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Local Autonomy-Based Haptic-Robot Interaction
with Dual-Proxy Model

Mikael Jorda1, Margot Vulliez2, and Oussama Khatib1,

Abstract

We present a new paradigm for performing remote haptic-robot interactive operations. The new paradigm is anchored on an
architecture that combines local autonomy with a high-level exchange strategy of reference input. This represents a departure from
the conventional reliance on direct exchange of low-level control signals in a global feedback control system. The new approach
establishes two local autonomous controllers acting on the robot and the haptic device, interfaced at a higher level via a dual-proxy
model. The dual proxy is a passive bridge between the local autonomous controllers. It generates appropriate motion and force
reference inputs that are consistent with the task physical interactions and the levels of autonomy. Its model is adjusted online
with respect to exchanged position, contact, and environment geometry information. A key component in this methodology is the
perception algorithm on the robot side, the Force-Space Particle Filter, designed to reliably estimate in real time the environment
contact geometry. The series of simulations and physical experimental validations of the approach demonstrate the transparency
and high fidelity in haptic-robot interaction and its inherent robustness to communication delays.
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Local Autonomy-Based Haptic-Robot Interaction
with Dual-Proxy Model

I. INTRODUCTION

ROBOTICS, well established in industrial production, is
rapidly expanding into other areas that will have great

impact on our society. The next stages will see new robotic
systems that are able to work with and among humans in
diverse environments, well outside of their usual, structured,
factory domains. As robots become more and more a part
of our lives, they will require greater and greater autonomy
both at task execution levels (functional autonomy) and the
situational-understanding and task-planning levels (cognitive
autonomy). While much recent research increases robotic
manipulation capabilities, the lack of general frameworks
for high-level task understanding largely prevents modern
systems from achieving full autonomy. One way of building
highly capable robotic systems with today’s technologies is to
combine the cognitive autonomy and task expertise of humans
with the functional autonomy of the robot executing the task.
This improves both the human capabilities (becoming stronger
and faster with the robot support) and the robot’s capabilities
(unable to complete the task without human guidance). A
promising method to enable such human-robot collaborative
systems is haptic teleoperation. This technology enables the
human operator remote control of a robot while receiving feed-
back on its interactions. Haptic teleoperation is particularly
beneficial in confined, unsafe, or sensitive environments such
as hazardous sites, underwater, in space or surgery rooms. It
naturally combines human high-level intelligence and robot
physical capabilities while maintaining the safety and comfort
required for the human’s involvement.

Conventional teleoperation methods do not sufficiently ex-
ploit the robot’s functional autonomy. These methods, based
on a direct exchange of position, velocity and/or force com-
mands between the human operator and the remote robot, aim
at transferring the human intent to the robot and returning
relevant task feedback to attain haptic transparency. They are
often subject to additional transformations to maintain system
stability. Such a direct low-level design introduces many chal-
lenges due to inaccurate dynamic modeling, sensor noise, task
uncertainties, human-in-the-loop disturbances, communication
time delays and non collocation as detailed in Section II. In
particular, precise robot contact control is very challenging
without local autonomy on the robot side. These challenges
have been at the heart of haptic research as they impose a
trade off between haptic transparency and stability.

Our proposal, in contrast, is the design of a new paradigm
for haptic-robot control. Our approach leverages the functional
autonomy on the robot and haptic sides by adding reasoning
between the two via a dual-proxy model. The new concept
of local autonomy and proxy-based haptic-robot interaction is

Fig. 1. Dual-proxy model for local autonomy-based haptic interaction. The
dual-proxy model computes proxys for the robot and haptic device, generates
safe and consistent control inputs, and parametrizes local controllers which
regulate the desired behaviors on both sides. There is no fast global feedback
loop required.

depicted in Figure 1. Instead of exchanging direct commands
between the robot and haptic device in a global feedback
loop, we implement three different components. First, a local,
autonomous controller on the robot side ensures a safe and
accurate behavior toward the task objective. Second, a local
controller on the haptic device side delivers effective task-
specific haptic feedback to the operator. Third, a smart dual-
proxy model exchanges high-level information through the
communication channel and generates safe and consistent
reference inputs for both local controllers. Conceptually, this
approach is similar to having the haptic device and robot
inform a task planner (the dual-proxy model) that decides
the next steps to take on both sides, rather than connecting
them directly at the task level. This enables more functional
autonomy on both sides since the input can come from
either the dual-proxy model or a local planner for different
parts of the task and at under different circumstances. In
addition, this approach does not introduce non-collocation in
the task control which provides the advantageous side effect
of removing stability issues that arise when using conventional
teleoperation systems with time-delayed communication. The
system’s stability now depends on the stability of the two local
controllers, and the interactions between the dual-proxy model
and the controllers that occur at a slower rate. Finally, this
approach also seeks to address the wide differences in remote
tasks and in the physical interactions they involve within a
simple and generic framework. As such, this paper brings the
following contributions:

(i) The development of a novel, modular and adaptable
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approach to haptic-robot control that leverages the robot
functional autonomy and implements two local, au-
tonomous controllers that interact at a higher level,
rather than relying on a low-level global feedback loop.

(ii) The design of a dual-proxy model that acts as a bridge
between the local control loops by handling the commu-
nication and generating safe and physically consistent
reference inputs on both sides.

(iii) The design of a contact perception method, the Force-
Space Particle Filter, that builds a local model of the
environment to increase the robot functional autonomy
and enable a fully autonomous parameterization of the
controllers by the dual-proxy model.

(iv) The experimental validation of the new haptic teleop-
eration system on diverse contact interaction scenarios
with diverse communication delays.

This paper is organized as follows: Section II presents an
overview of related works and challenges in haptic control.
Section III introduces the local autonomy-based approach
and details its main components. Section IV discusses the
Force-Space Particle Filter developed for adjusting the system
behavior to the contact situation. Section V describes our
implementation of the framework and details the selected local
controllers, presenting simulation results showing the perfor-
mances of the contact space estimator and local controllers.
Section VI presents experimental results for different contact
tasks under different time delays. Section VII presents our
conclusions and proposes future considerations for this work.

II. RELATED WORKS

Several decades of progress in haptics has advanced the
originating mechanically-coupled teleoperation manipulators
into the space of haptic-robot systems where a bilateral control
framework ensures force and position pairing between the
haptic device (user side) and the robot (the effector).

Most common bilateral teleoperation schemes are based
on the classic force-position flow. It consists in sending the
position of the haptic device as the input to an impedance
controller on the robot [1], while sensing the interaction forces
at the robot tool via a force sensor, then directly transferring
this back to the haptic device for the human operator to expe-
rience. Unfortunately, the apparent inertia and friction of the
haptic device quickly interferes with the perceived impedance,
and this impacts feedback realism when using impedance-
type controller [2]. High-inertia master devices either require
closing the haptic control loop with force sensory feedback
at the device level [3] or reversing the controlled flow by
sensing the force applied by the operator on the haptic device
and sending it as the input to an admittance controller on the
robot [4]. With this admittance-type architecture, the velocity
or displacement of the robot is sent back to control the haptic
device and, therefore, create an implicit haptic feedback. Once
again, issues arise as both the closed-loop admittance-type
and impedance-type controllers are sensitive to environmental
factors – such as its stiffness – and can exhibit position
tracking errors or oscillatory behaviors [5].

Hybrid solutions have been designed to provide a bet-
ter transparency balance under environmental change, such
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Fig. 2. Conventional haptic bilateral control implements a global feedback
loop, which suffers from uncertainties and limits of the teleoperator, non
collocation and time delays. Such drawbacks result in a trade-off between
haptic transparency and stability in real-world applications.

as continuously switching and interpolating between the
impedance and admittance causality – at a fixed switching
period [6] or with respect to the human input frequency [7].
However, only a four-channel control framework where both
position and force of the device and robot are exchanged
could theoretically achieve perfect transparency [8]. The four-
channel bilateral controller has been widely studied and ex-
tended to include rate-controlled teleoperation systems [9] and
both impedance and admittance-type robots into a generic
framework [10]. Experimental evaluations of impedance, po-
sition, and force tracking [11] during free motions and hard
contacts show that the four-channel architecture is clearly
superior to the force-position controller, in any respect, by
making a good use of available sensory information.

