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Chapter 26

Machine Learning for Parkinson’s Disease and Related
Disorders

Johann Faouzi, Olivier Colliot, and Jean-Christophe Corvol

Abstract

Parkinson’s disease is a complex heterogeneous neurodegenerative disorder characterized by the loss of
dopamine neurons in the basal ganglia, resulting in many motor and non-motor symptoms. Although there
is no cure to date, the dopamine replacement therapy can improve motor symptoms and the quality of life of
the patients. The cardinal symptoms of this disorder are tremor, bradykinesia, and rigidity, referred to as
parkinsonism. Other related disorders, such as dementia with Lewy bodies, multiple system atrophy, and
progressive supranuclear palsy, share similar motor symptoms although they have different pathophysiology
and are less responsive to the dopamine replacement therapy. Machine learning can be of great utility to
better understand Parkinson’s disease and related disorders and to improve patient care. Many challenges
are still open, including early accurate diagnosis, differential diagnosis, better understanding of the pathol-
ogies, symptom detection and quantification, individual disease progression prediction, and personalized
therapies. In this chapter, we review research works on Parkinson’s disease and related disorders using
machine learning.

Key words Clinical decision support, Deep learning, Disease understanding, Machine learning,
Multiple system atrophy, Parkinson’s disease, Parkinsonian syndromes, Parkinsonism, Precision medi-
cine, Progressive supranuclear palsy

1 Introduction

Parkinson’s disease (PD) is the second most frequent neurodegen-
erative after Alzheimer’s disease, affecting more than six million
individuals worldwide, a prevalence which is expected to double
with the next 10 years [1]. It is characterized by the progressive
degeneration of dopaminergic neurons in the substantia nigra
associated with intracellular inclusions called Lewy bodies. These
Lewy bodies are composed of protein aggregates enriched in
α-synuclein. Age is the greatest risk factor, but both environmental
and genetic risk factors have been associated with PD. For instance,
exposure to pesticides is a well-recognized risk factor for PD,
whereas caffeine intake and smoking have been demonstrated to
be protective [2]. Although commonly sporadic, rare genetic forms
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of the disease have been described. More than 20 loci and asso-
ciated genes have been identified to be responsible for autosomal
dominant or recessive forms of the disease, and more than
90 genetic risk factors have been associated with sporadic PD
[3]. Although rare, genetic forms of the disease have brought
important insights on the causes and pathological mechanisms of
PD [4]. Among them, aggregation and spreading of misfolded
α-synuclein, the protein enriched in Lewy bodies, is supposed to
play a key role in the pathophysiology of the disease.
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The loss of dopamine innervation of the basal ganglia network
in the brain leads to the cardinal motor symptoms of the disease
(parkinsonism): rest tremor, akinesia, and rigidity [2]. However,
the spreading of the synucleinopathy (aggregation of α-synuclein
protein) and neuronal loss outside the dopaminergic pathway is
associated with other non-motor symptoms like anosmia, sleep
disorders, dysautonomia, and progressive cognitive decline. Some
of these symptoms, particularly anosmia, constipation, and sleep
disorders, can precede the motor phase during a long prodromal
phase [5].

There is no cure for PD. The therapeutic strategy relies on the
dopamine replacement therapy by levodopa or dopamine agonists,
which alleviate motor symptoms. However, the dopamine replace-
ment therapy does not change the course of the disease, the pro-
gression being hampered by motor complications (motor
fluctuations and abnormal movement called dyskinesia), related
both to the progression of the neuronal loss and to pre- and post-
synaptic plasticity induced by the treatment. In addition, the dopa-
mine replacement therapy has no benefit on non-motor symptoms
not related to the loss of dopaminergic neurons.

PD is the most frequent synucleinopathy. Other neurodegen-
erative diseases share some clinical and pathophysiological features
of PD. Multiple system atrophy (MSA) is a rare disease associated
with parkinsonism with low response to levodopa, early dysauto-
nomia, and/or cerebellar symptoms [6]. The synucleinopathy
affects the substantia nigra, but also the striatum and the cerebel-
lum, and Lewy bodies are also observed in glial cells. There are two
variants of MSA: the parkinsonian variant (MSA-P) characterized
by parkinsonism and the cerebellar variant (MSA-C) characterized
by gait ataxia with cerebellar dysarthria. Dementia with Lewy bod-
ies (DLB), the second most common neurodegenerative dementia
after Alzheimer’s disease, is characterized by early cognitive decline,
hallucinations, and levodopa-responsive motor symptoms
[7]. However, whether DLB and PD with dementia are really two
distinct entities is still a matter of debate. There are also other rare
atypical parkinsonism syndromes, not related to a synucleinopathy.
Progressive supranuclear palsy (PSP) is a tauopathy (aggregation of
tau protein) characterized by a nonresponsive, axial predominant
parkinsonism, early falls, supranuclear gaze palsy, and a frontal



syndrome [8]. The cortico-basal degeneration (CBD) is also a
tauopathy with asymmetric parkinsonism with dystonia and cogni-
tive dysfunction. Table 1 summarizes the characteristics of all these
disorders.
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Considering the complexity of these disorders, the lack of
reliable biomarkers, and the overlapping clinical presentation at
the early stage, there is a need for more advanced approaches to
support differential diagnosis. In addition, the pathophysiology of
these disorders results from the complex interplay of multiple
mechanisms. One current challenge is to stratify patients according
to specific mechanisms and predict individual progression profile in
order to move toward a more personalized medicine. Machine
learning consists in extracting information from data by computer
programs without providing explicit rules on what to extract, in the
sense that machines learn by themselves which information to
extract. Given the complexity of Parkinson’s disease and its related
disorders, there still exist many challenges and open questions for
which machine learning could help increase knowledge on these
disorders, in particular diagnosis, disease understanding, and preci-
sion medicine, and create better clinical decision support systems.
Table 2 summarizes the potential benefits of machine learning for
Parkinson’s disease and related disorders.

The rest of this chapter is organized as follows. We first present
research works on the diagnosis of Parkinson’s disease and the
differential diagnosis between parkinsonian syndromes, including
disease understanding (Subheading 2). We then focus on the detec-
tion and quantification of motor and non-motor symptoms in
Parkinson’s disease (Subheading 3). Disease progression in Parkin-
son’s disease, with the prediction of individual progression trajec-
tories, is presented in Subheading 4. We then describe research on
the monitoring and adjustment of treatment in Parkinson’s disease
and discuss the limitations of machine learning in terms of causality
(Subheading 5). Finally, we conclude on the existing literature
and discuss open questions and research works (Subheading 6).
Table 3 summarizes the studies described in this chapter.

