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A Bernoulli scheme with unequal harmonic success probabilities is investigated, together with some of its natural extensions. The study includes the number of successes over some time window, the times to (between) successive successes and the time to the first success. Large sample asymptotics, statistical parameter estimation, and relations to Sibuya distributions and Yule-Simon distributions are discussed. This toy model is relevant in several applications including reliability, species sampling problems, record values breaking and random walks with disasters.

Introduction

Introduce two weights w 1 > 0 and w 2 ≥ 0, put w := w 1 + w 2 > 0, and let I 1 , I 2 , . . . be independent Bernoulli random variables with 'harmonic' success probabilities [START_REF] Arratia | Poisson process approximations for the Ewens sampling formula[END_REF] P(I m = 1) := w 1 w + m -1 , m ∈ N := {1, 2, . . .}, decreasing inversely proportional to the number m of the trial. We note the following property of Bernoulli trials with such success probabilities: the first success time K + 1 := inf{m ∈ N : I m = 1} is either a small units number or a very large one due to power-law tails of this random variable, see [START_REF] Rényi | Théorie des éléments saillants d'une suite d'observations[END_REF] below. In words indeed, if the I m 's fail to take the value 1 in the first steps, this tendency will be enhanced in the forthcoming steps resulting, for such models, in large (heavy-tailed) values of K + 1 . So K + 1 either will take small values close to 1 (the mode of K + 1 is at 1 with probability mass w 1 /w decreasing with w 2 /w 1 if w 2 > 0) or very large values (responsible of its heavy-tailedness with tail index w 1 ): small values of w 2 /w 1 favors early first success time while small values of w 1 favors late first success. So, the larger the number of steps for which no success was observed, the smaller the probability to see a success in the next step even though this probability is relatively large (harmonic decay in our case). This may be seen from the following argument:

Let J m := 1 -I m , m ∈ N, and let M n = n m=1 J m . The event M n = 1 is realized when no success was observed till time n. M n is a multiplicative random walk

M n+1 = M n J n+1 , M 0 = 1,
for which the probability of a success at step n + 1 given no success till n is P(M n+1 = 0 | M n = 1) = P(I n+1 = 1). If w 2 = 0, then the probability P(M n = 1) = n m=1 P(I m = 0) of no success by time n ∈ N is obviously equal to 0, since I 1 = 1 in this case. If w 2 > 0 then this probability is equal to

n m=1 P(I m = 0) = n m=1 w 2 + m -1 w + m -1 = Γ(w)Γ(w 2 + n) Γ(w 2 )Γ(w + n) ∼ Γ(w) Γ(w 2 ) 1 n w1 , n → ∞,
since Γ(c + n) ∼ n c Γ(n) as n → ∞ for any c > 0. Thus, the probability of no success by time n is small for large n, since w 1 > 0.

Examples of such enhancement mechanisms are

• I m = 1 if some paper is cited the day m after its publication. Oversight.

• I m = 1 if some new species is discovered the day m after a systematic daily sampling campaign. Rareness. • I m = 1 if some new word is used (or created) as the m-th word of some ongoing book. Scarcity. • I m = 1 if some individual renews its support to some political party the day (month) m after its creation. Weariness. • Time unit increases by 1 when some athlete attempts to improve some record previously established. I m = 1 if he/she succeeds at m-th trial: higher records become more and more difficult to break.

In several situations a success is actually a failure. Examples are

• I m = 1 if some device breaks down the day m after it was put into service.

Resilience. • I m = 1 if some population collapses the day m after it came to birth.

Resilience. • I m = 1 if some patient contracts some illness the day m after birth date.

Immunity. • I m = 1 if some driver has an accident the day m after obtaining its driving licence. Experience.

The number n of observations can be finite (possibly large though, depending on the time scale) or infinite. For instance, a typical driver only has finitely many driving days in his life (possibly randomly finite), but the attempts to break a record are potentially infinitely many.

For 'harmonic' Bernoulli sequences of the form (1) we study the number S n := n m=1 I m of successes among the first n ∈ N 0 trials, the time K + l := inf{m ∈ N : S m = l} of the l-th success, l ∈ N 0 , and the times L + l := K + l -K + l-1 elapsed between successive successes, l ∈ N, and analyse the associated Markov chains. It turns out that Sibuya distributions play an important role in this context. The twoparameter (w 1 , w 2 )-Sibuya distribution arises as the distribution of the waiting time till the first success. The shifted (w 1 , w 2 )-Sibuya distribution has many appealing properties, among them discrete self-decomposability and heavy-tailedness, [START_REF] Kozubowski | A generalized Sibuya distribution[END_REF]. It includes the 'bare' Sibuya distribution (w 1 + w 2 = 1, see [START_REF] Sibuya | Generalized hypergeometric, digamma and trigamma distributions[END_REF]) and the Yule-Simon distribution (w 2 = 1, see [START_REF] Yule | A mathematical theory of evolution based on the conclusions of Dr[END_REF]). The case w 2 = 0 is degenerate as far as the waiting time for the first success is concerned, but it appears to make sense from the point of view of the number of successes in the Ewens species sampling problem [START_REF] Ewens | The sampling theory of selectively neutral alleles[END_REF]. The case (w 1 , w 2 ) = (1, 0) also appears in the study of the number of record values stemming from an arbitrary independent and identically distributed (iid) sequence of observations, see [START_REF] Neuts | Waitingtimes between record observations[END_REF][START_REF] Rényi | On outstanding values of a sequence of observations[END_REF][START_REF] Rényi | Théorie des éléments saillants d'une suite d'observations[END_REF].

Number of successes

In this section we are mainly interested in the number S n := n m=1 I m of successes among the first n ∈ N 0 trials. Note that 0 ≤ S n ≤ n for n ∈ N 0 . In particular, S 0 = 0.

