
HAL Id: hal-03830513
https://hal.science/hal-03830513v1

Preprint submitted on 2 Nov 2022 (v1), last revised 28 Nov 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The Problem of Discovery in Version Control Systems
Laurent Bulteau, Pierre-Yves David, Florian Horn

To cite this version:
Laurent Bulteau, Pierre-Yves David, Florian Horn. The Problem of Discovery in Version Control
Systems. 2022. �hal-03830513v1�

https://hal.science/hal-03830513v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


The Problem of Discovery in Version Control
Systems

Laurent Bulteau1,2, Pierre-Yves David3, and Florian Horn2,4

1 Laboratoire d’Informatique Gaspard Monge, Université Gustave Eiffel
2 Centre National de la Recherche Scientifique

3 Octobus France
4 Institut de Recherches en Informatique Fondamentale, Université Paris Cité

Abstract. Version Control Systems, used by developers to keep track
of the evolution of their code, model repositories as Merkle graphs of
revisions. In order to synchronize efficiently between different instances
of a repository, they need to determine the common knowledge that they
share. This process is called discovery.
In this paper, we provide theoretical definitions for the problem of dis-
covery and establish some universal upper and lower bounds on its com-
munication complexity. We also present and analyze some algorithms
that are used in extant VCSs, such as Mercurial and Git.

1 Introduction

Version Control Systems (VCSs) are tools that help developers keep track of the
evolution of code over the lifetime of a project. They allow multiple developers
to interact concurrently with the source code and keep track of every version of
the project

The first VCSs, Source Code Control System [11] and Revision Control Sys-
tem [12], tracked files separately and locally: they allowed collaboration, but
only on one site, and only one programmer at a time. Both systems allowed
users to check out earlier versions of the code (SCCS through regular deltas,
RCS through reverse-deltas), although the process could be painstakingly slow.

A second generation of VCSs, spanning from Concurrent Versioning Sys-
tem [8] through Subversion [2] introduced a central repository containing all the
versions of the files. This repository could be accessed remotely, allowing pro-
grammers in different locations to work on the same project. Locks were also
removed and replaced by merging procedures, so multiple programmer could
write code simultaneously.

The current generation of VCSs, represented by tools like Git [13] and Mercu-
rial [10], does away with the notions of a central repository and current version.
Instead, each developer has their own copy of a given repository, which is struc-
tured as a Merkle graph, ie an acyclic graph in which each node includes the
hash(es) of its parent(s).

This allow anyone to add freely to their own copy, adding revisions, creating
new branches or merging existing ones. They can also exchange nodes with



2 L. Bulteau et al.

another peer, pushing the revisions that they know and pulling those that they
do not.

In larger projects such as Linux (Git) or Firefox (Mercurial), these operations
can be very time-consuming: repositories can contain millions of revisions and
grow daily by thousands of revisions, with peaks at several revisions per second.
At this scale, it becomes necessary to optimize the exchange of information. This
require different agents to be able to determine efficiently which revisions they
have in common. This is the problem of discovery, which we study in this paper
from an abstract point of view. VCSs have been an object of academic interest
in recent years [5, 9, 1, 3], although to the best of our knowledge, this article is
the first to study this problem.

The remainder of this paper is organized as follows. In Section 2, we formally
define our model for VCSs as well as the computation model that we use to
analyse discovery algorithms. Then, in Sections 3, we present several algorithms,
including the ones used by Git and Mercurial. Section 4 studies the theoretical
complexity of Graph Discovery, in terms of the number and volume of exchanges
between the local and remote agents. In Section 5, we build test examples from
large real-world repositories and analyze the performance of existing algorithms
in terms of round-trips and total query size.

2 Definitions

2.1 Merkle graphs

A directed graph G is a pair (V,E) where V is a set of nodes and E ⊆ V 2 is a set
of edges. It is a directed acyclic graph (DAG) if it does not contain any cycles.
If u→ v is an edge of a DAG, we call u a parent of v and v a child of u. The set
of ancestors of a node is the smallest set that contains it and the ancestors of
its parents. The set of its descendants is the smallest set that contains the node
itself and the descendants of its children. We write u →+ v if u is an ancestor
of v with u 6= v.

A node with two or more parents is a merge node and a node with no parents
is a root. A node with two or more children is a branchpoint and a node with no
children is a head. A node with a single parent and a single child is a linear node.
A linear section is a (possibly empty) sequence of linear nodes where each node
is the parent of its successor, preceded by a base and followed by a tip which are
non-linear nodes.

