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Effect of interfacial Maxwell stress on time
periodic electro-osmotic flow in a thin liquid
film with a flat interface

Electro-osmotic flows (EOF) have seen remarkable applications in lab-on-a-chip based microdevices owing to their lack of 
moving components, durability, and nondispersive nature of the flow profiles under specifically designed conditions. However, 
such flows may typically suffer from classical Faradaic artifacts like electrolysis of the solvent, which affects the flow rate control. 
Such a problem has been seen to be overcome by employing time periodic EOFs. Electric field induced transport of a conductive 
liquid is another nontrivial problem that requires careful study of interfacial dynamics in response to such an oscillatory flow 
actuation. The present study highlights the role of electric field generated Maxwell stress and free surface potential along with 
the electric double layer thickness and forcing frequency, toward influencing the interfacial transport and fluid flow in free-
surface electro-osmosis under a periodically varying external electric field, in a semi-analytical formalism. Our results reveal 
interesting regimes over which the pertinent interfacial phenomena as well as bulk transport characteristics may be favorably 
tuned by employing time varying electrical fields.
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1 Introduction

Flow actuation in microchannels due to an externally applied
electric field has found remarkable applications in lab-on-a-
chip based microfluidics devices and systems [1–7]. In many
situations, such flows are effectively actuated by interactions
between a wall-adhering charged layer (also known as the
electrical double layer) and an externally applied electrical
field, resulting in so-called EOFs, which have an enduring
advantage over classical fluidic pumps in a sense that these do
not require any moving components. EOFs in microchannels
with axially invariant interfacial potential typically have plug
like (uniform) velocity profile which reduces the possibility of
species dispersion and hence may turn out to be effective for
the transport of biological species in microdevices, provided
there is no sample overheating due to Joule effects.

The most commonly form of used constant electrical field
to invoke EOF has some inherent problems due to electro-
chemical reactions at the electrodes. Such problems include
formation of hydrogen and oxygen bubbles because of the

Abbreviations: BVP, boundary value problem; EDL, electric 
double layer; PBE, Poisson–Boltzmann equation

hydrolysis of water which leads to fluctuations in the flow
rate in microfluidic devices and sometimes eventually stops
the flow altogether [8]. The other problem associated with
electro-chemical reactions at the electrodes is the change of
pH at electrode reservoirs [9]. Such a phenomenon creates a
pH gradient in the channel affecting the substrate zeta po-
tential and eventually the mobility of ions in the liquid. Some
previous studies have shown that the use of time periodic
EOF is instrumental in diminishing the Faradaic reactions
at the electrodes and to achieve effective spatio-temporal con-
trol over liquid flow and mixing [10–13]. There have been
a multitude of studies discussing various novel applications
of AC-EOF including flow actuation [14–19], energy storage
[20–22] etc.

Although EOF has been proven to be the preferred mech-
anism for liquid transport in microchannels, one of the
biggest shortcomings of its usage in mainstream applications
comes from its basic requirement of the concerned liquid to
be electrically conductive. In most of the microdevices, the
use of electrical field for fluid transport is limited by the non-
conductive nature of a large group of fluids. For example,
although several biological liquids (e.g. blood serum, insulin,
etc.) show some degree of ionic conductivity, their low degree
of ionic solvation renders them unresponsive to EOF. How-
ever, there have been some studies involving the transport
of nonconductive liquid with the help of an immiscible con-
ductive liquid through shear transfer at the fluid–fluid inter-
face [7, 23–26]. The mentioned studies have been performed
in a two-layer EOF, while considering classical interface



matching conditions such as continuity of the velocity and 
hydrodynamic shear stress at the fluid–fluid interface.

The presence of a fluid–fluid interface in an EOF neces-
sitates the characterization of the parameters responsible for 
instability of such systems, for which one has to ascertain 
the basic or unperturbed state solution of the system. This is 
characterized by several intricacies, the modeling of which is 
not trivial. Those intricacies are attributed to the existence of a 
free surface on which appropriate considerations on Maxwell 
stress need to be invoked [27]. This is in sharp contrast with 
flows in between rigid boundaries for which one imposes a 
velocity boundary condition (typically no slip at the walls) ir-
respective of any consideration on Maxwell stress. Moreover, 
in case of a symmetric flow between two rigid boundaries, 
the hydrodynamic stress and the Maxwell stress individually 
become necessarily zero at the centerline (because of the cen-
terline symmetry). However, for a free surface flow, the total 
stress (hydrodynamic and Maxwell) at the air–liquid interface 
needs to be relaxed, which suggests that in the presence of a 
nonzero Maxwell stress, an equal and opposite hydrodynamic 
stress will be present contrary to the classical hydrodynamic 
stress-free notion of free-surface dynamics.

