+1)/(w +m) = log n.

Remark 2. (Random number of observations) It can be natural to assume that
the number of observations is finite but random (and independent of I1, I2, . . .).
In this case one has to replace n by a random variable N taking values in N, and
E(zSN ) =

∑
n≥1 E(zSn)P(N = n) yields the law of the number of successes over

the time window N with supposedly (or not) known mean E(N). For example, N
could be geometrically distributed P(N = n) = p(1−p)n−1, n ∈ N, with parameter
p ∈ (0, 1). For instance, it can be a good modeling issue to infer that there are
only finitely many days in a species sampling campaign, geometrically distributed
(without any further information but its mean number). The random variable SN
then counts the total number of sampled species over the observation window N .

3. Times to successive successes

For l ∈ N let K+
l := inf{n ∈ N : Sn = l} be the time elapsed till the l-th success.

Furthermore, put K+
0 := 0. The process (K+

l , l ∈ N0) is called the first-passage
time process of the random walk (Sn, n ∈ N0). Such processes have been studied
extensively in the literature. We refer the reader to [3] and the references therein.
We have P(K+

l > n) = P(Sn < l) as the laws of (K+
l , Sn) are mutual inverse in the

sense of inverse sampling ([9, p. 192–194]. It follows from this, (8), and the works
[18, 19] (see also [12, Proposition 1]), that

(12)
w1 logK+

l

l

a.s.→ 1 as l→∞ and
w1 logK+

l − l√
l

d→ N (0, 1) as l→∞,

and the law of iterated logarithm for the logK+
l ’s. And similarly for the time

elapsed between contiguous successes, while replacing K+
l by L+

l := K+
l − K

+
l−1

in (12) with the notable exception that the first almost sure convergence is now a
convergence in probability [13].

3.1. The laws of the times to successive successes and times elapsed be-
tween contiguous successes.

The law of K+
l is easily obtained as follows. Clearly, {K+

l = n} = {Sn−1 =
l − 1, In = 1}. The independence of Sn−1 and In thus yields

(13) P(K+
l = n) = P(In = 1)P(Sn−1 = l − 1) =

w1

w + n− 1
πn−1(l − 1).



HARMONIC BERNOULLI TRIALS 7

Using (3) the law of K+
l is therefore given by

(14) P(K+
l = n) =

wl1
[w]n

n−1∑
k=l−1

(
k

l − 1

)
|sn−1,k|wk−l+1

2 , n ≥ l.

We also conclude that L+
l+1 := K+

l+1−K
+
l = i is realized if and only, for some n ≥ l:

Sn−1 = l− 1 and In is a success and Sn+i−1 = l and In+i is a success. Hence, with
i ≥ 1,

(15) P(L+
l = i) =

∑
n≥l

w1

w + n− 1

w1

w + n+ i− 1
πn−1(l − 1)πn+i−1(l),

where πn(l) is given by (3). When (w1, w2) = (1, 0), it follows from (3) in [13],
developing problem 32 on p. 268 in [10], that

P(L+
l > i) =

i∑
k=0

(−1)k
(
i

k

)
(1 + k)−l.

The law of K+
l can be obtained on a computer by launching a three-term recursion.

Indeed, from (13), the recursion (5) on πn(l) yields a recursion for P(K+
l = n) with

P(K+
l = n) = 0 if n < l. With n ≥ l, this is

(16) P(K+
l+1 = n+ 1) =

w1

w + n
P(K+

l = n) +
w2 + n− 1

w + n
P(K+

l+1 = n).

Introducing the lower-triangular matrix P = (Pn,l), where Pn,l := P(K+
l = n),

l ≤ n, we see that Pn+1,l+1 can be obtained from its north-west and north neighbors.
With the knowledge of the first column of P and its diagonal, this recursion becomes
effective, starting from P3,2 obtained from P2,2 and P2,1. For n = l, Eq. (16) reduces
to P(K+

l+1 = l + 1) = (w1/(w + l))P(K+
l = l), which yields the diagonal terms

P(K+
l = l) =

∏l−1
m=0 w1/(w +m). The entries P(K+

1 = n) of the first column of P
are given in (20) below.

