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Abstract

This paper presents a method to identify wave equations’ parameters using wave dispersion characteristics
(k-space) on two-dimensional domains. The proposed approach uses the minimization of the difference
of an analytic formulation of the dispersion relation to wavenumbers calculated from solution fields. The
implementation of partial differential equations (PDE) resolution on finite element software is explained
and tested with analytic solutions in order to generate the test solution fields for the identification process.
The coefficient identification is tested on solution fields generated by finite element solver for some 2nd-
and 4th-order equations. In particular the test cases are the equations at different frequencies of deflection
of isotropic and orthotropic membrane, flexion of isotropic and orthotropic plate and an original model of
orthotropic plate equivalent to a bi-directional ribbed plate. In the limits of the spatial sampling rate and
the domain size, the process allows an accurate retrieval of the wave equation parameters.

Keywords: Inverse method, k-space, Wave propagation, Partial Differential Equations, Stiffened plates

1. Introduction

Composite structures and meta-materials are used in a wide range of applications. Those structures
can show exotic performances unobtainable with classic materials [1, 2]. They can even be built such that
they provide original properties in other fields like acoustic, dielectric or optic properties. Even smart
structures are now developed [3]. Composite materials are made of the assembly of at least two non miscible5

components and are therefore heterogeneous structures. Meta-materials are structures mostly made of
spatially periodic patterns of assemblies of different materials. The contrast between the components is
often responsible for the original properties. The mechanical behavior of this type of structure can be
dominated by one of its components, depending on the test or the observation conducted. For these reasons,
this type of structure needs non classical formulations. Due to their complexity, their modeling can be using10

computationally expensive models. And because of the contrasts, a not high enough resolution model can
lead to the loss of some contributions to the behavior. However, the behavior can also be modelled using
equivalent formulations [4] or non classical analytic formulations built by homogenisation process [5, 6, 7].
These analytic approaches require the knowledge of equivalent parameters that can’t always be directly
calculated. One can mention stiffness, Young modulus in a direction and apparent mass among others.15

In structural mechanics, one needs the PDE describing the motion in order to push forward the design
and the analysis. The issue is very important and is still considered in the literature with regards to new
materials and meta-structures specifically. Precisely, a great number of equation of motion are often used in
structural engineering. These PDE rely on one-dimensional, two-dimensional or even tree-dimensional be-
havior. Models like Euler-Bernoulli, Timoshenko, Kirchhoff are probably the most established and employed20

ones. All correspond to the simplification of the 3D elastodynamic theory for specific kinematic behaviors.
Such simplification could lead to discrepancies when the frequency increases or for specific materials. The
issue is tricky for newly developed concepts of metamaterials and metastructures where the heterogeneiticy
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scale becomes a key factor. Two solutions could then be investigated. The first one makes use of multiscale
homogenisation theories to get the PDE representing the media. The second solution is investigated in this25

paper: it makes use of an inverse technique to identify the main parameter of the PDE.
A lot of work has already been done in the field of identification and characterisation of materials

and structures from different measurements. The Oberst beam method [8, 9] can be cited for beams to
regain parameter values but only at resonance frequencies. Some techniques to calculate or estimate elastic
parameters in the case of porous materials are presented in [10], often the Young modulus or the damping30

properties. From a kinematic full field measurement, five methods are presented in [11]: the finite element
model updating method, the constitutive equation gap method, the virtual fields method, the equilibrium
gap method and the reciprocity gap method. In [12], a spatial dependent Young modulus is identified
based on the knowledge of the surface traction and using an adjoint method. Moreover some approaches
make use of waves propagation to extract information from different type of structures. [13] makes use of35

group velocity measurements to estimate elastic constants in anisotropic structures. The elastic properties
are identified from a transitory displacement field known on a set of points in [14, 15]. [14] deals with
functionally graded materials and [15] with laminate composites but improves the search of optimal values
using a genetic algorithm. [16] proposes a nonlinear Lamb wave approach to characterise solid plates. In
[17] an identification of elastic constants is proposed, based on phase velocity of guided waves using a semi40

analytic finite element formulation. And in the case of layered composites, in [18], the parameters are
identified comparing time of flight from measurements and from wave finite element resolutions.

The wave propagation characteristics provide a lot of information about the behavior of a structure [19].
They are already used in a lot of other applications: the time of flight of ultrasonic waves for non destructive
testing [20] or the propagation of Lamb waves for damage detection in laminate composite materials [21, 22].45

In particular the wavenumbers can be studied. Wavenumbers are complex quantities which characterise the
propagation of the waves in a structure. They can be interpreted as an angular spatial frequency and they
can be linked with the frequency and the geometric and mechanical parameters of the structure with the
dispersion relation. A k-space can provide a lot of information on the vibration behavior of the structure. In
the case of 2-dimensional structures like plate or panel, the wavenumber is a propagation direction-dependent50

function. The set of the wavenumbers in all the direction is the k-space. Some methods exist to get the
k-space from a measured displacement field. As it deals with the spatial frequency, one of the oldest tool
to study them is the Fourier transform [23]. It can be used to get the wavenumber but is limited to real
wavenumbers, so the imaginary part is neglected. It is ideal for an infinite domain. Moreover, in the discrete
case, the spatial sample step has to be below enough the studied wavelength (Nyquist-Shannon Theorem).55

That is why other methods should be used like the Inhomogeneous Wave Correlation method (IWC) or
INverse COnvolution MEthod (INCOME). IWC, [24, 25] is based on the maximisation of a correlation
function using an inhomogeneous wave. In two dimension, this wave is parameterized by the angle and the
wavenumber at this angle. INCOME, [26, 27] is an other method to get the k-space from a displacement
field. The aim of the method is to find a convolution kernel such that the convolution between it ant the60

discrete field is minimized. The form of the kernel is determined by the dimension of the field and the
hypothesis on the equation. After finding the coefficients of the convolution kernel, the wavenumber in a
direction come from the resolution of a polynomial equation made of the coefficients the convolution kernel.