In the following, s(n, k), n, k ∈ N 0 := {0, 1, . . .}, denote the Stirling numbers of the first kind. Recall that the unsigned Stirling numbers of the first kind

|s(n, k)| are characterized via [z] n = k≥0 |s n,k |z k , z ∈ R, n ∈ N 0 , where [z] 0 := 1 and [z] n := z(z +1) • • • (z +n-1), n ∈ N. These numbers satisfy the recursion |s n+1,k | = n|s n,k | + |s n,k-1 | with |s n,k | = 0 for k > n, |s n,n | = 1 and |s n,0 | = δ n,0 (Kronecker symbol). 2.1. The Markov chain (S n , n ∈ N 0 ).
Clearly, (S n , n ∈ N 0 ) is a time-inhomogeneous Markov chain with state-space N 0 and transition probabilities

(2) P(S n+1 = k + 1 | S n = k) = 1 -P(S n+1 = k | S n = k) = w 1 w + n , n, k ∈ N 0 .
Note that the probability (2) that the chain moves from state k at time n to state k + 1 at time n + 1 does not depend on the current state k. The increments S n -S n-1 = I n , n ∈ N, are independent but not identically distributed. The chain (S n , n ∈ N 0 ) also coincides with the chain studied in the restaurant process with a cocktail bar [12, Section 6.1] with parameters (α, θ 1 , θ 2 ) := (0, w 1 , w), where S n counts the number of occupied tables after n customers have entered the restaurant. The probability-generating function (pgf) z → f n (z) := E(z Sn ) of S n is given by

f n (z) = n-1 m=0 w 1 z + w 2 + m w + m = [w 1 z + w 2 ] n [w] n = [w 1 (z -1) + w] n [w] n , z ∈ R,
Clearly, f n is a polynomial of degree n of the form

f n (z) = 1 [w] n n l=0 |s n,l |(w 1 z + w 2 ) l = 1 [w] n n k=0 z k w k 1 n l=k l k |s n,l |w l-k 2 .
Denoting by

[z k ]f n (z) the coefficient in front of z k of f n yields (3) P(S n = k) = [z k ]f n (z) = w k 1 [w] n n l=k l k |s n,l |w l-k 2 , k ∈ {0, . . . , n}. With (n) 0 := 1 and (n) l := n(n -1) • • • (n -l + 1) for l ∈ N, S n has the l-th descending factorial moment (4) E((S n ) l ) = l![(z -1) l ]f n (z) = w l 1 [w] n n k=l (k) l |s n,k |w k-l , l ∈ N 0 .
Note that E((S n ) l ) = 0 for l > n. The distribution π n (k) := P(S n = k) of S n can be recursively computed via π 0 (k) = δ k,0 and

(5)

π n+1 (k) = w 1 w + n π n (k -1) + w 2 + n w + n π n (k), n, k ∈ N 0 .
Note that π n (k) = 0 for k / ∈ {0, . . . , n}. Comparing (5) with the recursion [7, Theorem 1] s r (n + 1, k) = s r (n, k -1) + (n + r)s r (n, k) for the generalized Stirling numbers s r (n, k) := S(n, k; -1, 0, r), n, k ∈ N 0 , r ∈ R, in the notation of [START_REF] Hsu | A unified approach to generalized Stirling numbers[END_REF] having vertical generating functions [START_REF] Hsu | A unified approach to generalized Stirling numbers[END_REF]Theorem 2] 

k! n≥0 s r (n, k)t n /n! = (1 - t) -r (-log(1 -t)) k , r ∈ R, k ∈ N 0 , |t| < 1,
it follows that (3) can be alternatively expressed in terms of these generalized Stirling numbers as [START_REF] Goncalves | Keeping random walks safe from extinction and overpopulation in the presence of life-taking disasters[END_REF] π

n (k) = w k 1 [w] n s w2 (n, k), k ∈ {0, . . . , n},
in agreement with [12, Eq. ( 14)] for (α, θ 1 , θ 2 ) := (0, w 1 , w). Similarly, (4) can be written as

(7) E((S n ) l ) = w l 1 [w] n l!s w (n, l), l ∈ N 0 .
Introducing the superdiagonal stochastic transition matrices

Π n :=      w2+n w+n w1 w+n 0 • • • 0 w2+n w+n w1 w+n 0 0 0 w2+n w+n • • • . . . . . . 0 . . .      , n ∈ N 0 , the distributions π n := (π n (k), k ∈ N 0 ) of S n , n ∈ N 0 , satisfy the recursion π n+1 = π n Π n , n ∈ N 0 . Thus, π n = π 0 n-1 m=0 Π m , n ∈ N 0 , with π 0 = (1, 0, 0, . . .). Remark 1. The pgf f n of S n has only real zeros -(w 2 + m)/w 1 , m ∈ {0, . . . , n -1}.
By [15, Proposition 1], (π n (0), . . . , π n (n)) is a Pólya frequency sequence. Thus, the infinite matrix M := (π n (k -l)) k,l∈N0 (where π n (k) = 0 for k / ∈ {0, . . . , n}) is totally positive of any arbitrary order, i.e., all principal minors of any arbitrary order of M have nonnegative determinant.

Special cases.

-w = 1:

f n (z) = E(z Sn ) = [w1(z-1)+1]n n! = 1 n! n k=0 |s n+1,k+1 |w k 1 (z -1) k showing that S n has k-th descending factorial moment E((S n ) k ) = k![(z -1) k ]f n (z) = k! n! |s n+1,k+1 |w k 1 , k ∈ N 0 .
Note that in that case, necessarily w 1 ∈ (0, 1).

-

w 2 = 1: f n (z) = E(z Sn ) = [w1z+1]n [w]n = [w1z]n+1 z[w1]n+1 = 1 [w1]n+1 n+1 k=0 |s n+1,k |w k 1 z k-1 showing that (|s n,0 | = δ n,0 ) π n (k) = P(S n = k) = |s n+1,k+1 |w k+1 1 [w 1 ] n+1 , k ∈ {0, . . . , n}.
-

w 2 = 0: f n (z) = E(z Sn ) = [w1z]n [w]n = 1 [w1]n+1 n k=0 |s n,k |w k 1 z k showing that π n (k) = P(S n = k) = |s n,k |w k 1 [w 1 ] n , k ∈ {0, . . . , n}.
If in addition w 1 = 1, then S n is the number of record values of an arbitrary iid sequence of observations appearing before n; [START_REF] Neuts | Waitingtimes between record observations[END_REF][START_REF] Rényi | On outstanding values of a sequence of observations[END_REF][START_REF] Rényi | Théorie des éléments saillants d'une suite d'observations[END_REF]. In this case the law

π n (k) = |s n,k |/n!, k ∈ {0, .
. . , n}, of S n coincides with the distribution of the number of cycles of a permutation of size n chosen uniformly at random.

