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Abstract: On-demand combinatorial spaces are shifting 
paradigms in early drug discovery, by considerably increasing 
the searchable chemical space to several billions of 
compounds while securing their synthetic accessibility. We 
here systematically compared the on-the-shelf available 
drug-like chemical space (9 million compounds) to three on-
demand ultra-large (ODUL) combinatorial fragment spaces 
(REAL, CHEMriya, GalaXi) covering 32 billion of readily 
accessible molecules. Surprisingly, only one space (REAL)  

intersects almost entirely the currently available drug-like 
space, suggesting that it is the only ODUL widely suitable for 
in-stock hit expansion. Of course, expanding a preliminary 
ODUL hit in the same chemical space is the best possible 
strategy to rapidly generate structure-activity relationships. All 
three spaces remain well suited to early hit finding initiatives 
since they all provide numerous unique scaffolds that are not 
described by on-the shelf collections. 
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The pressure to identify chemically novel and patentable drug 
candidates has led the pharmaceutical industry, at the turn of 
the century, to massively invest in miniaturized high-
throughput screening facilities and assemble legacy 
collections of millions of drug-like compounds.[1] In parallel, 
chemical suppliers have quickly offered commercially 
available collections of comparable sizes,[2] notably available 
to the academia for virtual screening and follow-up cherry 
picking.[3] 
Despite the 10-fold increase in the size of such screening 
decks within 20 years, the drug-like chemical space available 
in-stock for screening (ca. 15 million unique compounds)[4] is 
just a drop in the ocean of synthesizable drug-like compounds 
ranging from 1020 to 1063 according to various estimates.[5] As 
a first attempt to increase drug-like space by several orders of 
magnitude, Reymond et al. enumerated, from simple 
molecular graphs, all possible organic drug-like molecules 
with an upper limit of atom numbers and elements, leading to 
the GDB-17 database of 166 billion molecules.[6] Such giant 
databases, although useful to discover novel bioactive 
compounds,[7] have three main drawbacks: (i) corresponding 
compounds are not physically available, (ii) their synthesis 
remain problematic as so far as no retrosynthetic schemes are 
provided, (iii) their practical usage requires enormous 
computing resources for just storage and virtual screening. To 
address these issues, Pfizer pioneered the design of an 
organic-reaction driven chemical space featuring 1018 virtual 
compounds.[8] Instead of enumerating all possible molecules, 
the corresponding chemical space is combinatorically 
encoded by both the building blocks and multicomponent 
organic reactions necessary to synthesize  them,[9] thereby 
enabling a high synthesis success rate (ca. 80%)[9-10] and 
multibillion sizes. Both proprietary and commercial fragment 
spaces have accordingly been described peaking at an 
impressive number of 1026 tangible compounds  for the GSK 
XXL space.[11] Mining such gigantic spaces requires dedicated 

descriptors and algorithms[11] for 2D similarity searches,[12]  
space comparisons[13] and quite-recently for maximum 
common substructure (MCS) searches.[14] Interestingly, on-
demand combinatorial spaces weakly overlap (usually 
between 0.2 and 2%)[13] and thereby constitutes orthogonal 
chemical spaces for either preliminary hit finding[15] or minute-
scale identification of analogues from in-stock compounds 
(SAR by Space)[16] that can be readily synthesized and tested. 
The democratization of fragment spaces leads to the question 
of their most suitable usage in early drug discovery. Shall they 
be reserved to hit expansion or directly used for hit 
identification? Up to now, initial hit finding relying on virtual 
screens has been mostly restricted to commercial screening 
libraries of ‘on-the-shelf’ compounds. The chemical overlap 
between on-demand combinatorial spaces and commercial 
drug-like screening decks is however unknown to date. The 
only reported attempt to decipher this overlap just concerned 
100 representative drugs.[12b]  

