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The stability of a free surface under electro-osmotic flow in thin liquid films is investigated where the film
thickness can be varied over the scale of a thick to thin electrical double layer while considering the relative
contribution from the van der Waals forces. The role of interfacial Maxwell stress on thin film stability is
highlighted. This configuration gives some interesting insights into the physics of free surface stability at a
scale where various competing forces such as the Coulombic force, van der Waals force, and surface tension
come into play. The effects of the mentioned forces are incorporated in the Navier-Stokes equations and a linear
stability analysis of the resulting governing equations is performed to obtain the Orr-Sommerfeld equations. The
characteristic stability curve of the system is obtained through an asymptotic analysis of the Orr-Sommerfeld
equations in the long wave limit. In this study, special focus is given to the effect of the interfacial zeta potential
on the free surface stability. It is found that when the free surface and the substrate zeta potential have the same
polarity the system is unstable. Since the strength of the free surface potential depends upon the nature of the
fluid substrate interaction, this study can help in choosing a proper combination of fluid and substrate to design
microfluidic and nanofluidic channels with a desired flow rate without triggering the interfacial instability.

I. INTRODUCTION

Stability of fluid interfaces under electro-osmotic flow has
been a wide field of research in the past decade [1–6]. A
variety of stability models have been presented, discussing the
effects of flow-actuating parameters, along with substantial
experimental evidence to validate the theoretical predictions
[7–10]. However, most of the mentioned studies have been
concentrated in the domain where the electrical double layer
(EDL) is negligible as compared to the characteristic length
scale. In such domains, the effect of the EDL on the flow
is modeled using a slip velocity, which is obtained by
the classical Helmholtz-Smoluchoski formulation [11]. This
approximation has been substantially helpful to design the
flow and mixing process in modern microfluidic devices.
However, with the technology of miniaturization foraying in
the nanometric length scale with some applications like the
controlled delivery of nonconducting liquids in microfluidics
devices, patterned conformal coatings, and control of thin films
on electrostatic film radiators in space applications [12], the
fluid dynamics within the limits of the EDL cannot be ignored.
It has been established that new modes of instability can be
observed when the Debye length is comparable to the film
thickness [13]. In some of earlier works [13–16], the effects
of electric field strength, surface tension, and intermolecular
van der Waals force on free surface instability, where the
length scale is of the order of the Debye length, have been
discussed. However, the effect of electric-field-generated stress
(Maxwell stress) at the free surface has been overlooked. This
Maxwell stress at the free surface is engendered due to the

presence of free charges, the magnitude of which depends
upon the fluid properties and substrate fluid interactions. It
has been recently shown that due to the Maxwell stress, the
free surface has an active role in electro-osmotic flows and
should not be treated as a passive entity [16]. The motivation
behind this study is to provide a collective insight in the free
surface stability of thin films where the EDL is participating
actively in the flow driving mechanism. In this work, the role of
individual physical parameters like surface tension, disjoining
pressure, applied electric field, substrate zeta potential, free
surface potential, film thickness, and Debye length on the thin
film stability is identified. The linear stability analysis of the
governing equations is performed to obtain Orr-Sommerfeld
equations. These equations are solved by the asymptotic long
wave expansion method of Yih [17]; as for thin viscous films,
the instability is found to occur at long wavelengths [18].
This paper is divided in three sections. In the first section,
the characteristics of the physical system under investigation
is presented. The contributions of various parameters to the
governing equations are also worked out. In the second section,
linear stability analysis of the system is performed and the
characteristic stability curve is obtained as a solution of the
Orr-Sommerfeld equations. Finally, an extensive discussion
on the parametric dependence of the stability of the system is
presented.