A Merkle graph is a DAG where nodes contain the hash of their parents
(assuming hashes to be collision-free), which must belong to the graph. A Merkle
graph is therefore entirely determined by the set of its heads. Furthermore, if two
Merkle graphs G1 = (V1, E1) and G2 = (V2, E2) have a common node, it has the
same parents in both graphs. Formally, if v ∈ V1 ∩ V2, then for any u→ v ∈ E1,
then u→ v ∈ E2.

In the remainder of this paper, whenever we use the term graph, we mean a
Merkle graph. When discussing existing algorithm, we sometimes use the terms
repository and revision instead of graph and node.



The Problem of Discovery in Version Control Systems 3

A chain of a graph G is a sequence of nodes v0 →+ v1 →+ . . . →+ vn. An
antichain is a set of vertices such that none of them is an ancestor of another.
The maximal length of a chain in G is called the height of G. The maximal size
of an antichain is its width.

Theorem 1. [6] The size of the largest antichain in a DAG is equal to the
minimal number of chains required to cover the graph.

2.2 Discovery Problem

We study the problem of Graph Discovery, in which a local agent knows a
graph G` = (V`, E`) and has to determine its intersection with another graph
known by a remote agent Gr = (Vr, Er). Formally, the common subgraph Gc

has vertex set Vc = V` ∩ Vr. It is defined as Gc = G`[V`] = Gr[Vr] by definition
of Merkle graphs.

Graph Discovery
Input: local graph G`, remote graph Gr

Output: the common subgraph Gc of G` and Gr.
The local agent, who runs the algorithm, does not have direct access to

information about the remote graph. Instead, it has to send network requests
(prefixed by remote in our pseudo-code algorithms).

In this article, we do not consider the classical complexity of Graph Dis-
covery in terms of unit operations. We are only interested in network requests,
specifically two quantities: the number of separate requests (round-trips) and
the total size of the requests, defined as the number of unique node identifiers
sent in either direction.

Many algorithms start with a pre-processing step (e.g. an initial exchange
of local and remote heads). We ignore this step in our pseudo-code algorithm
and our theoretical analysis, as they add a lot of complexity for little theoretical
gain. Note however that this step is important in practice, as we show in an
analysis of variants in Table 3.

3 Discovery Algorithms

3.1 Git: default discovery

In Git, discovery is done by default in breadth-first fashion, starting with the
local heads (Algorithm 1). The local revisions are sorted in topological order5

as undecided, with children preceding their parents. Then local asks remote
which revisions they know over a channel with capacity 32. When an answer
is positive, the revision and all its ancestors are added to common and removed
from undecided. Furthermore, Git has a timeout threshold: if 256 successive
revision are unknown to remote, it considers that no other revisions are known
to remote and returns the current common set.
5 Git sorts by revisions’ date, which may not be exactly topological, but their discovery

algorithms ignores these cases and so shall we.



4 L. Bulteau et al.

Data: local, remote

common ← ∅
undecided ← sort(local.nodes)

while undecided 6= ∅ do
sample ← undecided[0:32]

present = remote.known(sample)

for node ∈ sample do
if node ∈ present then

common.add(ancestors(node))

undecided.remove(ancestors(node))

timeout = 0

else
undecided.remove(node)

timeout += 1

if timeout = 256 then return common
return common

Algorithm 1: Git: default discovery

3.2 Git: skipping discovery

As timeouts occurred too often in larger projects, Git introduced a skipping
variant of its discovery algorithm. Instead of checking each revision in order to
find the exact border of common, this version jumps over an ever growing number
of generations in order to find a known ancestor. This means that the skipping
discovery returns an under-approximation of the set of common revisions. We
transcribe this algorithm in pseudo-code as Algorithm 2. Note that the candi-
dates are represented as a heap, rather than a queue, to ensure that candidates
are always queried in topological order, even if they may have been added in a
different order.

3.3 Mercurial: tree discovery

Until 2010, Mercurial used a tree discovery algorithm (Algorithm 3). In contrast
with the gitaxian approach, tree discovery always answer the exact common set.
It is also the only algorithm in this article that works from the structure of the
remote graph, rather than the local one. First, local asks remote from its heads
(with remote.get heads). Then, it looks for the linear sections that contain a
border node. Finally, it uses binary search inside each border section to look for
the exact border.