The purpose of this work is to use the propagation characteristics to identify PDE coefficients from a
solution. The process presented is adapted to find information on wave propagation type equation from65

solution fields on 2 dimension domains. It is based on the comparison between analytic formulations and k-
spaces extracted from solution fields at different frequencies. It could be very useful to determine parameters
of equivalent models like homogenisation models and therefore simplify the resolution of those problems in
the case of meta-structure. In particular, this process can provide frequency dependent values for the
equivalent parameters. The second main objective is the resolution of all types of linear PDE, not only wave70

based equations, using the finite element solver of COMSOL and the mathematics module. The dimensions
of the problem to solve are not greater than 3. A lot of boundary conditions can be defined, like Dirichlet
conditions or Neumann conditions for 2nd-order equations but a lot of others combinations are possible as
well. The limitation in order to the 2nd-order is overridden by replacing the high order equation by system
of equations with a maximal of two derivations in each equation. The idea is near writing a 1 dimension75

2



differential equation under matrix form.
This paper presents a method to use the finite element software solver to get the solution of linear

PDE of any order, with a lot of different possibilities for boundary conditions and loading. It also present
an identification process for PDE coefficient of 2 dimensional waves propagation equations, based on the
comparison between analytic formulation of and reference k-spaces extracted from solutions field at different80

frequencies. Both the implementation of the PDE resolution and the identification method have been tested
on plate and membrane in isotropic cases and non isotropic cases including a multi scale case.

The paper is structured as follows. Section 2 presents a method to implement on COMSOL the resolution
of linear partial differential equations of any order with possibly unusual terms, on potentially complicated
domain. Then, section 3 presents a wavenumbers based identification method for PDE coefficient which is85

then tested on 2nd− and 4th-order cases and in particular on a homogenised model of a bi-directional ribbed
plate [28].

2. Partial differential equations implementation in on finite element software

This section shows how to implement the resolution of PDE in COMSOL software [29] using the mathe-
matics module. In this module, the general form of PDE Interfaces is used1. The PDE can be in dimension
1 to 3 and the resolution can be done on complicated domains. The PDE will have the following form in 1D
(1), 2D (2) or 3D (3). The coefficients (am), (al,m−l) or (al,n−l,m−n) and a0 are the equation parameters.
ω is the pulsation such that these equations can be studied at different frequencies. N is the total order of
the equations. m, n and l are the sum index such that all the derivative and cross derivatives of order not
greater than N are considered.

N∑
m=1

am
∂mu

∂xm
+ ω2a0u = 0 (1)

N∑
m=1

m∑
l=0

(
al,m−l

∂mu

∂xl∂ym−l

)
+ ω2a0u = 0 (2)

N∑
m=1

m∑
n=0

n∑
l=0

(
al,n−l,m−n

∂mu

∂xl∂yn−l∂zm−n

)
+ ω2a0u = 0 (3)

Moreover the coefficients of the equations can be dependent on the spatial variables or the frequency. In
addition to the equation the boundary conditions have to be defined. They can be related to the unknown,90

its derivatives or a combination of them.

2.1. Equations formulation

The equations (1), (2) and (3) cannot be directly implemented in the software and have to be put in the
following form.

∇.Σ = f (4)

Where Σ is a conservative flux term and f a source term that have to be defined. In their definition, the
unknown and only its first derivative can appear. So with the presence of the divergence operator ∇., only
2nd-order equation seems to be implementable. To increase the order of the equations the equation has to
be replaced by a system of equations. (1) can be written:

∂

∂x


u
∂u

∂x
...

∂N−1u

∂xN−1

 =


0 1 0
... 0

. . .

0 1
ω2a0
aN

− a1
aN

· · · −aN−1

aN




u
∂u

∂x
...

∂N−1u

∂xN−1

 (5)

1Some usual equations are already implemented but the general form allows more possibilities
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(5) is a 1st-order problem. Because second derivatives can be implemented, not all the intermediate deriva-

tives, but only the even ones need to be defined.

[
∂nu

∂xn

]
is the notation of the defined function which is

the nth derivative of u. Without loss of generality, if the order N of the equation is even, equation (1) is95

equivalent to the following equation:

∂

∂x

︸︷︷︸
∇.



N/2∑
p=1

a2p
∂

∂x

[
∂2p−2u

∂x2p−2

]
+ a2p−1

[
∂2p−2u

∂x2p−2

]
∂

∂x
[u]

∂

∂x

[
∂2u

∂x2

]
...

∂

∂x

[
∂N−2u

∂xN−2

]


︸ ︷︷ ︸

Σ

=



−ω2a0u[
∂2u

∂x2

]
[
∂4u

∂x4

]
...[

∂Nu

∂xN

]


︸ ︷︷ ︸

f

(6)

The first line contains the initial equation whereas the others define the successive even derivatives.
For a 2 (or 3) dimensional problem the idea is the same, the intermediate even derivatives have to be

defined the same way, the derivative in each directions but also the cross derivatives if needed. The term Σ
become a matrix of 2 (or 3) columns. For the 2 dimensions equation, (2) is equivalent to ∇.Σ = f where
Σ = (Σ1 Σ2) and f define in (7), (8) and (9).

Σ1 =



N/2∑
p=1

2p∑
l=2

al,2p−l
∂

∂x

[
∂2p−2u

∂xl−2∂y2p−l

]
+ al−1,2p−l

[
∂2p−2u

∂xl−2∂y2p−l

]
∂

∂x
[u]

∂

∂y
[u]

0
...
0



(7)

Σ2 =



N/2∑
p=1

a0,2p
∂

∂y

[
∂2p−2u

∂y2p−2

]
+ a1,2p−1

∂

∂x

[
∂2p−2u

∂y2p−2

]
+ a0,2p−1

[
∂2p−2u

∂y2p−2

]
0

0

∂

∂y
[u]

...
∂

∂y

[
∂N−2u

∂yN−2

]



(8)
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f =

(
−ω2a0u

[
∂2u

∂x2

] [
∂2u

∂x∂y

] [
∂2u

∂y2

]
. . .