We therefore systematically studied the overlap 
between a representative library of nine million 
commercially available in-stock drug-like compounds and 
three ultra-large combinatorial spaces totalling 30 billion 
on-demand compounds, to assess whether such fragment 
spaces contain known drug-like scaffolds for immediate 
hit finding or expansion strategies. To achieve this goal, 
we first updated the in-house Bioinfo-DB database, a 
repository of in-stock drug-like screening compounds 
successfully used in the laboratory for virtual screening 
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campaigns.[17] In its current version, it relies on 25 
trustable suppliers (Table S1) selected for their ability to 
provide requested compounds within 3-4 weeks with an 
acceptable price-quality ratio (typically 5 mg of >90% pure 
powder for 50 €). An automated workflow was design to 
read, clean and process supplier files, notably removing 
duplicates (while keeping track of all possible suppliers), 
ionising at physiological pH and filtering for drug-likeness 
(Figure S1). Along the process, the number of available 
compounds decreased from 21 to 9.1 million (Table S2), 
a number inferior to that reported in ZINC20,[4] but better 
representative to our viewpoint of the currently 
purchasable drug-like (CPDL) space. To limit the number 
of queries, the CPDL space was next restricted to their 
2.4 million unique Bemis-Murcko (BM) frameworks.[18] 
Compounds sharing the same BM framework are likely to 
share the same synthetic route. Pairwise comparison of 
CPDL BM frameworks with on-demand ultra-large 
fragment spaces (ODULs), also organized according their 
most tangible synthetic access, makes therefore some 
sense from a medicinal chemistry perspective.  

In the current work, three ODULs, encoded as 
fragment spaces were selected: Enamine REAL space,[19] 
OTAVA CHEMriya[20] and WuXi GalaXi.[21] REAL space is 
the first ODUL to have been reported in 2007 by the 
Ukrainian supplier Enamine.[22] It currently comprises 29 
billion compounds obtained via more than 170 well-
validated parallel synthesis protocols applied to over 112 
000 qualified reagents and building blocks. The average 
synthesis success of REAL compounds is ca. 80% and 
most of them are obtained in one-pot synthesis (one or 
two steps) in less than 8 weeks.[9] Due to its high practical 
availability, REAL space (or subsets of it) has been 
frequently screened in silico the last 3 years, with 
remarkable successes in terms of chemical novelty and 
potency of primary hits.[15] 

GalaXi space[21] was reported first in October 2019, as 
a research collaboration between WuXi AppTech, a 
Chinese CRDMO (Contract Research, Development and 
Manufacturing Organization), and the German software 
editor BioSolveIT. GalaXi space comprises 1.8 billion 
virtual compounds developed using various building block 
couplings that utilize more than 20 different types of 
reactions and no more than 2 synthetic steps. Most 
compounds were defined using novel WuXi scaffolds 
combined with in-stock building blocks. 
The first release of the CHEMriya space[20] was reported 
in June 2021 by the Canadian supplier Otava Chemicals, 
as a research collaboration with BioSolveIT, and contains 
12 billion accessible on-demand molecules, based on 30 
000 building blocks and 44 in-house reactions. Several 
multi-component and ring-closure reactions are claimed 
by the supplier to provide a vast chemical diversity to this 
space, with an average synthesis time of 4-6 weeks. 
Neither GalaXi nor CHEMriya Spaces, have been publicly 
reported yet to yield bioactive hit compounds. 

All three spaces are available at BioSolveIT[23] and 
encoded as fragment spaces connectable by specific 
organic reactions. Neither the fragments (building blocks) 
nor the organic reactions to combine them, are freely 
available. Due to their huge size, current cheminformatics 
software and computing facilities are unable to fully 
enumerate the three corresponding spaces. The exact BM 
scaffold composition of the three ODULs was therefore 
unknown to us. 

Chemical overlap between CPDL and ODUL spaces 
was addressed at the MCS level, thanks to the recently 
described SpaceMACS algorithm,[14] that enables to 
directly interrogate a fragment combinatorial space and 
estimate MCS similarity to any SMILES string. In the 
current study, only the most similar ODUL compound to 
each CPDL BM scaffold (highest MCS similarity) was 
retained. The distribution of the 2.4 million similarity 
values is strikingly different across the three ODULs 
(Figure 1). 
 

 

Figure 1. Distribution of the pairwise MCS similarity between 2.4 
million CPDL Bemis-Murcko scaffolds and the most similar 
ODUL compound. Frequencies apply to CPDL scaffolds. Shaded 
sections indicate similarity values higher than 0.85. 