While four-channel bilateral architectures allow perfect
transparency under ideal conditions, they face several issues in
real world, as depicted in Figure 2. Unpredictable dynamics,
such as variable friction terms and effects of the human grasp
dynamics [12], can cause errors and complicates the applica-
tion of model-based methods – e.g. integrating a dynamic feed-
forward term on the haptic device [13] or compensating for
the robot inertial, Coriolis, and friction forces within a model-
based natural admittance approach [14]. Sensor noise, time-
varying delays, and communication data losses – among other
effects – add up to model uncertainties and induce critical
stability issues [15], [10]. They also reduce the dynamic range
of achievable impedance [16] and impact transparency in
contact, particularly during interaction with stiff objects [17].

Numerous methods have been proposed in the literature
aimed at improving performance of haptic-robot systems.
Transparency can be increased through adding local closed
loops such as a force control loop [18] or two simultaneous
force and position weighted loops [19] at the robot level,
by modifying the force-position mapping within the bilateral
architecture using non-linear and linear time-invariant filters
[20], or by scaling the exchanged position/velocity and force
variables [21]. Adaptive control laws are also commonly used
to increase transparency of the teleoperation system, since
they can estimate uncertainties in the environment, such as
the environment stiffness [22], [23], compensate for unknown
behavior of the human operator [24], adjust the models of
the haptic device and robot [25], [26], and address hardware
limitations such as the actuator saturation [27].
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On the other hand, increasing stability of the bilateral
controller in the presence of time delays and uncertainties
has been the focus of many efforts (see [28] and [29] for
surveys). Most are based on the passivity concept which builds
upon the fact that a passive zero-state detectable system is
stable in the Lyapunov-Krasovskii sense. Instability is mainly
due to power variables (force, velocity) being transmitted
through the communication channel, to be input at both
sides of the global feedback loop. These power variables
inject extra energy into the overall system and, therefore,
jeopardize system stability. The first keystone work of [30]
proposed a scattering method to maintain passivity of the
communication channel. [31] proved that system energy can be
preserved through the communication channel by transforming
the exchanged data into specific wave variables. Such a wave-
variable transformation can stabilize the four-channel bilateral
controller [32] but, it can quickly skew position tracking of
teleoperators, suffers from wave reflection which can result
in unpredictable disturbances, and cannot guarantee system
passivity in the presence of time-varying delays, jitter, or data
loss [33]. This remains a foundation of numerous wave-based
controllers, improving robustness to time-varying delays or
packet losses [34] and force/velocity tracking [35].

Scattering and wave-based methods can be over conserva-
tive since they guarantee system passivity in the frequency
domain for the worst-case scenario. To adjust the energy
dissipation to the exactly-needed amount at the current time,
the Time Domain Passivity Approach (TDPA) [36] extends
the passivity-based approach to the time domain. This method
does not require an exact estimation of the system model as
long as one can observe the energy flows of its equivalent
network. TDPA can, therefore, ensure the overall stability of
the bilateral teleoperator, in force-position [37], as well as in
position-position [38] or within the four-channel controller
[39]. TDPA has also been extended to ensure the system
passivity under time-varying communication delays [40], but
at the expense of highly conservative passivity conditions,
and resulting tracking errors. TDPA conservatism has been
addressed by methods which consider the energy reflection
from a storage element [41]. Overall, wave-variable controllers
are more transparent in free motion or for higher delays while
TDPA provides better performances in contact [42].

Even though passivity-based strategies can guarantee stabil-
ity under time-varying delays and uncertainties, they narrow
the range of achievable stiffness to maintain the passive behav-
ior and, therefore, decrease the system fidelity. The passivity
criterion is impacted by filtering and sampling delay variations,
sensor resolution, and the system dynamics [43]. Methods are
therefore needed to compensate for the degraded transparency
while maintaining a sufficient level of force feedback fidelity
[44], [45] to ensure haptic-robot position tracking [46], [47],
or to reduce the inherent conflict between the transparency and
stability objectives of the control framework [48].

This short literature review shows that, currently, bilateral
haptic-robot coupling is provided through global feedback
loops, which ensure force-position tracking between the two
robots. While providing good performances at the expense
of increasing complexity, the most advanced architectures are

still balancing the trade-off between stability and transparency
of the haptic teleoperator. This balance is ensured within a
given bandwidth, under strictly limited conditions (such as a
bounded stiffness range) and with finely tuned control gains.
Aside from this complex tuning of the controller, such global-
loop control architectures do not adapt to significant changes
in the teleoperator design and can be strongly affected by
hardware parameters, such as stiffness and inertia of the haptic
device and the robot [49] and force sensing and filtering
quality [50], [51]. Real-world uncertainties, variability, and
constraints of teleoperators complicate the spread of haptic
applications outside of a limited circle of expertise. This
observation motivates our work – we aim to develop a generic
and modular approach to haptic-robot control that can easily
adapt to different tasks, haptic devices, and robots.

In his precursor works, Hannaford [52] shows that dupli-
cating the impedance control modality to the device side, to
form a bilateral impedance controller also known as position-
position controller, increases stability and robustness to time
delays, as two local impedance loops enforce the device and
robot commands. Another way to break down the global
feedback loop has been later proposed with the Model-
Mediated Telemanipulation (MMT) framework [53], [54]. The
MMT method abstracts sensory data, from the robot and other
potential sensors, to build and update an environment model.
Assuming that the environment is only slowly changing, its
model is transmitted at the master side to locally replicate the
interaction. The force feedback is, then, computed from the
interaction between a first-order dynamic proxy, connected to
the haptic device, and the local environment model. Then, the
slave robot either tracks the master motion command, in the
environment-model free space, or the master force command,
when a contact is detected between the proxy and the model.
Such a local proxy-based interaction allows stable behavior of
the teleoperation system under large communication delays.

Our framework further develops this idea of local controllers
and proxy-based interaction. We propose a novel paradigm for
haptic-robot control where both the haptic device and remote
robot are autonomous agents, enabling as much autonomy as
possible at the task level, and interfacing them at a higher
level, through a dual proxy, to ensure synchronized force-
position behaviors. The main improvements from the MMT
approach are : 1) Our framework leverages local autonomy
in the haptic device and the robot controllers. The robot,
and the haptic device, are fully autonomous and can locally
adjust their behavior with respect to their interaction with
the task environment, or with the human hand. For example,
the robot can create its own local model of the environment
to parameterize its local controller and improve its contact
behavior. 2) In MMT, a first-order dynamic proxy follows the
master kinematics, within the constrained environment model,
to embody a representation of the slave behavior. Our proxy
concept is different: a virtual object dynamically complies with
the state of each robot. The master proxy is directly computed
from the slave-robot configuration and is, therefore, physically
consistent with the robot behavior (most likely to have a
second-order dynamics). 3) The proxy-based interaction is
extended on both sides, to remove any direct coupling between



4

the haptic device and the robot. Two proxys are updated
from the haptic device and the robot configurations. Inputs
for the haptic and robot local controllers are then respectively
computed from the interaction between the haptic device and
the haptic proxy, and, between the robot and the robot proxy.
4) No global environment model needs to be estimated, since
the desired haptic feedback is computed from a virtual spring
which links the haptic device to the haptic proxy. It makes
our approach more robust to estimation errors as it only
takes advantages of local environment estimations. 5) The
bilateral dual-proxy model enables the integration of safety
conditions and physical constraints within the generation of the
controller commands. 6) Our generic framework is validated
on a real-world multi-DOF teleoperation system for several
case applications.

III. A NEW FRAMEWORK FOR HAPTIC-ROBOT
INTERACTION

In this discussion we reconsider haptic teleoperation through
a local autonomy-based control strategy. It implements local
controllers at the robot and haptic device sides, to respectively
monitor the task actions and provide a proper perception to
the user, while only exchanging high-level reference inputs
between the two robots. This approach is based on the intro-
duction of the dual-proxy model: a smart bridge between the
two local loops which encodes haptic-robot interactions.