[
∂Nu

∂yN

])T

(9)

This way the equation is defined without any derivation greater than 2 directly written.

2.2. Software implementation

The physics PDE general form (g) from the mathematics module allows to work with an equation of the
type:

ea
∂2u

∂t2
+ da

∂u

∂t
+∇.Σ = f (10)

In the studied cases, only the part ∇.Σ = f is used2. There is a COMSOL syntax for the first derivatives:100

ux for the first x derivative of u, uy for its first y derivative and uz its z derivative. So Σ and f have to
be defined in PDE general form like explained in the previous subsection. To complete the problem, the
boundary conditions and the source terms are needed.

2.2.1. Boundary conditions and source terms

In COMSOL, the Dirichlet boundary conditions allow to add a constraint on a function at a boundary105

of the domain. The constraint can be a constant or a function of the space and the frequency. However the
functions on which there is a constraint have to be defined in the system of equation ∇.Σ = f like the even
derivatives. The boundary can be a point, a line or a surface.

2.2.2. Source terms

The source terms, depending on their forms and dimensions can be defined directly in the equation110

definition, using the boundary conditions or by adding a point source, an edge source or a source to the
model. When the dimension of the load is the same as the one of the domain, it can either be put in the
formulation of the equation, in ∇.Σ = f or in a source added to the model.

2.2.3. Frequency and spatial dependent parameter

As a reminder it is possible to implement complicated equations, with frequency and spatial dependent115

coefficients. These terms are implemented in the variables. A lot of functions are pre implemented and
can be used. These terms can be used in the formulation of the equation but also in the source term or in
the boundary condition. ”freq” is the reserved variable used for the frequency and ”x”, ”y” or ”z” are the
reserved ones for the spatial coordinates. At the end, a frequency domain study is conducted.

A summary of the implementation procedure of PDE resolution in the COMSOL software is presented120

in Algorithm 1.

2.3. Examples of implementations

Three examples are presented for equations of different orders in different dimensions. The first one is a
beam equation which is a 4th-order equation in 1D to illustrate the implementation of a more than 2nd-order
equation. The second is a membrane equation to illustrate the implementation for a 2D equation. And the125

last one is a isotropic plate equation for both 2D and more than 2nd-order equation. For each case the
implementation is presented and then the results are compared with analytic solutions.

2ea is a mass coefficient and da a damping coefficient. They won’t be used here as they deal with temporal derivatives
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Algorithm 1 Step by step implementation of PDE resolution in COMSOL

1. Global Definitions
Define all constants and constant equation coefficients

2. Create Geometry (1D/2D/3D)
3. Define Local Variables

Define frequency and spatially dependent coefficients
4. Select physical model (Modules)

Mathematics
PDE Interfaces
General Form PDE (g)

5. Definition of the PDE
Select Number of dependent Variables : one for the unknown

and for each intermediate derivative needed
Definition of f and Σ (subsection 2.1)
Definition of the sources terms (subsection 2.2.2)

6. Assign boundary conditions (subsection 2.2.1)
Define the functions constrained by the boundary conditions
Select Dirichlet Boundary Condition

Prescribe values with defined constants or functions
7. Discretization and mesh generation
8. Specify Study type

Select Frequency Domain
9. Post-processing and visualization

2.3.1. Euler Bernoulli beam equation

The first example is the Euler Bernoulli beam equation with a simply supported condition at the boundary
x = 0 and a unitary displacement in a simply supported way at x = L. It is a 4th-order equation in one
dimension.

EI
∂4u

∂x4
= ω2Λu (11)

u(x = 0) = 0; u(x = L) = 1;
∂2u

∂x2
(x = 0) = 0 and

∂2u

∂x2
(x = L) = 0 (12)

With E the Young modulus, I =
bh3

12
the bending inertia and Λ = ρbh the linear mass. The implementation

of this equation requires the definition of the second derivative of u or of the bending moment : M = EI
∂2u

∂x2
.

A way to implement this problem is the following one:

Σ =


∂M

∂x

EI
∂u

∂x



f =

ω2Λu

M


The boundary conditions are set using ”Dirichlet Boundary Condition”, at the boundary x = 0: u = 0,
M = 0 and at x = L, u = 1, M = 0. The solution can be compared with the analytic solution of this
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(a) Schema of the beam

(b) Displacement for 3 frequencies : Analytic at 10 Hz
(−), 50 Hz (−), 100 Hz (−), numerical resolution at 10
Hz (•), 50 Hz (×) and 100 Hz (+)

(c) Frequency response function of the displacement at
the center: analytic solution (−), numerical values (•)

Figure 1: Comparison between analytic solution and numerical resolution: (b) displacement function of the position
at 3 frequencies, (c) frequency response function

problem. If k is defined as k4 = ω2 Λ

EI
, the analytic solution is:

uanalytic(x) =
sin (kx)

2 sin (kL)
+

sinh (kx)

2 sinh (kL)
(13)

The implementation is done with EI = 1 kg m3/s2, Λ = 1 kg/m and L = 1 m. The numerical resolution
of the problem (11) with the boundary conditions of (12) is implemented. The results of the resolution are130

presented and compared to the analytic solution (13) in term of displacement function of the position figure
1b and in decibel function of the frequency figure 1c. It can be seen on this figure that the numerical solution
agrees perfectly with the analytic solution. The equation and its resolution have been well implemented.

2.3.2. Isotropic membrane equation

The next problem is the Membrane deflection equation on a square domain of side L with a fixed boundary
condition and a unitary punctual load at the center. The implementation of the membrane equation is easier

7



even if it is a 2 dimensional problem because it is only a 2nd-order equation. So no additional function has
to be defined. The equation is the following one.

N∆u+ Λω2u = 0 (14)

N is the surface tension and Λ the surface mass. The boundaries are considered fixed, so u = 0 on the135

boundaries.

Figure 2: Schema of the membrane

The implementation on COMSOL using general PDE is direct.