CHEMriya and GalaXi hits follow an overall normal 
distribution with a mean around MCS similarity values of 
0.70 and 0.75, respectively. REAL hits are clearly shifted 
towards significantly higher similarity values with a half-
normal distribution peaking at the maximal value of 1.0 
(Figure 1). Preliminary trials prompted us to define an 
MCS similarity value of 0.85 to discriminate similar from 
dissimilar scaffolds. We acknowledge that this threshold 
is purely subjective, it has however the merit to match 
medicinal chemistry intuitions, notably with respect to 
bioisosterism rules (Figure S2). ODUL hits were thus 
classified in three categories according to their MCS 
similarity to CPDL scaffolds: (i) dissimilar (MCS similarity 
< 0.85, (ii) similar (0.85 ≤ MCS similarity < 1, (iii) identical 
(MCS similarity = 1; Figure 2). According to this 
classification, only a low percentage of CPDL scaffolds 
have similar (or identical) counterparts in CHEMriya and 
GalaXi (16.2 and 24.8%, respectively; Figure 2). 
Conversely, 82% of pairwise comparisons to REAL 
compounds exceed the MCS similarity threshold of 0.85 
with 44.6% of CPDL scaffolds being strictly retrieved in 
REAL space (Figure 2). Although we were expecting 
higher similarity values for the REAL space that positions 
itself as the largest publicly available drug-like space, 
such striking differences with the other two ODULs were 
unexpected. 
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Figure 2. Donut plot of the pairwise MCS similarity between 2.4 
million CPDL Bemis-Murcko scaffolds and the most similar 
compounds from three ODULs (CHEMriya, GalaXi and REAL). 
Statistics (numbers, percentages) apply to CPDL scaffolds. 

The above analysis might have been biased by the 
predominance of Enamine in contributing to the Bioinfo-
DB CPDL space (almost 20% of the final number drug-like 
compounds, Table S2). Indeed, 32% of Bioinfo-DB 
scaffolds (811 276 out of 2 453 944) stem from Enamine 
compounds out of which 640 280 (25%) are unique to 
Enamine and not found in other Bioinfo-DB suppliers. 
Since it is a pretty significant number, we checked 
whether the removal of Enamine and Otava as suppliers 
in Bioinfo-DB would dramatically change the proportion of 
Bioinfo-DB scaffolds retrieved in the three ODULs (GalaXi 
needed not to be considered because the WuXi supplier 
does not contribute yet to Bioinfo-DB CPDL space). The 
distributions of MCS similarities between the new 
“unbiased” Bioinfo-DB and the three ODULs remain 
almost identical to that originally observed (Figure S3). 
We can therefore safely conclude that our initial analysis 
has not been biased by the Enamine predominance in 
Bioinfo-DB compounds and that only Enamine REAL 
space tightly overlaps with Bioinfo-DB space.  

We next analysed how many ODUL hits (MCSs found 
similar/identical to CPDL scaffolds) overlap in chemical 
space by counting the number of Bioinfo-DB scaffolds 
uniquely found in each ODUL, and those shared by two or 
all three ultra-large spaces (Figure 3).  

 

 

Figure 3. Overlap in drug-like BM scaffolds found similar (A, 
MCS similarity > 0.85) or identical (MCS similarity = 1) to three 
ODUL spaces. 

A Venn diagram analysis clearly show that CHEMriya 
and GalaXi hits significantly overlap with REAL hits 
(Figure 3). Considering an MCS similarity above 0.85, 
most of CHEMriya and GalaXi hits are indeed shared with 
REAL. The number of unique hits in CHEMriya and GalaXi 
spaces (12 409 and 15 933) is much lower than that 
observed with REAL that achieves to gather an 
impressive number of unique MCS hits (1 218 172, 60%) 
not found in the two other spaces. We could identify 12 
284 BM scaffolds with a MCS similarity of 1.0 to REAL 
space but lower than 0.5 for both CHEMriya and GalaXi. 
According to our hit-likeness filter (Table S3), 12 076 of 
them (98%) are hit-like and worth being considered for hit 
finding initiatives. We could not detect any obvious bias 
in their molecular properties (Table S4), a randomly 
selected samples being shown in Figure 4. 

 

Figure 4. Randomly-chosen CPDL scaffolds found in REAL 
space (MCS similarity = 1) but not in CHEMriya or GalaXi (MCS 
similarity ≤0.50). 

Still considering a MCS similarity threshold of 0.85, 
only 7.5% of CPDL BM scaffolds (184 165, Figure 3A) are 
shared by the three spaces. Out of this limited space, only 
0.14 % (3 596, Figure 3B) are strictly shared, confirming 
previous studies highlighting that on-demand 
combinatorial spaces weakly overlap.[12b, 13]  