A. Local autonomy-based approach

The concept of the new haptic control framework is depicted
in Figure 1. It comprises three main components: the device
local control loop, the robot local control loop, and the dual-
proxy model. Dividing the teleoperation scheme in these two
local loops – linked by the dual-proxy model – endows
the haptic device and the robot with a certain autonomy. It
prevents the exchange of direct force/velocity data through the
communication channel, as the local loops handle the motion
and force control of the robot and device. This local autonomy-
based approach separates functions and objectives of the two
robots. The haptic device must reflect the perception of the
task to the human operator through proper force feedback.
To meet this perception objective, the haptic local loop must
generate a high-fidelity remote sensing of the environment,
which means that free space must feel free while contact with
objects must feel real. On the other hand, the robot must
perform the remote actions to do the task while tracking the
human inputs. The robot controller monitors the end-effector
dynamic behavior and the task physical interactions, involving
both precise motion and contact force. Each local controller
is designed independently of the other and tuned with respect
to its targeted performance.

Using autonomous local controllers ensures the modularity
and generality of the framework since they can be easily
changed and tuned for adapting to different tasks or hardware
without having to redesign the whole system. In addition,
local controllers allow many possibilities for shared autonomy
where different parts of the task can be supervised via different
agents – autonomous or human – using dual-proxy models,

and provide easy interfacing with local sensing modalities to
improve the functional autonomy of the task. An example of
this latter point will be the use of the Force Space Particle
Filter in detecting the contact geometry of robot interactions
during operation and helping to parametrize the system.

B. Dual-proxy model
The notion of proxy was first developed for increased

robustness in haptic rendering and haptic shading of virtual
environments [55], [56], [57]. Similarly to the god point
concept [58], the idea is to create a point, the proxy, in the
virtual environment that kinematically follows the user input
but is subject to the constraints of the virtual environment. The
deviation between the proxy and the haptic device positions is
then used to generate a haptic spring force. It pulls the haptic
device toward the proxy, and therefore, replicates the envi-
ronmental constraints. It has been shown to be an extremely
effective model to render a virtual environment haptically. The
idea of the dual-proxy model is to define two proxys, one
for the robot and one for the haptic device that will be used
to generate commands for the local controllers. The proxys
are, therefore, virtual objects which represent the behavior
of the two robots in the workspace of their counterparts.
With this proxy-based approach, only position information has
to be transmitted over the network, which cannot jeopardize
stability of the teleoperation framework. The dual-proxy model
uses knowledge of the robot environment that can be known
a priori or computed with the online perception algorithm
described in section IV, and the knowledge of the robot and
haptic device states in order to generate inputs to the local
controllers. The dual-proxy model handles the communica-
tion between the robot and haptic device and prevents non-
collocation issues. It is described in Figure 3.

1) Computing haptic and robot proxys:
The first role of the dual-proxy model is to handle the

communication between the two robots and to generate a
proxy for each. The proxy captures the behavior of the robot
and of the haptic device in the frame of the other. To this
end, the dual-proxy model copies each robot position data and
transforms it through a proper workspace mapping. The most
commonly used mapping relates the two workspaces via a
translation, rotation, and constant scaling factor.

The haptic device current position xh and orientation Rh,
in pink, are measured in the device frame. They encode the
human desired pose for the robot. Positions and orientations
are sent to the dual-proxy model, where they are mapped onto
the robot frame – given the rotation matrix from the device
frame to the robot frame Rh−r, the translation between the
robot frame and the desired center of the robot workspace
in position pr−cw and orientation Rr−cw, and the scaling
factor s – in order to obtain the robot proxy position xp,r

and orientation Rp,r:

xp,r = pr−cw + sRT
h−r xh

Rp,r = RT
h−r Rh Rh−r Rr−cw

(1)

The reverse transformation computes the haptic proxy xp,h,
Rp,h from the robot position xr and orientation Rr:
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Fig. 3. A smart dual-proxy model replicates haptic-robot interactions within the local autonomy-based framework. It receives robot and task-related information
through the network and computes respective proxys for the two robots. Safe and consistent control inputs are generated on both sides from the robot-proxy
and haptic-proxy interaction.

xp,h = Rh−r (xr − pr−cw) / s

Rp,h = Rh−r Rr RT
r−cw RT

h−r

(2)

It is worth noting that the same workspace mapping trans-
formation is applied to any data passed through the network
from one robot to the other, in order to maintain the physical
consistency between all remote information. In particular, the
model of the robot environment geometry needs to be mapped
to the haptic device to maintain the correct force feedback.

In general purpose teleoperation applications, the commu-
nication network is often slower than the desired control
frequency and rarely ensures the hard-realtime constraints
of haptic-robot interaction. In addition, communication de-
lays and packet losses generate many issues in conventional
teleoperation systems that use one global feedback loop.
This is particularly true when there is a significant distance
between the haptic device and the robot, for example when
teleoperating a robot in space.

The dual-proxy model removes these communication is-
sues. Indeed, since the dual-proxy model and the two local
controllers are independently implemented, they can run at
different frequencies. Typically, the local control loops will run
at 1kHz or more in order to get the best possible performance.
However, the communication channel can run at a lower
frequency, which will mostly depend on the chosen communi-
cation technology, and will typically be between 10−100Hz.
In addition, this frequency difference enables the computation
of smooth proxys by averaging position data between two
consecutive communication messages. Finally, communication
delay and latency spikes can be monitored by the dual proxy
in many ways without compromising the performance of the
local control loops since it runs independently.

2) Task-related proxy projection:
The second role of the dual proxy is to use the proxys, robot

configurations, and robot environment information to generate
motion and force control inputs. A broad spectrum of physical
interactions are involved when performing tasks in haptic
teleoperation. Remote minimally-invasive surgical operations
require a high accuracy in motion while assembly tasks or
polishing works need precise perception and regulation of the

contact forces with the environment. This range of interaction
implies different objectives for the local control loops. To
achieve high fidelity in both motion and contact tasks, the
dual-proxy model smartly generates the control inputs such
that they properly reflect the real-world physical interaction.
The strategy consists in either computing a motion command
(if the robot is moving in some direction) or computing a force
command (when the robot is in contact with the environment).

The control inputs are computed based on a projection of the
robot proxy and haptic proxy onto motion and force spaces,
defined by the task physical interaction, whether the robot
is in contact with the environment or not. The environment
geometry is described locally by the directions of constraints
and directions of free motion. These are encoded by selection
matrices for the robot force space Ωf and the robot motion
space Ωm. These matrices are 3D projection matrices, and
their rank corresponds to the number of degrees of freedom
in the force and motion spaces respectively. Additionally, the
force space and motion space must be orthogonal so we have
Ωf+Ωm = I3×3. A similar selection process projects the end-
effector rotational motion and applied torques onto rotation
and moment spaces, respectively, through Ωrot and Ωτ , with
Ωrot + Ωτ = I3×3. Note that because of these relationships,
only the force and moment selection matrices require transfer
from the robot to the haptic device. However, they need to be
mapped to the haptic device workspace. The force and moment
selection matrices for the haptic device are therefore:

Ωf,h = Rh−r Ωf RT
h−r

Ωτ,h = Rh−r Ωτ RT
h−r

(3)

Figure 4 illustrates the generation of force and motion
commands for the robot and haptic device. On each side,
the proxy is projected onto the force/moment spaces on the
one hand, and onto the motion (linear and angular) spaces on
the other. In motion space, the projected proxys represent the
goal points. In force/moment spaces, the position/orientation
difference is transformed to a reference force using a virtual
spring. We detail the generation of the linear inputs here, as
the generation of rotational inputs is very similar. On the robot
side, the set points for the motion and force controllers are:
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Fig. 4. Force/motion-space projection of the robot-proxy and haptic-proxy
interactions to generate consistent local control inputs. Left: Ωf and Ωm

represent the force space and motion space projections respectively. They
allow construction of a local model of the environment geometry on the haptic
side (gray plane). xr (cyan) and xh (pink) are the positions of the robot and
haptic device, xp,r (magenta) is the robot-proxy position, and xp,h (blue)
is the haptic-proxy position. Middle: The proxys are projected into the force
space and motion space, a virtual spring is used in the force space to generate
a force from the difference in positions. Right: Control inputs are generated
using interpolation and safety checks. On the robot side, a position error
∆xm is generated in the motion space and an orientation error δϕ to perform
orientation control. In the force space, a reference force Fr is generated. On
the haptic side, only a reference force Fh is generated in this example.