Poisson approximation.

Clearly, [START_REF] Pitman | Probabilistic bounds on the coefficients of polynomials with only real zeros[END_REF] and [START_REF] Yamato | Poisson approximations for sum of Bernoulli random variables and its application to Ewens sampling formula[END_REF]), because

µ n := E(S n ) = n m=1 P(I m = 1) = w 1 n-1 m=0 1/(w + m) = w 1 log n + O(1) and 
σ 2 n := Var(S n ) = n m=1 P(I m = 0)P(I m = 1) = w 1 n-1 m=0 w 2 + m (w + m) 2 ∼ w 1 log n as n → ∞. The law of S n is in total variation distance close to the law of N n d ∼ Poi(µ n ), (see
µ n -σ 2 n = w 2 1 n-1 m=0 1/(w + m) 2 µ n (see [2, Theorems 1 and 2]) with LeCam Poisson approximation of the total variation distance d T V (S n , N n ) := 1 2 k≥0 |π n (k) -µ k n e -µn /k!|
given by (see [START_REF] Sevast'yanov | Poisson limit law for a scheme of sums of dependent random variables[END_REF])

(8) 1 32 min(1, µ -1 n )(µ n -σ 2 n ) ≤ d T V (S n , N n ) ≤ (1 -e -µn ) µ n -σ 2 n µ n .
Therefore (and also by the Lindeberg-Feller central limit theorem), (

S n -µ n )/σ n → N (0, 1) in distribution as n → ∞, consistently with the fact that (N n -µ n )/σ n → N (0, 1) in distribution as n → ∞. Since n≥2 P(I n = 0)P(I n = 1)/(log n) 2 < ∞,
it follows from well-known law of large numbers results for sums of independent, but not identically distributed random variables, that (log n) -1 n m=1 (I m -E(I m )) → 0 almost surely or, equivalently, that S n /µ n → 1 almost surely as n → ∞.

Maximum likelihood estimation.

With i := (i 1 , . . . , i n ) ∈ {0, 1} n an observed sequence of I := (I 1 , . . . , I n ) and k := n m=1 i m , (9) P(I = i) = n m=1 w im 1 (w 2 + m -1) 1-im w + m -1 = w k 1 n m=1 (w 2 + m -1) 1-im [w] n .
This probability is not symmetric in i 1 , . . . , i n since the random variables I 1 , . . . , I n are not exchangeable. Using

∂ w log[w] n = n-1 m=0 1/(w + m) = Ψ(w + n) -Ψ(w), where Ψ denotes the digamma function obeying Ψ(z) = log z -1/(2z) + O(1/z 2 ) as z → ∞, the two equations ∂ wj log P(I = i) = 0, j ∈ {1, 2}, yield (10) k w 1 = n-1 m=0 1 w + m = Ψ( w + n) -Ψ( w)
and ( 11)

n-1 m=0 1 -i m+1 w 2 + m = Ψ( w + n) -Ψ( w),
where ( w 1 , w 2 ) is the maximum likelihood estimator (MLE) of (w 1 , w 2 ) based on the observed sequence i = (i 1 , . . . , i n ) and w := w 1 + w 2 . It is easily checked that the 2 × 2 Hesse matrix J of the map (w 1 , w 2 ) → P(I = i) is negative semidefinite at ( w 1 , w 2 ). As n → ∞, asymptotic normality of ( w 1 , w 2 ) is expected at rate n -1/2 , the limiting normal law having mean (w 1 , w 2 ) and covariance matrix either the inverse of the expected Fisher information matrix or the inverse J -1 of the observed information matrix J evaluated at ( w 1 , w 2 ).

If the model has two independent parameters (w 1 , w 2 ) that have to be estimated, the first equation [START_REF] Karlin | A First Course in Stochastic Processes[END_REF] gives w 1 = k/(Ψ( w + n) -Ψ( w)) as a function of w (and k) and so w 2 = w -w 1 as a function of w. Plugging this expression of w 2 into the second equation ( 11) yields an equation in the single variable w that can be solved from the data i = (i 1 , . . . , i n ). An expression of both w 1 and w 2 then follows.

When w = w 1 + w 2 = 1, there is only one parameter to estimate, say w 1 , and ( 10) and ( 11) yield

k w 1 = n m=1 1 -i m m -w 1 (entailing w 1 ∈ (0, 1)).
When w 2 = 1 or 0, only this first equation ( 10) is needed and the searched w

1 solves k w 1 = n-1 m=0 1 w 1 + m + 1 or k w 1 = n-1 m=0 1 w 1 + m .
Note that Ψ( w + n) -Ψ( w) ∼ log n as n → ∞. Thus, by [START_REF] Karlin | A First Course in Stochastic Processes[END_REF], w 1 ∼ k/ log n as n → ∞ and, by [START_REF] Kozubowski | A generalized Sibuya distribution[END_REF], a large n approximation for w 2 is the solution w of the equation

n-1 m=0 (1 -i m+1 )/(w + m) = log n. Remark 2.
(Random number of observations) It can be natural to assume that the number of observations is finite but random (and independent of I 1 , I 2 , . . .). In this case one has to replace n by a random variable N taking values in N, and E(z S N ) = n≥1 E(z Sn )P(N = n) yields the law of the number of successes over the time window N with supposedly (or not) known mean E(N ). For example, N could be geometrically distributed P(N = n) = p(1 -p) n-1 , n ∈ N, with parameter p ∈ (0, 1). For instance, it can be a good modeling issue to infer that there are only finitely many days in a species sampling campaign, geometrically distributed (without any further information but its mean number). The random variable S N then counts the total number of sampled species over the observation window N .