2 Diagnosis

Having an automated model being able to accurately diagnose one
or several diseases has not only a concrete utility in clinical routine,
but interpreting the decision process of the model may also help
better understand these diseases. To assist diagnosis, two different
classification tasks are usually considered: (i) being able to differen-
tiate PD patients from healthy controls (HC) and (ii) being able to
differentiate several parkinsonian syndromes from each other.
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Table 2
Summary of the potential benefits of machine learning for Parkinson’s disease and related disorders

Disease stage Potential benefits

Early PD diagnosis Better clinical decision support systems
Higher performance than current diagnostic criteria
Better management and improved quality of life
Potential preventive therapeutic strategies

Differential diagnosis Better clinical decision support systems
Higher performance than current diagnostic criteria
Better management and improved quality of life

Symptom detection and
quantification

More frequent, more robust assessment of symptoms with automatic
analysis of sensor data

Better management and improved quality of life

Disease progression Identification of disease subtypes
Prediction of future symptoms
Treatment adjustment for potential prevention

Treatment adjustment Better clinical decision support systems
Personalized therapy
Prevention of adverse events
Better management and improved quality of life

2.1 Parkinson’s

Disease Diagnosis

Compared to Healthy

Subjects

Given the much larger prevalence of Parkinson’s disease compared
to the atypical parkinsonian syndromes, gathering data from PD
patients and HC is naturally easier, especially easy-to-collect data
from sensors compared to clinical, imaging, or genetic data.

Digital technologies including wearable sensors, smartphone
applications, and smart algorithms receive a strongly increasing
interest and begin to move toward medical applications, particu-
larly in PD [9]. Two main types of sensor data are usually consid-
ered: voice data and motion data. Given that the cardinal symptoms
of PD are motor, motion data is natural, but speech also involves
motor muscles. Dysarthria, which is a motor speech disorder in
which the muscles involved in producing speech are damaged,
paralyzed, or weakened, is a symptom of PD.

2.1.1 PD Diagnosis Using

Motion Data

Several types of sensors have been investigated to collect motion
data depending on the movements of interest.

Wahid and colleagues [10] investigated the discrimination
between PD patients and healthy controls using gait data collected
during self-selected walking. They extracted spatial-temporal fea-
tures, such as stride length, stance time, swing time, and step
length, from the signals and investigated different strategies of
data normalization using dimensionless equations and multiple
regression and different machine learning algorithms such as
naive Bayes (NB), k-nearest neighbors (kNN), support vector
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1 https://ieee-dataport.org/open-access/italian-parkinsons-voice-and-speech

machines (SVM), and random forests (RF). They obtained the best
predictive performance with the random forest trained on features
normalized using multiple regression.
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Mirelman and colleagues [11] also investigated gait and mobil-
ity measures that are indicative of PD and PD stages. They gathered
data from sensors adhered to the participant’s lower back, bilateral
ankles, and wrists, during short walks, and extracted gait features.
They investigated several strategies to perform feature selection and
use a random under-sampling boosting classification algorithm to
tackle class imbalance. When comparing PD patients with mild PD
severity (Hoehn and Yahr stage 1) to healthy controls, they
obtained good discriminative performance (84% sensitivity, 80%
specificity). Most discriminative features were extracted from the
upper limb sensors, with the remaining features extracted from the
trunk sensor, while the lower limb sensors did not contribute to
discrimination accuracy.

Kostikis and colleagues [12] investigated upper limb tremor
using a smartphone-based tool. Signals from the phone’s acceler-
ometer and gyroscope were computed, from which features were
extracted. They trained several machine learning algorithms,
including random forest, naive Bayes, logistic regression (LR),
and support vector machine, using these features as input and
obtained the highest discriminative performance between PD
patients and HC with the random forest model.

Kotsavasiloglou and colleagues [13] investigated the use of a
pen-and-tablet device to study the differences in hand movement
and muscle coordination between PD patients and HC. Data con-
sisted of the trajectory of the pen’s tip and on the pad’s surface from
drawings of simple horizontal lines, from which they extracted
features. They investigated several machine learning algorithms,
such as logistic regression, support vector machine, and random
forest, and used nested cross-validation to perform feature selec-
tion. They obtained the highest discriminative performance with
the naive Bayes model.

2.1.2 PD Diagnosis Using

Voice Data

Voice data is usually recorded from high-quality microphones or
from smartphones during specific vocal tasks focused on character-
istics such as phonation and speech. Features are then extracted
from the corresponding signals and used as input to machine
learning classification algorithms.

Amato and colleagues [14] analyzed specific phonetic groups in
native Italian speakers, extracted several spectral moments from the
signals, and trained a SVM algorithm on these extracted features to
distinguish PD patients from HC. They first worked on a public
data set called Italian Parkinson’s Voice and Speech,1 with data

https://ieee-dataport.org/open-access/italian-parkinsons-voice-and-speech


recorded in ideal publications, and obtained great performance on
the validation and test sets. They then merged this public data set
with a data set that they collected, with data being recorded in more
realistic, suboptimal conditions, and obtained good but lower per-
formance on the validation and test sets of this merged data set.
Experiments with training on one single data set and validation on
the other data set were not performed, but it would have been
interesting to estimate how well a trained model could generalize
on other data sets with data being recorded in different conditions.

optimistic results [18].
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Jeancolas and colleagues [15] investigated the early diagnosis
of PD and possible gender differences in voice data. They used a
pre-trained deep neural network focused on speaker recognition
system to extract features and obtained a higher performance than
with a standard multidimensional Gaussian mixture model,
although the increase was more important among men than
women. They also investigated the impact of the quality of the
recordings (using either a high-quality microphone or a telephone)
and obtained the same conclusions in both cases.

In another study, Jeancolas and colleagues [16] investigated
the differentiation between early PD patients and patients with
idiopathic rapid eye movement sleep behavior disorders (iRBD),
which are important risk factors to develop PD in the near future.
They extracted features related to prosody, phonation, speech flu-
ency, and rhythm abilities from speech recordings. They once again
obtained a higher predictive performance among men than women
in the PD vs HC classification tasked and a better discriminative
power for this classification task than for the iRBD vs HC one,
suggesting that discriminating iRBD patients from HC using voice
data is a much harder task, but it is also probably a most useful one
in practice.