Σ =

(
N

∂u

∂x
N

∂u

∂y

)
f = ω2Λu

The boundary conditions need the use of ”Dirichlet conditions” to set u to 0 at the boundaries. The load is
put using a ”punctual load” at the center of the domain (x = L/2, y = L/2). The solution can be compared
with the analytic solution from the modal decomposition.

uanalytic(x, y) =

+∞∑
n=0

+∞∑
m=0

4(−1)n+m sin

(
(2n+ 1)πx

L

)
sin

(
(2m+ 1)πy

L

)
L2Λω2 − π2N((2n+ 1)2 + (2m+ 1)2)

(15)

The implementation is done with unitary values N = 1N/m and Λ = 1kg/m2.
The resolution has been implemented in the software. Figures 3b and 3a show the solution fields from

the numerical resolution and from the analytic formula (15) and figure 3c their comparison on a line. The
two fields seem to be almost the same and the comparison of the sectional view shows a perfect agreement.140

Moreover the comparison of the solutions at a point function of the frequency is presented figure 3d and
shows a very good agreement. The finite element implementation solves the equation well.

2.3.3. Isotropic plate equation

Then the Kirchhoff Love equation for the flexion in an isotropic plate is implemented. The plate is
supposed square with a length L. The boundary conditions are simply supported and a unitary punctual
load is applied at the center. It is a 4th-order equation. This case combines the dimension 2 with a higher
than 2nd-order.

D∆2u = ω2Λu (16)
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(a) Numerical solution field at 5Hz (b) Analytic solution field at 5Hz from formula (15)

(c) Sectional view of the solution at frequency 5Hz at the
red line of figure 3b from numerical resolution (•) and
analytic formula (15) (−)

(d) Frequency response function of the displacement at
the point (L/4, L/4): : analytic solution (−), numerical
values (•)

Figure 3: Comparison between analytic and numerical solutions: solution fields at 5 Hz, (a) numeric, (b) analytic,
(c) displacement function of the position, (d) frequency response function

9



D

(
∂4u

∂x4
+

∂4u

∂y4
+ 2

∂4u

∂x2∂y2

)
= ω2Λu (17)

Figure 4: Schema of the plate

The implementation on COMSOL requires the definition of the second derivatives in X and Y directions,

they are noted

[
∂2u

∂x2

]
and

[
∂2u

∂y2

]
. With this notation on general PDE, to solve this equation, Σ and f are

defined as follows.

Σ =



D

(
∂

∂x

[
∂2u

∂x2

]
+ 2

∂

∂x

[
∂2u

∂y2

])
D

∂

∂y

[
∂2u

∂y2

]

D
∂u

∂x
0

0 D
∂u

∂y



f =



ω2Λu[
∂2u

∂x2

]
[
∂2u

∂y2

]


A punctual load is set to 1 on the point at the center of the plate. And two ”Dirichlet boundary conditions”

are defined: u = 0,
∂2u

∂x2
= 0 at {x = 0}, {x = L} and u = 0,

∂2u

∂y2
= 0 at {y = 0}, {y = L}. The solution

obtained can be compared to the analytic solution from modal decomposition.

uanalytic(x, y) =

+∞∑
n=0

+∞∑
m=0

4(−1)n+m sin

(
(2n+ 1)πx

L

)
sin

(
(2m+ 1)πy

L

)
L2

(
π4D

L4
((2n+ 1)2 + (2m+ 1)2)2 − ω2Λ

) (18)

The implementation is done with D = 1 kg m2/s2, Λ = 1 kg/m2 and L = 1m.
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(a) Numerical solution field at 500Hz (b) Analytic solution field at 500Hz from formula (18)

(c) Sectional view of the solution at frequency 500Hz at
the red line of figure 5b from numerical resolution (•) and
analytic formula (18) (−)

(d) Frequency response function of the displacement at
the point (L/4, L/4): : analytic solution (−), numerical
values (•)

Figure 5: Comparison between analytic and numerical solutions: solution fields at 500 Hz, (a) numeric, (b) analytic,
(c) displacement function of the position, (d) frequency response function
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A good agreement between the numerical solutions from the software and the analytic ones can be seen145

figures 5a, 5b, 5c and 5d. In all the previous cases it seems that the implementations on COMSOL software
give results very near the analytic solutions, for the form of the solution field and for the frequency response
functions. The implementation of the resolution of PDE using its finite element solver seems to work well.
Now that the implementation process has been validated, numerical resolutions can be conducted to provide
solution fields of 2D equations. This got solution fields are used in the next section to test the identification150

process.

3. Partial differential equations identification by k-space analysis

A method for the identification of parameter of partial differential equation on 2 dimensions domains
based on wavenumber analysis is presented. The idea is to use the k-spaces extracted from displacement
fields as references and to compare them with the analytic formulation of the dispersion relation taken from155

the model. With this approach, a frequency dependent value of a parameter of the model can be obtained.

3.1. Types of equation

This method works for propagation equations in the frequency domain on two dimensional domains. The
equations are contained in the form (2). For this type of equation, the analytical relation dispersion can be
found as a root of the following polynomial equation, function of the direction in the domain.

N∑
m=1

(
(ikθ)

m
m∑
l=0

al,m−l cos
l θ sinm−l θ

)
= −ω2a0 (19)

3.2. Methodology

From given solution fields, the objective is to retrieve to a coefficient of the equation, which can have
physical meaning. The method presented here uses wavenumber analysis to find an approximation of a160

coefficient when the other are known. The very first step is to determine the form of the equation, the order,
the known and unknown coefficients and which of them are null or linked. From the form of the equation,
the analytic dispersion relation or polynomial equation can be defined (19). It is function of the coefficients
of the equation, in particular the missing one, but also the frequency and the direction.

Then wavenumbers have to be extracted from the given solution fields using k-space method. The165

methods used are the Inhomogeneous wave correlation method (IWC) [25, 24] and the INverse COnvolu-
tion MEthod (INCOME) [26, 27] they are described in Appendix A. For each solution field, a set of nθ

wavenumbers are calculated in different directions θi: kref (f, θi).
Now the identification can be done. The value of the unknown parameter, named p, is searched such that

the wavenumbers calculated from the analytic dispersion relation are as near as possible to the extracted
one from the solution field, at each direction. That is why at a given frequency f, the identification of the
value of the wanted parameter of the model use the resolution of the following least square minimization
problem on all the calculated directions (20).