Times to successive successes

For l ∈ N let K + l := inf{n ∈ N : S n = l} be the time elapsed till the l-th success. Furthermore, put K + 0 := 0. The process (K + l , l ∈ N 0 ) is called the first-passage time process of the random walk (S n , n ∈ N 0 ). Such processes have been studied extensively in the literature. We refer the reader to [START_REF] Denisov | First-passage times for random walks with nonidentically distributed increments[END_REF] and the references therein. We have P(K + l > n) = P(S n < l) as the laws of (K + l , S n ) are mutual inverse in the sense of inverse sampling ([9, p. 192-194]. It follows from this, [START_REF] Huillet | On a Markov chain model for population growth subject to rare catastrophic events[END_REF], and the works [START_REF] Rényi | On outstanding values of a sequence of observations[END_REF][START_REF] Rényi | Théorie des éléments saillants d'une suite d'observations[END_REF] (see also [START_REF] Möhle | A restaurant process with cocktail bar and relations to the threeparameter Mittag-Leffler distribution[END_REF]Proposition 1]), that [START_REF] Möhle | A restaurant process with cocktail bar and relations to the threeparameter Mittag-Leffler distribution[END_REF] w

1 log K + l l a.s. → 1 as l → ∞ and w 1 log K + l -l √ l d → N (0, 1) as l → ∞,
and the law of iterated logarithm for the log K + l 's. And similarly for the time elapsed between contiguous successes, while replacing

K + l by L + l := K + l -K + l-1
in [START_REF] Möhle | A restaurant process with cocktail bar and relations to the threeparameter Mittag-Leffler distribution[END_REF] with the notable exception that the first almost sure convergence is now a convergence in probability [START_REF] Neuts | Waitingtimes between record observations[END_REF].

3.1. The laws of the times to successive successes and times elapsed between contiguous successes.

The law of K + l is easily obtained as follows. Clearly, {K + l = n} = {S n-1 = l -1, I n = 1}. The independence of S n-1 and I n thus yields ( 13)

P(K + l = n) = P(I n = 1)P(S n-1 = l -1) = w 1 w + n -1 π n-1 (l -1).
Using (3) the law of K + l is therefore given by ( 14)

P(K + l = n) = w l 1 [w] n n-1 k=l-1 k l -1 |s n-1,k |w k-l+1 2 , n ≥ l.
We also conclude that L + l+1 := K + l+1 -K + l = i is realized if and only, for some n ≥ l: S n-1 = l -1 and I n is a success and S n+i-1 = l and I n+i is a success. Hence, with i ≥ 1, ( 15)

P(L + l = i) = n≥l w 1 w + n -1 w 1 w + n + i -1 π n-1 (l -1)π n+i-1 (l),
where π n (l) is given by (3). When (w 1 , w 2 ) = (1, 0), it follows from (3) in [START_REF] Neuts | Waitingtimes between record observations[END_REF], developing problem 32 on p. 268 in [START_REF] Karlin | A First Course in Stochastic Processes[END_REF], that

P(L + l > i) = i k=0 (-1) k i k (1 + k) -l .
The law of K + l can be obtained on a computer by launching a three-term recursion. Indeed, from (13), the recursion (5) on π n (l) yields a recursion for

P(K + l = n) with P(K + l = n) = 0 if n < l. With n ≥ l, this is (16) 
P(K + l+1 = n + 1) = w 1 w + n P(K + l = n) + w 2 + n -1 w + n P(K + l+1 = n).
Introducing the lower-triangular matrix P = (P n,l ), where P n,l := P(K + l = n), l ≤ n, we see that P n+1,l+1 can be obtained from its north-west and north neighbors. With the knowledge of the first column of P and its diagonal, this recursion becomes effective, starting from P 3,2 obtained from P 2,2 and P 2,1 . For n = l, Eq. ( 16) reduces to P(K + l+1 = l + 1) = (w 1 /(w + l))P(K + l = l), which yields the diagonal terms

P(K + l = l) = l-1 m=0 w 1 /(w + m).
The entries P(K + 1 = n) of the first column of P are given in (20) below.

3.2. Markov structure of (K + l , l ∈ N). The homogeneous Markov structure of the sequence (K + l , l ∈ N) follows from

P(K + l+1 -m > n | K + l = m) = n-1 k=0 w 2 + m + k w + m + k = [w 2 + m] n [w + m] n = m+n-1 k=m w 2 + k w + k ,
where m ≥ l and n > 0. The random variable L + l+1 := K + l+1 -K + l ≥ 1 is the 'time-lag' elapsed between the l-th and the (l + 1)-th success. Its law depends on K + l . It is thus expected that, for each l ≥ m, the larger m is, the larger is

P(K + l+1 -m > n | K + l = m), because P(K + l+1 -(m + 1) > n | K + l = m + 1) P(K + l+1 -m > n | K + l = m) = w 2 + m + n w + m + n w + m w 2 + m > 1.
The chain (K + l , l ∈ N) therefore obeys a sort of reinforcement property. For general information on random processes with reinforcement we refer the reader to [START_REF] Pemantle | A survey of random processes with reinforcement[END_REF]. From Stirling's formula, Γ(z + b)/Γ(z + a) ∼ z b-a as z → ∞. For fixed m n, for each m ≥ l, we indeed get

P(K + l+1 -m > n | K + l = m) = [w 2 + m] n [w + m] n = Γ(w + m) Γ(w 2 + m) (n -w1 + O(n -(w1+1) )),
translating that, given K + l = m, the tails of L + l+1 have a tail index w 1 . Given the l-th record occurred at m n, the waiting time till the (l + 1)-th has power-law tails with exponent w 1 . Note however that the probability that

K + l+1 -m = 1 is w 1 /(w + m) which is small only if m 1. Introducing c m := Γ(w + m)/Γ(w 2 + m), for each l ≤ m, c m+1 /c m = (w + m)/(w 2 + m) > 1 translating that the tails of L +
l+1 get heavier as m increases, but without affecting the tail index itself, only the prefactor.