The present work is dedicated to bring out contrasting 
features of time periodic EOF in a thin liquid layer exposed 
to a low viscosity and low permittivity gas phase and the cor-
responding features of time periodic EOF between two rigid 
boundaries. In order to bring out a common comparative ba-
sis between the two cases, an unperturbed interface for the 
former case is considered here, which technically represents 
the basic state of a general stability problem. In an effort to 
bring out the interesting interplay between the characteristic 
length scale of the liquid layer and the characteristic elec-
tric double layer (EDL) length scale (Debye length), various 
orders of the liquid layer thickness to Debye length ratios 
are addressed. For further generalizations, the possibilities 
of addressing high zeta potentials by invoking the nonlinear 
Poisson–Boltzmann equation (PBE) are considered. The an-
alytical expressions for the electric potential and velocity field 
are derived bringing out important implications of Maxwell 
stresses at the free surface. The present study opens new per-
spectives for further studies on instabilities associated with a 
two-layer EOF in the presence of a time periodic electric field.

2 Mathematical modeling

When an aqueous electrolyte comes into contact with a sub-
strate like silica, glass, polymers, and some other chemically 
active substrates, there is a possibility of a series of ionic ex-
changes such as protonation, deprotonation, adsorption, and 
some chemical reactions at the solid–liquid interface. Such 
ionic exchanges, after attaining equilibrium, leave the surface 
charged [28].

The system under study consists of a thin electrolyte film 
spread over a rigid solid substrate exposed to an inert gaseous 
atmosphere (see Fig. 1). The film thickness is denoted by 
d . The dynamics of such a film is studied under the effect 
of a longitudinal oscillating electric field, Eapp = E0Sin (�t),

Figure 1. Schematics diagram of the time periodic EOF system
under study.

where E0 is the amplitude and � is the frequency. The elec-
trolyte concentration in this study is considered to be small
enough in magnitude (∼0.1–10 mM) in order to neglect
the liquid property changes due to Joules heating [29] even
in the case of an applied electric field of large amplitude.
The low electrolyte concentration also avoids complexities
in flow modeling by reducing the nonlinear dependence of
electrophoretic mobility of ions on the sparse space charge
distribution [30–36]. The solid substrate zeta potential is con-
sidered to be �b , which is a function of the substrate–fluid
interaction, ionic concentration and pH of the solution [37].
The liquid surface exposed to a gaseous environment devel-
ops a charge, which is a function of various parameters like
ionic concentration, pH of the solution and valence of the
ions involved [38–40]. The associated zeta potential (�Interface)
has been found to vary over a wide range in the reported
literature [41–43].

2.1 Electric potential field

The thin electrolyte film under investigation contains a space
charge distribution, which is electrostatically bounded by the
EDL at the solid substrate and an interfacial potential at the
free surface that is a function of electrochemical parameters
of the system.

The transport of the charged species can be expressed by
the Poisson-Nernst-Planck equation:

∂Ci

∂t
+ �∇ · (�uCi ) = �∇ ·

(
Di �∇Ci

)
+ zi e

kB�
�∇ ·
(

Di Ci �∇�
)

, (1)

where Ci is the concentration of the i-th species, � =
�app + �s c is the electrostatic potential field in the fluid,
which is a sum of the potential field due to the space charge
distribution (�sc) and the externally applied potential field
(�app = − ∫Eappdx), zi is the valence of the i-th ionic species,
Di is the diffusivity of the i-th ionic species, kB is the Boltz-
mann constant, � is the liquid temperature, e is the elec-
tronic charge, and �u is the fluid velocity. The forcing electric
field frequency is considered to be smaller than the double
layer relaxation frequency, hence the associated space charge
distribution is assumed to be quasi-steady, independent of



the time-varying applied potential gradient (�app). Also, in
flow geometries having characteristic length scales of the or-
der of micro and nanometers, the faster charge relaxation
due to ionic diffusivity over small distances (thin films) and a
weaker advective transport in a viscosity dominated regime,
the diffusive relaxation of the free charge distribution domi-
nates over their advective transport. Moreover, upon assum-
ing a laminar flow situation (�u = (u, 0, 0)) and a nonreactive
system connected to an infinite reservoir of the involved elec-
trolytes with channel walls impermeable to ionic exchange,
the concentration gradient in the longitudinal direction can
be considered negligible (∂Ci /∂x ∼ 0). The quasi-steady na-
ture of the space charge distribution along with isotropic
liquid properties reduces the Nernst–Planck equation to:

0 = Di∇2Ci + zi e Di

kB�
�∇ ·
(

Ci �∇�sc

)
, (2)

which results into a Boltzmann distribution of the charged
species as:

Ci = C0,i exp
(

− zi e�sc

kB�

)
, (3)

where C0,i is the bulk ionic concentration of the i-th species.
Using mean field approximations, the free charge density �e

can be expressed in terms of volume averaged ion concentra-
tions as:

�e =
∑

i

ezi Ci . (4)

This free charge density �e is related to the electric dis-
placement field vector ( �D) by the differential form of Gauss’s
Law as:

�∇ · �D = �∇ · ( �Dapp + �Dsc) = �e , (5)

where �Dapp is the electric displacement vector due to the ap-
plied electric field and �Dsc is the electric displacement vector
due to the space charge distribution. For a linear and isotropic
dielectric medium under a time-dependent electric field, the
electric displacement field is related to the electric field, �E as:

�D = � (�) �E (�) , (6)

where, � (�) is the complex permittivity of the system, �E (�) =
�Eapp (�) + �Esc is the electric field in the system and � is
the frequency of the applied field. The relaxation time of
ionic species in a homogeneous dielectric media is given by
the Maxwell-Wagner-O’Konski relaxation time [44] and the
corresponding frequency can be written as:

�MWO = 1

�MWO
≈ 2Di

	2
D

, (7)

where, 	D is the Debye length (which is discussed further).
So in the limit of � < �MWO, which sets the upper limit
on the frequency in this study, charges relax to the equi-
librium distribution faster than the time-dependent external
perturbation and hence polarization effects are negligible and
the permittivity can be assumed constant as � (�) ≈ �. Also,
since �Eapp is the time-varying homogeneous applied electric

field, �∇ · �Dapp = � �∇ · �Eapp = 0. Hence, the electric displace-
ment field generated by the space charge distribution can be
written as:

�∇ · �Dsc = � �∇ · �Esc = �e , (8)

From electrostatics it is known that �Esc = −�∇�sc. Hence,
the Poisson equation for the space charge potential is:

− �∇ ·
(

� �∇�sc

)
=
∑

i

ezi Ci . (9)

From Eqs. (3) and (9), the PBE can be written as:

− �∇ ·
(

� �∇�sc

)
=
∑

i

zi eC0,i exp
(

− zi e�sc

kB�

)
. (10)

For a symmetric binary electrolyte (|z+| = |z−| = z) and
a solvent with constant permittivity, Eq. (10) reduces to:

�∇2�sc = 2zeC0 sinh
(

ze�sc

kB�

)
, (11)

where C0 is the neutral bulk ionic concentration of the solu-
tion. In order to isolate the electric effects as the dominating
forcing mechanism, the system under study is considered
to have large lateral extents, which results into negligible
x-gradients as compared to the y-gradients. Upon non-
dimensionalizing the PBE using 
sc = �sc/ �b and Y = y/ d ,
Eq. (11) leads to:

d2
sc

dY2
= � sinh (�
sc) , (12)

where � = d2
/(

	2
D�
)
, � = (ze�b )/(kB�) is the ionic energy

parameter which measures the relative strength of the elec-
trostatic energy of ions with respect to the thermal energy of
ions and 	D =

√
(�kB�)/(2z2e2C0) is the Debye length. The

associated boundary conditions are:


sc(0) = 1, 
sc(1) = ZR, (13)

where, ZR = �Interface/�b . Interfacial potential value depends
upon electrochemistry of the problem. The charging of an
air–electrolyte interface is a complex phenomenon and its
mechanism it not clearly understood so far. However, the
widely accepted mechanism contributing to its surface charge
is adsorption of ions at the interface. This surface charge is
neutralized by a diffused distribution of oppositely charged
ions (counter-ions), thus creating a double layer structure.
The only difference between a solid–liquid and liquid–gas
double layer is that in the case of solid–liquid interface, the
Stern layer is bound to the solid surface and hence does not
move when an external electric field is applied. However, at
the free surface, it is free to move. Commonly such electrolytic
systems have low substrate zeta potential corresponding to
� < 1, which for a monovalent symmetric electrolyte corre-
sponds to �b < 25 mV at 25C. In that case, Eq. (12) can be
linearized as (also known as the Debye–Hückel linearization):

d2
sc

dY2
= 
sc

De2
, (14)



where De =	D/d is the Debye number that represents the 
relative extent of the EDL with respect to the liquid film thick-
ness. Under this formalism, the boundary value problem 
(BVP) for	sc can be solved analytically to obtain the following 
closed form solution:


sc (Y) = 1

sinh
(

1
De

) {ZRsinh
(

Y

De

)
+ sinh

(
1 − Y

De

)}
.