The tree discovery algorithm performs well on cases with a small number of
large linear section, but there were catastrophic cases where several thousands
round-trips were necessary to complete discovery (see Section 5).

3.4 Mercurial: set discovery

In 2011, Mercurial replaced its tree discovery algorithm with a set-based discov-
ery algorithm, which samples repeatedly the still undecided subset of the local
repository (Algorithm 4)



The Problem of Discovery in Version Control Systems 5

Data: local, remote

common ← ∅
undecided ← local.revs

candidates ← ∅
for h in local.heads do

candidates.heappush((h,0))

while candidates is not empty do
sample ← ∅
for i in range(32) do

sample.add(candidates.heappop())

present = remote.known(sample)

for (rev,i) ∈ sample do
if rev ∈ present then

common.add(ancestors(node))

undecided.remove(ancestors(node))

candidates.remove(ancestors(node))

timeout = 0

else
timeout += 1

if timeout = 256 then return common

for a in ancestors(rev,b i
2

+ 1c) do
candidates.heappush(a,b 3i

2
+ 1c))

return common
Algorithm 2: Git: skipping discovery

It works by updating a partition of the local nodes in three sets: common,
missing and undecided. In the beginning, all local nodes are undecided. In
the end, they are all either common or missing.

In each iteration of the while loop, the algorithm samples a non-empty subset
of the undecided nodes and asks remote whether they know these nodes. All
nodes in the sample are thus sorted in common or missing. Furthermore, thanks
to the Merkle graph properties, the descendants of an missing node are also
missing, and the ancestors of a common node are also common. The termination
of the algorithm follows from the depletion of the undecided set. There are
many possible variants of the Set-Discovery algorithm, depending on how one
implements sample set.

Mercurial defines samplable nodes according to the following rules:

– all heads and roots of undecided are samplable;
– a node is samplable if its height or depth is a power of 2.

In each round, the set of samplable nodes is computed, and a random sub-
set of size 200 is selected from it. If there are less than 200 samplable nodes,
additional random nodes from undecided are added.

Mercurial discovery went through some policy changes over the years. We
summarize the most significant here:

14164:cb98fed52495 Introduces Set Discovery; the size of the sample is fixed
at 200;



6 L. Bulteau et al.

Data: local, remote

sections, seen, border sections, split sections ← ∅, ∅, ∅, ∅
for node in remote.get heads() do

request.add(node)

while request 6= ∅ do
request ← ∅
for section in remote.get sections(request) do

if section.base ∈ local then
border sections.add(section)

else if section.base /∈ seen then
seen.add(section.base)

request.add(section.base)

while border sections 6= ∅ do
split sections = remote.split(border sections)

border sections ← ∅
for (mid,lower,upper) ∈ split sections do

if lower == ∅ then
border.add(mid)

else if mid ∈ local then
border sections.add(lower)

else
border sections.add(upper)

return border
Algorithm 3: Mercurial: tree discovery

67554:dbd0fcca6dfc The size of the sample grows over time (+5% at each
round)

91746:2b1b8f3e6510 The actual size of the sample for each round is dynami-
cally adjusted with the minimum of number of roots and number of heads,
if it is larger than the current target sample size.

4 Complexity bounds for the discovery problem

In this section we study the worst-case complexity of the discovery problem.
Note that we assume that algorithms must be name-agnostic: it is impossible to
derive any non-topological information from an identifier.

Remark 1. In Graph Discovery, for any local node v, any exact algorithm
needs to exchange at least one node u such that either u is an ancestor of v in
V` \ Vr, or u is a descendant of v in V` ∩ Vr.

In all generality, the total query size in the problem of discovery is linear:

Lemma 1. For any n, there exists a size-n local graph G`,n such that Graph
Discovery needs a total query size of at least n nodes in the worst case over
all graphs Gr.



The Problem of Discovery in Version Control Systems 7

Data: local, remote

common ← ∅
missing ← ∅
undecided ← local.nodes

while undecided is not empty do
sample ← sample set(undecided)

present = remote.known(sample) for node ∈ sample do
if node ∈ present then

common.add(ancestors(node))

undecided.remove(ancestors(node))
else

missing.add(descendants(node))

undecided.remove(descendants(node))
return common

Algorithm 4: Mercurial set discovery

Proof. Let G`,n consists in n unrelated revisions. By Remark 1, since the nodes
in V` do not have any ancestor or descendent except themselves, they must all
be part of the exchanged set.