Quan and colleagues [17] investigated the extraction of global
static features (from the whole signals) and local dynamic features
(using a sliding window on the signals) from voice data during
articulation tasks. They trained standard machine learning classifi-
cation algorithms, such as decision trees (DT), k-nearest neighbors,
naive Bayes, and support vector machines, using the static features,
while they trained a recurrent neural network, more specifically a
bidirectional long short-term memory (LSTM), on the dynamic
features and obtained a higher predictive performance with the
deep learning approach.

Although many studies reported high predictive performances,
some results must be taken with caution. Indeed, a recent study
reported methodological issues in several studies, including record-
wise cross-validation instead of subject-wise cross-validation, high
imbalance in ages between PD patients and HC, and performance
metrics computed on the validation folds of k-fold cross-validation
and not on an independent test set, which may lead to overly
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2.1.3 PD Diagnosis Using

Imaging Data

The diagnosis of PD remains based on its clinical presentation
[19]. Imaging of dopaminergic terminals loss can be assessed
using nuclear imaging, but it is not recommended in clinical rou-
tine and does not differentiate PD from other related disorders
associated with dopamine neuron loss [20]. Standard brain mag-
netic resonance imaging (MRI) is normal in PD. However, several
newmarkers have been recently been investigated in several studies,
with mixed results.

Adeli and colleagues [21] investigated the use of T1-weighted
anatomical MRI data to differentiate PD patients from HC. They
developed a joint feature-sample selection algorithm in order to
select an optimal subset of both features and samples from a train-
ing set, and a robust classification framework that performs denois-
ing of the selected features and samples then learns a classification
model. They analyzed data from 374 PD patients and 169HC from
the Parkinson’s Progression Markers Initiative2 (PPMI) cohort and
included white matter, gray matter, and cerebrospinal fluid mea-
surements from 98 regions of interest. The combination of the
proposed feature selection/extraction method and classifier
achieved the highest predictive accuracy (0.819), being significantly
better than almost every other combination of a feature selection/
extraction method and a classification algorithm.

Solana-Lavalle and Rosas-Romero [22] investigated the use of
voxel-based morphometry features extracted from T1-weighted
anatomical MRI to perform a PD vs HC classification task. Their
pipeline consisted of five stages: (i) identification of regions of
interest using voxel-based morphometry, (ii) analysis of these
regions for PD detection, (iii) feature extraction based on first-
and second-order statistics, (iv) feature selection based on principal
component analysis, and (v) classification with tenfold cross-
validation based on seven different algorithms (including
k-nearest neighbors, support vector machine, random forest,
naive Bayes, and logistic regression). They obtained excellent pre-
dictive performance for both male and female genders and for both
1.5 T and 3 T MRI scans (accuracy scores ranging from 0.93 to
0.99 for the best classification algorithms). However, cross-
validation was performed very late in their pipeline (after the feature
subset selection), which could lead to biased models and overly
optimistic predictive performances.

Mudali and colleagues [23] investigated another modality,
[18F]-fluorodeoxyglucose positron emission tomography
(FDG-PET), to compare 20 PD patients and 18 HC. They applied
the subprofile model/principal component analysis method to
extract features from the images. They considered a DT algorithm
and used leave-one-out cross-validation to evaluate the predictive

2 https://www.ppmi-info.org

https://www.ppmi-info.org


performance of the models. They obtained really low predictive
performance (50% sensitivity, 45% specificity), close to chance level.
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Overall, it is unclear if machine learning applied to anatomical
MRI or FDG-PET can bring added value for the diagnosis of
PD. However, advanced MRI sequences have the potential to
bring much more valuable information [24].

2.2 Differential

Diagnosis

The PD vs HC binary classification task has limited utility as, even
at the early stage of PD, patients have clinical symptoms strongly
suggesting that they suffer from a movement disorder and thus are
not healthy subjects. However, the accurate early diagnosis of
parkinsonian syndromes is difficult but needed due to the different
pathologies and thus the different care. Although one study inves-
tigated the differential diagnosis using sensor-based gait analysis
[25], most studies investigated it using imaging data, particularly
diffusion MRI.

Huppertz and colleagues [26] investigated the differential
diagnosis with data from a relatively large cohort (73 HC,
204 PD, 106 PSP, 20 MSA-C, and 60 MSA-P). Using atlas-based
volumetry of brain MRI data, they extracted volumes in several
regions of interest and trained and evaluated a linear SVM algo-
rithm using leave-one-out cross-validation. They obtained good
predictive performance in most binary classification tasks and
showed that midbrain, basal ganglia, and cerebellar peduncles
were the most relevant regions.

A landmark study on this topic was published in 2019 by
Archer and colleagues [27], with diffusion-weighted MRI data
being collected for 1002 subjects from 17 MRI centers in Austria,
Germany, and the USA. They extracted 60 free-water and 60 free-
water-corrected fractional anisotropy values from diffusion-
weighted MRI data, and the other features consisted of the third
part of the Movement Disorder Society-Sponsored revision of the
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS III), sex,
and age. They trained several SVM models and showed that the
model trained usingMDS-UPDRS III (with sex and age also, for all
the models) performed poorly in most classification tasks, whereas
the model trained using DWI features had much higher predictive
performance (particularly for the MSA vs PSP task), and adding
MDS-UPDRS III to this model did not improve the performance.

More recently, Chougar and colleagues [28] investigated the
replication of such differential diagnosis models in clinical practice
on different MRI systems. Using MRI data from 119 PD, 51 PSP,
35 MSA-P, 23 MSA-C, and 94 HC, split into a training cohort
(n = 179) and a replication cohort (n = 143), they extracted
volumes and diffusion tensor imaging (DTI) features (fractional
anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity)
in 13 regions of interest. They investigated two feature normaliza-
tion strategies (one based on the data of all subjects in the training



set and one based on the data of HC for each MRI system to tackle
the different feature distributions, in particular for DTI features,
because of the use of different MRI systems) and four standard
machine learning algorithms, including logistic regression, support
vector machines, and random forest. They obtained high perfor-
mances in the replication cohort for many binary classification tasks
(PD vs PSP, PD vs MSA-C, PSP vs MSA-C, PD vs atypical parkin-
sonism), but lower performances for other classification tasks
involving MSA-P patients (PD vs MSA-P, MSA-C vs MSA-P).
They showed that adding DTI features did not improve perfor-
mance compared to using volumes only and that the usual normali-
zation strategy worked best in this case.
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Shinde and colleagues [29] investigated the automatic extrac-
tion of contrast ratios of the substantia nigra pars compacta from
neuromelanin-sensitive MRI using a convolutional neural network.
Based on the class activation maps, they identified that the left side
of substantia nigra pars compacta played a more important role in
the decision of the model compared to the right side, in agreement
with the concept of asymmetry in PD.