With m > m ≥ l ≥ 1, we similarly get

P(K + l+1 = m | K + l = m) = w 1 w + m -1 m -2 n=m w 2 + n w + n , P(K + l+1 = m ) = m≥l P(K + l+1 = m | K + l = m)P(K + l = m),
with initial condition P(K + 1 = m ) given below in (20) if w 2 = 0. The homogeneous Markov structure of (K + l , l ∈ N) appears more clearly, recalling P(K + l = m) is given by [START_REF] Pemantle | A survey of random processes with reinforcement[END_REF]. For w 2 = 0 the initial condition should start with P(K + 2 = m ) given in [START_REF] Yamato | On the Donnelly-Tavaré-Griffiths formula associated with the coalescent[END_REF].

Introducing the excess time to l-th failure K l := K + l -l ≥ 0, now a shifted random variable taking values in N 0 , ( 17)

P(K l+1 = n) = w 1 w + n P(K l = n) + w 2 + n w + n P(K l+1 = n -1).
Replacing n by n + l in [START_REF] Pemantle | A survey of random processes with reinforcement[END_REF] shows that the excess time K l has distribution

P(K l = n) = w l 1 [w] n+l n+l-1 k=l-1 k l -1 |s n+l-1,k |w k-l+1 2 , l ∈ N, n ∈ N 0 .
Alternatively, the three-terms recursion (17) can be solved numerically using initially P(K 1 = n) and observing P(K l = 0) = w l 1 /[w] l . Consequently, for all n, n ≥ 0, ( 18)

P(K l+1 > n | K l = n) = 2n+n +1 m=n+1 w 2 + m w + m
and, with

P(K l+1 = n | K l = n) = w 1 w + 2n + n + 1 2n+n m=n+1 w 2 + m w + m , P(K l+1 = k ) = k≥0 P(K l+1 = k | K l = k)P(K l = k),
emphasizing the inhomogeneous Markov structure of (K l , l ∈ N) as well. Setting n, n = 0 in (18), we get in particular P(K l+1 = 0 | K l = 0) = w 1 /(w + 1). Note that K l also represents the number of failures till the observation of the l-th success, a generalized version of the negative binomial distribution.

Time to first success

If l = 1, with K + 0 := 0, the distribution of the time to the first success reads (L

+ 1 = K + 1 -K + 0 = K + 1 ) (19) 
P(K + 1 > n) = [z 0 ]E(z Sn ) = [w 2 ] n [w] n ∼ Γ(w) Γ(w 2 ) n -w1 , n → ∞.
and ( 20)

P(K + 1 = n) = w 1 w + n -1 [w 2 ] n-1 [w] n-1 = w 1 w [w 2 ] n-1 [w + 1] n-1 , n ∈ N.
It is easily seen that the law of K + 1 is unimodal with mode at n = 1 having mass w 1 /w. Upon shifting, K 1 = K + 1 -1 ≥ 0 has a generalized (heavy tailed with index w 1 ) Sibuya distribution [START_REF] Kozubowski | A generalized Sibuya distribution[END_REF] with probability generating function (pgf) ( 21)

E(z K1 ) = w 1 w F (1, w 2 ; w + 1; z) observing (w + n)[w] n = w[w + 1] n , where F := 2 F 1 is the Gauss hypergeometric function F (a, b; c; z) := n≥0 ([a] n [b] n /[c] n )(z n /n!).
The initial condition to the recursion [START_REF] Pitman | The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator[END_REF] giving

P(K l = k) is P(K 1 = k) = w 1 w + k [w 2 ] k [w] k = w 1 w [w 2 ] k [w + 1] k , k ∈ N 0 .
Remark 3. (Time to first success in a N -Bernoulli trial with N finite and Geometric (p)).

In that case, K + l = inf{n ∈ {1, . . . , N } : S n = l} and K + 1 = inf{m ∈ {1, . . . , N } : I m = 1}. Therefore, K + 1 = ∞ with probability P(S N = 0) = E( N m=1 P(I m = 0)) and P(K + 1 > n) = P(S n = 0 | N ≥ n) with probability P(S N > 0), where

P(S n = 0 | N ≥ n) = P(S n = 0) = [w 2 ] n [w] n .
So, if w 2 > 0, the new K + 1 has an atom at ∞ with mass

P(S N = 0) = q n≥1 [w 2 ] n [w] n p n-1 = q p [F (1, w 2 ; w; p) -1]
translating that no success was registered before N .

4.1. Special cases.

-Sibuya:

w = 1 ⇒ w 1 , w 2 = 1 -w 1 ∈ (0, 1) with E(z K1 ) = w 1 F (1, 1 -w 1 ; 2; z) = z -1 (1 -(1 -z) w1 ), equivalently, P(K 1 = k) = w 1 [1 -w 1 ] k /(k + 1)!, k ≥ 0.
-Yule-Simon: w 2 = 1, w 1 > 0 with E(z K1 ) = w1 w1+1 F (1, 1; w 1 + 2; z), equivalently,

P(K 1 = k) = w 1 k! [w1+1] k+1 .
-Ewens: w 2 = 0, w 1 > 0: this is a singular case for which

P(K + 1 = n) = δ n,1 .
In view of F (a, b; c; z) = F (b, a; c; z), the Yule-Simon distribution with a = b = 1 and c = w 1 +2 is the only one in the class [START_REF] Sibuya | Generalized hypergeometric, digamma and trigamma distributions[END_REF] to be identifiable (different parameters yield different distributions).

4.2.

Falling factorial moments of K 1 .

K + 1 = K 1 + 1 is an important random variable if one considers that the first occurrence of a success may lead to a stop of some ongoing process.