II. PHYSICAL SYSTEM

The physical system under study consists of a thin film of
ionic solution that develops an EDL upon getting in contact
with a solid substrate (see Fig. 1). The free surface of the thin
film is exposed to a static inert atmosphere which remains



FIG. 1. Schematic of the two-dimensional thin film system.

at a constant pressure. The zeta potential of the substrate is
represented by ζb. Due to the specific ion adsorption [19] at the
liquid-gas interface, the resulting zeta potential is represented
by ζInterface. The magnitude of the external electric field is taken
as Eext and the initial film thickness is taken as d while the
location of the free surface is represented by y = h(x,t).

The fluid considered here is taken to be an aqueous solution
of a symmetric electrolyte with low concentration to neglect
the Joule heating effects [20]. This ensures constant fluid
properties, even upon the application of large electric fields.
Working with such a low concentration generates also the
Debye length of the order of the thickness of the fluid film
considered in this study. The low concentration study allows
us to use the Debye-Huckel formulation for a potential field in
an electric double layer with an assumption that the external
electric field has no effect on the ionic distribution in the double
layer. Hence, the net electrical potential field in the system is
developed as a superposition of two potential fields. The first
one is due to the formation of the EDL and is represented by the
potential φ1(y). The second field is due to the external electric
field Eext, which is represented as a gradient of the potential
φ2(x). Hence, the net electric potential in the system can be
written as φ(x,y) = φ1(y) + φ2(x). Upon using the classical
Poisson-Boltzmann formulation the EDL potential distribution
is obtained as

d2φ1

dy2
= −ρe

ε
, (1)

where ρe is the charge density and ε is the dielectric
permittivity of the ionic solution. The net charge density
follows the Boltzmann distribution and can be written as

ρe = −2zeρ0Sinh

(
ezφ1

kBθ

)
, (2)

where ρ0, z, kB , θ , and e are, respectively, the bulk ionic
density, the valence of the ions in the aqueous phase, the
Boltzmann constant, the temperature, and the electronic
charge. The electric potential distribution upon substituting
the value of charge distribution from Eq. (2) can be written as

d2φ1

dy2
= 2zeρ0

ε
Sinh

(
ezφ1

kBθ

)
. (3)

The electrical potential field φ2(x) due to the external
electric field Eext can be expressed as

Eext = −dφ2

dx
. (4)

Upon using nondimensional parameters as �1 = φ1/ζb,
�2 = φ2/ζb, X = x/d, Y = y/d, H = h/d, Eq. (3) can be
written as

d2�1

dY 2
= βSinh(χ�1), (5)

where β = (kd)2/χ , χ = (ezζb)/(kBθ ) is the ionic energy pa-
rameter and k is the Debye-Huckel parameter, which is defined
as the inverse of the Debye length λD =

√
(εkBθ )/(2ρ0z2e2).

Within the approximation of Debye Huckel linearization,
which is valid for χ � 1, the resulting linearized Poisson
Boltzmann equation can be written as

d2�1

dY 2
= βχ�1. (6)

The associated boundary conditions on the potential are
given by �1(0) = 1,�1(H ) = ZR , where ZR = ζInterface/ζb is
the ratio of the zeta potential at the free surface and at the
substrate. The zeta potential at the free surface is a function of
a variety of parameters involving fluid and substrate properties
and can be measured using various specifically designed
instruments [21]. Upon solving Eq. (6) with the mentioned
boundary conditions, the electrostatic potential distribution
�1(Y ) can be obtained as

�1(Y ) = 1

Sinh
(

H
ND

) {
ZRSinh

(
Y

ND

)
+ Sinh

(
H − Y

ND

)}
,

(7)

where ND = λD/d = 1/
√

χβ is the Debye number.
Upon using the dimensionless variables, the external

electric-field-generated potential, �2(X) obeys the following
relationship:

d�2

dX
= −Eextd

ζb

= − 1

ER

, (8)

where ER = ζb/(Eextd) is the relative strength of the zeta
potential to the applied electric field. Hence the solution
for �2(X) with the boundary condition �2(0) = 0 can be
obtained as

�2(X) = − X

ER

. (9)

Hence, the total electric potential can be written as

�(X,Y ) = �1(Y ) + �2(X) = − X

ER

+ 1

Sinh
(

H
ND

)
×

{
ZRSinh

(
Y

ND

)
+ Sinh

(
H − Y

ND

)}
. (10)

The corresponding electric field can be calculated as E =
−∇φ.