A recent study [30] investigated the use of positron emission
tomography of the translocator protein, expressed by glial cells, and
extracted normalized standardized uptake value images and nor-
malized total distribution volume images. Using a linear discrimi-
nant analysis algorithmwith leave-one-subject-out cross-validation,
they obtained great discriminative power between MSA and PD
patients, with better performance with normalized total distribu-
tion volume images.

2.3 Disease

Understanding

Rather than focusing on the diagnosis of Parkinson’s disease itself,
several studies were more focused on interpreting the trained
machine learning models in order to better understand the
mechanisms of Parkinson’s disease.

Khawaldeh and colleagues [31] investigated the task-related
modulation of local field potentials of the subthalamic nucleus
before and during voluntary upper and lower limb movements in
18 consecutive Parkinson’s disease patients undergoing deep brain
stimulation (DBS) surgery of the subthalamic nucleus in order to
improve motor symptoms. Using a naive Bayes classification algo-
rithm, they obtained chance-level performance at rest, but much
higher performance during the pre-cue, pre-movement onset, and
post-movement onset tasks. They showed that the presence of
bursts of local field potential activity in the alpha and, even more
so, in the beta frequency band significantly compromised the pre-
diction of the limb to be moved, concluding that low-frequency
bursts restrict the capacity of the basal ganglia system to encode
physiologically relevant information about intended actions.
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Poston and colleagues [32] investigated brain mechanisms that
allow some PD patients with severe dopamine neuron loss to
remain cognitively normal. Using functional MRI data from PD
patients without cognitive impairment and from HC collected
during a working memory task, they trained a support vector
machine classifier and identified robust differences in putamen
activation patterns, providing novel evidence that PD patients
maintain normal cognitive performance through compensatory
hyperactivation of the putamen.

Trezzi and colleagues [33] investigated cerebrospinal fluid bio-
markers, and more precisely the metabolome, in early-stage
PD. The logistic regression model trained on such data provided
good discriminative power, and the most associated biomarkers
were mannose, threonic acid, and fructose. These biomarkers
were associated with antioxidative stress response, glycation, and
inflammation and may help better understand PD pathogenesis.

Vanneste and colleagues [34] investigated thalamocortical dys-
rhythmia, which is a model proposed to explain divergent neuro-
logical disorders and is characterized by a common oscillatory
pattern in which resting-state alpha activity is replaced by cross-
frequency coupling of low- and high-frequency oscillations. The
trained support vector machine model identified specific brain
regions that provided good discriminative power between PD
patients and HC, including subgenual anterior cingulate cortex,
posterior cingulate cortex, parahippocampus, dorsal anterior cin-
gulate cortex, and motor cortex. Another model also identified
brain areas that are common to the pathology of Parkinson’s dis-
ease, pain, tinnitus, and depression, including dorsal anterior cin-
gulate cortex and parahippocampal area.

3 Symptom Detection and Quantification

Given the complexity and heterogeneity of Parkinson’s disease,
prompt accurate assessment of symptoms is needed. A detailed
scale, called the Movement Disorder Society-Sponsored revision
of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)
[35], is currently the gold standard to assess motor (and
non-motor) features of PD patients by movement disorder specia-
lists. The scale is divided into four sections. The first two sections
allow for assessing the non-motor and motor activities of daily
living, respectively, while the third section consists of a motor
exam, and the fourth section allows for assessing motor
complications.

Nonetheless, the MDS-UPDRS has several limitations. First, it
requires time (30–45 minutes for the full scale) and a trained
movement disorder specialist to fill it, limiting its use during clinical
routine visits. Second, part of subjectivity from a human evaluation,



and thus variance in the MDS-UPDRS scores, cannot be excluded,
with a recent study suggesting that MDS-UPDRS scores contain a
substantial amount of variance [36]. Moreover, other scales are
typically used to more precisely assess non-motor symptoms such
as depression, anxiety, and cognition. Finally, scales are addressed
during a visit at the hospital and may not reflect the symptoms in a
more ecological setting, at home, during the daily life of the
patient. Automatic detection and quantification of symptoms
using machine learning may help tackle these limitations, and sev-
eral studies investigated this topic. In the remaining of this section,
we group these studies based on the symptoms investigated.
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3.1 Freezing of Gait Freezing of gait (FOG) is a common motor symptom and is asso-
ciated with life-threatening accidents such as falls. Prompt identifi-
cation or prediction of freezing of gait episodes is thus needed.

Ahlrichs and colleagues [37] investigated freezing of gait in
20 PD patients (8 with FOG, 12 without FOG), split into a training
set (15 patients) and a test set (5 patients). They collected sensor
(accelerometer, gyroscope, and magnetometer) data during
scripted activities (e.g., walking around the apartment, carrying a
full glass of water from the kitchen to another room) and
non-scripted activities (e.g., answering the phone). Two recording
sessions were considered, one in “OFF” motor state and one in
“ON” motor state, and the data was labeled by experienced clin-
icians based on the corresponding video recordings. The task was a
binary classification task (FOG vs no FOG) for each window. They
extracted sub-signals from the whole signals using a sliding window
and then extracted features and in the time and frequency domains
for each sub-signal. They trained two SVM algorithms (one with a
linear kernel, one with a Gaussian kernel) and obtained high and
better results with the linear kernel.

Aich and colleagues [38] gathered sensor data for 36 PD
patients with FOG and 15 PD patients without FOG from 2 wear-
able triaxial accelerometers during clinical experiments. They
extracted features, such step time, stride time, step length, stride
length, and walking speed, from the signals. They trained several
classic machine learning classification algorithms (SVM, kNN, DT,
NB) and obtained good predictive performances with all of them,
although the SVMmodel had the highest mean accuracy on the test
sets of the cross-validation procedure.