With a = 1, b = w 2 , c = w + 1, i integer, using the special values and differential identities

F (a, b; c; 1) = [c -a] a [c -a -b] a d i dz i F (a, b; c; z) = [a] i [b] i [c] i F (a + i, b + i; c + i; z), evaluated at z = 1, with (K 1 ) i = K 1 (K 1 -1) • • • (K 1 -i + 1
), when i < w 1 , we get the descending i-th factorial moments of K 1 as

E[(K 1 ) i ] = ϕ (i) (1) = i![w 2 ] i [w 1 -i] , i < w 1 ,
where ϕ(z) := E(z K1 ) = w1 w F (1, w 2 ; w + 1; z). In particular, if

w 1 > 1, E(K 1 ) = w 2 /(w 1 -1) < ∞ and, if w 1 > 2, Var(K 1 ) = ϕ (1) + ϕ (1) -(ϕ (1)) 2 = w 1 (w -1)E(K 1 ) (w 1 -1)(w 1 -2) < ∞.
Overdispersion holds. The mean E(K + 1 ) = w-1 w1-1 > 1 and the variance Var(K + 1 ) = Var(K 1 ) of K + 1 (if they exist) may be used to estimate (w 1 , w 2 ) by the method of moments provided empirical values of these quantities are available. 4.3. MLE estimator of (w 1 , w 2 ) from K + 1 . If we have an L-sample (n 1 , . . . , n L ) for the time K + 1 to first success,

P(K + 1 (1) = n 1 , . . . , K + 1 (L) = n L ) = w L 1 L l=1 1 w + n l -1 [w 2 ] n l -1 [w] n l -1 . Considering ∂ w k log P(K + 1 (1) = n 1 , . . . , K + 1 (L) = n L ) = 0 for k ∈ {1, 2} yields a MLE ( w 1 , w 2 ) for (w 1 , w 2 ) based on the histogram of the observed time to first failure sample (n 1 , . . . , n L ). With w = w 1 + w 2 , we get L w 1 - L l=1 1 w + n l -1 - L l=1 (Ψ( w + n l -1) -Ψ( w)) = 0 and - L l=1 1 w + n l -1 - L l=1 Ψ( w + n l -1) -Ψ( w) -Ψ( w 2 + n l -1) + Ψ( w 2 ) = 0.
The first equation gives w 1 as a function of w (and the data) and so w 2 = w -w 1 as a function of w. Plugging this expression of w 2 into the second equation yields an equation in the single variable w that can be solved from the data. A separate expression of both w 1 and w 2 then follows. Asymptotic normality of this estimator is proved in [START_REF] Kozubowski | A generalized Sibuya distribution[END_REF], together with an expression of the Fisher information matrix.

4.4. The Ewens case w 2 = 0.

In a sampling problem from a Poisson-Dirichlet partition PD(θ) of the unit interval modeling species abundances, the law of the number S n = n m=1 I m of distinct sampled species for a size n uniform sample obeys (5), [START_REF] Ewens | The sampling theory of selectively neutral alleles[END_REF], [START_REF] Arratia | Poisson process approximations for the Ewens sampling formula[END_REF] and [START_REF] Yamato | Poisson approximations for sum of Bernoulli random variables and its application to Ewens sampling formula[END_REF], with w 1 = θ, w 2 = 0 and S 1 = 1, corresponding to K + 1 = 1. Because sampling is modeled as uniform throws on a partition of the unit interval, necessarily on day n = 1, a new species is sampled but new species with smaller abundance become increasingly unlikely to be subsequently sampled. The PD(θ) partition of the unit interval has countably many pieces, so the sampling process potentially never stops. Here K + l (l ≥ 2) is the sample size till l new species have been sampled with, from (14) ( 22)

P(K + l = n) = w 1 [z l-1 ] [w 1 z] n-1 [w 1 ] n = w l-1 1 |s n-1,l-1 | [w 1 + 1] n-1 , n ≥ l.
This distribution seems to be new. Note the resulting 'vertical' identity for the |s n,l |'s:

n≥l |s n,l |
[w1+1]n = w -l 1 for all w 1 > 0. The random variable K + 2 is the time to second non-trivial discovery of a new species (after

K + 1 = 1), with, recalling |s n-1,1 | = (n -2)!, (23) 
P(K + 2 = n) = w 1 (n -2)! [w 1 + 1] n-1 , n ≥ 2, 
reducing to P(K + 2 = n) = 1/(n(n -1)) when w 1 = 1. With K + 2 -1 ≥ 0 the time elapsed since K + 1 = 1, we thus have

E(z K + 2 -1 ) = w 1 z 0 F (1, 1; w 1 + 1; t) -1 t dt.
The above theory applies to this fundamental Ewens model. Given S n = k, the probability to discover a new species at time n + 1 is w 1 /(w 1 + n), decreasing inversely proportional to n and independently of k. Recall from (10) that the MLE w 1 for w 1 is characterized by k/ w 1 = Ψ( w 1 + n) -Ψ( w 1 ) and hence only depends [22, p. 41, Eq. (3.7.7)].

on k = i 1 + • • • + i n . See

An extension of the harmonic Bernoulli trial

With α > 0, consider the inhomogeneous Bernoulli trial with

P(I m = 1) = w 1 /(w+ m α -1), m ∈ N.
For α ∈ (0, 1) the successful events are more frequent than for α = 1. Then,

µ n := E(S n ) = n m=1 P(I m = 1) = w 1 n-1 m=0 1/(w + m α ) ∼ w1 1-α n 1-α as n → ∞ and σ 2 n := Var(S n ) = n m=1 P(I m = 1)P(I m = 0) = w 1 n-1 m=0 w 2 + m α (w + m α ) 2 ∼ w 1 1 -α n 1-α
and the law of S n is close in the sense of total variation distance to P n d ∼ Poi(µ n ) for this new µ n now growing algebraically with n.

Clearly also, [START_REF] Yamato | Poisson approximations for sum of Bernoulli random variables and its application to Ewens sampling formula[END_REF] w

1 (K + l ) 1-α l(1 -α) a.s. → 1 as l → ∞ and w 1 (K + l ) 1-α /(1 -α) -l √ l d → N (0, 1) as l → ∞.
The time to the l-th success occurs much sooner than when α = 1.

If α > 1, then S n converges in distribution to a Poisson random variable with finite mean µ ∞ := lim n→∞ µ n = w 1 ∞ m=0 1/(w + m α ).