The external electric field also leads to Maxwell stress (�M )
on the fluidic system. Thus the total stress (�T ) acting on the



fluid can be written as a combination of both hydrodynamic
(�H ) and Maxwell stress components as

�T = �H + �M

= −
(

p + ε|E|2
2

)
I + μ(∇u + ∇uT ) + εE E, (11)

where the Maxwell stress tensor �M in the absence of magnetic
field can be written as

�M = −ε|E|2
2

I + εE E. (12)

In problems involving thin films where the Debye length is
of the order of the film thickness, the effect of intermolecular
interactions cannot be ignored. This intermolecular interaction
manifests itself in the form of a disjoining pressure term in
momentum equations. The disjoining pressure as defined by
Derjaguin et al. [22] corresponds to the excess pressure needed
to maintain mechanical equilibrium between the pressure
buildup in the liquid film due to the thinning process and the
pressure applied to the surface of the film. It is represented as
a pressure term in the momentum equations and its dominant
molecular component is defined as

pd = − a

6πh3
, (13)

where a is the Hamaker’s constant and h is the film thickness.

III. GOVERNING EQUATIONS

The mass and momentum conservation equations for a
Newtonian fluid with incompressible flow can be written as

∇ · u = 0,

ρ

[
∂u
∂t

+ (u · ∇)u
]

= −∇(p + pd ) + μ∇2u + ∇ · �M

= −∇pd + ∇ · �T . (14)

At the substrate, no-slip and no-penetration conditions are
assumed. At the free surface, which is located at y = h(x,t),
the jump of shear and normal stresses can be written as,
respectively,

[t · �T · n] = 0, (15)

[n · �T · n] = γ κ, (16)

where γ κ is the capillary force with γ being the surface
tension and κ the local curvature of the interface. The
dimensionless equations are written using the viscous
time scale T = tν/d2. The corresponding dimensionless
velocities and pressure are then U = u d/ν, V = v d/ν, and
P = p d2/(ρν2). These equations can hence be written as

∂U

∂X
+ ∂V

∂Y
= 0, (17)

∂U

∂T
+ U

∂U

∂X
+ V

∂U

∂Y
= −∂P

∂X
+ 3AHx

H 4
+ ∂2U

∂X2
+ ∂2U

∂Y 2

+NEOER

∂�

∂X

(
∂2�

∂X2
+ ∂2�

∂Y 2

)
,

(18)
∂V

∂T
+ U

∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+ ∂2V

∂X2
+ ∂2V

∂Y 2

+NEOER

∂�

∂Y

(
∂2�

∂X2
+ ∂2�

∂Y 2

)
,

(19)

where NEO = (εEextdζb)/(ρν2) is the electro-osmotic
number, A = −a/(6πρdν2) is a dimensionless disjoining
pressure parameter. The dimensionless boundary conditions
at the substrate (Y = 0) are

U (X,0) = 0, V (X,0) = 0. (20)

The continuity of shear and normal stresses at the free surface
Y = H (X,T ) can be written as, respectively,

[(
∂U

∂Y
+ ∂V

∂X

){
1 −

(
∂H

∂X

)2}
− 4

∂H

∂X

∂U

∂X

]
+ NEOER

[
∂�

∂X

∂�

∂Y

{
1 −

(
∂H

∂X

)2}
− ∂H

∂X

{(
∂�

∂X

)2

−
(

∂�

∂Y

)2}]
= 0,

(21)

−
[
P + NEoER

2

{(
∂�

∂X

)2

+
(

∂�

∂Y

)2}]
+ 2{

1 + (
∂H
∂X

)2}
[
∂U

∂X

{(
∂H

∂X

)2

− 1

}
− ∂H

∂X

(
∂U

∂Y
+ ∂V

∂X

)]