3.2. Markov structure of (K+
l , l ∈ N).

The homogeneous Markov structure of the sequence (K+
l , l ∈ N) follows from

P(K+
l+1 −m > n | K+

l = m) =

n−1∏
k=0

w2 +m+ k

w +m+ k
=

[w2 +m]n
[w +m]n

=

m+n−1∏
k=m

w2 + k

w + k
,

where m ≥ l and n > 0. The random variable L+
l+1 := K+

l+1 − K+
l ≥ 1 is the

‘time-lag’ elapsed between the l-th and the (l + 1)-th success. Its law depends
on K+

l . It is thus expected that, for each l ≥ m, the larger m is, the larger is

P(K+
l+1 −m > n | K+

l = m), because

P(K+
l+1 − (m+ 1) > n | K+

l = m+ 1)

P(K+
l+1 −m > n | K+

l = m)
=
w2 +m+ n

w +m+ n

w +m

w2 +m
> 1.

The chain (K+
l , l ∈ N) therefore obeys a sort of reinforcement property. For general

information on random processes with reinforcement we refer the reader to [14].
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From Stirling’s formula, Γ(z + b)/Γ(z + a) ∼ zb−a as z →∞. For fixed m� n, for
each m ≥ l, we indeed get

P(K+
l+1 −m > n | K+

l = m) =
[w2 +m]n
[w +m]n

=
Γ(w +m)

Γ(w2 +m)
(n−w1 +O(n−(w1+1))),

translating that, given K+
l = m, the tails of L+

l+1 have a tail index w1. Given the
l-th record occurred at m � n, the waiting time till the (l + 1)-th has power-law
tails with exponent w1. Note however that the probability that K+

l+1 −m = 1 is
w1/(w+m) which is small only if m� 1. Introducing cm := Γ(w+m)/Γ(w2 +m),
for each l ≤ m, cm+1/cm = (w + m)/(w2 + m) > 1 translating that the tails of
L+
l+1 get heavier as m increases, but without affecting the tail index itself, only the

prefactor.

With m′ > m ≥ l ≥ 1, we similarly get

P(K+
l+1 = m′ | K+

l = m) =
w1

w +m′ − 1

m′−2∏
n=m

w2 + n

w + n
,

P(K+
l+1 = m′) =

∑
m≥l

P(K+
l+1 = m′ | K+

l = m)P(K+
l = m),

with initial condition P(K+
1 = m′) given below in (20) if w2 6= 0. The homogeneous

Markov structure of (K+
l , l ∈ N) appears more clearly, recalling P(K+

l = m) is given

by (14). For w2 = 0 the initial condition should start with P(K+
2 = m′) given in

(23).

Introducing the excess time to l-th failure Kl := K+
l − l ≥ 0, now a shifted random

variable taking values in N0,

(17) P(Kl+1 = n) =
w1

w + n
P(Kl = n) +

w2 + n

w + n
P(Kl+1 = n− 1).

Replacing n by n+ l in (14) shows that the excess time Kl has distribution

P(Kl = n) =
wl1

[w]n+l

n+l−1∑
k=l−1

(
k

l − 1

)
|sn+l−1,k|wk−l+1

2 , l ∈ N, n ∈ N0.

Alternatively, the three-terms recursion (17) can be solved numerically using ini-
tially P(K1 = n) and observing P(Kl = 0) = wl1/[w]l. Consequently, for all
n, n′ ≥ 0,

(18) P(Kl+1 > n′ | Kl = n) =

2n+n′+1∏
m=n+1

w2 +m

w +m

and, with

P(Kl+1 = n′ | Kl = n) =
w1

w + 2n+ n′ + 1

2n+n′∏
m=n+1

w2 +m

w +m
,

P(Kl+1 = k′) =
∑
k≥0

P(Kl+1 = k′ | Kl = k)P(Kl = k),

emphasizing the inhomogeneous Markov structure of (Kl, l ∈ N) as well. Setting
n, n′ = 0 in (18), we get in particular P(Kl+1 = 0 | Kl = 0) = w1/(w + 1). Note
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that Kl also represents the number of failures till the observation of the l-th success,
a generalized version of the negative binomial distribution.

4. Time to first success

If l = 1, with K+
0 := 0, the distribution of the time to the first success reads

(L+
1 = K+

1 −K
+
0 = K+

1 )

(19) P(K+
1 > n) = [z0]E(zSn) =

[w2]n
[w]n

∼ Γ(w)

Γ(w2)
n−w1 , n→∞.

and

(20) P(K+
1 = n) =

w1

w + n− 1

[w2]n−1
[w]n−1

=
w1

w

[w2]n−1
[w + 1]n−1

, n ∈ N.