However, the graphs involved in this lower bound are not very interesting
from a practical point of view. There is also a universal lower bound for any
graph of size n:

Lemma 2. For any fixed local graph G` with n nodes, Graph Discovery needs
a total query size of at least log2(n) nodes in the worst case over all graphs Gr.

Proof. Let G` be a graph of size n. We consider the cases in which the graph
Gr has the same topology as G`, and each individual node can only be equal
to the remote node in the same position. As our algorithms are name-agnostic,
local and remote have exactly the same information, so we can assume that
all computation is done by local. Furthermore, there is no difference between
local requesting the id of remote’s node at position p and local asking remote

whether they know the id of its own node at position p. It follows that remote’s
contribution to the communication is a string of binary answers to queries by
local. As there are at lease n possible outcomes for the discovery problem of G,
there must be at least log2(n) different queries in the worst case.

This lower bound can be realized in the case of a graph consisting in a single
path of length n, by conducting a dichotomy search over the path (see Figure 1).

Our main theorem for this section deals with a wider range of possible graphs,
giving a tight bound for the total number of revisions queried in terms of height
and width of the graph.

Theorem 2. There is a family of graphs of arbitrary width w and height h for
which any algorithm needs a total query size of at least w log2(h).

There is a protocol that realizes discovery in w log2(h) total query size over
log2(h) round-trips for each graph of width w and height h.



8 L. Bulteau et al.

Gr

Gl

v1 v2 v3 v4 v5 v6 v7 v8

v9 v10 v11 v12 v13 v14 v15 v16 v17

Fig. 1: Single-branch case

Proof. We first give a construction of the set of graphs yielding this worst-case
lower bound. Given w and h, Gw,h

` is a graph containing w disjoint paths of
length h. As each path has size h, it follows from Lemma 2 that there needs to
be log2(h) queries related to that path. As the paths are disjoint, no information
from one path can be useful to solve the other paths. It follows that any protocol
solving discovery for Gw,h

` requires at least w log2(h) total queries in the worst
case.

We describe an algorithm realizing discovery in w log2(h) total query size
over log2(h) round-trips as Algorithm 5. It consists in finding a minimal chain
cover of the local nodes and then searching for the border in each chain by
dichotomy. Note that a chain may skip over some revisions that are covered by
other chains. It may even skip over the border, in which case one half of the
chain will eventually belong to common while the other will eventually belong to
missing.

This chain discovery can be seen as an instance of set discovery, with a differ-
ent way of sampling undecided nodes. In particular, there might be cross-chain
inferences where a result on one chain gives information on another. However,
the chain cover should not be computed anew in each loop, as the height of
undecided may not be divided by two when we split the chains.

Remark 2. Computing a minimal chain covering is quadratic in time, which
makes the Chain Discovery algorithm intractable in practice. However, Cáceres
et al. [4] recently proposed a parameterized linear-time algorithm (i.e. linear
for constant width) for the similar minimum path cover problem, which should
be competitive for small width graphs. One may also maintain a chain cover
problem through on-line insertions of the nodes. Since the nodes are inserted in
topological order, each new node can be assigned a chain (without editing past
nodes), using at most O(w2) chains for width-w graphs [7].

5 Experimental Results

We ran the Git and Mercurial algorithms on large repositories to see how they
behaved in practice. Our study cases were created from copies of pypy, net-
beans, mozilla-unified, and mozilla-try repositories, to see account for different
topologies. For each of them, we started from a specific repository state and
then created 10 000 different pairs of local subgraphs by choosing a revision at



The Problem of Discovery in Version Control Systems 9

Data: local, remote

common ← ∅
chains ← chain cover(local.nodes)

while chains 6= ∅ do
request ← ∅
for chain ∈ chains do

request.add(middle(chain))

present ← remote.known(request)

for chain ∈ chains do
if chain = ∅ then

chains.remove(chain)

else if middle(chain) ∈ present then
common.add(chain.split to base())

chain ← chain.split to tip()

else
chain ← chain.split to base()

return common
Algorithm 5: chain discovery

random and keeping only its ancestors. The results that we obtained are pre-
sented in Table 1. We extended Git’s sample size from 32 to 200 to get a fairer
comparison with Mercurial’s results.

Git’s algorithms make a trade-off between speed and accuracy, giving up
when cases become complicated. This helps keep the number of round-trips
under control (visible in Table 1), but comes at the cost of a potentially large
number of missed common revisions (visible in Table 2). This can represent a
very large excess network use if already known revisions are later sent to the
remote server. The skipping variant alleviates some of these problems, but the
issue remains significant.