J(p) =
1

nθ

nθ∑
i=1

|kref (f, θi)− kmodel(f, θi, p)|2 (20)

This way the coefficient is identified. In the following results, the search of the minimum has been done by
evaluation but other methods of extremum research could be use.170

The method is tested on equations of 2nd- and 4th-order. First the equations are solved for different
frequencies with a finite element solver as explained in section 2. Then the method presented previously is
used to find one of the parameters of the equation from the solution.
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3.3. 2nd-order equations

The identification of parameter begin with solution fields from the following type of 2nd-order equation.

ax
∂2u

∂x2
+ ay

∂2u

∂y2
+ axy

∂2u

∂x∂y
+ ω2a0u = 0 (21)

In this case, the analytic dispersion relation is immediate:

k2θ =
ω2a0

ax cos2 θ + ay sin
2 θ + axy cos θ sin θ

(22)

This equation is solved on a square domain with a side of 1m and with Dirichlet boundary conditions, or175

fixed boundary conditions for the interpretation on the behavior of an elastic membrane. A unitary punctual
load is put at the center of the domain. The frequency are between 0 and 50 Hz, ω is 2π the frequency. The
parameter ax, ay, axy and a0 are tested with different configurations. The grid uses 400 by 400 points.

In order to use INCOME on fields solution of this type of equation, the convolution kernel has to be at
least of the following form. The choice of the kernel comes from [27].180

e c d
b a b
d c e

(23)

Three configurations for the coefficients ax, ay, axy and a0 are tested.

3.3.1. Isotropic membrane

The first case is the one of an isotropic membrane. ax = 1, ay = 1, axy = 0 and a0 = 1 The equation is
symmetric in the x and y direction, ax = ay = a. The equation (21) can be written:

a∆u+ a0ω
2u = 0 (24)

The solution at the frequency 5 Hz has been presented figure 3a. Using INCOME with the kernel (23) the
wavenumbers are calculated in different directions but because of the values chosen, the wavenumbers are
expected to be independent from the direction.185

In this simple case, figure 6a the calculated wavenumbers are very near the analytic ones, except at low
frequencies. It is because, at low frequencies the length of the domain is almost the same as the wavelength.
For each frequency, the wavenumbers are calculated in 100 angles between 0 and π. The identification
parameter method is then used to regain a parameter when the others are known. The values are compared
with the expected ones entered in the COMSOL implementation. It is done for the parameters a0 and190

ax. It can be seen in figures 7a and 7b that when the frequency is higher than 10 Hz, the results for the
identification of ax and those for the identification of a0 are near the expected values.

The bad values at low frequencies can come from the size of the domain which is not high enough
compared to the wavelength. In order to verify that the equation has been solved at low frequency on a
larger domain: L=5m in place of 1, all other things remaining the same, even the number of points in the195

grid. Wavenumbers are extracted the same way as before Figure 6b and then ax and a0 are identified from
this new solution field figures 8b and 8a.

It comes that the values found at low frequencies are far better than with a domain of side L=1. The
limit at higher frequency comes from the spatial sample rate.

Figure 6c shows the dispersion relation when INCOME is used with a grid of 60 by 60 points, so a far200

lower sample rate. For frequencies higher than 30 Hz the wavenumbers calculated don’t match with the
analytic values so the identification process won’t work.

13



(a) (b)

ordre_2maj/Copy_of_freq_1_5_5_100_edp_2_ax1_ay1_axy0_b1_N200_1quart_maillage_ext_fin_CL_Dirichlet_relation_dispersion.png

(c)

Figure 6: Dispersion relation, analytic and from INCOME for the 2nd-order equation with ax = 1, ay = 1, axy = 0

and a0 = 1 : analytic dispersion relation (−), INCOME wavenumbers at angles 0 rad (•), π
4

rad (×) and
π

2
rad (+).

(a): L=1m on a grid of 400 by 400 points, (b): L=5m on a grid of 400 by 400 points and (c): L=1m on a grid of 60
by 60 points.

(a) (b)

Figure 7: Identified values of a0 (a) and ax (b) calculated using the identification method on the solution fields at
different frequencies, exact values (−) and identified values (•)
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(a) (b)

Figure 8: Identified values of a0 (a) and ax (b) calculated using the identification method on the solution fields for
frequencies between 1 and 10 and for L = 5, exact values (−) and identified values (•)

(a) (b)

Figure 9: Dispersion relation, analytic and from INCOME for 2nd-order equations in the directions 0,
π

4
and

π

2
:

analytic dispersion relation at 0 rad (−),
π

4
rad (−),

π

2
rad (−), INCOME wavenumbers at 0 rad (•), π

4
rad (×) and

π

2
rad (+). (a): ax = 1, ay = 0.5, axy = 0, a0 = 1 and (b): ax = 1, ay = 1, axy = 0.5, a0 = 1
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(a) (b)

Figure 10: Identified values of a0 (a) and ay (b) calculated using the identification method on the solution fields at
different frequencies, exact values (−) and identified values (•)

(a) (b)

Figure 11: Identified values of a0 (a) and axy (b) calculated using the identification method on the solution fields at
different frequencies, exact values (−) and identified values (•)

3.3.2. Orthotropic membrane

For the second example, ax = 1, ay = 0.5, axy = 0 and a0 = 1. So ay becomes half of ax. This way the
problem is not symmetric or isotropic. The problem can be interpreted as the behavior of an orthotropic205

membrane. The wavenumbers are calculated by INCOME with the same kernel (23). In contrast to the
previous case, the values are not the sames depending on the angle. In figure 9a, in each direction, the
calculated wavenumbers are very close to the analytic ones, except at low frequencies. Then again, the
identification parameter method is then used to regain one parameter when the others are known. It is done
for the parameter a0 figure 10a and ay figure 10b. On this figure, it can be seen that as in the previous case,210

when the frequency is higher than 3, the results for the identification of ay and those for the identification
of a0 are near the expected values.