It is easily seen that the law of K+
1 is unimodal with mode at n = 1 having mass

w1/w.

Upon shifting, K1 = K+
1 − 1 ≥ 0 has a generalized (heavy tailed with index w1)

Sibuya distribution [11] with probability generating function (pgf)

(21) E(zK1) =
w1

w
F (1, w2;w + 1; z)

observing (w + n)[w]n = w[w + 1]n, where F := 2F1 is the Gauss hypergeometric
function F (a, b; c; z) :=

∑
n≥0([a]n[b]n/[c]n)(zn/n!). The initial condition to the

recursion (17) giving P(Kl = k) is

P(K1 = k) =
w1

w + k

[w2]k
[w]k

=
w1

w

[w2]k
[w + 1]k

, k ∈ N0.

Remark 3. (Time to first success in aN−Bernoulli trial withN finite and Geometric
(p)).

In that case, K+
l = inf{n ∈ {1, . . . , N} : Sn = l} and K+

1 = inf{m ∈ {1, . . . , N} :

Im = 1}. Therefore, K+
1 = ∞ with probability P(SN = 0) = E(

∏N
m=1 P(Im = 0))

and P(K+
1 > n) = P(Sn = 0 | N ≥ n) with probability P(SN > 0), where

P(Sn = 0 | N ≥ n) = P(Sn = 0) =
[w2]n
[w]n

.

So, if w2 > 0, the new K+
1 has an atom at ∞ with mass

P(SN = 0) = q
∑
n≥1

[w2]n
[w]n

pn−1 =
q

p
[F (1, w2;w; p)− 1]

translating that no success was registered before N .

4.1. Special cases.

- Sibuya: w = 1⇒ w1, w2 = 1− w1 ∈ (0, 1) with E(zK1) = w1F (1, 1− w1; 2; z) =
z−1(1− (1− z)w1), equivalently, P(K1 = k) = w1[1− w1]k/(k + 1)!, k ≥ 0.

- Yule-Simon: w2 = 1, w1 > 0 with E(zK1) = w1

w1+1F (1, 1;w1 + 2; z), equivalently,

P(K1 = k) = w1
k!

[w1+1]k+1
.

- Ewens: w2 = 0, w1 > 0: this is a singular case for which P(K+
1 = n) = δn,1.
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In view of F (a, b; c; z) = F (b, a; c; z), the Yule–Simon distribution with a = b = 1
and c = w1+2 is the only one in the class (21) to be identifiable (different parameters
yield different distributions).

4.2. Falling factorial moments of K1.

K+
1 = K1 + 1 is an important random variable if one considers that the first

occurrence of a success may lead to a stop of some ongoing process.

With a = 1, b = w2, c = w + 1, i integer, using the special values and differential
identities

F (a, b; c; 1) =
[c− a]a

[c− a− b]a
di

dzi
F (a, b; c; z) =

[a]i[b]i
[c]i

F (a+ i, b+ i; c+ i; z),

evaluated at z = 1, with (K1)i = K1(K1 − 1) · · · (K1 − i+ 1), when i < w1, we get
the descending i-th factorial moments of K1 as

E[(K1)i] = ϕ(i)(1) =
i![w2]i

[w1 − i]i
, i < w1,

where ϕ(z) := E(zK1) = w1

w F (1, w2;w + 1; z). In particular, if w1 > 1, E(K1) =
w2/(w1 − 1) <∞ and, if w1 > 2,

Var(K1) = ϕ′′(1) + ϕ′(1)− (ϕ′(1))2 =
w1(w − 1)E(K1)

(w1 − 1)(w1 − 2)
<∞.

Overdispersion holds. The mean E(K+
1 ) = w−1

w1−1 > 1 and the variance Var(K+
1 ) =

Var(K1) of K+
1 (if they exist) may be used to estimate (w1, w2) by the method of

moments provided empirical values of these quantities are available.

4.3. MLE estimator of (w1, w2) from K+
1 .

If we have an L-sample (n1, . . . , nL) for the time K+
1 to first success,

P(K+
1 (1) = n1, . . . ,K

+
1 (L) = nL) = wL1

L∏
l=1

1

w + nl − 1

[w2]nl−1

[w]nl−1
.