∆xm = Ωm (xr − xp,r)

Fr = −kvir,r Ωf (xr − xp,r)
(4)

where kvir,r is the stiffness of the virtual spring on the
robot side. Monitoring these task-based control modalities at
the robot level gives an intuitive and explicit control of the
task interaction, whether it involves precise motions or contact
forces. The robot local controller regulates the end-effector
dynamic behavior to reach the desired control objectives
and properly perform the remote task. On the haptic side,
the controller must reflect the task interaction to the human
operator. The haptic control objective is, therefore, to produce
a high-fidelity remote sensing of the contact forces without any
constraint in free space. The haptic control inputs reflect the
contact force onto the force space while ensuring free motion
of the operator onto the motion space. The projection-based
approach ensures a good free space transparency as the desired
control force is set to zero in motion space. In the force space,
the feedback force is generated as:

Fh = −kvir,h Ωf,h (xh − xp,h) (5)

In addition to avoiding the exchange of force signals,
computing the desired haptic and robot force through a virtual-
spring model is a convenient tool for adjusting the haptic
feedback with respect to the device maximum stiffness and
to adapt the robot behavior in contact. For example, we could
reduce the spring stiffness to bring compliance in the force
control input and to increase safety of the interaction. If the
same virtual-spring model is implemented on both sides, the
same (opposite) desired forces, up to the scaling factor, are
input to the robot and haptic local loops.

3) Adjusting the local control inputs:
The last component of the dual-proxy model aims at main-

taining safety and adequacy of the control inputs for the
local loops. The desired force and motion, computed from
the proxy projection, are adjusted according to high-level ex-
changed information, such as the control and communication
frequencies, the robot and haptic device limits, and task-related
constraints. Therefore, each proxy-based input not only reflects
the interaction, but adapts to the controlled robot and can be
modified to increase task performance.

The first step is to perform safety checks on the control
inputs with respect to hardware limitations. This ensures
physical consistency of the desired force and motion for the
two robots. The desired haptic feedback is maintained under
the haptic device maximum force, and damping can be added
in the force space to prevent undesired oscillations. On the
robot side, if the motion input goes outside the range of
motion, it is projected back onto the robot workspace. The
robot control force can also be saturated to a maximum value
to preserve safety of the robot/environment contact. Finally,
the monitoring of communication delays and possible latency
spikes or communication loss enables the dual proxy model
to reject potentially dangerous and outdated commands.

An additional safety stage is implemented on the robot
side to prevent the motion command going outside the robot
kinematic and dynamic operational range. The command is in-
terpolated according to the robot maximum velocity and accel-
eration in the operational space [59]. The desired robot motion
is, therefore, safely reachable, even if the human motion input
is too fast or involves high acceleration change. In addition,
the frequency difference between the communication loop and
the control loops could result in undesired step commands in
the force space, in particular when contact transition occur. In
order to mitigate this and maintain the system’s stability, the
desired forces on both sides are interpolated by the controller
to prevent force commands that would be uncomfortable for
the human on the haptic device and potentially dangerous on
the robot side.

These safety checks enable the generation of safe commands
for the robot and haptic device, regardless of what is happening
on the other side of the communication network or the time
it took for the data to be transmitted. In particular, it ensures
the safety of the system in case of a communication loss.

IV. ONLINE PERCEPTION OF ROBOT ENVIRONMENT FOR
TASK-LEVEL AUTONOMY

With the new framework, proper knowledge of the robot
environment geometry – the force space and motion space – is
crucial to the haptic force fidelity. In certain tasks (manufactur-
ing, for example), it is possible to know in advance the location
and direction of the constraints. However, in general use cases,
we want the robot to autonomously detect the directions of
constraints, in real time, to infer the force and motion spaces
and properly parameterize the proxy projection. In this section,
we design the Force-Space Particle Filter (FSPF). The FSPF
states will represent the likely contact normals at the robot
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Fig. 5. Illustration of the Force-Space Particle Filter. The figures on the
top show the robot and potential contact scenarios, the figures at the bottom
show a corresponding distribution of the particles. Left: no contact. Middle:
one direction of contact. Right: two directions of contact.

end effector, in order to find the force and motion spaces. The
FSPF is implemented for linear force and motion directions.
Its extension to angular force-motion spaces is immediate.

A. The Force-Space Particle Filter

The idea behind the FSPF is the following: given a robot in
contact that is moving, we should be able to find the contact
normal by combining contact force and velocity data. In
particular, the contact normal should be close to the direction
of the sensed force, and orthogonal to the robot velocity.
Methods such as Kalman Filters were studied to provide
environment estimations such as in [60]. However, the problem
we are trying to solve here has huge discontinuities when
transitioning from free space to contact, and when transitioning
to different contact dimensions (contact with a plane vs contact
in a corner). The advantage of using a particle filter over
Kalman filters or other methods is its ability to represent and
estimate a mixed continuous (contact directions) and discrete
(number of contact constraints) state space.

The FSPF state space is the 3D unit sphere plus its center.
The sphere represents all the possible contact normals at the
robot end effector, while its center encodes the belief that there
is no contact on the robot end effector. Figure 5 illustrates the
behavior of the FSPF. When the robot is in free space, we
expect most particles to be at the center. When the robot is
in contact in a single direction, we expect most particles to
be grouped around the normal to the contact. When there are
several directions of contact, the particles will be scattered
along all the probable directions and will form a portion of
circle (two directions of contact) or a portion of sphere (three
directions of contact). Every iteration of the particle filter
consists of two steps – the update step and the resampling
step. Let Pk be the list of particles at the kth iteration of the
filter and np the number of particles. We will use the symbol ρ
to refer to individual particles. Let us also note Fs, vs, Fm, Ff ,
respectively, the end effector sensed force, the sensed velocity,
the control force in motion space, and the control force in
force space. These four quantities are required in the update
and resampling steps.

The update step consists of creating a list of augmented
particles Pk knowing the current list of particles and the

control and sensor inputs. Pk contains np > np particles. The
resampling step first assigns a weight w(ρ, Fs, vs) ∈ [0, 1]
to each particle ρ ∈ Pk that measures the likeliness of that
particle given the sensor measurements, and, then, resamples
np particles from Pk by prioritizing the particles with high
weights in order to obtain the next list of particles Pk+1

1) Step 1: Update:
At any point during robot operation, 3 things can happen:

• The contact directions can change
• A contact direction can appear
• A contact direction can disappear

The update step needs to accommodate for these three possi-
bilities. We will create the augmented particle list Pk, starting
with an empty list Pk = ∅ and using the procedure described
in Algorithm 1. We use a parameter 0 < ϵ ≪ 1 to numerically
determine if the vectors are at the origin. The algorithm is
explained next:

Algorithm 1: FSPF Update Step

Result: A list of augmented particles Pk

/* start with an empty list */

Pk = [];
/* move the existing particles */

for ρ ∈ Pk do
if ∥ρ∥ > ϵ then

d ∼ N (α,Σ);
else

d = 0;
end
Pk.append(ρ+ d)

end
/* add particles in the direction of motion

control */

if ∥Fm∥ > ϵ then
ρtent = Fm/∥Fm∥;
if ∥Ff∥ > ϵ then

uf = Ff/∥Ff∥;
else

uf = 0;
end
nadd = w(ρtent, Fs, vs) ∗ np;
for i ∈ [1, nadd] do

s = (i− 0.5)/nadd;
Pk.append(s ∗ uf + (1− s) ∗ ρtent);

end
end
/* add a particle at the center */

Pk.append(0);
/* renormalize all particles */

for ρ ∈ Pk do
if ∥ρ∥ > ϵ then

ρ = ρ/∥ρ∥;
else

ρ = 0;
end

end
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Algorithm 2: FSPF Resampling Step
Result: A list of resampled particles Pk+1

/* compute the list of cumulative weights */

wlist = [];
wcumul = 0;
for ρ ∈ Pk do

wcumul = wcumul + w(ρ, Fs, vs);
wlist.append(wcumul);

end
/* rescale the cumulative weight list */

for w ∈ wlist do
w = w/wcumul;

end
/* perform low variance resampling */

Pk+1 = [];
r ∼ U(0, 1

np
);

l = 0;
for i ∈ [1, np] do

while wlist[l] > r do
l = l + 1;

end
Pk+1.append(Pk[l]);
r = r + 1/np;

end

1) First, we take each particle in Pk and move it randomly
following a normal distribution N (α,Σ) (if it is not at
the center). α is the mean of the normal distribution and
Σ its standard deviation. We add the obtained particle to
Pk. This allows to take into account the possible rotation
of the force space.