(15)

However, for larger wall zeta-potential systems (� ≥ 1),
Eqs. (12) and (13) have to be solved. This system of equations
is a BVP having two Dirichlet boundary conditions along with
a nonlinear second-order ordinary differential equation, for
which no tractable analytical solution is available. Hence, to
obtain the resulting potential distribution one has to resort
to numerical tools. It is also observed that for thin EDLs, �

can be larger than 1, making the differential equation very
stiff with large variations over short distances (for example,
within EDL). To solve such a highly stiff BVP, the Automated
Continuation with Deferred Correction method [45] is used
here. This method is based on implicit Runge–Kutta scheme
on a Lobatto grid. A Lobatto grid includes boundary points
in the integration interval facilitating the use of an adaptive
mesh. Such an adaptive mesh is extremely useful for systems
having large variations over small distances like a boundary
layer or an EDL.

The electric potential due to the externally oscillating ap-
plied electric field (
app) can be written in the dimensionless
form as:


app (X) = −
∫

E0d

�b
sin �dX = − X

E R
sin �, (16)

where, 
app = �app

/
�b , X = x/d , � = �t are the dimension-

less parameters and E R = �b/E0d is the ratio of the relative
strength of electric field due to space charge distribution and
the applied electric field. The net electric potential in the sys-
tem can be written as a sum of the potential field due to
the space charge distribution (
sc) and the externally applied
electric field (
app). While, the space charge potential distri-
bution for large wall zeta potential systems (� ≥ 1) has to
be obtained numerically, for low wall zeta potential systems
(� < 1), the net potential field is obtained analytically and can
be written as:


(X, Y) = 
app(X) + 
sc(Y)

= − X

E R
sin �+ 1

sinh
(

1

De

) {ZR sinh
(

Y

De

)

+ sinh
(

1 − Y

De

)}
,

(17)

where 
 = �/�b is the dimensionless total electric potential
of the system.

2.2 Velocity field

The oscillating electric field along with the space charge dis-
tribution induces a time-dependent Maxwell stress (

↔
�M) in

the liquid, which is represented as:

↔
�M = −

�
∣∣∣ �E ∣∣∣2
2

↔
I + � �E ⊗ �E (18)

Along with the hydrodynamic stress tensor (
↔
�H) for a

Newtonian fluid, the total stress tensor (
↔
�T ) can be expressed

as [27]:

↔
�T = ↔

�H + ↔
�M = −

⎛
⎜⎝p +

�
∣∣∣ �E ∣∣∣2
2

⎞
⎟⎠↔

I + �
(

�∇�u + �∇�uT
)

+ � �E ⊗ �E (19)

where �u is the liquid velocity, p is the hydrostatic pressure
in the liquid, � is the dynamic viscosity of the solvent,

↔
I is

the unit tensor and �E = −�∇� is the total electric field in the
system.

Considering an incompressible flow, the conservation of
mass and momentum results into the following equations,
respectively:

�∇ · �u = 0, (20)

�

(
∂ �u
∂t

+
(
�u · �∇

)
�u
)

= �∇ · ↔
�T = − �∇ p + �∇2 �u + �∇ · ↔

�M

= −�∇ p + �∇2 �u + � �∇�∇2�. (21)

While considering the continuity of shear and normal
stresses at the planar free surface the boundary conditions at
the free surface can be written respectively as:[

�t · ↔
�T · �n

]
y=d

= 0, (22)

[
�n · ↔

�T · �n
]

y=d

= 0, (23)

where �t and �n are the tangent and normal vectors at the free
surface, respectively.