Considering ∂wk
logP(K+

1 (1) = n1, . . . ,K
+
1 (L) = nL) = 0 for k ∈ {1, 2} yields a

MLE (ŵ1, ŵ2) for (w1, w2) based on the histogram of the observed time to first
failure sample (n1, . . . , nL). With ŵ = ŵ1 + ŵ2, we get

L

ŵ1
−

L∑
l=1

1

ŵ + nl − 1
−

L∑
l=1

(Ψ(ŵ + nl − 1)−Ψ(ŵ)) = 0

and

−
L∑
l=1

1

ŵ + nl − 1
−

L∑
l=1

(
Ψ(ŵ + nl − 1)−Ψ(ŵ)−Ψ(ŵ2 + nl − 1) + Ψ(ŵ2)

)
= 0.

The first equation gives ŵ1 as a function of ŵ (and the data) and so ŵ2 = ŵ − ŵ1

as a function of ŵ. Plugging this expression of ŵ2 into the second equation yields
an equation in the single variable ŵ that can be solved from the data. A separate
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expression of both ŵ1 and ŵ2 then follows. Asymptotic normality of this estimator
is proved in [11], together with an expression of the Fisher information matrix.

4.4. The Ewens case w2 = 0.

In a sampling problem from a Poisson–Dirichlet partition PD(θ) of the unit interval
modeling species abundances, the law of the number Sn =

∑n
m=1 Im of distinct

sampled species for a size n uniform sample obeys (5), [4], [1] and [24], with w1 = θ,
w2 = 0 and S1 = 1, corresponding to K+

1 = 1. Because sampling is modeled as
uniform throws on a partition of the unit interval, necessarily on day n = 1, a new
species is sampled but new species with smaller abundance become increasingly
unlikely to be subsequently sampled. The PD(θ) partition of the unit interval has
countably many pieces, so the sampling process potentially never stops. Here K+

l

(l ≥ 2) is the sample size till l new species have been sampled with, from (14)

(22) P(K+
l = n) = w1[zl−1]

[w1z]n−1
[w1]n

= wl−11

|sn−1,l−1|
[w1 + 1]n−1

, n ≥ l.

This distribution seems to be new. Note the resulting ‘vertical’ identity for the

|sn,l|’s:
∑
n≥l

|sn,l|
[w1+1]n

= w−l1 for all w1 > 0.

The random variable K+
2 is the time to second non-trivial discovery of a new species

(after K+
1 = 1), with, recalling |sn−1,1| = (n− 2)!,

(23) P(K+
2 = n) = w1

(n− 2)!

[w1 + 1]n−1
, n ≥ 2,

reducing to P(K+
2 = n) = 1/(n(n − 1)) when w1 = 1. With K+

2 − 1 ≥ 0 the time
elapsed since K+

1 = 1, we thus have

E(zK
+
2 −1) = w1

∫ z

0

F (1, 1;w1 + 1; t)− 1

t
dt.

The above theory applies to this fundamental Ewens model. Given Sn = k, the
probability to discover a new species at time n + 1 is w1/(w1 + n), decreasing
inversely proportional to n and independently of k. Recall from (10) that the MLE
ŵ1 for w1 is characterized by k/ŵ1 = Ψ(ŵ1 + n)−Ψ(ŵ1) and hence only depends
on k = i1 + · · ·+ in. See [22, p. 41, Eq. (3.7.7)].

5. An extension of the harmonic Bernoulli trial

With α > 0, consider the inhomogeneous Bernoulli trial with P(Im = 1) = w1/(w+
mα − 1), m ∈ N.

For α ∈ (0, 1) the successful events are more frequent than for α = 1. Then,

µn := E(Sn) =
∑n
m=1 P(Im = 1) = w1

∑n−1
m=0 1/(w + mα) ∼ w1

1−αn
1−α as n → ∞

and

σ2
n := Var(Sn) =

n∑
m=1

P(Im = 1)P(Im = 0) = w1

n−1∑
m=0

w2 +mα

(w +mα)2
∼ w1

1− α
n1−α

and the law of Sn is close in the sense of total variation distance to Pn
d∼ Poi(µn)

for this new µn now growing algebraically with n.
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Clearly also,
(24)
w1(K+

l )1−α

l(1− α)

a.s.→ 1 as l→∞ and
w1(K+

l )1−α/(1− α)− l√
l

d→ N (0, 1) as l→∞.

The time to the l-th success occurs much sooner than when α = 1.

If α > 1, then Sn converges in distribution to a Poisson random variable with finite
mean µ∞ := limn→∞ µn = w1

∑∞
m=0 1/(w +mα).