+ NEOER{
1 + (

∂H
∂X

)2}
{(

∂�

∂X

)2(
∂H

∂X

)2

+
(

∂�

∂Y

)2

− 2
∂H

∂X

∂�

∂X

∂�

∂Y

}
= S ∂2H

∂X2{
1 + (

∂H
∂X

)2} 3
2

, (22)

where S = γ d/ρν2 is the dimensionless surface tension parameter.
The kinematic condition at the free surface Y = H (X,T ) is the following:

V = ∂H

∂T
+ U

∂H

∂X
. (23)



IV. LINEAR STABILITY ANALYSIS

A. Basic state solution

The basic state solution is obtained by considering the film
to be of uniform thickness. The problem hence reduces to
a one-dimensional steady flow (velocity Ub(Y )) with a flat
interface (H (X,T ) = 1). The base state governing equations
in dimensionless form are

∂Ub/∂X = 0, (24)

0 = ∂2Ub

∂Y 2
+ NEO

N2
DSinh

(
1

ND

)

×
{
ZRSinh

(
Y

ND

)
+ Sinh

(
1 − Y

ND

) }
. (25)

The no-slip condition at the substrate (Y = 0) leads to

Ub(0) = 0, (26)

and the continuity of shear and normal stresses at Y = 1 are
respectively

dUb

dY
+ NEOER

∂�

∂X

∂�

∂Y
= 0, (27)

−Pb − NEOER

2

{(
∂�

∂X

)2

+
(

∂�

∂Y

)2}

+NEOER

(
∂�

∂Y

)2

= 0. (28)

From Eqs. (24) to (28), the solution for Ub(Y ) can be
obtained as follows:

Ub(Y ) = −NEO

(
1 − ZRSinh

(
Y

ND

) + Sinh
(

1−Y
ND

)
Sinh

(
1

ND

) )
.

(29)

The fluid velocity at the free surface is then

Ub(1) = NEO(ZR − 1), (30)

which has a linear dependence upon the zeta potential at the
interface. This dependence can facilitate or delay the free
surface stability by either increasing or decreasing the shear
stress [16].

B. Normal mode analysis

The perturbation in flow variables is introduced as follows:

U (X,Y,T ) = Ub(Y ) + Ũ (X,Y,T ),

V (X,Y,T ) = Ṽ (X,Y,T ),

P (X,Y,T ) = Pb(Y ) + P̃ (X,Y,T ),

H (X,T ) = 1 + H̃ (X,T ), (31)

where variables with a tilde correspond to perturbation
variables. To reduce the number of dependent variables,
the stream function is introduced as Ũ = ∂�̃

∂Y
,Ṽ = − ∂�̃

∂X
.

Using the normal mode analysis with perturbation pa-
rameters given as �̃(X,Y,T ) = �(Y )eiα(X−CT ),P̃ (X,Y,T ) =
�(Y )eiα(X−CT ),H̃ (X,T ) = ηeiα(X−CT ), where α is the wave
number and C is the wave velocity, the Orr-Sommerfeld
equations are obtained by eliminating pressure terms from the
governing set of equations. The resulting eigenvalue problem
is given by

(D2 − α2)2�(Y ) + iα

[
(C − Ub)(D2 − α2) + d2Ub

dY 2

]
�(Y ) = 0, �(0) = D�(0) = 0,

(D2 − 3α2)�(1) + iα

[
�(1)

dUb(1)

dY
+ [C − Ub(1)]D�(1)

]
+ iαη(3A − α2S) = 0, (32)

(D2 + α2)�(1) + d2Ub

dY 2
− iαηNEOER

[(
∂�

∂X

)2

−
(

∂�

∂Y

)2]
= 0, �(1) + η[C − Ub(1)] = 0,

where D = d
dY

.
In thin film stability problems, the long wave analysis of

the resulting Orr-Sommerfeld equations yields results that
capture the essential features of the full numerical solution of
the complex set of equations. Hence the stability information
of thin film systems can be recovered without solving the
complete set of equations. Here, Yih’s method [17] is used
to expand the dependent variables like � and C in powers
of α and solve equations at zeroth and first orders in α with
the assumption that α2S ∼ O(1), which is valid for thin film
flows [23]. As a consequence we use the developments