2) Second, we look at the direction of the motion control
force Fm and create a tentative particle ρtent. We assume
that if a contact appears, it will be in the direction
towards which the robot is moving. In order to know
if this tentative particle should be added, we look at its
likeliness using the same weight function as the resam-
pling step (that will be later described) w(ρtent, Fs, vs).
We then create new particles between the force control
Ff direction and the tentative particle. The higher the
likeliness of ρtent, the more particles we add. This step
allows the filter to take into account a new direction of
contact.

3) Third, we add one particle at the center in order to take
into account a possible contact loss.

4) Finally, we normalize all the particles that are not in the
center in order to project them back onto the sphere.

2) Step 2: Resampling:
We define a force weight function wf and a velocity weight
function wv for a given particle ρ and the value of the
measured force Fs and velocity vs. These functions represent
a credence value for the particle based on the force sensor
measurement and the velocity measurement. For the force
weight function and particles on the sphere, we will consider
that if the sensed force is higher than a threshold fh in the

direction of the particle, then it is highly likely, and if it is
lower than a threshold fl, it is not likely at all. For particles
at the center of the sphere, we consider them likely if there
is no sensed force, and not likely if the sensed force is high.
We define:

wf (ρ, Fs) =


< ρ, Fs > −fl

fh − fl
if ρ ̸= 0

1− ∥Fs∥ − fl
fh − fl

if ρ = 0

(6)

where < ., . > represents the euclidean scalar product. For
the velocity weight function and particles on the sphere, we
will consider that a particle is not very likely if there is a
significant velocity in its direction or its opposite direction, and
it is likely otherwise. For particles at the center, the velocity
gives no information (as the robot could be moving in free
space or in contact) so we will assign a velocity weight of
0.5. We define:

wv(ρ, vs) =


1− | < ρ, vs > | − vl

vh − vl
if ρ ̸= 0

0.5 if ρ = 0

(7)

where vh and vl are high and low velocity thresholds.
Figure 6 illustrates these weight functions. The thresholds
fl, fh, vl, vh are used to provide some robustness to sensor
noise and prevent the detection of false contacts. They need
to be tuned depending on the system and sensors.

Using the previously defined functions, we can perform the
resampling step. The weight of each particle w(ρ, Fs, vs) is
defined as the product of the force and velocity weights for
that particle:

w(ρ, Fs, vs) = wf (ρ, Fs)wv(ρ, vs) (8)

We see that w(ρ, Fs, vs) is always between 0 and 1. Besides,
the product means that as soon as one of our sensor modalities
deems the particle unlikely, then it will be excluded. For the
resampling itself, we use low variance resampling as defined in
[61] in order to prevent the loss of particles that are isolated but
have a high probability. The resampling step is implemented
using Algorithm 2.

Fig. 6. Force and velocity weight functions
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Force Space DirectionsMotion Space Directions and

Fig. 7. Motion and force spaces for a given set of particles are found by
performing an SVD of the particles. The high singular values correspond to
force directions and the low singular values to motion directions.

B. Finding the Force and Motion Spaces

The output of the FSPF, described, is a list of likely particles
at the current time. We need to extract a likely force space and
motion space from this particle list. Intuitively, the distribution
of the particles will give us enough information to estimate the
force and motion directions. In particular:

• When most particles are at the center, we expect the robot
to be in free space,

• When most particles are grouped somewhere on the
sphere, we expect the force space to be of dimension
one, and the location of the particles gives us its expected
direction.

• When most particles are along an arc of circle, we expect
the force space to be of dimension two, and its direction
is given by the plane that contains the arc of circle.

• When the particles are scattered in a 3D pattern on the
sphere, we expect the force space to be of dimension
three.

In order to find the dimension and direction of the force
space, we perform singular value decomposition (SVD) of the
particle set. We define Xp, a matrix of dimension 3×1.5∗np

such that the first np columns of Xp are the coordinates of
the np particles of the current state of the particle filter Pk,
and the last 0.5np columns are zero (which represent particles
at the center). The left SVD of Xp will give a 3D ellipsoid
that best explains the points, as depicted in yellow in Figure 7.
The magnitude of the principal axes of the ellipsoid are the
singular values and their orientation are the singular vectors.
The directions associated with high singular values are force
directions and the ones associated with low singular values are
motion directions.

Let us note dfs the dimension of the force space that can be
between 0 and 3. Let us also note U the 3x3 matrix of the left
singular vectors of Xp, and U = [U1 U2 U3] its columns. Let
us finally note S = [σ0, σ1, σ2] the vector whose elements are
the singular values of Xp ordered in decreasing order (σ0 ≥
σ1 ≥ σ2). We apply Algorithm 3 in order to find the selection
matrices Ωf and Ωm. The algorithm is described here:

• The norm of S gives an indication on the number of
particles that are not at the center. Indeed, since all
particles have norm 1 or 0, let m be the number of
particles not at the center, we have ∥S∥ =

√
m. In

general, we will consider that the robot is in free space

unless at least half of the particles are not at the center.
Therefore, we have the following relationship:

if ∥S∥ <
√

np/2, dfs = 0 (9)

• When dfs > 0, we define two thresholds 0 < αadd < 1
and 0 < αremove ≤ αadd that will be used to add or re-
move dimensions in the force space. When σ1 > αaddσ0,
and σ2 > αaddσ0, we add their directions to the force
space. When σ1 < αremoveσ0, and σ2 < αremoveσ0, we
remove their directions from the force space. Choosing
αadd > αremove generates some hysteresis in the value
of dfs which helps stabilizing the transitions.

• With the value of dfs, we can compute the projection
matrices Ωf and Ωm from the columns of U .

The three algorithms presented in this section show the full
implementation of the FSPF. The particle filter is used to pro-
vide an added layer of local autonomy. The controllers on the
robot and haptic side can self parameterize autonomously in
real time using sensory observations. The FSPF and the dual-
proxy model are the key innovations in our local autonomy-
based approach. For the robot and haptic local controllers,
many choices can be made.

C. Extensions of the FSPF

In this section, The FSPF was presented in its simplest form.
It provides a baseline algorithm that works even for changing
environments and where no additional sensing is available. If
vision sensing is available on the system, this can be used
to improve the performance of the estimation algorithm (as
has been shown in [62] for model mediated teleoperation). It
would be integrated easily with the particle filter by providing
a prior to the particles states before the update step. More
precisely, instead of starting with an empty list of particles at
the start of the update state, the vision system would provide
an expected list of particles. In a similar way, position history
can be used to provide a prior based on the particle filter output
last time a certain position was visited, which would increase
the performance for static environments.

In addition, the extension of the FSPF to a full 6DoF
position plus orientation estimation of the constraints is imme-
diate. A second FSPF can be run, replacing linear quantities
with angular quantities in the previous algorithms (forces to
moments, linear velocity to angular velocity, linear control
input to angular control input). This second FSPF will provide
the directions of constraints and free space motions for the
robot orientation. Combining the two FSPF gives the full
6DoF geometric constraints. For example, when the robot end
effector is in surface contact with the environment, the linear
FSPF will detect one constrained direction (in the normal
direction to the surface contact) and the angular FSPF will
detect one direction of free motion (the rotation around that
same normal axis).