At the solid wall, a nonpolar (e.g. PDMS, silanized glass
etc.) substrate might induce a slip velocity on the polar sol-
vent due to the ensuing hydrophobicity [46]. However, in the
mentioned work, it has been stated that the roughness of
the nonpolar substrate is generally greater than the thresh-
old roughness of the induced slip. This results into a small
slip length, which for all general purposes does not affect the
flow characteristics of the polar liquids over such nonpolar
substrates. Hence, considering a no slip condition at the solid
wall gives:

�u(0, t) = �0. (24)



Equation (22) expresses the absence of shear stress at the
interface while Eq. (23) expresses the absence of normal stress
owing to a flat interface. The velocity profile is considered to
be fully developed in the x-direction. Upon nondimension-
alizing the flow velocity as, U = u/Uref , where Ur e f = �/d is
the momentum diffusion velocity scale. Without an external
pressure gradient, the dimensionless momentum conserva-
tion Eq. (21) reduces to:

Wo2 ∂U

∂�
= ∂2U

∂Y2
+ �R E R

d
app

d X

d2
sc

dY2

= ∂2U

∂Y2
− �R sin �

d2
sc

dY2
, (25)

0 = − dP

dY
+ �R E R

∂


∂Y

∂2


∂Y2
= − dP

dY
+ �R E R

d
sc

dY

d2
sc

dY2
,

(26)

where Wo =
√

�d2
/

�, is the Womersley number expressing

the relative strength of temporal inertial force over the vis-
cous dissipation force, �R = (�E0�bd)

/(
��2
) = −UHS

/
Ur e f

is the relative strength of the electrical body forces over the
viscous dissipation force and is henceforth referred to as
electroviscous ratio and UHS = −��b E0/� is the Helmholtz–
Smoluchowsky velocity. The boundary conditions in dimen-
sionless form (see Eqs. (22)–(24)) are, respectively:

∂U

∂Y

∣∣∣∣
Y=1

− �Rsin �
d
sc

dY

∣∣∣∣
Y=1

= 0, (27)

P (1, �) = −�R E R

2

((
∂


∂ X

)2

−
(

∂


∂Y

)2
)

Y=1

= − �R E R

2

(
sin2�

E 2
R

−
(

d
sc

dY

)2
)

Y=1

,
(28)

U(0, �) = 0. (29)

The solution of the system of Eqs. (25), (27), and (29) can
be obtained by decomposing the velocity into time-dependent
and space-dependent functions as:

U (Y, �) = F (Y) G (�) = Im
(
F (Y) ei�

)
. (30)

Upon substituting Eq. (30) in Eqs. (25), (27) and (29), an
ordinary differential equation in F (Y) is obtained as:

iWo2 F = d2F

dY2
− �R

d2
sc

dY2
. (31)

The corresponding boundary conditions are:

d F

dY

∣∣∣∣
Y=1

− �R
d
s c

dY

∣∣∣∣
Y=1

= 0, F (0) = 0. (32)

For a generalized potential distribution, the resulting ve-
locity profile can be obtained as:

U (Y, �) = �RIm

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


sc(Y)ei�−
cosh

(√
i (1 − Y) Wo

)
cosh

(√
iWo

) 
sc(0)ei�

−
sinh

(√
iYWo

)
cosh

(√
iWo

) ei�
√

iWo

×
1∫

0

cosh
(√

iWo (1 − �)
)


s c (�) d�

+
√

iWo

2
ei�

⎧⎨
⎩e

√
iYWo

Y∫
0

e−√
i�Wo
sc (�) d�

− e−√
iYWo

Y∫
0

e
√

i�Wo
sc (�) d�

⎫⎬
⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(33)

which for a space charge potential obtained by Debye-Hückel
linearization can be simplified analytically as:

U (Y, �) = Ua (Y) sin (� + � (Y)) , (34)

where, Ua (Y) is the amplitude of the velocity and � (Y) is the
phase of the velocity. Detailed expressions of the amplitude
and the phase are given in the Appendix.

To obtain the velocity field for a generalized potential
one needs to perform the involved integrations in Eq. (33)
numerically. In this study, the QUADPACK [47] numerical
integration package was used, which effectively handles the
integration of complex functions with the help of an adaptive
automatic integration algorithm using Gauss–Kronrod rule
[47]. The pressure distribution in the system can be obtained
by solving the Eq. (26) along with the boundary condition
from Eq. (28) as:

P (Y, �) = �R

4E R
cos 2�− �R

4E R
+ �R E R

2De2 sinh2
(

1

De

)

×
{

ZR cosh
(

Y

De

)
− cosh

(
1 − Y

De

)}2

. (35)

It is observed from Eqs. (25) and (26) that, in the absence
of an externally applied pressure gradient, the resulting pres-
sure and velocity distributions are decoupled and are para-
metrically dependent on the applied potential bias and the
space charge potential.