� = �0 + iα�1 − α2�2, . . . ,

C = C0 + iαC1 − α2C2, . . . . (33)

Upon substituting the expansion of the wave velocity
Eq. (33)] in the perturbation term �̃(X,Y,T ) and ignoring
the higher powers of α[∼O(α3)], we obtain

�̃(X,Y,T ) = �(Y )eα2C1T eiα(X−C0T ). (34)

It can be seen that the marginal stability curves for the
system can be obtained with α2C1 = 0, which in turn provides
the marginal stability characteristic equation for the system.
The solution for C1 is worked out in the Appendix. Here α2C1

is equivalent to the real part of the growth rate (σR) in classical
formulation. The characteristic stability curves are graphically
presented by plotting the variation of σR versus α in the range
of α � O(1) (i.e., in the long wave limit).



ER

The flow actuating mechanism in this study is the externally 
applied electric field, which acts as a body force in the fluid 
bulk and manifests itself as the Maxwell stress on the free 
surface. Its contribution is reflected in the two dimensionless 
numbers, namely, NEO and ER . It has to be noted that, 
by definition, the mentioned dimensionless numbers also 
depend upon another imposed field variable: the substrate 
zeta potential. To study the effect of the imposed electric 
field and the substrate zeta potential separately, the following 
combination of NEO and ER is presented. By varying the ratio 
(NEO ) one can study the effect of the variation of the electric
field on the stability of the system. While selectively varying
the product (NEOER) one can study the effect of the variation
of the substrate zeta potential on the stability of the system. The

other important parameters which have a significant effect on
free surface stability are the dimensionless Hamaker constant
(A), the Debye number (ND), the surface tension parameter
(S), and the ratio of the interfacial to substrate zeta potential
(ZR). The real part of the growth rate, σR as obtained from the
solution of the Orr-Sommerfeld equations from asymptotic
analysis, can be written as

σR = f (S)α4 + g(A,NEO,ER,ZR,ND)α2, (35)

where

f (S) = −S

3
, (36)

and

g(A,NEO,ER,ZR,ND) = A + NEO

2ER

−
{

Cosech

(
1

ND

)
− ZRCoth

(
1

ND

)}
2NEOER

−
{

9N2
D − 5NDCoth

(
1

ND

)
+

(
1

ND

− 4ND

)
Cosech

(
1

ND

)}
N2

EOZR

+
{

5

48N4
D

− 11

24N2
D

− 1

2
+ 9N2

D +
(

1

ND

− 4ND

)
Coth

(
1

ND

)
− 5NDCosech

(
1

ND

)}
N2

EOZ2
R.

(37)

V. RESULTS AND DISCUSSION

To highlight the role of the interfacial Maxwell stress
on the thin film stability, two characteristic stability curves
were worked out. The first was obtained by removing the
Maxwell stress term �M from the total stress term �T in
the free surface boundary conditions. This method brings out
the analysis in which the electric field contributes as a body
force only in the momentum equations. The second charac-
teristic stability curve was obtained by keeping the Maxwell
stress term in the total stress at the free surface boundary
condition. Upon plotting the real part of the growth rate against
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FIG. 2. Comparison of the variation of the real part of growth
rate (σR) as a function of the wave number (α) for S = 1,ZR = 1,

ND = 0.5,A = 1.

the wave number for both cases, it was found that ignoring the
Maxwell stress on the free surface overestimates the instability
(see Fig. 2). This overprediction can significantly affect the
sensitive dependence of the stability of the system which is
a function of a large number of the mentioned parameters.
The parametric dependence of the stability of the system will
be discussed henceforth within the purview of the model that
includes the contribution of the Maxwell stress at the free
surface.