Borzı̀ and colleagues [39] collected data from 2 inertial sensors
placed on each shin of the 11 PD patients during the “timed up and
go” test in order to investigate FOG and pre-FOG detection. They
extracted features in the time and frequency domains and trained
decision tree algorithms. They obtained great predictive perfor-
mance to detect FOG episodes, but lower performance to predict
pre-FOG episodes, with the performance decreasing even more as
the window length increased.
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Dvorani and colleagues [40] were interested in detecting foot
motion phases using a shoe-placed inertial sensor in order to detect
FOG episodes. They extracted ten features, including stride length,
maximum gait velocity, and step duration, from each motion phase
and trained a SVM algorithm to detect FOG episodes. They
obtained great performance when using features from the current
and two preceding motion phases, but lower performance when
using only features from the two preceding motion phases, high-
lighting the higher difficulty to predict FOG episodes in advance.
Shalin and colleagues [41] reached the same conclusion using
plantar pressure data and a long short-term memory neural
network.

3.2 Bradykinesia and

Tremor

Bradykinesia and tremor are two other motor symptoms that are
frequently investigated for automatic assessment.

Park and colleagues [42] investigated automated rating for
resting tremor and bradykinesia from video clips of resting tremor
and finger tapping of the bilateral upper limbs. They extracted
several features from the video clips, including resting tremor
amplitude and finger tapping speed, amplitude, and fatigue, using
a pre-trained deep learning model. These features were used as
input of a SVM algorithm to predict the corresponding scores
from the MDS-UPDRS scale. For resting tremors, the automated
approach had excellent reliability range with the gold standard
rating and higher performance than that of non-trained human
rater. For finger tapping, the automated approach had good reli-
ability range with the gold standard rating and similar performance
than that of non-trained human rater.

Kim and colleagues [43] performed a study in which they
investigated tremor severity using three-dimensional acceleration
and gyroscope data obtained from wearable device. They investi-
gated a convolutional neural network to automatically extract fea-
tures and perform classification, compared to extracting defined
features from the time and frequency domains and training stan-
dard machine learning algorithms (random forest, naive Bayes,
linear regression, support vector machines) using these features.
They obtained better higher predictive performance with the deep
learning approach than the standard machine learning approach.
Eskofier and colleagues [44] obtained similar results using inertial
measurement units collected during motor tasks.

3.3 Cognition Cognitive impairment is frequent in PD, with the point prevalence
of PD dementia being around 30% and the cumulative prevalence
for patients surviving more than 10 years being at least 75%
[45]. Due to its high negative impact on the quality of life of PD
patients and their caregivers, it is important to identify and quantify
cognitive impairment. Several scales to assess cognition already



exist, such as the Mini-Mental State Examination and the Montreal
Cognitive Assessment, but automatic assessment of cognition
could be helpful.
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Abós and colleagues [46] investigated discriminating cognitive
status in PD through functional connectomics. Using resting-state
functional MRI data, they extracted features consisting of
connection-wise pattern of functional connectivity. They per-
formed feature selection using randomized logistic regression
with leave-one-out cross-validation and then trained a SVM algo-
rithm. They obtained good discriminative performance between
PD patients with mild cognitive impairment and with no cognitive
impairment, but could not report significant connectivity reduc-
tions between both groups.

Betrouni and colleagues [47] investigated the use of electro-
encephalograms to automatically assess their cognitive status. A
cluster analysis of the neuropsychological assessments of 118 PD
patients revealed 5 cognition clusters. They extracted quantitative
features from the electroencephalograms and performed feature
selection based on Pearson correlation tests. They trained two
machine learning algorithms (kNN and SVM), using a fivefold
cross-validation procedure that was repeated five times, and
obtained good similar predictive performances for the five-class
classification task with both models.

Garcı́a and colleagues [48] investigated cognitive decline using
dysarthric symptoms. They extracted prosodic, articulatory, and
phonemic identifiability features from speech signals recorded dur-
ing the reading of two narratives. Using a SVM algorithm and
nested cross-validation, they obtained correct discriminative per-
formance (area under the receiver operating characteristics curve of
0.76), with the highest performance being obtained using phone-
mic identifiability features.

Morales and colleagues [49] investigated the classification of
PD patients with no cognitive impairment (n = 16), with mild
cognitive impairment (n = 15), and with dementia (n = 14).
They trained several variants of the naive Bayes algorithm and
1 SVM algorithm on 112 MRI features consisting of volumes of
subcortical structures and thickness of cortical parcels and obtained
good discriminative performance in the 3 binary classification tasks,
the lower performance corresponding to the differentiation
between PD patients with no cognitive impairment with mild
cognitive impairment. The most important features involved the
following brain regions: left cerebral cortex, left caudate, left ento-
rhinal, right inferior left hippocampus, and brainstem.

A recent study [50] also investigated MRI data, more specifi-
cally quantitative susceptibility mapping images parcellated into
20 regions of interest, for the early detection of cognitive
impairment in PD. Using tree-based ensemble machine learning
algorithms, such as random forest and extreme gradient boosting,



they obtained acceptable predictive performance and showed that
the features corresponding to the caudate nucleus were important
for classification and also inversely correlated with Montreal Cog-
nitive Assessment scores.
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3.4 Other Symptoms Although less prevalent in the literature, studies also investigated
other PD symptoms such as falls and motor severity.

An early study by Hannink and colleagues [51] was performed
to investigate gait parameter extraction from sensor data using
convolutional neural networks. Using 3d-accelerometer and
3d-gyroscope data from 99 geriatric patients, the objective was to
predict the stride length and width, the foot angle, and the heal and
toe contact times. They investigated two approaches to tackle this
multi-output regression task, either training a single convolutional
neural network to predict the five outcomes or training a convolu-
tional neural network for each outcome, and obtained better per-
formance on an independent test set with the latter approach.
Although the considered population was not parkinsonian, the
prevalence of gait symptoms in this population and the obtained
results might be relevant to better understand gait in this popula-
tion. Lu and colleagues [52] investigated gait in PD, as measured
by MDS-UPDRS item 3.10, which does not include freezing of
gait. They collected video recordings of MDS-UPDRS exams from
55 participants which were scored by 3 different trained movement
disorder neurologists, and the ground truth score was defined
using majority voting among the 3 raters. They performed skeleton
extraction from the videos and trained a convolutional neural net-
work, with regularization using rater confusion estimation to tackle
noise in labels, to predict gait severity. They obtained correct per-
formance on the test set (72% accuracy with majority voting, 84%
accuracy with the model predicting at least one of the raters’
scores).