3.3.3. Case with cross derivative term

The last 2nd-order equation tested adds the term axy associated with a cross derivative term. Here
ax = 1, ay = 1, axy = 0.5 and a0 = 1. The wavenumbers are calculated with the same kernel (23) in215

different directions and presented figure 9b. For this case as well there is an angle dependency of the

wavenumbers but the values at angles 0 and
π

2
are the same. Except at low frequencies, the wavenumbers

calculated are near the expected values even if the values calculated ay 0 and
π

2
are not exactly the same.

The parameters a0 and axy are identified using the method. The values identified for a0 figure 11a fit very
well but there is a bigger error for the identification of axy even at higher frequencies, figure 11b.220
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3.4. 4th-order equations

Now, equations of the 4th-order are studied. They have the following form.

Dx
∂4u

∂x4
+Dy

∂4u

∂y4
+Dxy

∂4u

∂x2∂y2
+ ax

∂2u

∂x2
+ ay

∂2u

∂y2
− ω2a0u = 0 (25)

The dispersion relation is solution of the the polynomial equation (26).

k4θ
(
Dx cos

4 θ +Dy sin
4 θ +Dxy cos

2 θ sin2 θ
)
− k2θ

(
ax cos

2 θ + ay sin
2 θ
)
= ω2a0 (26)

Like for the 2nd-order cases, the equation has been numerically solved on a unitary square domain, with a
unitary load at the center. The boundary conditions are simply supported, a condition on the solution and
its second derivatives. In order to get wavenumbers high enough compared to the dimensions of the domain,
the frequencies go to 20 kHz. Two configurations are studied.225

3.4.1. Isotropic plate

The first equation is a case of the Kirchhoff Love plate equation that models the flexion in an isotropic

plate. Dx = 1, Dy = 1, Dxy = 2, ax = 0, ay = 0 ans a0 = 1. In this case, Dx = Dy =
Dxy

2
= D. The

solution fields are presented below. The equation can be simplified to make a bilaplacian appear.

D∆2u = ω2a0u (27)

And the dispersion relation is a direct relation.

k4 = ω2 a0
D

(28)

With, in this particular case a0 and D having unitary values. The solution field of this equation at 500Hz
has been presented figure 5a. An other convolution kernel has to be used to apply INCOME for this type
of equation in order to get the wavenumbers.

f
d c d

e b a b e
d c d

f

(29)

Equation (27) is the equation of an isotropic plate, that is why there is no variation of wavenumbers with the230

direction in figure 12a. The calculated wavenumbers are very near the analytic values. For equation of 4th-
order, the wavenumber isn’t a linear function of the frequency but a square root function. The identification
results for a0 and Dx is presented figures 13a and 13b. They show a good match with the expected values.

3.4.2. Orthotropic plate

The next set of values is Dx = 1, Dy = 0.5, Dxy = 2, ax = 0, ay = 1 and a0 = 1. It adds an orthotropy235

and a 2nd-order term. This way the problem is not symmetric and the dispersion relation needs a polynomial
resolution. The wavenumbers are calculated with the same kernel (29). Even if the wavenumbers are a little
more distant from the expected values on figure 12b than in the previous case figure 12a, the identification
results of the terms a0 and Dy presented figures 14a and 14b are still very near the exact values. This shows
that the identification process seems to work well, limited in frequency by the size of the domain and the240

spatial sample rate.
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(a) (b)

Figure 12: Dispersion relation, analytic and from INCOME for the 4th-order equations in the directions 0,
π

4
and

π

2
:

analytic dispersion relation at 0 rad (−),
π

4
rad (−),

π

2
rad (−), INCOME wavenumbers at 0 rad (•), π

4
rad (×)

and
π

2
rad (+). (a): Dx = 1, Dy = 1, Dxy = 2, ax = 0, ay = 0, a0 = 1 and (b): Dx = 1, Dy = 0.5, Dxy = 2, ax = 0,

ay = 1 and a0 = 1

(a) (b)

Figure 13: Identified values of a0 (a) and Dx (b) calculated using the identification method on the solution fields at
different frequencies, exact values (−) and identified values (•)
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(a) (b)

Figure 14: Identified values of a0 (a) and Dy (b) calculated using the identification method on the solution fields at
different frequencies, exact values (−) and identified values (•)

3.5. 4th-order homogenised equation of a bi-directional ribbed plate

The last illustration is a 4th-order equation from [28] that models the flexural behavior of a bi-ridded
plate illustrated figure 15. In this equation there is an unusual frequency dependant term.

Figure 15: Example of bi-directional ribbed plate of 5 by 5 cells

A bi-directional ribbed plate is a periodic structure made of a plate on which two perpendicular rows of245

stiffeners have been added. The beam grid of the stiffeners which is supposed to be stiffer than the little
plate put between them, will dominate the dynamics of the structure. This presented model of the flexural
behavior of this type of structure is a model of an equivalent orthotropic plate obtains from an asymptotic
homogenisation process. Because the global dynamics is mostly linked to the stiffener grid, this orthotropic
plate model come from the one of an orthotropic plate equivalent to a beam grid.250

All the stiffeners in the same direction have the same geometrical and mechanical properties. In
the x or y direction, hj is the height of the stiffeners, bj the width and lj the contact length with an
internal plate. The mechanical parameters of the stiffeners Ej , νj and ρj are respectively the Young
Modulus, the Poisson ratio and the volumic mass. The other mechanical parameter can be calculated

from the previous ones: the bending inertia Ij =
bjh

3
j

12
, the torsional modulus Gj , the torsional iner-

tia Ij =
bj
2

(
hj

2

)3
(
16

3
− 3.36

hj

bj

(
1−

h4
j

12b4j

))
, the linear mass Λj = ρjbjhj and the torsional constant

ρjJj = ρjhjbj
b2j + h2

j

12
. The formulation of the torsional inertia of a beam of rectangular section comes from

[30]. With these parameters the equation of the model of an orthotropic plate equivalent to a beam grid is
the following one (30).