3 Results and discussions

It can be seen from Eq. (27) that the interfacial shear jump
condition is no more a classical hydrodynamic stress free
boundary condition. The Maxwell stress, by the virtue of
Coulombic force on the space charge distribution and the



free surface potential, contributes to the interfacial dynam-
ics as well. To demonstrate the effects of Maxwell stress on 
EOFs, a comparison of flow characteristics between EOF un-
der a Hele-Shaw configuration (parallel plate flow) [11, 13] 
and the free surface EOF has been carried out. Although be-
ing two completely different physical systems the mentioned 
problems share a similar physical modeling in terms of gov-
erning equation and boundary conditions. The most general 
modeling of a parallel plate EOF system involves Stokes equa-
tions with a Helmholtz–Smoluchowsky slip velocity at the 
walls and a symmetry condition applied on the velocity at the 
channel centerline. Such a system has been very successful in 
modeling microscale EOF owing to the thin EDL length scales 
as compared to the channel length scales. However, for sys-
tems where the EDL thickness becomes comparable to the 
channel length scales, one can add an electrical body force 
term in the Stokes equations, the involved electric charge 
distribution being obtained from the electrical potential dis-
tribution which results as a solution of the PBE [11, 13]. In 
the second case, the wall boundary condition is a no slip con-
dition along with the previously used symmetry condition at 
the channel centerline. Similarly, the modeling of a thin free 
surface flow involves a Stokes equation with no slip condi-
tion at the wall and a stress-free condition at the free surface. 
In the absence of various surface phenomena such as sur-
face tension variation, phase change, and mass transfer, the 
stress-free condition at the free surface (∂u/∂y = 0) is math-
ematically the same as a symmetry condition at the channel 
center (∂u/∂y = 0) in a parallel plate EOF [11,13]. Hence, the 
commonly studied parallel plate EOF can be put forth as a 
case without the Maxwell stress, which in the simplified form 
adds a term involving transverse gradient of electric poten-
tial at the free surface (see Eq. (29)). As a consequence, it 
is seen that, in the presence of very thin EDLs (De = 0.01) 
and no interfacial potential (ZR = 0), the free surface sys-
tem behaves as a classical half channel EOF system where 
the electrical effects are localized close to the wall and the 
far field electric potential is zero. A validation of the present 
free surface model developed in the previous sections is pre-
sented through a comparison with a Hele-Shaw EOF, where 
the half channel velocity profile was taken from the seminal 
work of Dutta and Beskok [13] (see Fig. 2). Their usage of De-
bye length	D as the characteristic length scale as compared 
to the film thickness d used in this study leads to different 
dimensionless groups that can be mathematically adjusted 
without losing any physical details for comparing the results. 
Their various parameters can be recovered from the present 
parameters as:

� = Wo × De ; � = De ; UHS = −Uref (for �R = 1), (36)

where � is the dimensionless frequency, � is the dimension-
less Debye length, and UHS is the Helmholtz-Smoluchowski
slip velocity used as the reference velocity by Dutta and Beskok
[13]. The excellent agreement between the velocity profiles
obtained from the present model and the one extracted from
Dutta and Beskok [13] as reported in Fig. 2, justifies the suc-
cess of non-Maxwell stress model in thin EDL systems.

Figure 2. Velocity profiles comparison with Dutta and Beskok
[13], where � = Wo× De is the dimensionless frequency used by
Dutta and Beskok. Other fixed parameters are De = 0.01, ZR =
0,�R = 1, � = �

/
2.

For cases where the EDL extent is comparable to the char-
acteristic dimensions of the flow, which in the present case
is the film thickness d, the effect of Maxwell stress modifying
the shear stress balance criterion at the surface boundary is
more pronounced. This leads to changes on the transverse
velocity gradients as a function of the surface potential and
potential field present in the bulk. In the absence of transverse
velocity component, the distribution of such a gradient also
corresponds to the absolute value of vorticity (�abs ) field de-

fined as �abs =
∣∣∣ �∇ × �U

∣∣∣ = −∂U/∂Y , which can account for

vorticity induced flow instabilities in the system. To study the
effect of Maxwell stress model on vorticity distribution, a com-
parison between free-surface EOF models with and without
Maxwell stress was performed (see Fig. 3). The vorticity pro-
file of non-Maxwell stress model was taken from Chakraborty

Figure 3. Vorticity profile comparison of Maxwell stress and non-
Maxwell stress models [11]. The values of other fixed parameters
are De = 0.5, � = 0.4278, ZR = 0, �R = 1.