The order of magnitude analysis on Eq. (18), highlights
the relative contribution of the two important phenomena,
namely, disjoining pressure and Maxwell stress to the thin

d (in nm)
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,  
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FIG. 3. Comparison of the dimensionless contributions of dis-
joining pressure 3A and Maxwell stress as a function of the film
thickness d keeping the values of other parameters fixed.
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FIG. 4. Growth rate variation with the wave number for different values of the dimensionless surface tension parameter S with NEOER = 1,
ND = 0.5, ZR = 0 and (a) A = 0.1, (b) A = 1.

film dynamics. Using Eq. (10), one can show that the Maxwell
stress contribution to the momentum equation represented by
NEOER

∂�
∂X

∇2� term reduces to the order ∼ O( NEO

(ND)2 ). The

variation of NEO

N2
D

and 3A (representing the disjoining pressure)
can be plotted (see Fig. 3) as a function of d for fixed values of
the parameters for a typical water-air system: ρ ∼ 103 kg/m3,
γ ∼ 0.1 N/m, a ∼ −10−19 J, ν ∼ 10−6 m2/s, ε ∼ 80 ε0

F/m where ε0 is the permittivity of vacuum. The typical
values of controllable parameters are taken as ζb = 25 mV,
Eext = 106 V/m, c0 = 0.01 mM. In Fig. 3 the two curves 3A

and NEO/N2
D versus d are giving an intersection point which

demarcates two zones showing the relative dominance of the
two novel effects, disjoining pressure and Maxwell stress. In
the above case the value of the corresponding film thickness
is approximately 76 nm. So this means that for the given
values of parameters if film thickness is greater than 76 nm,
the effect of disjoining pressure will be less compared to the
Maxwell stress.

Figure 4 shows the growth rate σR as a function of the wave
number for different values of the surface tension parameter
S and two values of the Hamaker’s constant A. All the other
parameters are taken as fixed. For both values of A, the system
becomes more stable at large values of the wave number as
the surface tension parameter S increases. This can also be
observed from Eqs. (35) and (36). While at the small wave
numbers, that is, in the domain of long wave disturbances, the
stabilizing effect of surface tension diminishes.

It can also be seen that the disjoining pressure represented
through the dimensionless constant A has a significant effect
on the stability of the system in the long wave domain.
Figure 5 shows the effect of A on the growth rate, σR for fixed
values of electrical field Eext [Fig. 5(a)], and substrate zeta
potential ζb [Fig. 5(b)]. From these figures it is observed that
upon increasing the disjoining pressure, the system becomes
unstable. This phenomenon can be explained by the fact that
increasing the disjoining pressure pushes the system away
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FIG. 5. Growth rate variation with the wave number for different values of dimensionless disjoining pressure A with ND = 0.1, S = 0.1, 
ZR = 0 and (a) NEO/ER = 2500, (b) NEOER = 0.01.
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FIG. 6. Growth rate variation with the wave number for different values of the applied electric field with A = 0.1, ND = 0.1, ZR = 0 and
(a) S = 0.1, (b) S = 10.

from the mechanical equilibrium of the thin film hence making
the system unstable.

The effect of the externally applied electric field, which
can be reflected through the ratio, NEO

ER
on the stability of

the system is clearly observed from Eq. (37), which shows
that the increase of the applied electric field makes the
system more unstable. This is an expected phenomenon, as
upon increasing the magnitude of the electric field Eext the
unbalanced interfacial stress components due to the resulting
Maxwell stress increase, pushing the system away from
equilibrium. This effect is shown in Fig. 6 for two values of S.

It is also known that, influenced by the nature of the
substrate-fluid interactions and the fluid properties, the in-
terfacial zeta potential is determined and can be measured
experimentally. Under electro-osmotic flows, the effect of
the substrate zeta potential ζb has a significant effect on the
interfacial stability of thin films. This is shown in Fig. 7 for
two characteristic values of NEOER,ND,S and fixed value of

A. As can be seen from the expression of the growth factor
[Eqs. (35) through (37)], the product NEOER , which is
proportional to ζ 2

b , has a negative coefficient and leads to a
decrease in the growth factor when the substrate zeta potential
is increased. Hence, when the substrate zeta potential is
increased, the system becomes more stable, which is clearly
shown in Fig. 7.