V. IMPLEMENTATION OF THE LOCAL CONTROLLERS

The local autonomy-based dual-proxy method allows us to
choose controllers for the robot and haptic device indepen-
dently of everything else. The dual-proxy model and FSPF
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Algorithm 3: FSPF Force and Motion space Matrices
Computation

Result: dfs, Ωf and Ωm

/* compute the SVD of the particles */

Xp = Matrix.Zeros(3, 1.5np);
i = 0 for ρ ∈ Pk do

Xp[i, :] = ρ;
i = i+ 1;

end
U, S, V = SV D(Xp) ; // U is 3x3, S is 3x1 and

the coefficients are in decreasing order

/* compute the dimension of the force space and

the projection matrices */

if ∥S∥ <
√

np/2 then
dfs = 0;
Ωf = 0;
Ωm = I3;

else
/* compute the dimension using the lower and

higher thresholds */

dlb = 3− (σ1 < αremoveσ0)− (σ2 < αremoveσ0);
dhb = 1 + (σ1 > αaddσ0) + (σ2 > αaddσ0);
if dfs < dhb then

dfs = dlb;
end
if dfs > dlb then

dfs = dhb;
end
/* compute the projection matrices */

if dfs == 1 then
Ωf = U1U

T
1 ;

Ωm = I3 − Ωf ;
else

if dfs == 2 then
Ωm = U3U

T
3 ;

Ωf = I3 − Ωm;
else

Ωf = I3;
Ωm = 0;

end
end

end

together ensure the safety and physical consistency of the local
control inputs, as well as the correct parameterization of force
and motion spaces. The robot local controller needs to be able
to regulate both free space motions and physical interactions
in a stable way. Two good choices are to implement an
impedance controller [63] or a unified force/motion control
[64]. The latter requires a re-parameterization of the controller
when the force space changes, but it enables a completely
decoupled dynamic response in force space and in motion
space. In haptic applications, the choice of stiffness in force
space will mostly depend on the maximum stiffness that the
haptic device can render, and the compliance needed for the
task. We want to be able to select it independently of the
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Fig. 8. Block diagram of the local autonomy-based dual-proxy framework
with our selection of local controllers.

free-space motion tracking performance. For this reason, we
advocate for the usage of operational space control on the
robot side. On the haptic side, the controller will mostly
depend on which haptic device is used. When using a low-
inertia haptic device with isotropic force capabilities, an open-
loop force controller can be implemented to monitor the force
feedback. Note that even if we used impedance control on the
robot side, the force/motion-space projection would still be
required to compute consistent haptic control inputs.

A. Local robot and haptic device controllers

We use the unified force/motion controller in operational
space, as described in [64], to locally control both the motion
and force modality on the robot. With this decoupling tech-
nique and assuming perfect estimates of the dynamic compo-
nents, the motion/force loops regulate the desired behavior of
the decoupled end effector equivalent to a unit mass system
in motion space and a force source in force space. This
unified control strategy provides good performances in both
motion and contact tasks. For completeness of this paper, we
describe the robot controller here. Let us take a robot arm in
contact with the environment at its end effector. The dynamic
equations of the robot, expressed in joint space, are:

A(q)q̈ + b(q, q̇) + g(q) + JTFc = Γ (10)
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where A is the robot mass matrix, b is the vector of
centrifugal and coriolis forces, g is the joint gravity vector, J is
the task jacobian at the end effector, Fc is the vector of contact
forces resolved at the task point and Γ is the joint torque
vector. The operational space dynamics (11) of the robot at the
end effector is obtained by multiplying the previous equation
by the transpose of the dynamically consistent inverse of the
Jacobian: J̄T = ΛJA−1.

Λẍ+ µ+ p+ Fc = F (11)

where

Λ = (JA−1JT )−1

µ = J̄T b− ΛJ̇ q̇

p = J̄T g

are respectively the task space inertia matrix, the task space
centrifugal and coriolis forces and the task space gravity. F is
the task force and x is the task space coordinates.

With the robot in contact, its workspace is separated into
the force space (directions of constraints) and the motion space
(directions of free motion). The force-space and motion-space
specification matrices, respectively Ωf and Ωm, are obtained
via the FSPF. By projecting the robot-proxy interaction, the
dual-proxy model computes two setpoints for the robot local
controller: the displacement ∆xm on motion space and the
desired contact force Fr on force space. With the chosen
unified force/motion control approach, two distinct controllers
are, then, designed to monitor the robot behavior in the force
and motion directions.

The control force in motion space Fm is generated by an
operational space proportional derivative (PD) controller:

Fm = Λ̂(−Kpm∆xm −KvmΩmẋr) (12)

where the estimate of the task space inertia Λ̂ is used to
dynamically decouple the system. Kpm is the proportional
gain and Kvm is the derivative gain.

The control force in force space Ff is computed to follow
the desired robot force Fr computed by the dual-proxy model
thanks to a proportional integral (PI) controller with feedfor-
ward force compensation and a velocity-based damping term.
The proportional and integral gains are respectively Kpf and
Kif and the damping gain is Kvf . The sensed task force Fs

is used as feedback to the PI loop.

Ff = Fr−Kpf (Fs−Fr)−Kif

∫
(Fs−Fr)−KvfΩf ẋr (13)

Finally, the two controllers are composed together, with
two additional gravity and Coriolis/centrifugal compensation
terms, to produce the dynamically decoupled and unified
force/motion control force F .

F = Ff + Fm + µ̂+ p̂ (14)

µ̂ and p̂ respectively represent estimates of the task space
Coriolis and centrifugal forces, and of the gravity. The control
torques in joint space are, then, simply computed as:

Γ = JTF (15)

If the robot is redundant with respect to the task, the
redundancy can be controlled thanks to a control torque vector
Γ0 projected into the dynamically consistent null-space of the
task N such that:

Γ = JTF +NTΓ0 (16)

where

N = In×n − J̄J (17)

Such a unified force/motion closed loop at the robot level
yields the expected end-effector dynamic behavior to perform
the remote task. It monitors the task-consistent control inputs,
generated by the dual-proxy model to produce the haptic-robot
interactions.

On the haptic side, the haptic local closed loop must reflect
the task interaction to the human operator. The desired haptic
feedback Fh that was computed by the dual-proxy model, is
sent as an input to the local controller. This force command is
exclusively within the force space, such that the motion feels
fully unconstrained in the motion space. The haptic controller
also must compensate for parasitic dynamic components of
the haptic device, which can be decently assimilated to the
operational space estimated gravity p̂h when using a low
inertia, low friction and parallel haptic device. For such
devices, which rarely have a force sensor, open-loop force
control is usually satisfactory. We also neglect Coriolis and
centrifugal effects as they are small and depend on the human
arm dynamics. The haptic control force is computed, with a
velocity-based damping term of gain Kvf,h, by:

Ff,h = Fh + p̂h −Kvf,h Ωf ẋh (18)

Overall, our full implementation of the local controllers
is depicted in Figure 8. It is worth noting that the proxy-
based projection method can be used as an input to any
local controller, on both sides, in order to achieve optimal
performances for different applications. For example, a PI
controller could be implemented at the device level to close the
force loop, if we have access to a force sensor there, to increase
the accuracy in force tracking. In the case of a high-inertia
haptic device without force sensor, the haptic control loop
could also be directly closed on the haptic-proxy position error.
The framework modularity enables adjusting the controllers to
the hardware specificities, whatever devices or strategies are
used in the teleoperation system.