Gao and colleagues [53] investigated falls in two data sets
independently collected at two different sites. Using clinical scores
as input, they trained several classic machine learning classification
algorithms to differentiate fallers from non-fallers. They obtained
acceptable predictive performance in both data sets when training
and evaluating (using cross-validation) a model in each data set
independently. They also showed that the predictive performance
was lower when training the model on one data set and evaluating it
on the other data set, which is not surprising, but it is important to
have this possible issue in mind when a model is not evaluated on a
different cohort.
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4 Disease Progression

Given the complexity and heterogeneity of Parkinson’s, prediction
of disease progression with individual trajectories is challenging.
Two subtypes of PD, one with more postural instability and gait
difficulty and the other one with more tremor symptoms, are
already known. Nonetheless, there are other motor symptoms in
PD, and many PD symptoms are non-motor; thus, deeper knowl-
edge is required to understand disease progression.

4.1 Disease

Subtypes

Several studies focused on the identification of more specific disease
subtypes than the two aforementioned well-known ones character-
ized by postural instability and gait difficulty for one and tremor-
predominant for the other.

Severson and colleagues [54] worked on the development of a
statistical progression model of Parkinson’s disease accounting for
intra-individual and inter-individual variability, as well as medica-
tion effects. They built a contrastive latent variable model followed
by a personalized input-output hidden Markov model to define
disease states and assessed the clinical significance of the states on
seven key motor or cognitive outcomes (mild cognitive
impairment, dementia, dyskinesia, presence of motor fluctuations,
functional impairment from motor fluctuations, Hoehn and Yahr
score, and death). They identified eight disease states that were
primarily differentiated by functional impairment, tremor, bradyki-
nesia, and neuropsychiatric measures. The terminal state had the
highest prevalence of key clinical outcomes, including almost every
recorded instance of dementia. The discovered states were
non-sequential, with overlapping disease progression trajectories,
supporting the use of non-deterministic disease progression mod-
els, and suggesting that static subtype assignment might be ineffec-
tive at capturing the full spectrum of PD progression.

Salmanpour and colleagues [55] performed a longitudinal clus-
tering analysis and prediction PD progression. They extracted
almost a thousand features, including motor, non-motor, and
radiomics features. They performed a cross-sectional clustering
analysis and identified three distinct progression trajectories, with
two trajectories being characterized by disease escalation and the
other trajectory by disease stability. They also investigated the
prediction of progression trajectories from early stage (baseline
and year 1) data and obtained the highest predictive performance
with a probabilistic neural network.

4.2 Prediction of

Future Motor and Non-

motor Symptoms

Prediction of future symptoms and individual disease trajectories
was the main focus of several studies.

Oxtoby and colleagues [56] aimed at estimating the sequence
of clinical and neurodegeneration events, and variability in this



sequence, using data-driven disease progression modelling, with a
focus on PD patients with higher risk of developing dementia
(defined as PD patients being diagnosed at age 65 or later). They
analyzed baseline visit data from two separate cohorts: a local
discovery cohort (100 PD patients and 33 HC) and a replication
cohort (PPMI study, 350 PD patients and 127 HC). They consid-
ered 42 features, including 8 clinical/cognitive measures, 6 vision
measures, 4 retinal measures, 8 regional measures of cortical thick-
ness, 4 measures of white matter neurodegeneration in the sub-
stantia nigra, and 12 regional measures of brain iron content. They
trained event-based models that incorporate non-parametric mix-
ture modelling using ten fivefold cross-validation procedures to
estimate the robustness of the models. The authors showed that
Parkinson’s progression in patients at higher risk of developing
dementia starts with classic prodromal features of PD (sleep and
olfactory disorders), followed by early deficits in visual abilities and
increased brain iron content, followed later by a less certain order-
ing of neurodegeneration in the substantia nigra and cortex, neu-
ropsychological cognitive deficits, retinal thinning in dopamine
layers, and further visual deficits. Their results support the growing
piece of evidence that visual processing specifically is affected early
in PD patients with high risk of developing dementia.
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Latourelle and colleagues [57] investigated the development of
predictive models of motor progression using longitudinal clinical,
molecular, and genetic data. More specifically, the objective was to
predict the annual rate of changes in combined scores from the
second and third parts of the MDS-UPDRS. The trained model
showed strong performance in the training cohort (using fivefold
cross-validation) and lower but still significant performance in an
independent replication cohort. The most relevant features
included baseline MDS-UPDRS motor score, sex, and age, as
well as a novel PD-specific epistatic interaction. Genetic variation
was the most useful prediction of motor progression, and baseline
CSF biomarkers had a lower but still significant effect on predicting
motor progression. They also performed simulations with the
trained model and concluded that incorporating the predicted
rates of motor progression into the final models of treatment effect
reduced the variability in the study outcome, allowing significant
differences to be detected at sample sizes up to 20% smaller than in
naive trials.

Ahmadi Rastegar and colleagues [58] investigated the predic-
tion of longitudinal clinical outcomes after 2-year follow-up from
baseline and 1-year follow-up data. They also measured 27 inflam-
matory cytokines and chemokines in serum at baseline and after
1 year to investigate cytokine stability. Training random forest
algorithms, the best prediction models were for motor symptom
severity scales (Hoehn and Yahr stage and MDS-UPDRS III total
score), and several inflammatory cytokine and chemokine features



were among the most relevant features to predict Hoehn and Yahr
stage and MDS-UPDRS III total score, giving evidence that
peripheral cytokines may have utility for aiding prediction of PD
progression using machine learning models.
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Amara and colleagues [59] investigated the prediction of future
incidents of excessive daytime sleepiness. They trained a random
survival forest using 33 baseline variables, including anxiety, depres-
sion, rapid eye movement sleep, cognitive scores, α-synuclein,
p-tau, t-tau, and ApoE ε4 status. The performance of the model
was only marginally better than random guess, but the strongest
predictive features were p-tau and t-tau.

Couronné and colleagues [60] performed longitudinal data
analysis to predict patient-specific trajectories. They proposed to
use a generative mixed effect model that considers the progression
trajectories as curves on a Riemannian manifold and that can handle
missing values. They applied their model to PD progression with
joint modelling of two features (MDS-UPDRS III total score and
striatal binding ration in right caudate). Interpretation of the model
revealed that patients with later onset progress significantly faster
and that α-synuclein mean level was correlated with PD onset.