ExIx
ly

∂4u

∂x4
+

EyIy
lx

∂4u

∂y4
+

(
GxIx
ly

+
GyIy
lx

)
∂4u

∂x2∂y2
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+ω2

(
ρyJy
lx

∂2u

∂x2
+

ρxJx
ly

∂2u

∂y2

)
= ω2

(
Λx

ly
+

Λy

lx

)
u (30)

The homogenised model of an orthotropic plate equivalent to a bi-directional ribbed plate is obtained by
enriching this model (30) with the internal dynamics from the internal plates. They are supposed all the
same, of side length lx, ly and width d. Their mechanical properties are the followings: The Young modulus

Ep, the Poisson ratio νp, the volume mass ρp, the surface mass Λ′
p = ρpd, the bending inertia Ip =

d3

12
and

the modified module E′
p =

Ep

1− ν2p
. The 4th-order partial differential equation is then (31).

ExIx
ly

∂4u

∂x4
+

EyIy
lx

∂4u

∂y4
+

(
GxIx
ly

+
GyIy
lx

)
∂4u

∂x2∂y2

+ω2

(
ρyJy
lx

∂2u

∂x2
+

ρxJx
ly

∂2u

∂y2

)
+

(
Kbc

ωx

∂u

∂x
+Kbc

ωy

∂u

∂y

)
(31)

= ω2

(
Λx

ly
+

Λy

lx
+ Λ′

p

〈
ϕbc
ω

〉)
u

This equation contains the flexural rigidity terms of the stiffeners
ExIx
ly

∂4u

∂x4
and

EyIy
lx

, a term of torsional

rigidity

(
GxIx
ly

+
GyIy
lx

)
∂4u

∂x2∂y2
, a rotational inertia term ω2

(
ρyJy
lx

∂2u

∂x2
+

ρxJx
ly

∂2u

∂y2

)
, a non conventional

torque term

(
Kbc

ωx

∂u

∂x
+Kbc

ωy

∂u

∂y

)
and an inertia term ω2

(
Λx

ly
+

Λy

lx
+ Λ′

p

〈
ϕbc
ω

〉)
u. From (30), the model of

(31) adds the 1st-order term

(
Kbc

ωx

∂u

∂x
+Kbc

ωy

∂u

∂y

)
and an added mass term Λ′

p

〈
ϕbc
ω

〉
that gives the effect of

the dynamics of the internal plates. The 1st-order term appears when the internal plates are non symmetric.
Here the boundary conditions are supposed square (lx = ly) and clamped in every direction so the term
becomes null Kbc

ω = 0.
〈
ϕbc
ω

〉
is calculated as the mean of the out of plane displacement on an internal

plate with a unitary displacement of the beam grid. This term is function of the frequency and depends on
the boundary conditions of the internal plates. With plates clamped at all their sides there is no analytic
formula so it is approximated by the case of a circular plate with a unitary clamp motion which gives:

〈
ϕCCCC
ω

〉
=

4

δr

I1(δr)J1(δr)

I1(δr)J0(δr) + I0(δr)J1(δr)
(32)

with

• J0, J1 Bessel functions of the first kind

• I0, I1 modified Bessel functions of the first kind

• δ4 =
ω2Λp

E′
pIp

= (2πf)2
Λp(1− ν2p)

EpIp

• r = 0.532l255

The equation (31) can still be written in the following form.

Dx
∂4u

∂x4
+Dy

∂4u

∂y4
+Dxy

∂4u

∂x2∂y2
+ ω2ax

∂2u

∂x2
+ ω2ay

∂2u

∂y2
− ω2a0(ω)u = 0 (33)
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But the term a0 is frequency dependent and ax, ay are replaced by ω2ax and ω2ay. a0(ω) = Λ′ +
Λ′
p

〈
ϕCCCC
ω

〉
(δ(ω)r). The values of the aluminium are chosen for the stiffeners and those of the Plexiglas

for the internal plates. The stiffeners are supposed to be the same in the x and y directions.

Parameter : hx, hy bx, by Ex, Ey νx, νy, ρx, ρy
Value : 0.01m 0.01m 69 GPa 0.3 2700 kg/m3

Table 1: Geometrical and mechanical properties values of the beam grid

Parameter : lx, ly d Ep νp ρp
Value : 0.1m 0.001m 3GPa 0.3 1200 kg/m3

Table 2: Geometrical and mechanical properties values of the internal plates

Moreover a damping of 5% is added to the Young modulus as an imaginary part. From the values of
Tables 1 and 2, the value of the coefficients of equation (33) can be determined.260

Dx Dy Dxy ax ay
575 + 28.75i J 575 + 28.75i J 747.5 + 37.375i J 4.5 10−5 kg 4.5 10−5 kg

Table 3: Value of the parameters of equation (33)

Λ′ Λ′
p

Λ′
p(1− ν2p)

EpIp
r

5.4 kg/m2 1.2 kg/m2 4.3571− 0.21786i s2/m4 0.0532 m

Table 4: Value of the parameters in the calculation of a0

The equation is solved on a square domain of side 1m, with simply supported boundary conditions and
a unitary load at the center. The frequencies go to 10000Hz. The INCOME method is used on a grid of 600
by 600 points. The parameters can be identified using the wavenumbers. For example Dx or a0(ω).
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(a) (b)

Figure 17: Identified values of a0 (a) and Dx (b) calculated using the identification method on the solution fields for
frequencies below 10 kHz, exact values (−) and identified values (•)

Figure 16: Dispersion relation, analytic and from INCOME of the equation (33) in the directions 0,
π

4
and

π

2
: analytic

dispersion relation at 0 rad (−),
π

4
rad (−),

π

2
rad (−), INCOME wavenumbers at 0 rad (•),

π

4
rad (×) and

π

2
rad (+)