6. A related random walk with disasters

Bernoulli trials with unequal harmonic success probabilities are also relevant in
the context of growth-collapse random walks with disasters. Discrete-time integral-
valued growth-collapse processes where long periods of linear growth alternate with
rare catastrophic events occur in a large variety of systems. A collapse or cata-
strophic event is when the size of some population shrinks by a random number
of units, not exceeding the current system’s size. A total disaster is when the size
of the system shrinks instantaneously to zero (a massive extinction event). Disas-
trous growth-collapse models occur as models for population growth subject to rare
catastrophic extinction events.

A one-parameter version of such discrete-time models was investigated in [8]. Here,
holding probabilities were allowed (with some probability the system’s size can be
left unchanged) and pure reflection at the origin was assumed (once in state zero,
the system’s size grows by one unit with probability 1). Whenever zero is a reflec-
tion/absorption barrier, pomp periods will alternate with periods of scarcity. We
herewith focus on discrete-time disastrous growth-collapse models with no holding
probability and with zero either standing for a reflection or an absorption bar-
rier. The probabilities of either growth or disastrous events will be chosen to be
dependent on the current state as in the Bernoulli model with harmonic success
probabilities, and this will favor large populations in the long run.

With α > 0, define qn := w1/(w+nα) and pn := 1−qn, n ∈ N0. With (Um,m ∈ N)
an iid sequence of uniforms,

(25) Nm+1 := (Nm + 1)1(Um+1 ≤ pNm), N0 ≥ 0,

defines a time-homogeneous Markov chain (Nm,m ∈ N0) that moves from state n
to state n+ 1 with probability pn or is sent from state n to state 0 with probability
qn (a disaster event).

The transition matrix of this Markov chain with state-space N0 is

P =



q0 p0 · · ·
q1 0 p1 · · ·
...

...
. . .

. . . · · ·
qn 0 · · · 0 pn · · ·
...

...
. . .

. . .

 .

Let us distinguish two cases.

Case 1. Assume that w2 = 0. In this case state 0 is absorbing. Let n ∈ N.
The probability P(Nm → ∞|N0 = n) =

∏
m≥n pm is equal to 0 if and only if
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m≥n qm =∞, which in turn holds if and only if α ≤ 1. Thus, for α ≤ 1 the chain

(Nm,m ∈ N0), started from state N0 ≡ n, will eventually go extinct. For α > 1
the chain, started from state n, will tend to infinity with probability

∏
m≥n pm > 0

and go extinct with complementary probability 1−
∏
m≥n pm. The extinction time

τn,0 := inf{m ∈ N0 : Nm = 0, N0 = n} has pgf E(zτn,0) =
∑
m≥n qmz

m
∏m−1
k=n pk,

|z| < 1, and τn,0 takes the value∞ with probability
∏
m≥n pm being strictly positive

if and only if α > 1.

Case 2. Assume that w2 > 0. Then state 0 is reflecting and all states are commu-
nicating since w1 > 0 by assumption. The chain (Nm,m ∈ N0) is hence irreducible
and obviously aperiodic. This is a small variation of a Markov chain whose salient
statistical features were studied in [5]. From the study in [5] we conclude that:

• For α > 1 the chain is transient. After a finite number of returns to 0
(excursions) the chain drifts to infinity.

• For α < 1 the chain is positive recurrent with invariant probability measure
πn = π0

∏n−1
k=0 pk, n ∈ N0, where the normalizing constant π0 is determined

by
∑∞
n=0 πn = 1.

• For α = 1 (critical case) the chain is null-recurrent if 0 < w1 ≤ 1 and posi-
tive recurrent if w1 > 1. For the latter case w1 > 1 the invariant probability
measure is given by πn = π0[w2]n/[w]n, n ∈ N0, with normalizing constant
π0 := (w1 − 1)/(w − 1), having heavy tails with index w1 > 1.

In the recurrent case (α ≤ 1) the sample paths of (Nm,m ∈ N0), started at N0 = 0,
are made of iid excursions through state 0. The first excursion has length L+

1 and
height L+

1 −1, where L+
1 := inf{m ∈ N : Nm = 0, N0 = 0} is the time elapsed till the

first disaster. Clearly, in the positive recurrent case (α < 1 or α = 1 and w1 ≤ 1)
the invariant probability measure has the general form πn = P(L+

1 > n)/E(L+
1 ),

n ∈ N0.