A related random walk with disasters

Bernoulli trials with unequal harmonic success probabilities are also relevant in the context of growth-collapse random walks with disasters. Discrete-time integralvalued growth-collapse processes where long periods of linear growth alternate with rare catastrophic events occur in a large variety of systems. A collapse or catastrophic event is when the size of some population shrinks by a random number of units, not exceeding the current system's size. A total disaster is when the size of the system shrinks instantaneously to zero (a massive extinction event). Disastrous growth-collapse models occur as models for population growth subject to rare catastrophic extinction events.

A one-parameter version of such discrete-time models was investigated in [START_REF] Huillet | On a Markov chain model for population growth subject to rare catastrophic events[END_REF]. Here, holding probabilities were allowed (with some probability the system's size can be left unchanged) and pure reflection at the origin was assumed (once in state zero, the system's size grows by one unit with probability 1). Whenever zero is a reflection/absorption barrier, pomp periods will alternate with periods of scarcity. We herewith focus on discrete-time disastrous growth-collapse models with no holding probability and with zero either standing for a reflection or an absorption barrier. The probabilities of either growth or disastrous events will be chosen to be dependent on the current state as in the Bernoulli model with harmonic success probabilities, and this will favor large populations in the long run.

With α > 0, define q n := w 1 /(w + n α ) and p n := 1 -q n , n ∈ N 0 . With (U m , m ∈ N) an iid sequence of uniforms,

N m+1 := (N m + 1)1(U m+1 ≤ p Nm ), N 0 ≥ 0, defines a time-homogeneous Markov chain (N m , m ∈ N 0 ) that moves from state n to state n + 1 with probability p n or is sent from state n to state 0 with probability q n (a disaster event).

The transition matrix of this Markov chain with state-space N 0 is

P =         q 0 p 0 • • • q 1 0 p 1 • • • . . . . . . . . . . . . • • • q n 0 • • • 0 p n • • • . . . . . . . . . . . .         .
Let us distinguish two cases.

Case 1. Assume that w 2 = 0. In this case state 0 is absorbing. Let n ∈ N.

The probability P(N m → ∞ | N 0 = n) = m≥n p m is equal to 0 if and only if m≥n q m = ∞, which in turn holds if and only if α ≤ 1. Thus, for α ≤ 1 the chain (N m , m ∈ N 0 ), started from state N 0 ≡ n, will eventually go extinct. For α > 1 the chain, started from state n, will tend to infinity with probability m≥n p m > 0 and go extinct with complementary probability 1 -m≥n p m . The extinction time τ n,0 := inf{m ∈ N 0 : N m = 0, N 0 = n} has pgf E(z τn,0 ) = m≥n q m z m m-1 k=n p k , |z| < 1, and τ n,0 takes the value ∞ with probability m≥n p m being strictly positive if and only if α > 1.

Case 2. Assume that w 2 > 0. Then state 0 is reflecting and all states are communicating since w 1 > 0 by assumption. The chain (N m , m ∈ N 0 ) is hence irreducible and obviously aperiodic. This is a small variation of a Markov chain whose salient statistical features were studied in [START_REF] Goncalves | Scaling features of two special Markov chains involving total disasters[END_REF]. From the study in [START_REF] Goncalves | Scaling features of two special Markov chains involving total disasters[END_REF] we conclude that:

• For α > 1 the chain is transient. After a finite number of returns to 0 (excursions) the chain drifts to infinity. • For α < 1 the chain is positive recurrent with invariant probability measure π n = π 0 n-1 k=0 p k , n ∈ N 0 , where the normalizing constant π 0 is determined by

∞ n=0 π n = 1. • For α = 1 (critical case) the chain is null-recurrent if 0 < w 1 ≤ 1 and posi- tive recurrent if w 1 > 1.
For the latter case w 1 > 1 the invariant probability measure is given by π n = π 0 [w 2 ] n /[w] n , n ∈ N 0 , with normalizing constant π 0 := (w 1 -1)/(w -1), having heavy tails with index w 1 > 1.

In the recurrent case (α ≤ 1) the sample paths of (N m , m ∈ N 0 ), started at N 0 = 0, are made of iid excursions through state 0. The first excursion has length L + 1 and height L + 1 -1, where L + 1 := inf{m ∈ N : N m = 0, N 0 = 0} is the time elapsed till the first disaster. Clearly, in the positive recurrent case (α < 1 or α = 1 and w 1 ≤ 1) the invariant probability measure has the general form π n = P(L

+ 1 > n)/E(L + 1 ), n ∈ N 0 . With (L + i -1, i ∈ N)
iid copies of the first excursion height L + 1 -1, of interest for the control of overcrowding are the random variables

T 1 (n) := inf{m ∈ N : N m > n | N 0 = n 0 } and inf{i ∈ N : max j∈{1,...,i} (L + j -1) > n},
corresponding to the first (overcrossing) time the chain N m exceeds n given N 0 = n 0 < n and the number of the corresponding excursion.

Let P (n) be the truncated upper-left corner with size (n + 1, n + 1) of the full irreducible transition matrix P of N m (its north-west part). With 1 = (1, . . . , 1) and e n0 = (0, . . . , 0, 1, 0, . . . , 0) transpose row vectors with size n + 1 (with 1 in position n 0 + 1 for e n0 ), it follows from Propositions 11 and 12 of [6] that (26)

P n0 (T 1 (n) > l) = e n0 P l (n) 1,
where P l (n) is the l-th power of P (n) . P(T 1 (n) > l) = 1 for l ∈ {1, . . . , n -n 0 }. At this time T 1 (n), the state of the chain N m is n + 1 because the overshoot can only be 1. So T 1 (n) has geometric tails with decay-rate parameter the spectral radius of P (n) and

E n0 (T 1 (n)) = e n0 (I -P (n) ) -1 1.
Clearly, given N 0 = n 0 < n, with N * l = max m≤l N m the extremal process of N m , the events N * l ≤ n and T 1 (n) > l coincide, so (26) also gives the marginal law P n0 (N * l ≤ n) of N * l . The extremal chain N * l only grows (by one unit) at the record times

R k := inf{r ∈ N : r > R k-1 , N r > N R k-1 } of N m .