Mercurial’s set discovery also has very low number of round-trips while tree
discovery regularly used thousands (tens of thousands in the case of mozilla-try).

A contrario, set discovery uses more total queries than tree discovery for
pypy and netbeans. This is a direct consequence of set discovery maximising the
information fetched in each round-trip: most of the apparent advantage of tree-
discovery comes from ”wasted” capacity, as overhead costs mean that a request
for a few revisions is not much less costly than a request for 200 revisions.

Even so, the worst cases for the total queries are significantly worse for tree
discovery than for set discovery. In mozilla-discovery and mozilla-try, these dif-
ference is significant enough that set discovery has a lower average number of
queries, even though the median is much smaller for tree-discovery.

Note that this progress did not occur all at once. In Table 3, we show a series
of hand-picked situation that illustrate how the worst cases improved on the
successive versions of set discovery. The first column does not correspond to an
actual implementation of set discovery in Mercurial: it is an illustration of what
happens if heads are not exchanged at the beginning of the algorithm.



10 L. Bulteau et al.

avg med <10 10-102 102-103 103-104 104-105 > 105

pypy: total queries

tree discovery 823 6 6840 575 804 1731 50

set discovery 327 294 1 1039 8924 87

default discovery 381 401 0 6 9987 7

skipping discovery 163 155 4 4441 5533 22

pypy: round-trips

tree discovery 107 7 6823 980 2118 79

set discovery 4.0 4 10000

default discovery 3 3 10000

skipping discovery 2 2 10000

netbeans: total queries

tree discovery 248 15 4577 3299 1570 513 41

set discovery 318 281 4 66 9647

default discovery 359 401 4 19 9977

skipping discovery 1134 832.5 19 2136 2983 4862

netbeans: round-trips

tree discovery 94 9 5425 3334 955 286

set discovery 3.6 3 10000

default discovery 3 3 10000

skipping discovery 7 6 6046 3954

mozilla-unified: total queries

tree discovery 1183 147 3191 988 4826 572 423

set discovery 488 496 2 77 9340 11

default discovery 403 401 1 8 9991

skipping discovery 223 215 5 1473 8520 2

mozilla-unified: round-trips

tree discovery 211 78 3491 4045 1875 589

set discovery 4.5 4 10000

default discovery 3 3 10000

skipping discovery 3 3 10000

mozilla-try: total queries

tree discovery 7823 93 4713 308 1018 2435 1350 176

set discovery 1675 413 0 238 7605 101 334 8

default discovery 340 401 0 7 9993

skipping discovery 275 226 5 278 9646 71

mozilla-try: round-trips

tree discovery 2107 25 4797 912 2062 1661 568

set discovery 4.3 4 10000

default discovery 3 3 10000

skipping discovery 3 3 9989 11

Table 1: Queries and round-trips for Mercurial and Git algorithms.



The Problem of Discovery in Version Control Systems 11

avg p50 p90 p99 pmax

pypy (total 105948 revisions)

default discovery 16010 18444 36991 60049 73679

skipping discovery 1218 223 2440 22995 57398

netbeans (total 306930 revisions)

default discovery 75276 0 264248 292058 302701

skipping discovery 17180 1 79325 263840 281679

mozilla-unified (total 624961 revisions)

default discovery 156234 159211 330634 481583 583708

skipping discovery 29321 1797 102811 270164 407565

mozilla-try (total 1671467 revisions)

default discovery 156065 200661 350447 426468 467416

skipping discovery 18528 424 44446 300333 373813

Table 2: Number of errors (missed common nodes) for Git algorithms.

The situations were generated using a variety of methods, aiming at finding
cases as hard as possible for the current version of the set discovery algorithm.
The local and remote graphs where selected using one of the following methods:

– Choose a revision at random, and select all of its ancestors;

– Choose an antichain at random, and select all of its ancestors;

– Choose a head, remove it, and repeat that process a large number of times.

The result show a significant improvement in the number of round-trips needed
to solve these complex cases. However the number of total queries can remains
quite high.