B. Stability of the system

The stability of the global system depends on two factors:
1) The stability of the local controllers
2) The stability of the interaction between the local con-

trollers and the dual-proxy model plus FSPF
We ensure the first by implementing stable controllers. On

the haptic side, the open-loop force controller with velocity-
based damping is stable by construction. On the robot side, the
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PD motion control loop is stable by construction. We need to
ensure the stability of the closed-loop force controller. In our
implementation, we use a passivity-based explicit force control
as described in [65], [66], which provides Lyapunov stability
based on a TDPA. In addition, contact transitions could poten-
tially cause force jumps and be a source of instability. Several
methods have been shown to effectively prevent vibrations
in contact transitions, such as active damping, or force pre-
shaping [67]. Here we use a simple interpolation of the force
commands (on both haptic and robot controllers as explained
in section III) to prevent the step responses and vibrations.
The force interpolation parameters are selected in function of
the hardware and virtual stiffness, and independently of the
dual-proxy communication rate, which prevent force steps and
make contact transitions smoother.

The second is ensured by the timescale difference between
the local controllers and their parameterization by the dual-
proxy model. Typically, the control loops run at 1kHz while
the dual-proxy communication and the FSPF run at least
ten times slower (typically between 10Hz and 100Hz). This
frequency difference ensures a separation of the time scales
of the servo loop itself, on the one hand, and the controller
parameterization on the other, such that the controller param-
eters are considered quasi-static compared to the controller
frequency. This prevents the introduction of instabilities at the
controller parameterization level.

Note that this reasoning stays valid independently of the
amount of communication delay. In the presence of large
delays, the proxys will be late compared to the robot and haptic
positions, but the dual-proxy model will still generate inputs
that are consistent with the robot and haptic device capabilities,
and the controller parameterization will still be quasi static
compared to the frequency of the servo loops. Since the local
control loops are not subject to communication delays, there
is no reason for the system to go unstable in the presence of
delays. This will be shown in the experimental validation.

C. Simulation results

In order to demonstrate the efficiency of the new haptic
control method, we perform various simulations and experi-
ments. We use Stanford Robotics Lab’s in-house simulation
engine, SAI2.0. For the simulations, the robot end effector is
modeled as a unit mass sphere. The haptic device is a Force
Dimension Omega.7 device. We perform three simulations
using the following parameters:

• dual-proxy model: the communication runs at 50Hz,
and the amount of delay is variable and will be precised
for each experiment. A scaling factor of s = 2.5 is used
such that 1cm in the haptic workspace corresponds to
2.5cm in the robot workspace. The proxys are inter-
polated using an online trajectory generator [59] with
a velocity limit of 0.2m.s−1 and an acceleration limit
of 10.0m.s−2 on the robot side. The virtual spring
on the robot side is kvir,r = 500N.m−1 while it is
kvir,h = 200N.m−1 on the haptic side (so that the
stiffness ratio is the same as the scaling factor and the
forces felt on the haptic side are equal to the applied
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forces on the robot side). The force interpolation imposes
a limit of 50N.s−1 on the robot side and 20N.s−1 on the
haptic side for the reference force variation.

• FSPF : The particle filter runs at a frequency of
15Hz with np = 1000 particles. The parameters of
the weight functions are fl = 3N, fh = 10N, vl =
0.001m.s−1, vh = 0.005m.s−1 in the update phase (for
the potentially added particles) and fl = 0N, fh =
3N, vl = 0.001m.s−1, vh = 0.01m.s−1 in the resam-
pling phase. The thresholds to add or remove force-space
directions are αadd = 0.5 and αremove = 0.1.

• Robot Controller : We use P and D gains of Kpm =
100N.m−1 and Kvm = 20N.m−1.s on the motion con-
troller, and P, I and D gains of Kpf = 1.3, Kif = 1.7s−1

and Kvf = 20N.m−1.s on the force controller.
• Haptic Controller : we use a velocity D gain of Kvf,h =

27N.m−1s (which corresponds to 90% of the maximum
damping of our haptic device) for the velocity-based
damping in force space.

1) Simulation 1: Interaction on a cylinder.:
In the first simulation, the robot interacts with a cylinder
aligned with the x axis. There is no friction at the contact
and no communication delay. The setup and results are shown
in Figure 9. The top right plot shows the positions of the haptic
device and simulated robot. We see that the position tracking
is very good, and there is some error in the z direction, as
expected with the proxy method. This error generates a force
of approximately 2.5N in the z direction. There is a small
force that appears and dissapears in the y direction due to
the rotation of the force space during the interaction. We see
that the force is rendered with very high fidelity. Besides, the
force stays zero in the motion direction which enables a very
good transparency in the motion space. We also compare the
actual force direction (normal to the cylinder) with the one
estimated by the FSPF and see that the error stays below a
value of 5◦ throughout the interaction. The estimated force
space dimension stays equal to 1 during the whole interaction
and is not shown here. This simulation shows the validity of
the dual-proxy approach in a simple case and the performance



13

of the particle filter to correctly detect the contact normal and
parameterize the controllers.

2) Simulation 2: Interaction on a cylinder and a wall.:
In the second simulation, the robot interacts with a cylinder
aligned with the x axis and a wall perpendicular to the x axis.
There is still no friction at the contact and no communication
delay. The setup and results are shown in Figure 10. Once
again, the position tracking is good in motion space and the
controller generates a high-fidelity feedback force. We now
see an error in the x position tracking that results in a force
in that direction due to the interaction with the blue wall.
This time, we compare the real motion-space direction with
the FSPF estimation and it stays below 5◦ once again. The
estimated force-space dimension stays equal to 2 throughout
the interaction and is not shown in the plots.

3) Simulation 3: Interaction on multiple surfaces with com-
munication delay:
In the third scenario, the robot interacts with multiple surfaces.
There is no friction, but a communication delay of 50ms is
added. The setup and results are shown in Figure 11. The
position curves show a good tracking. We can observe a
horizontal shifting between the two curves due to the delay.
The force curves show a high-fidelity force feedback once
again, even in the presence of delays. We see a few artifacts
in the curve that happen when the robot transitions between the
two surfaces and the force-space dimension changes, but these
are quickly eliminated by the controller. Finally, we show the
dimension of the force space and the state of the particle filter
on the bottom left. We see that the robot is in free space at
the start, then it interacts on the floor, the obstacle, the floor
again, and finally with both at the same time on the edge.
The particle filter is able to detect each contact interaction
properly and to parameterize the controllers accordingly, even
in the presence of delays. The first part of the video shows
the rendering of this simulation.
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Fig. 12. Experimental setup

VI. EXPERIMENTAL VALIDATION

Three experiments were realized to test the framework on
a real teleoperation system. We remotely control a 7-DoF
Franka Panda robot, equipped with an ATI Gamma force
sensor at its end effector, through the Omega.7 haptic device.
The software uses the custom control library developed at
Stanford Robotics Lab as part of SAI2.0 that communicates
with the torque control interface of the Franka Panda robot
through the libfranka library provided by the manufacturer,
and with the haptic device through the Force Dimension
Chai3D drivers. The experimental setup, common to the three
experiments is depicted on Figure 12. In the first experiment,
the robot interacts with the horizontal surface (red area). In
the second experiment, the robot interacts on the upper corner
of the wall (purple area). In the third experiment, the robot
interacts on the corner between the wall and the horizontal
surface (cyan area). The parameters for the dual-proxy model,
particle filter, and haptic controller are the same as in the
simulations. The robot controller now uses a 6-DoF position
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Fig. 13. First experiment, comparison between the conventional and the dual-proxy approaches for force tracking
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plus orientation controller. The orientation is controlled to
stay constant using a PD controller in operational space with
a P gain of 600N.rad−1 and a D gain of 38N.rad−1.s.
For the position part, the motion controller uses the gains
Kpm = 500N.m−1,Kvm = 40N.m−1.s and the force part
uses the gains Kpf = 2.5,Kif = 5.5s−1,Kvf = 20N.m−1.s.