With (L+
i − 1, i ∈ N) iid copies of the first excursion height L+

1 − 1, of interest for
the control of overcrowding are the random variables

T1(n) := inf{m ∈ N : Nm > n | N0 = n0} and inf{i ∈ N : max
j∈{1,...,i}

(L+
j − 1) > n},

corresponding to the first (overcrossing) time the chain Nm exceeds n given N0 =
n0 < n and the number of the corresponding excursion.

Let P(n) be the truncated upper-left corner with size (n + 1, n + 1) of the full
irreducible transition matrix P of Nm (its north-west part). With 1′ = (1, . . . , 1)
and e′n0

= (0, . . . , 0, 1, 0, . . . , 0) transpose row vectors with size n + 1 (with 1 in
position n0 + 1 for e′n0

), it follows from Propositions 11 and 12 of [6] that

(26) Pn0
(T1(n) > l) = e′n0

P l(n)1,

where P l(n) is the l-th power of P(n). P(T1(n) > l) = 1 for l ∈ {1, . . . , n− n0}. At

this time T1(n), the state of the chain Nm is n+ 1 because the overshoot can only
be 1. So T1(n) has geometric tails with decay-rate parameter the spectral radius of
P(n) and

En0
(T1(n)) = e′n0

(I − P(n))
−11.
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Clearly, given N0 = n0 < n, with N∗l = maxm≤lNm the extremal process of Nm,
the events N∗l ≤ n and T1(n) > l coincide, so (26) also gives the marginal law
Pn0(N∗l ≤ n) of N∗l .

The extremal chain N∗l only grows (by one unit) at the record times Rk := inf{r ∈
N : r > Rk−1, Nr > NRk−1

} of Nm.

7. A more general Markov model for the number of successes

As before, let w1 > 0 and w2 ≥ 0 and define w := w1 + w2. A more general model
can be introduced by taking an additional third parameter α ∈ [0, 1] and assuming
that the number Sn of successes forms a Markov chain (Sn, n ∈ N0) satisfying
S0 = 0 and

P(Sn+1 = k + 1 | Sn = k) = 1−P(Sn+1 = k | Sn = k) :=
w1 + kα

w + n
, n ∈ N0.

In this case Sn coincides with the number of occupied tables in the restaurant
process with a cocktail bar [12] after n customers have entered the restaurant.
For α = 0 we are back to the model studied before. For α > 0 the transition
probabilities of the random walk (Sn, n ∈ N) now depend not only on the time n
but also on the current state Sn = k. The distribution of Sn can be expressed as
(see [12, Eq. (14)])

P(Sn = k) =
[w1|α]k

[w]n
S(n, k;−1,−α,w2), k ∈ {0, . . . , n},

where [w1|α]0 := 1, [w1|α]k :=
∏n−1
i=0 (w1 + iα) for k ∈ N and S(n, k;−1,−α,w2)

denote the generalized Stirling numbers in the notation of Hsu and Shiue [7], which
can be calculated as follows. For α = 0 it follows from (3) that S(n, k;−1, 0, w2) =∑n
l=k

(
l
k

)
wl−k2 |sn,l|, k ∈ {0, . . . , n}. For α 6= 0, the Dobiński-type formula [7,

Theorem 4] yields

S(n, k;−1,−α,w2) =
α−k

k!

k∑
l=0

(−1)l
(
k

l

)
[w2 − lα]n, k ∈ {0, . . . , n}.

Note that P(Sn = 0) = [w2]n/[w]n does not depend on α ∈ [0, 1]. In particular,
for any n ∈ N, P(Sn = 0) = 0 if and only if w2 = 0. Formulas for the moments of
Sn are provided in [12, Section 6.1] for α = 0 and in [12, Corollary 1] for α > 0.
The behavior of Sn for α > 0 differs substantially from the case α = 0. For α > 0,
as n → ∞, Sn/n

α converges almost surely and in Lp for any p > 0 to a limiting
random variable being three-parameter (α, β, γ)-Mittag–Leffler distributed, where
β := w and γ := w1/α, see [12, Theorem 3]. We refer the reader to [12, Section 7] for
further details on the three-parameter Mittag–Leffler distribution ML(α, β, γ). For
α = 1 the limiting distribution ML(1, w, w1) = β(w1, w2) is the beta distribution
with parameters w1 and w2, in agreement with well-known results for standard
Pólya urns.