No exchange Initial Growing Dynamic

total queries round trips total queries round trips total queries round trips total queries round trips

228374 1142 295846 676 297546 75 324614 7
14710 74 12974 43 13271 25 14722 7
9251 47 7696 27 7933 19 8688 7

352650 1764 448757 1441 453629 92 514506 9
75871 380 235492 374 236566 64 253305 9

177959 890 179276 889 182575 82 211372 10

Table 3: Set discovery improvements over different variants, for six hand-picked
instances. In No exchange, the heads are not exchanged as a first step of the
algorithm. Algorithms Initial, Growing and Dynamic correspond to three
different policies that have been used over time for the size of the sample set
(see end of Section 3).



12 L. Bulteau et al.

6 Conclusion

With the third generation of VCSs, the problem of discovery has emerged as a
significant issue for efficient handling of larger repositories.

Mercurial’s latest algorithm, set discovery, has very good performances, with
a number of round-trips in the single digits. However, it should be noted that one
reason for its performances is that requests can be arbitrarily large. In patho-
logical cases with many heads and a wide boundary, these requests can include
several thousands revisions ids. This cannot always be done over http protocols,
leading to a commensurate explosion on the number of round-trips. Furthermore,
in these cases, the initial exchange of heads can be counter-productive, see for
example the last two lines of Table 3.

It would be interesting to investigate new methods to reduce the cost of
discovery for repositories with large width, especially when there are many heads.
Towards this goal, the constraint that only nodes can be exchanged could be
lifted: one can allow, for example, the agents to share hashes of larger sets of
nodes, in order to check whether all nodes in some set are known without sending
each node one by one. Such an approach would be particularly useful in cases
with a large common subgraph between the local and remote agents.

References

1. Babenhauserheide, A.: Automatic coordinated rebase with changeset evolution and
mercurial (2020), https://blog.disy.net/hg-evolution/

2. Collins-Sussman, B., Fitzpatrick, B.W., Pilato, C.M.: Version control with
subversion - next generation open source version control. O’Reilly (2004),
http://www.oreilly.de/catalog/0596004486/index.html

3. Courtiel, J., Dorbec, P., Lecoq, R.: Theoretical analysis of git bisect. Tech. rep.
(Nov 2021), hal.archives-ouvertes.fr/hal-03431454

4. Cáceres, M., Cairo, M., Mumey, B., Rizzi, R., Tomescu, A.I.: Sparsi-
fying, Shrinking and Splicing for Minimum Path Cover in Parameter-
ized Linear Time, pp. 359–376. https://doi.org/10.1137/1.9781611977073.18,
https://epubs.siam.org/doi/abs/10.1137/1.9781611977073.18

5. De Rosso, S.P., Jackson, D.: What’s wrong with git?: a conceptual design anal-
ysis. In: Hosking, A.L., Eugster, P.T., Hirschfeld, R. (eds.) ACM Symposium on
New Ideas in Programming and Reflections on Software, Onward! 2013, part of
SPLASH ’13, Indianapolis, IN, USA, October 26-31, 2013. pp. 37–52. ACM (2013).
https://doi.org/10.1145/2509578.2509584

6. Dillworth, R.P.: A decomposition theorem for partially ordered sets. Annals of
Mathematics 51(1), 161–166 (1950). https://doi.org/10.2307/1969503

7. Felsner, S.: On-line chain partitions of orders. The-
oretical Computer Science 175(2), 283–292 (1997).
https://doi.org/https://doi.org/10.1016/S0304-3975(96)00204-6,
https://www.sciencedirect.com/science/article/pii/S0304397596002046

8. Grune, D.: Concurrent versions system, a method for independent cooperation.
Tech. Rep. 113, Vrije Universiteit Amsterdam (1986)

9. Levenberg, J.: Why google stores billions of lines of code in a single repository.
Commun. ACM 59(7), 78–87 (2016). https://doi.org/10.1145/2854146



The Problem of Discovery in Version Control Systems 13

10. Mackall, O.: Towards a better scm: Revlog and mercurial. Tech. rep. (2005),
http://selenic.com/mercurial

11. Rochkind, M.J.: The source code control system. IEEE Trans. Software Eng. 1(4),
364–370 (1975). https://doi.org/10.1109/TSE.1975.6312866

12. Tichy, W.F.: Design, implementation, and evaluation of a revision control system.
In: Ohno, Y., Basili, V.R., Enomoto, H., Kobayashi, K., Yeh, R.T. (eds.) Proceed-
ings of the 6th International Conference on Software Engineering. pp. 58–67. IEEE
Computer Society (1982), http://dl.acm.org/citation.cfm?id=807748

13. Torvalds, L.: Git - tree history storage tool. Tech. rep.