Figure 4. Velocity profile with different values of the Debye num-
ber (De) and ionic energy parameter (�) for fixed values of Wom-
ersley number Wo = 10, electroviscous ratio �R = 1, ZR = 0 and
time, � = �

/
2.

and Srivastava [11], whose dimensionless parameters relate
to the present parameters as mentioned in Eq. (36). It is seen
from the figure that the neglecting Maxwell stress can lead
to significant underestimation of the vorticity strengths in
the bulk. Also, for thick EDLs the strong presence of velocity
gradients renders Helmholtz–Smoluchowsky velocity a non-
ideal slip condition at the liquid–solid interface. In order to
strengthen this argument, a further discussion on velocity
scales is provided with different values of �R. The resulting
velocity gradients lead to dispersion in thick EDL flows over
the time and with the help of this study one can identify the
regimes of applied frequency and electrolyte characteristics
to avoid the dispersion effects in a time periodic EOF.

As the ionic energy parameter, �, defines the relative
strength of electrostatic energy of ions over their thermal

energy, the changes in the velocity distribution due to the
relative interplay between the mentioned competing ener-
gies is significant. To demonstrate the effect of �, four cases
have been considered with different values of the EDL thick-
ness (De) and ionic energy parameter (�) (see Fig. 4). It
is seen that for the lower values of ionic energy parameter
(� = 0.1) the difference in the velocity distribution is signif-
icant for higher EDL thickness (De = 0.1). However, in the
case of thin EDL, the difference is not noticeable. This also
explains the reason why the Debye–Hückel linearization of
PBE, which is valid for low values of �, successfully models
the thin EDL potential distribution even over a large range
of �. The above observation can also be explained by the fact
that, when the thermal motion of ions dominates (� < 1), the
electric actuation is diffused strongly in the EDL and hence
the local velocity magnitude is reduced. This diffusion of
the electrical actuation is enhanced if the EDL is thicker as
the presence of a greater amount of space charge distribution
aides in more effective distribution of velocity in the liquid
bulk.

The electroviscous ratio,�R, see Eq. (25) is directly pro-
portional to the amplitude of the applied oscillating electric
field and hence, increment in which amplifies the flow veloc-
ity profile for a given fluid. This is clearly highlighted in Fig. 5
for the values De = 0.01 and De = 0.1. It can also be seen
that the maximum value of the velocity obtained for a thin
EDL case (De = 0.01) is greater than in the case with thicker
EDL (De = 0.1), which can be attributed to the fact that in the
case of thick EDLs, the electrical energy is spent mobilizing
a greater space charge distribution than in the case of a thin
EDL. This leads to a lower maximum kinetic energy of the
liquid within the EDL. Moreover, �R also represents a ratio of
the classically used Helmholtz-Smoluchowsky velocity (UHS)
as a reference velocity scale to the current velocity scale. It
is interesting to note that UHS can be used as a reference
velocity scale (�R = 1) when (i) EDL is thin (see Fig. 5),

Figure 5. Velocity distribution over the film thickness with different values of electro-osmotic number, �R for � = 5, ZR = 0, Wo = 10 at
� = �

/
2with (A) De = 0.01 and (B) De = 0.1.



Figure 6. Velocity distribution over the film thickness with different values of Wo and for fixed values of � = 5, ZR = 0 and �R = 1 at
� = �

/
2 with (A) De = 0.01 and (B) De = 0.1.

(ii) forcing frequency is smaller than the viscous relaxation
frequency (see Fig. 6). In remaining cases, UHS overestimates
the characteristic velocity sometimes by an order of mag-
nitude. Also, one can observe from Fig. 5 that the velocity
oscillations propagate as a damped wave into the bulk. The
extent of this bulk penetration of the damped velocity oscilla-
tions seem to be unaffected by the value of �R. Taking a cue
from the classical Stokes second problem, the typical pene-
tration depth of momentum diffusion of oscillatory flows in
a liquid can be estimated by the Stokes penetration depth �s .
Typically �s which is a function of the forcing frequency as
�s /d ∼

√
�/(�d2) = 1/Wo, where Wo is the Womersley num-

ber, which also represents the relative strength of temporal
inertia over viscous force (see Eq. (25)). This inverse relation-
ship between the Stokes penetration depth and Womersley
number, Wo is also observed in Fig. 6 which shows the ve-
locity profiles as a function of Wo.