A more general Markov model for the number of successes

As before, let w 1 > 0 and w 2 ≥ 0 and define w := w 1 + w 2 . A more general model can be introduced by taking an additional third parameter α ∈ [0, 1] and assuming that the number S n of successes forms a Markov chain (S n , n ∈ N 0 ) satisfying S 0 = 0 and

P(S n+1 = k + 1 | S n = k) = 1 -P(S n+1 = k | S n = k) := w 1 + kα w + n , n ∈ N 0 .
In this case S n coincides with the number of occupied tables in the restaurant process with a cocktail bar [START_REF] Möhle | A restaurant process with cocktail bar and relations to the threeparameter Mittag-Leffler distribution[END_REF] after n customers have entered the restaurant.

For α = 0 we are back to the model studied before. For α > 0 the transition probabilities of the random walk (S n , n ∈ N) now depend not only on the time n but also on the current state S n = k. The distribution of S n can be expressed as (see [12, Eq. ( 14)]) The behavior of S n for α > 0 differs substantially from the case α = 0. For α > 0, as n → ∞, S n /n α converges almost surely and in L p for any p > 0 to a limiting random variable being three-parameter (α, β, γ)-Mittag-Leffler distributed, where β := w and γ := w 1 /α, see [START_REF] Möhle | A restaurant process with cocktail bar and relations to the threeparameter Mittag-Leffler distribution[END_REF]Theorem 3]. We refer the reader to [START_REF] Möhle | A restaurant process with cocktail bar and relations to the threeparameter Mittag-Leffler distribution[END_REF]Section 7] for further details on the three-parameter Mittag-Leffler distribution ML(α, β, γ). For α = 1 the limiting distribution ML(1, w, w 1 ) = β(w 1 , w 2 ) is the beta distribution with parameters w 1 and w 2 , in agreement with well-known results for standard Pólya urns.

P(S n = k) = [w 1 |α] k [w] n S(
If w 2 = 0 then S n counts the number of distinct species in a sample of size n taken from Pitman and Yor's [START_REF] Pitman | The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator[END_REF] two-parameter stick-breaking PD(α, w 1 )-partition of the unit interval, extending the Ewens case. We refer the reader to Chapter 3 of Pitman's lecture notes [START_REF] Pitman | Combinatorial Stochastic Processes[END_REF] for further information on the two-parameter model and Observing that n-n0 k=0 S(n -n 0 , k; -1, -α, 0)[w 1 |α] k = [w 1 ] n-n0 , the probability that, in a sample of size n, there are n 0 ≤ n visits to the 'fictitious species' is thus the beta-binomial probability P(N n (0) = n 0 ) = n n0 [w 2 ] n0 [w 1 ] n-n0 /[w] n , in agreement with the explanations above. 

1 i=0 (w 1 +

 11 n, k; -1, -α, w 2 ), k ∈ {0, . . . , n}, where [w 1 |α] 0 := 1, [w 1 |α] k := niα) for k ∈ N and S(n, k; -1, -α, w 2 ) denote the generalized Stirling numbers in the notation of Hsu and Shiue [7], which can be calculated as follows. For α = 0 it follows from (3) that S(n, k; -1, 0, w 2 ) = n l=k l k w l-k 2 |s n,l |, k ∈ {0, . . . , n}. For α = 0, the Dobiński-type formula [7, Theorem 4] yieldsS(n, k; -1, -α, w 2 ) = α -k k! k l=0 (-1) l k l [w 2 -lα] n , k∈{0, . . . , n}. Note that P(S n = 0) = [w 2 ] n /[w] n does not depend on α ∈ [0, 1]. In particular, for any n ∈ N, P(S n = 0) = 0 if and only if w 2 = 0. Formulas for the moments of S n are provided in [12, Section 6.1] for α = 0 and in [12, Corollary 1] for α > 0.
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to Yamato and Sibuya [START_REF] Yamato | Moments of some statistics of Pitman sampling formula[END_REF] and Yamato, Sibuya and Nomachi [START_REF] Yamato | Ordered sample from two-parameter GEM distribution[END_REF] for some further related works.

Assume now that w 2 > 0. In this case S n may no longer be seen, stricto sensu, as the number of new species in a sample of size n taken from a partition of the unit interval. However (see [START_REF] Möhle | A restaurant process with cocktail bar and relations to the threeparameter Mittag-Leffler distribution[END_REF]Theorem 2]), S n is the number of new species (excluding a 'fictitious species' 0 with beta distributed 'abundance' B 0 d = β(w 2 , w 1 )) in a sample of size n drawn from a kind of three-parameter Poisson-Dirichlet partition PD(α, w 1 , w 2 ) := (B 0 , (1 -B 0 )PD(α, w 1 )), where B 0 is independent of PD(α, w 1 ).

Note that K + 1 := inf{n ∈ N : S n = 1} has distribution

) with the number of new species from a PD(α, w 1 )-partition of the unit interval. Whenever a sample hits the 'fictitious species' 0, sampling simply fails to draw any new species: this event thus represents the possibility of a failure of the sampling process from scratch. The probability that in a sample of size n there are n 0 failure events clearly is the beta binomial probability mass function n

is the number of new species (excluding the 'fictitious species' 0 with 'abundance' B 0 ) in a sample of size n drawn from the partition PD(0, w 1 , w 2 ) = (B 0 , (1 -B 0 )PD(0, w 1 )), extending the Ewens case.

Let n 0 ∈ N 0 and n 1 , . . . , n k ∈ N and put n :

is the joint distribution that there are n 0 visits to the reservoir set with size B 0 (accounting for early failure events of the sampling process, or missed samples) and S n = k distinct visited species in order of appearance with positive sample sizes n 1 , . . . , n k not in the reservoir. For w 2 = 0, [START_REF] Yule | A mathematical theory of evolution based on the conclusions of Dr[END_REF] reduces to the two-parameter Donnelly-Tavaré-Griffiths distribution DTG(w 1 , α) (see [START_REF] Yamato | Ordered sample from two-parameter GEM distribution[END_REF]Theorem 1])

For α = 0, (28) reduces to