On the dispersion relation it can be noticed that even if the trend seems to follow a square root function,
the term a0(ω) brought some resonances. The internal resonance frequencies can be interpreted as the265

frequencies of the modes with non zeros mean of an internal plate. They can be calculated as the zeros
of the denominator of (32). The first ones are at 275 Hz, 1070 Hz, 2398 Hz, 4256 Hz, 6648 Hz and 9570
Hz, it agrees with the dispersion curve. The frequency dependent term a0 and another independent Dx

are identified and compared to their analytic values. For the identification, on figures 17a and 17b the
values calculated are close to the expected values. However near the internal resonance frequencies where270

the identification of Dx are less precise. The identification method works also for this more original model.
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4. Conclusion

In this paper, a methodology to implement any linear PDE using the COMSOL solver has been presented.
In particular, it is possible to implement higher than 2nd-order equation and frequency dependent coefficients.
The validity of this method has been verified using test cases with known analytic solutions. Then a275

coefficient identification method for PDE based on an original approach has been described. This method is
adapted for dimension 2 PDE in structural mechanics, like plates and membranes and provides a frequency
dependent identification. The approach is based on the comparison between analytic and reference k-spaces
which are extracted from displacement fields using the methods IWC and INCOME.

The identification methodology and in particular the k-space extraction method and analytic dispersion280

relation definition have been described and tested.
Three cases of 2nd-order equations, deflection of isotropic and orthotropic membranes, two of 4th-order

equations, flexural behavior in isotropic and orthotropic plates and an original equation that model the
behavior of a bi-directional ribbed panel with some original frequency dependent terms have been used to
tested the identification process. Those test cases have been numerically calculated using this implementation285

methodology of PDE resolution for finite element software. In all these cases, the coefficients are correctly
retrieved. The main limitation of the method seems to be produced by the wavenumber extraction procedure.
It is limited in low frequency by the domain size and in high frequency by the spatial sample rate.

This method has been developed in order to extract information on structures using displacement fields
from experimental data. It can be used to characterise an unknown material plate. But in particular, it can290

be used in the modeling of meta-material structures where the PDE coefficients are unknown and can’t be
easily estimated. This way equivalent parameters can be calculated and then drastically reduce computation
time of simulations of the structure.

In future works, computational time could be still reduced by improving the extremum research, both
in the wavenumber calculation methods and in the identification. Moreover the process can implement the295

identification of several parameters at the same time using multi objective optimisation.
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Appendix A. Short overview of k-space methods

In this appendix, k-space methods for 2 dimensional domains are presented with more details. In the
case of 2-dimensional structures like plate or panel, the wavenumbers depend on the propagation direction.310

Some methods exist to get the k-space from a displacement field. The field is supposed known on a regular
grid. The Fourier transform, the Inhomogeneous Wave Correlation method (IWC) ans INverse COnvolution
MEthod (INCOME) are described.
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Appendix A.1. Fourier transform
The Fourier is an integral transform that transforms a function of the time to a function, of the frequency315

or a function of the space to a function of the wavenumbers [23]. The Fourier transform can be used to get
the wavenumber However, it has some drawbacks. The imaginary part of the wavenumbers is neglected.
It is not very adapted to finite domains. And the spatial sample step has to be below enough the studied
wavelength (Nyquist-Shannon Theorem).

Appendix A.2. Inhomogeneous wave correlation method320

The Inhomogeneous wave correlation method, IWC, [25, 24] is based on the maximisation of a correlation
function using an inhomogeneous wave ô. In two dimension, this wave is parameterized by the angle θ and
the wavenumber at this angle k(θ)(1 + iγ(θ)).

ôk,γ,θ(x, y) = e−ik(θ)(1+iγ(θ))(x cos θ+y sin θ) (A.1)

Naming u the displacement field and û its Fourier transform, the correlation function to maximize at each
angle needed is the following (A.2).

IWC(k, γ, θ) =

∣∣∣∫∫S û.ô∗k,γ,θdx dy
∣∣∣√∫∫

S
|û|2dx dy.

∫∫
S
|ôk,γ,θ|2dx dy

(A.2)

In practice, at a given frequency, the displacement field û is only known on a finite number of points so the
integrals are calculated by numerical methods like the trapezoidal method. Moreover the term

∫∫
S
|û|2dx dy

is not calculated because it is independent of θ, k and γ. The maximum is obtained by evaluation. At
the end the method gives for each θ a value k(θ) and a value for γ(θ). Then the complex wavenumber is
k(1 + jγ).325

Appendix A.3. INverse COnvolution MEthod
The INverse COnvolution MEthod, INCOME, [26, 27] is an other method to get the k-space from a

displacement field. u is the discrete displacement field at a given frequency known on a grid. The aim of
the method is to find a convolution kernel S such that :

u ∗ S = 0 (A.3)

Or at least minimize ∥u ∗ S∥2. Then the k-space is deduced from S. The form of S is determined by the
dimension of the field and the hypothesis on the equation. For example the following kernel can be used for
a field solution of the equation of the flexural behavior of an orthotropic plate.

S =

0 0 f 0 0
0 d c d 0
e b a b e
0 d c d 0
0 0 f 0 0

(A.4)

After finding the coefficient of the convolution kernel, the wavenumber in a direction θ will come from the330

solution of the minimization of the module of a polynomial equation. For the example of an orthotropic
plate, with a grid of mesh size Lx Ly, defining λx(k, θ) = eik cos θLx and λy(k, θ) = eik sin θLy the equation to
minimize is:

I(θ, k) =

∣∣∣∣a+ b

(
λx +

1

λx

)
+ c

(
λy +

1

λy

)
+ d

(
λxλy +

1

λxλy
+

λy

λx
+

λx

λy

)

+e

(
λ2
x +

1

λ2
x

)
+ f

(
λ2
y +

1

λ2
y

)∣∣∣∣
(A.5)

INCOME is less time consuming than the other methods so the number of frequencies studied and the
number of angle of measurements can be increased. However the form of its convolution kernel must be335

chosen function of the form of the model equation.
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