If w2 = 0 then Sn counts the number of distinct species in a sample of size n taken
from Pitman and Yor’s [17] two-parameter stick-breaking PD(α,w1)-partition of
the unit interval, extending the Ewens case. We refer the reader to Chapter 3 of
Pitman’s lecture notes [16] for further information on the two-parameter model and
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to Yamato and Sibuya [25] and Yamato, Sibuya and Nomachi [26] for some further
related works.

Assume now that w2 > 0. In this case Sn may no longer be seen, stricto sensu, as
the number of new species in a sample of size n taken from a partition of the unit
interval. However (see [12, Theorem 2]), Sn is the number of new species (excluding

a ‘fictitious species’ 0 with beta distributed ‘abundance’ B0
d
= β(w2, w1)) in a

sample of size n drawn from a kind of three-parameter Poisson–Dirichlet partition
PD(α,w1, w2) := (B0, (1−B0)PD(α,w1)), where B0 is independent of PD(α,w1).

Note that K+
1 := inf{n ∈ N : Sn = 1} has distribution

P(K+
1 = n) = P(Sn−1 = 0)P(Sn = 1 | Sn−1 = 0) = w1

[w2]n−1
[w]n

, n ∈ N,

so that S+
n := Sn+K+

1 −1
(with S+

1 = 1) coincides (in law) with the number of new

species from a PD(α,w1)-partition of the unit interval. Whenever a sample hits
the ‘fictitious species’ 0, sampling simply fails to draw any new species: this event
thus represents the possibility of a failure of the sampling process from scratch.
The probability that in a sample of size n there are n0 failure events clearly is the
beta binomial probability mass function

(
n
n0

)
[w2]n0 [w1]n−n0/[w]n, n0 ∈ {0, . . . , n}.

If α = 0 then Sn is the number of new species (excluding the ‘fictitious species’ 0
with ‘abundance’ B0) in a sample of size n drawn from the partition PD(0, w1, w2) =
(B0, (1−B0)PD(0, w1)), extending the Ewens case.

Let n0 ∈ N0 and n1, . . . , nk ∈ N and put n := n0 + · · ·+ nk. Note that

P(Sn = k,Nn(0) = n0, Nn(1) = n1, . . . , Nn(k) = nk)

= n!
[w1|α]k

[w]n

[w2]n0

n0!

k∏
l=1

[1− α]nl−1

(nl − 1)!
∑k
j=l nj

(27)

is the joint distribution that there are n0 visits to the reservoir set with size B0

(accounting for early failure events of the sampling process, or missed samples) and
Sn = k distinct visited species in order of appearance with positive sample sizes
n1, . . . , nk not in the reservoir. For w2 = 0, (27) reduces to the two-parameter
Donnelly–Tavaré–Griffiths distribution DTG(w1, α) (see [26, Theorem 1])

(28) P(Sn = k,Nn(1) = n1, . . . , Nn(k) = nk) = n!
[w1|α]k
[w1]n

k∏
l=1

[1− α]nl−1

(nl − 1)!
∑k
j=l nj

.

For α = 0, (28) reduces to

P(Sn = k,Nn(1) = n1, . . . , Nn(k) = nk) = n!
wk1

[w1]n

k∏
l=1

1∑k
j=l nj

,

which is [23, Eq. (1)] with α there replaced by w1.

Summing (27) over all n1, . . . , nk ∈ N with n1 + · · · + nk = n − n0, the joint
probability that, in a sample of size n, there are Sn = k new sampled species and
n0 ≤ n visits to the ‘fictitious species’ is thus

P(Nn(0) = n0, Sn = k) =

(
n

n0

)
[w2]n0 [w1|α]k

[w]n
S(n− n0, k;−1,−α, 0).
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Observing that
∑n−n0

k=0 S(n − n0, k;−1,−α, 0)[w1|α]k = [w1]n−n0
, the probability

that, in a sample of size n, there are n0 ≤ n visits to the ‘fictitious species’ is
thus the beta-binomial probability P(Nn(0) = n0) =

(
n
n0

)
[w2]n0 [w1]n−n0/[w]n, in

agreement with the explanations above.
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la dynamique, de l’incertitude et des interactions, ANR-11-LABX-0023-01 project).
This work was also funded by CY Initiative of Excellence (grant ‘Investissements
d’Avenir ’ ANR-16-IDEX-0008), Project ‘EcoDep’ PSI-AAP2020-0000000013.

References
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