Faouzi and colleagues [61] investigated the prediction of
future impulse control disorders (psychiatric disorders character-
ized by the inability to resist an urge or an impulse and which
include a wide range of types including compulsive shopping,
internet addiction, and hypersexuality, for instance) in Parkinson’s
disease. The objective of their study was to predict the presence or
absence of these disorders at the next clinical visit of a given patient.
Using clinical and genetic data, they trained several machine
learning models on a training cohort and evaluated the models on
the training cohort (using cross-validation) and on an independent
replication cohort. They showed that a recurrent neural network
model achieved significantly better performance than a trivial
model (predicting the status at the next visit with the status at the
most recent visit), but the increase in performance was too small to
be deemed clinically relevant. Nevertheless, this proof-of-concept
study highlights the potential of machine learning for such
prediction.

5 Treatment Adjustment and Adverse Event Prevention

Being able to predict future adverse events in Parkinson’s disease is
useful, but being able to prevent them would be even more useful.
Parkinson’s disease is one of the few neurodegenerative diseases
where current therapies can greatly improve the quality of life of the
patients, but these therapies also have adverse effects. Providing
personalized adapted therapies to every patient is of high
importance.
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Machine learning allows for unveiling complex correlations or
patterns from data. However, correlation does not imply causality:
if two variables are correlated, one variable does not necessarily
cause an effect on the other. Therefore, standard machine learning
is not always well adapted to draw conclusions for personalized
therapies. Ultimately, clinical trials with a specific hypothesis tested
are the best solution to draw causality effect conclusions. Nonethe-
less, several machine learning approaches can investigate causality
effects. Causal inference, that is, being able to discover which
variables have which impacts on which other variables, is an open
research topic in machine learning, but usually requires a lot of
data, limiting its use in Parkinson’s disease. Nonetheless, explor-
atory studies suggesting potential options for personalized thera-
pies and adverse event prevention have been published.

5.1 Dopamine

Replacement Therapy

Dopamine replacement therapy, as a way to compensate the loss of
dopamine neurons in the brain, is the most common therapy due to
its efficacy and simplicity (drug intake). Nonetheless, it also comes
with adverse effects and long-term motor complications such as
motor fluctuations (worsening or reappearance of motor symptoms
before the next drug intake) and dyskinesia (involuntary muscle
movements) [62].

Yang and colleagues [63] investigated the utility of amplitude
of low-frequency fluctuation computed from functional MRI data
of 38 PD patients in order to predict individual patient’s response
to levodopa treatment. They applied principal component analysis
to perform dimensionality reduction and trained gradient tree
boosting algorithms to discriminate between moderate and supe-
rior responders to levodopa treatment. Treatment efficacy was
defined based on motor symptom improvement from the state of
medication off to medication on, as assessed by MDS-UPDRS III
total score. They obtained great discriminative performance
between both groups, even though no significant difference in
clinical data was observed between both groups. The mainly con-
tributed regions for both models included the bilateral primary
motor cortex, the occipital cortex, the cerebellum, and the basal
ganglia. These results suggest the potential utility of amplitude of
low-frequency fluctuation as promising predictive markers of dopa-
minergic therapy response in PD patients.

Kim and colleagues [64] investigated the use of reinforcement
learning to predict optimal treatment for reducing motor symp-
toms. They derived clinically relevant disease states and an optimal
combination of medications for each of them by using policy itera-
tion of the Markov decision process. Their model achieved a lower
level of motor symptom severity scores than what clinicians did,
whereas the clinicians’ medication rules were more consistent than
their model. Their model followed the clinician’s medication rules
in most cases but also suggested some changes, which leads to the



difference in lowering symptom severity. This proof of concept
showed the potential utility of reinforcement learning to derive
optimal treatment strategies.
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5.2 Deep Brain

Stimulation

Deep brain stimulation is a neurosurgical procedure that uses
implanted electrodes and electrical stimulation and has proven
efficacy in advanced Parkinson’s disease by decreasing motor fluc-
tuations and dyskinesia and improving quality of life [65]. The
most commonly stimulated region is the subthalamic nucleus, but
the globus pallidus is sometimes preferred. Although DBS usually
greatly improves the motor symptoms, it also has downsides, such
as requiring personalized parameters and potential adverse events
such as postoperative cognitive decline.

Boutet and colleagues [66] investigated the prediction of opti-
mal deep brain stimulation parameters from functional MRI data.
They extracted blood-oxygen-level-dependent (BOLD) signals in
16 motor and non-motor regions of interest for 67 PD patients,
from which 62 underwent DBS of the subthalamic nucleus and
5 underwent DBS of the globus pallidus. They trained a linear
discriminant analysis algorithm on normalized BOLD changes
using fivefold cross-validation and obtained great performance in
classifying optimal vs non-optimal parameter settings, although the
performance was lower on two additional (a priori clinically opti-
mized and in stimulation-naive patients) unseen data sets.

Geraedts and colleagues [67] also investigated deep brain stim-
ulation in the context of cognitive function, as a downside of DBS
for PD is the potential deterioration of cognition postoperatively.
They extracted features from electroencephalograms, trained ran-
dom forest algorithms using tenfold cross-validation, and obtained
great discrimination between PD patients with the best and worst
cognitive performances. However, it should be noted that they only
included the best and worst cognitive performers (n = 20 per
group from 112 PD patients), making the classification task proba-
bly much easier than if it was performed on the 112 PD patients,
thus requiring their model to be evaluated on PD patients indepen-
dently on their cognitive performance. Nonetheless, their results
suggest the potential utility of electroencephalography for cogni-
tive profiling in DBS.

5.3 Others Phokaewvarangkul and colleagues [68] explored the effect of elec-
trical muscle stimulation as an adjunctive treatment for resting
tremor during “ON” period, with machine learning used to predict
the optimal stimulation level that will yield the longest period of
tremor reduction or tremor reset time. They used sensor data from
a glove incorporating a three-axis gyroscope to measure tremor
signals. The stimulation levels were discretized into five ordinary
classes, with the objective to predict the accurate class from the
sensor data. They observed a significant reduction in tremor



parameters during stimulation. The best performing machine
learning model was a LSTM neural network in comparison to
classic algorithms such as logistic regression, support vector
machine, and random forest. The high predictive performance of
the LSTMmodel confirmed the potential utility of electrical muscle
stimulation for the reduction of resting tremors in PD.
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Panyakaew and colleagues [69] investigated the identification
of modifiable risk factors of falls. The input data consisted of clinical
demographics, medications, and balanced confidence scaled by the
16-item Activities-Specific Balance Confidence (ABC-16) scale,
from 305 PD patients (99 fallers, 58 recurrent fallers, and
148 non-fallers). They trained two gradient tree boosting algo-
rithms using sevenfold cross-validation. They obtained good pre-
dictive performance at differentiating fallers from non-fallers, the
most relevant features being item 7 (sweeping the floor), item
5 (reaching on tiptoes), and item 12 (walking in a crowded mall)
from the ABC-16 scale, followed by disease stage and duration.
They obtained even better performance at differentiating recurrent
fallers from non-fallers, the most relevant features being items
12, 5, and 10 (walking across a parking lot) from the ABC-16
scale, followed by disease stage and current age.