 
From the current study, it appears that only REAL 

space overlaps the chemical space currently described by 
in-stock drug-like compounds. This observation does not 
disqualify the two other combinatorial spaces (CHEMriya, 
GalaXi), but suggests different usages of the three 
ODULs. On the one hand, REAL is ideally suited to hit 
finding and remains clearly the combinatorial space to 
consider first for CPDL hit expansion because the 
likehood that it contains close analogues of a preliminary 
drug-like hit is by far the highest. Success stories from 
such SAR by space have already been reported[16] and 
will be numerous in a very near future. On the other hand, 
the three ultra-large spaces are well suited to find hits in 
chemical spaces that are orthogonal, but not necessarily 
better, to the CPDL space; notably when no valuable hits 
have been identified from stock compounds. The question 
why CHEMriya and GalaXi scaffolds are not on-shelf is a 
difficult question. It is already known that REAL, 
CHEMriya and GalaXI spaces do not overlap.[13] Moreover, 
many on-the-shelf screening decks have been historically 
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built from scaffolds which were exhaustively exemplified, 
therefore defining a restricted space. It seems that REAL 
just reproduces it and the other two ODULs not. We are 
not aware whether it was the intention of OTAVA and 
WuXI not to overlap it. We hypothesize that the combined 
use of proprietary building blocks and space-specific 
organic reactions (e.g. multi-component and ring-closure 
reactions) really defines orthogonal screening spaces. Of 
course, expanding a preliminary ODUL hit in the same 
chemical space is the best possible strategy to rapidly 
generate structure-activity relationships. 

A limitation of the current study is that large 
combinatorial spaces cannot be fully enumerated. 
Therefore, if one knows which ODUL scaffolds are 
common to the CPDL space, we unfortunately could not 
determine the number and chemical structures of the 
unique ODUL scaffolds that do not intersect CPDL space, 
and how many compounds are described by these unique 
scaffolds. The latter are difficult to analyse in terms of 
standard drug-likeness properties. Two-dimensional 
similarity search in large spaces is now possible using 
either feature trees,[12b] topological fingerprints[12a] or 
maximum common substructures,[14]  virtual screening 
tools (shape matching, pharmacophore search, docking)  
able to mine large combinatorial spaces are still at their 
infancy[15a] and  need to be developed[11, 24] to fully 
leverage the potential of large combinatorial spaces in 
preliminary hit finding. 

Computational Methods 

On-the-shelf drug-like libraries (Bioinfo-DB) 

The Bioinfo-DB database (v.22.1) was set-up using a fully 
automated Pipeline Pilot (Dassault Systèmes, Paris, France) 
protocol in five steps (Figure S2): (i) reading sd files from 25 
suppliers and defining unique commercial catalogue 
identifiers and vendor’s name, (ii) removing compounds with 
a bad topology (e.g. pentavalent carbon atoms), more than 
two undefined stereocenters, and stripping counter-ions, (iii) 
detecting duplicates after generating canonical SMILES 
strings and keeping track of the main supplier (first-read 
supplier) and back-ups, (iv) filtering for drug-likness thanks to 
in-house rules (Table S3) implemented in OpenEye Filter 
v.2021.2.0. (OpenEye Scientific Software, Santa Fe, NM 
83507; U.S.A) and subsequent ionization at pH = 7.4. 
Noteworthy, potential duplicates arising from the ionization 
step were searched again and removed, if necessary, (v) 
structure standardization and annotation by computed 
molecular descriptors (molecular weight, polar surface area, 
hydrogen bond donor and acceptor counts, number of 
rotatable bonds and rings, aqueous solubility, logP, violations 
of Lipinski’s rule-of-five) were estimated. The final number of 
compounds in Bioinfo-DB v22.1 is 9 306 375, all 2D structures 
being saved in single sd file. 
Bemis-Murcko scaffolds[18] were computed for the full Bioinfo-
DB set using RDkit v. 2020.09.1.0 (https://www.rdkit.org/), 
yielding 2 453 944 unique scaffolds saved as SMILES strings. 

On-demand ultra-large combinatorial spaces (ODULs) 

Three ODULs in binary fragment space format (fsf) were 
kindly provided by M. Gastreich (BiosolveIT GmbH, Sant-
Augustin, Germany): REAL (Enamine, 2021-04 version, 19 

billion compounds), CHEMriya (Otava, 2021-04 version, 11 
billion compounds) and GalaXi (WuXi, 2021-11 version, 2.1 
billion compounds). 
 

MCS similarity searches 

Maximum common substructure searches were computed 
with SpaceMACS[14] using each Bioinfo-DB scaffold as a 
SMILES query and the three ODUL as searching spaces. To 
fasten pairwise MCS similarity searches, 246 query jobs of 
10 000 SMILES strings each were submitted using a single 
thread (GalaXi), 16 threads (CHEMriya) and 32 threads 
(REAL). The most similar hit, according to pairwise MCS 
similarity,[14] was kept for each ODUL. Average computing 
times for each job ranged from 1-2 h (CHEMriya), 4-5 hours 
(GalaXi) to 7-11 h (REAL). 
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