From the basic state velocity distribution [see Eq. (29)],
one can see that depending upon the interfacial zeta potential
the interface can either reduce the interfacial stress or enhance
it. This is also shown in Fig. 8 where one can also see that
when the interface has an opposite polarity as compared to
the substrate, it reduces the interfacial stress and when the
free surface polarity is the same as the substrate, it supports
the interfacial stress. This relation between interfacial polarity
and interfacial stress also manifests itself in the system stability
equations [Eqs. (35) through (37)] as expected. It is observed
that the interfacial polarity with respect to the substrate zeta
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potential, which is represented by the ratio ZR , tends to
increase the system stability as it reduces the interfacial stress
when ZR is negative (i.e., of the opposite polarity to the
substrate). The system becomes more unstable when ZR is
positive (i.e., of the same polarity as of the substrate as it
enhances the interfacial stress). This effect is shown in Fig. 9.
This can also be attributed to the impact of the substrate zeta
potential on the distribution of charged species in the bulk of
the fluid. As the zeta potential increases, the concentration of
counterion species increases near the substrate, decreasing the
ionic concentration in the bulk which screens the magnitude of
the net electric potential as felt at the interface. This decreases
the contributions of the charged substrate to the interfacial
Maxwell stress hence making the system more stable. This
mechanism is also clearly highlighted in Fig. 7, which shows
the growth rate variation for two opposite values of ZR with
NEOER as the varying parameter and all the other parameters
being fixed.

The effect of the initial film thickness as compared to
the Debye length, represented by Debye number ND , on
the interfacial stability is not obvious by observing the
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FIG. 9. Growth rate variation with the wave number for different values of the interfacial zeta potential. The values of other fixed parameters 
are (a) NEOER = 1, ND = 1, S = 0.1, A = 0.1, (b) NEOER = 1, ND = 1, S = 10, A = 0.1, (c) NEO/ER = 100, ND = 0.5, S = 0.1, A = 0.1,
(d) NEO/ER = 100, ND = 1, S = 0.1, A = 0.1.
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FIG. 10. Growth rate variation with the wave number for different values of the Debye number, which corresponds to a varying Debye
length for a given film thickness. The values of other fixed parameters are (a) NEOER = 1, ZR = 0, S = 0.1, A = 0.1, (b) NEOER = 0.01,
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growth factor characteristic equation [Eqs. (35) through (37)].
Figure 10 shows the effect of ND on the stability of the system
for different values of all the other parameters. It is observed
from this figure that the stability of the system increases upon
increasing ND . This can be explained by the fact that for a given
film thickness d, an increase in Debye number corresponds
to an increasing Debye length, which in turn corresponds
to a decrease in ionic concentration as λD ∝ 1√

c0
, where c0

is the ionic concentration. Hence, a decrease in the ionic
concentration drives the system naturally toward stability. The
flow actuating mechanism in this problem is the Coulombic
force acting in the fluid by the external electric field to the
distribution of ions in the fluid. If the ionic concentration c0

is low, so will be the net forces by the external electric field
on the ionic solution. Hence, in this limit of large ND , the
flow will be reduced and consequently the interface will stay
undisturbed.