A. First experiment: Interaction with a plane

In this experiment, the robot starts in free space. It is
haptically controlled to go into contact with a table (horizontal
surface), to move on the table, and to go back to free space.
We perform this experiment with increasing amounts of com-
munication delays between the robot and the haptic device. In
order to provide a qualitative comparison with a conventional
approach, we also implement a two-channel force-position
bilateral haptic controller in which the haptic position is used
as the input to the robot operational-space motion controller,
and the sensed force on the robot side is directly sent as the
force command to the haptic device (up to the workspace
mapping). We also implement a basic bilateral TDPA [37],
which is a commonly used method in the haptic field to
stabilize teleoperation systems. The gains of the conventional
bilateral controller are tuned to get approximately the same
robot stiffness in contact as the one implemented with the
dual-proxy approach, resulting in gains of Kpm = 100N.m−1

and Kvm = 20N.m−1.s.
The forces throughout the first experiment are plotted in

Figure 13 for different communication delays varying from
0ms to 150ms. The conventional approach is plotted on top
and the dual-proxy method on the bottom. The z axis is the
constraint direction (normal to the plane of interaction) and the
x and y directions are free. With the conventional approach,
there are oscillations in the contact force that are due to the
non collocation between the human hand and the robot end
effector, and to force filtering and communication delays. As
the time delay increases, an error starts appearing between
the robot sensed force and the haptic force, which worsen
the oscillations. With the dual-proxy approach the contact
forces are much smoother. We plot the haptic command forces,
the robot command forces, and the robot sensed forces. The
three plots are almost superimposed, with the only mismatch
happening during the contact transition. In addition, there are
almost no forces felt in the x and y directions, as expected
for the directions of free motion. The FPSF correctly detects
the z axis as the contact direction, with an average error of 10
degrees throughout all the experiments. This error is higher
than the one in simulation because the friction between the
robot and the surface is not taken into account by the FSPF
in this implementation, but it does not prevent the correct
execution of the task and sensing of the contact directions
versus free space directions.

Figure 14 repeats the comparison for the position tracking
with the same delays. The conventional approach in on top
and the dual proxy on the bottom row. With the conventional
approach, there are small oscillations in the position of the
haptic device in the constraint direction (that are related to
the force oscillations on the human hand). These oscillations
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Fig. 15. First experiment, comparison between the force and position errors
during the contact phase for the conventional and the dual-proxy approaches

become worse as the delay increase. This phenomenon does
not happen at all with the dual-proxy method. In addition,
because the conventional approach was tuned to perform well
in contact, its position tracking in the free-motion directions is
less accurate as it is not able to compensate well enough the
friction at the robot contact point. In contrast, the dual proxy
enables an independent tuning of the behavior in motion space
and force space, so it can achieve a very good position tracking
(up to the communication delay) independently of the selected
compliance in force space.

It is worth noting that using extended TDPA [40], [41]
would exhibit less oscillations, by better estimating the delayed
passivity conditions. But it would result in large force-position
errors as the delay increases, since the passivity controllers
dissipate active energy through a time-varying damping ele-
ment. This damping element results in slowing down the slave
robot, inducing a position drift, and either sudden haptic force
changes or force distortions [40]. In addition, TDPA assumes
that the exact needed amount of energy can be dissipated
at each time step. However, passivizing complex multi-DOF
teleoperation systems with a high-effective-inertia robot, as in
our experimental setup, is not trivial and could require too
much damping which would rather destabilize the system.

For numerical comparison purpose, we compute the Root
Mean Square (RMS) values of the haptic-robot motion-
tracking errors, during the interaction phase, both in free-space
(mean of x and y position errors) and in contact (z direction).
The force fidelity is evaluated through the RMS value of
the haptic force in free-space, which must stay close to zero
(unconstrained motion), and through the standard deviation σ
of the z-force feedback, which is equal to zero if the contact
force stays constant on the plane (smooth interaction). Values
of these numerical criteria are given in Figure (15) for the
two control methods, with respect to the communication delay.
The force error in the unconstrained space is similar for both
the conventional and the dual-proxy approaches, and stays
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relatively small (close to 1N ). In contrast, motion-tracking
errors are notably smaller with the dual-proxy method, both
in unconstrained space and in contact. The dual-proxy mean
position error in the contact direction stays around 15−20mm
during the interaction and is directly related to the virtual
spring used to generate the haptic force. Position errors in the
unconstrained space stay below 10mm which shows the robust
motion tracking behavior achieved with our approach. The low
standard deviation of the haptic force in the contact space,
smaller than 2N over the different experiments, demonstrates
the stable force behavior of the teleoperation system with the
dual-proxy approach.

We repeat the experiment for delays up to 1500ms. The
force and position tracking plots for the dual-proxy approach
are plotted on Figure 16. Even for high delay values, the task
is achievable and the oscillations are limited to the contact
transition phases. With the conventional approach, such high
delay made the task impossible to realize and the robot was
constantly losing contact.

This first experiment shows the performances of the dual-
proxy model both in free space and in contact space, and the
quality of the haptic interaction. As the communication delay
increases, the tracking stays effective and the force feedback
stays relevant.

B. Second experiment: Interaction with an outer corner

In this experiment, the robot starts in free space, touches the
wall (normal to the y axis) and interacts on the outer corner
of the experimental setup to end up on the top of the wall
(contact aligned with the z axis), while staying in contact
the whole time. Figure 17 shows the plots for three values
of communication delay (up to 350ms). In the experiment
with no delay, the robot comes back on the side of the wall
after reaching the top, while on the other two experiments, it
finishes on top of the wall. The other values of delay are
not shown for compactness because the plots are all very
similar. Once again, the position and force tracking is very
good, independently of the amount of communication delay.
The forces vary continuously between the y axis and the z
axis as the contact normal changes and is correctly detected
by the FSPF. The force transition between these two directions
is done smoothly and without contact losses. The position
tracking shows a well regulated motion along the z and y
axes as the robot is commanded to move on the corner. This
experiment displays the capability of the dual-proxy approach
to allow precise interaction with non-flat surfaces, irrespective
of the amount of communication delay.

C. Third experiment : Interaction with an inner corner

In this experiment, the robot interacts within the inner corner
between the wall and the table. More precisely, it starts in
single contact, goes to the corner, slides along the corner,
and return to single contact with the wall or the table. Once
again, we only show three values of communication delay.
The results are plotted in Figure 18. The normal to the wall
is the y axis, the normal to the table is the z axis, and the
x axis is the free-motion direction during the double-contact

phase. The contact-space dimension is correctly detected, and
the orientation error average of the estimated contact direction
stays around 10 degrees throughout all the experiments. This
results in a good motion tracking in the motion space (x
direction) and a force feedback in the force space along
the y and z axes that renders the geometry of the contact
accurately. This experiment showcases the ability of the dual-
proxy approach to allow robot interactions with multiple
surfaces, and to correctly render contact transitions.

D. Controlling a robot in China from the US

A qualitative experiment was also performed using the dual
proxy model where a Panda robot in Chengdu (China) was
controlled from Stanford (USA) via the internet using an
Omega7 haptic device. The controllers used are the same as
the other three experiments. The dual proxy model and com-
munication runs at 5 Hz, the delay is around 300 ms and the
system will render no haptic forces in case of communication
loss as a safety. The robot interacts with a replica of a human
torso and the experiment consists in simulating an ultrasound
imaging performed by the robot controlled remotely. The video
shows the stability and performance of the system. The user
was able to feel the torso, and the corner between the chin and
neck, even with the presence of delays in the visual feedback
(done using zoom) and communication.
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Fig. 17. Second experiment, interaction with an outer corner: Positions and forces

VII. CONCLUSIONS

We have presented a novel approach to haptic-robot control
based on local autonomy and a dual-proxy model. The dual
proxy guarantees the generation of safe and consistent com-
mands for the two local controllers, and the local controllers
ensure the compliance and stability of the systems on both
sides. A Force-Space Particle Filter was developed to enable
autonomous modeling and rendering of the task contact ge-
ometry from the robot state and sensory data. The method
leverages robot functional autonomy and automatically sup-
presses the instability issues caused by the transfer of power
variables for low-level control through a network with com-

munication delays in conventional haptic-robot controllers.
We have validated the method experimentally in multiple
contact situations. The results demonstrated the transparency
and high fidelity of the dual-proxy method and its robustness
to communication delays. The dual-proxy method maintained
high performance for delays of up to one and a half seconds.
The local autonomy-based haptic control of robots with the
dual-proxy model enables many applications in areas such
as medical procedures, underwater interactions, and space
robotics.
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