6 Conclusion

Many research works on Parkinson’s disease and related disorders
using machine learning have been published in the literature, inves-
tigating diagnosis, symptom severity, disease progression, and per-
sonalized therapies. These studies provide new insights to better
understand these neurodegenerative disorders.

However, many questions and challenges are still open. The
early-stage, and even more so the prodromal-stage, classification of
Parkinson’s disease is still very challenging. The early differential
diagnosis of parkinsonian syndromes is another topic for which
higher performance is needed at an early stage. More highly perso-
nalized therapies are also needed to better improve the quality of
life of the PD patients. All the research works on these topics also
need to be evaluated in non-research environments in order to be
translated to the clinics.

Right usage of machine learning is required to try to answer
these questions and challenges. The most commonmethodological
issues are usually related to the cross-validation procedure used,
which can lead to biased, overly optimistic, reported predictive
performance. Nonetheless, our anecdotal experience after
performing this literature review is that these issues are less and
less frequent over time. Nonetheless, many studies use small data
sets and leave-one-out cross-validation, which provides an unbiased
estimation of the predictive performance, but with high variance.



The few studies that investigated replicating their results in another
independent data set all reported (much) lower predictive perfor-
mance, highlighting the critical need of replication. Using artificial
intelligence algorithms also rises ethical and legal issues regarding
the collection, processing, storage, and reuse of potentially sensitive
patient data, particularly coming from sensor-based digital data
[9]. These aspects will have to be taken into consideration when
transferring results obtained from clinical research to clinical
routine use.

874 Johann Faouzi et al.

To conclude, the use of machine learning has allowed research-
ers to better understand Parkinson’s disease and related disorders
and suggested potential to better diagnose these disorders as well as
to provide better care for the patients, but more research works and
replication studies are required to translate these results into the
clinics through clinical decision support systems.

Acknowledgments

The authors would like to thank Jochen Klucken for his fruitful
remarks. This work was supported by the French government
under the management of Agence Nationale de la Recherche as
part of the “Investissements d’avenir” program, reference
ANR-19-P3IA-0001 (PRAIRIE 3IA Institute) and reference
ANR-10-IAIHU-06 (Agence Nationale de la Recherche-10-IA
Institut Hospitalo-Universitaire-6), by the European Union
H2020 Programme (grant number 826421, project TVB-Cloud),
and by the ERA PerMed EU-wide project DIGIPD (01KU2110).

References

1. GBD (2016) Parkinson’s disease collaborators
(2018) global, regional, and national burden of
Parkinson’s disease, 1990-2016: a systematic
analysis for the global burden of disease study
2016. Lancet Neurol 17:939–953

2. Ascherio A, Schwarzschild MA (2016) The
epidemiology of Parkinson’s disease: risk fac-
tors and prevention. Lancet Neurol 15:1257–
1272

3. Blauwendraat C, Nalls MA, Singleton AB
(2020) The genetic architecture of Parkinson’s
disease. Lancet Neurol 19:170–178

4. Corti O, Lesage S, Brice A (2011) What genet-
ics tells us about the causes and mechanisms of
Parkinson’s disease. Physiol Rev 91:1161–
1218

5. Sambin S, Lavisse S, Decaix C et al (2022)
Compensatory mechanisms nine years before
Parkinson’s disease conversion in a LRRK2
R1441H family. Mov Disord 37:428–430

6. Wenning GK, Stankovic I, Vignatelli L et al
(2022) The Movement Disorder Society cri-
teria for the diagnosis of multiple system atro-
phy. Mov Disord 37:1131

7. Tolosa E, Garrido A, Scholz SW et al (2021)
Challenges in the diagnosis of Parkinson’s dis-
ease. Lancet Neurol 20:385–397

8. Boxer AL, Yu J-T, Golbe LI et al (2017)
Advances in progressive supranuclear palsy:
new diagnostic criteria, biomarkers, and thera-
peutic approaches. Lancet Neurol 16:552–563
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Ramos J et al (2014) Deep brain stimulation
in Parkinson’s disease: meta-analysis of

randomized controlled trials. J Neurol 261:
2051–2060

66. Boutet A, Madhavan R, Elias GJB et al (2021)
Predicting optimal deep brain stimulation para-
meters for Parkinson’s disease using functional
MRI and machine learning. Nat Commun 12:
3043

67. Geraedts VJ, Koch M, Contarino MF et al
(2021) Machine learning for automated
EEG-based biomarkers of cognitive
impairment during deep brain stimulation
screening in patients with Parkinson’s disease.
Clin Neurophysiol 132:1041–1048

68. Phokaewvarangkul O, Vateekul P, Wichakam I
et al (2021) Using machine learning for pre-
dicting the best outcomes with electrical mus-
cle stimulation for tremors in Parkinson’s
disease. Front Aging Neurosci 13:727654

69. Panyakaew P, Pornputtapong N, Bhidayasiri R
(2021) Using machine learning-based analytics
of daily activities to identify modifiable risk
factors for falling in Parkinson’s disease. Par-
kinsonism Relat Disord 82:77–83

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Chapter 26: Machine Learning for Parkinson´s Disease and Related Disorders
	1 Introduction
	2 Diagnosis
	2.1 Parkinson´s Disease Diagnosis Compared to Healthy Subjects
	2.1.1 PD Diagnosis Using Motion Data
	2.1.2 PD Diagnosis Using Voice Data
	2.1.3 PD Diagnosis Using Imaging Data

	2.2 Differential Diagnosis
	2.3 Disease Understanding

	3 Symptom Detection and Quantification
	3.1 Freezing of Gait
	3.2 Bradykinesia and Tremor
	3.3 Cognition
	3.4 Other Symptoms

	4 Disease Progression
	4.1 Disease Subtypes
	4.2 Prediction of Future Motor and Non-motor Symptoms

	5 Treatment Adjustment and Adverse Event Prevention
	5.1 Dopamine Replacement Therapy
	5.2 Deep Brain Stimulation
	5.3 Others

	6 Conclusion
	References