It is observed that decreasingWo increases the Stokes
penetration depth and in turn enhances the sharp changes
in the velocity gradients near the wall. This also results in
the stronger diffusion of the near-wall vorticity in the liquid
bulk. However, upon increasing Wo the viscous time lag of
momentum propagation in the liquid also increases, which
leads to inflection points in the velocity profiles. Presence
of such inflection points leads to extrema in the vorticity
distribution yielding possible fluid mixing and instability [48].
It is also observed that the magnitude and extent of vorticity
propagation is a strong function of the EDL thickness. This
can be explained in terms of electrical energy transfer over the
extent of space charge distribution in the liquid. The thinner
will be the space charge distribution, the stronger will be the
velocity gradients.

Interfacial polarity, ZR, in the context of free surface
flows has been demonstrated to be an important parameter

Figure 7. Velocity profile with fixed values of De = 0.1, � = 5, �R = 1 and Wo = 10 with (A) different values of interfacial polarity, ZR at
� = �

/
2 and (B) at different times (�) and locations (Y).



Figure 8. Vorticity distri-
bution in the fluid over
one complete time cycle
(� ∈ (0, 2�)). The values of
fixed parameters are: �R = 1,
� = 5,ZR = 1 and (A)De = 0.1
and Wo = 10; (B)De = 0.5
and Wo = 10; (C)De = 0.1 and
Wo = 50; (D)De = 0.5 and
Wo = 50.

determining the base state velocity profile presented in Fig. 7.
One can see that the nature of velocity profile is a strong func-
tion of the interfacial polarity. The presence of strong velocity
gradients is a marker of high dispersive fields present near
the interface and at the wall. It is seen that the interfacial
dispersion can be reduced by reducing the interfacial poten-
tial or charge distribution. Such an effect can be achieved
by controlling the solvent pH and electrolytic concentrations
or using nonelectrolytic surfactants. The strong velocity gra-
dients near the wall can be relaxed by using nonwettable
surfaces that enhance velocity slip.

Another aspect of interfacial potential is the phase lag
(see Eq. (34)) between velocities at different transverse lo-
cations in the flow (see Fig. 7B). It is observed that upon
reversing the polarity of the interface induces a phase lag of
� in the interfacial velocity. However, the near-wall (Y = 0.1)
and midfilm (Y = 0.5) velocities seem to be insensitive to the
changes in the interfacial polarity.

Upon observing the vorticity distribution in the fluid over
a complete time cycle, one can get an idea of vorticity fluctua-
tion and diffusion in the fluid bulk as a function of time (See
Fig. 8). It is observed that the vorticity transport in the bulk is
controlled by the Womersley (Wo) and Debye (De) numbers.
As high Wo reduces the rate of viscous diffusion, the fluid
bulk is not affected by the time-dependent fluctuations in the
vorticity profile even when the EDL is thick. However, for
lower Wo, the vorticity fluctuation is spread over the entire
extent of the space charge distribution.

4 Concluding remarks

The present work focuses on the role of time-dependent
Maxwell stress in free surface EOFs. It was highlighted that
the Maxwell stress-generated dynamics introduces signifi-
cant velocity gradients at the free surface as compared to
the studies where interfacial Maxwell stress was not con-
sidered. Moreover, it was observed that for thick EDLs the
non-Maxwell stress model significantly underestimates the
velocity and vorticity distributions in the fluid film. Such gra-
dients are instrumental in flow instability of time-periodic
EOF [48]. The bulk penetration of near-wall oscillations is
inversely proportional to the forcing frequency and at lower
frequencies we observe a significant suppression of velocity
dispersion that asymptotes to the classical dispersion free
velocity in a DC EOF. By the variation of interfacial polarity
one can not only control the interfacial velocity and the rate of
shear transfer but also establish a significant phase difference
in fluid velocity at different transverse locations in the fluid,
which enhances the dispersion effects and can be effectively
used in controlled species transport in microfluidic devices.

The authors have declared no conflict of interest.
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Appendix

Amplitude and phase of the velocity field
(see Eq. (34))

From the Eq. (34), the velocity amplitude, Ua (Y), can be
written as:

Ua (Y) =
√

A2 (Y) + B2 (Y) (A.1)

and the phase difference, � (Y), can be written as:

� (Y) = arctan
(

A(Y)
B(Y)

)
(A.2)

where:
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(A.3)



B(Y) = M1
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(A.4)

and:

M1 = �R

(De4Wo4 + 1) sinh
(

1
De

) , (A.5)
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(A.6)
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