Conditions leading to the onset of instability can be
complemented by a study of a mode that corresponds to the

maximum growth rate of a disturbance. This mode, which is
characterized as the most dangerous mode (αcritical), is studied
as a function of the set of parameters mentioned above. The
most dangerous mode is the wave number for which the
characteristic stability curve [Eq. (35)] of a system reaches
a maximum. The resulting wave number is obtained as a
function of dimensionless parameters through the following
equation:

αcritical =
√

−g(A,NEO,ER,ZR,ND)

2f (S)
, (38)

with a condition that g(A,NEO,ER,ZR,ND) is positive.
The αcritical as obtained from the above equation was studied

for the various dimensionless parameters and representative
results are presented in Figs. 11 to 13. The increase in van
der Waals parameter (A) increases the value of αcritical (see
Fig. 11). It is also observed that the increase in the value
of surface tension decreases the value of αcritical, which is
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consistent with the observation that an increase in surface
tension increases the stability of the system by decreasing the
most dangerous mode. It is observed that the most dangerous
mode is independent of Debye number for λD > d/2 (see
Fig. 12) and suggests that the most dangerous wavelength
is of the order of the film thickness in this range of ND ,
independently of the other parameters. For a given value of the
Debye number, αcritical increases with the wall zeta potential
(NEOER) (see Fig. 12). Finally, the most dangerous mode
is independent of the polarity of the interface zeta potential
(ZR) and increases with its magnitude (see Fig. 13). Also,
the increase in the magnitude of the external electric field
(NEO/ER) increases the value of the most dangerous mode.

VI. CONCLUSION

In this work, the stability of the free surface of an
ultrathin liquid film under electro-osmotic flow conditions
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was investigated. Through long-wave asymptotic analysis of
the Orr-Sommerfeld equations, a complex dependence of
the film stability on various parameters like surface tension,
Hamaker’s constant for fluid-substrate interaction, magnitude
of the externally applied electric field, substrate, and free
surface zeta potential was highlighted. It was observed that
ignoring the free surface Maxwell stress under electro-osmotic
flow, overestimates the free surface instability. The presented
characteristic stability curve helps to identify the critical values
of various parameters presented in the paper, which can be
effective in designing thin film flow process in microfluidic
devices. Some of the parameter-dependent stability trends are
summarized as follows.

(a) The surface tension increases the interfacial stability
as expected and has a stabilizing effect for small wavelength
disturbances.

(b) It is observed that the film stability decreases upon
increasing the magnitude of the applied electric field: this is
due to an increase in the Maxwell stresses at the interface.

(c) The increase in the value of substrate zeta potential
tends to stabilize the flow.

(d) The interfacial zeta potential has a rather interesting
effect on the thin film stability. In general, it is seen that upon
increasing the magnitude of the interfacial zeta potential, the
film stability decreases and at the same time, if the interfacial
zeta potential is of the opposite polarity of the substrate, it
increases the film stability.

(e) It is also observed that increasing the magnitude of the
disjoining pressure reduces film stability.

(f) Finally, it was also shown that the increase in Debye
length, which corresponds to an increase in Debye number
(i.e., to a decrease of the ionic concentration for a given film
thickness) increases film stability.

APPENDIX

The solution of the Orr-Sommerfeld equations [Eq. (32)] is
obtained using the asymptotic expansion [Eq. (33)] method.



The set of equations with α0 order are as follows

D4�0 = 0, (A1)

with the boundary conditions as

�0(0) = 0, D�0(0) = 0, D2[�0(1) + ηUb(1)] = 0, D3�0(1) = 0, �0(1) − η[C0 − Ub(1)] = 0. (A2)

Upon solving the above set of equations the solution in �0 is

�0(Y ) = −NEOY 2ZRη

2ND
2 (A3)

and the C0 can be obtained as
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. (A4)

The set of equations with α1 order are as follows:

D4�1 = −{[C0 − Ub(Y )]D2�0(Y ) + D2Ub(Y )�0(Y )}
(A5)

with the boundary conditions as

�1(0) = 0,

D�1(0) = 0,
(A6)

D3�1(1) + [C0 − Ub(1)] D�0(1) + DUb(1)�0(1) + η(3A − α2S) = 0,

D2�1(1) − ηNEOER
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) = 0.

Upon solving Eq. (A5), with the boundary conditions Eqs. (A6), the solution of �1(Y ) is
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C1 can be obtained from the kinematic boundary condition as

C1 = �1(1)

η
. (A8)
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