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Abstract [short abstract recommended (250 word at most); unstructured] 27 

Parkinson’s disease is a complex heterogeneous neurodegenerative disorder characterized by 28 

the loss of dopamine neurons in the basal ganglia, resulting in many motor and non-motor 29 

symptoms. Although there is no cure to date, the dopamine replacement therapy can improve 30 

motor symptoms and the quality of life of the patients. The cardinal symptoms of this disorder 31 

are tremor, bradykinesia and rigidity, referred to as parkinsonism. Other related disorders, such 32 

as dementia with Lewy bodies, multiple system atrophy and progressive supranuclear palsy, 33 

share similar motor symptoms although they have different pathophysiology and are less 34 

responsive to the dopamine replacement therapy. Machine learning can be of great utility to 35 

better understand Parkinson’s disease and related disorders and to improve patient care. Many 36 

challenges are still open, including early accurate diagnosis, differential diagnosis, better 37 

understanding of the pathologies, symptom detection and quantification, individual disease 38 

progression prediction, and personalized therapies. In this chapter, we review research works 39 

on Parkinson’s disease and related disorders using machine learning. 40 

 41 

Keywords [5-10 keywords] 42 

Clinical decision support; deep learning; disease understanding; machine learning; multiple 43 

system atrophy; Parkinson’s disease; parkinsonian syndromes; parkinsonism; precision 44 

medicine; progressive supranuclear palsy;  45 
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1. Introduction 49 

Parkinson’s disease (PD) is the second most frequent neurodegenerative after Alzheimer’s 50 

disease, affecting more than 6 million individuals worldwide, a prevalence which is expected 51 

to double with the next 10 years (1). It is characterized by the progressive degeneration of 52 

dopaminergic neurons in the substantia nigra associated with intracellular inclusions called 53 

Lewy bodies. These Lewy bodies are composed of protein aggregates enriched in a-synuclein. 54 

Age is the greatest risk factor, but both environmental and genetic risk factors have been 55 

associated with PD. For instance, exposure to pesticides is a well-recognized risk factor for 56 

PD, whereas caffeine intake and smoking has been demonstrated to be protective (2). Although 57 

commonly sporadic, rare genetic forms of the disease have been described. More than 20 loci 58 

and associated genes have been identified to be responsible for autosomal dominant or 59 

recessive forms of the disease, and more than 90 genetic risk factors have been associated with 60 

sporadic PD (3). Although rare, genetic forms of the disease have brought important insights 61 

on the causes and pathological mechanisms of PD (4). Among them, aggregation and spreading 62 

of misfolded a-synuclein, the protein enriched in Lewy bodies, is supposed to play a key role 63 

in the pathophysiology of the disease. 64 

The loss of dopamine innervation of the basal ganglia network in the brain leads to the 65 

cardinal motor symptoms of the disease (parkinsonism): rest tremor, akinesia, and rigidity (2). 66 

However, the spreading of the synucleinopathy (aggregation of a-synuclein protein) and 67 

neuronal loss outside the dopaminergic pathway is associated with other non-motor symptoms 68 

like anosmia, sleep disorders, dysautonomia, and progressive cognitive decline. Some of these 69 

symptoms, particularly anosmia, constipation and sleep disorders, can precede the motor phase 70 

during a long prodromal phase (5). 71 

There is no cure for PD. The therapeutic strategy relies on the dopamine replacement 72 

therapy by levodopa or dopamine agonists, which alleviate motor symptoms. However, the 73 
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dopamine replacement therapy does not change the course of the disease, the progression being 74 

hampered by motor complications (motor fluctuations and abnormal movement called 75 

dyskinesia), related to both the progression of the neuronal loss and to pre- and post-synaptic 76 

plasticity induced by the treatment. In addition, the dopamine replacement therapy has no 77 

benefit on non-motor symptoms not related to the loss of dopaminergic neurons. 78 

PD is the most frequent synucleinopathy. Other neurodegenerative diseases share some 79 

clinical and pathophysiological features of PD. Multiple system atrophy (MSA) is a rare 80 

disease associated with parkinsonism with low response to levodopa, early dysautonomia, 81 

and/or cerebellar symptoms (6). The synucleinopathy affects the substantia nigra, but also the 82 

striatum and the cerebellum, and Lewy bodies are also observed in glial cells. There are two 83 

variants of MSA: the parkinsonian variant (MSA-P) characterized by parkinsonism, and the 84 

cerebellar variant (MSA-C) characterized by gait ataxia with cerebellar dysarthria. Dementia 85 

with Lewy bodies (DLB), the second most common neurodegenerative dementia after 86 

Alzheimer’s disease, is characterized by early cognitive decline, hallucinations, and levodopa-87 

responsive motor symptoms (7). However, whether DLB and PD with dementia are really two 88 

distinct entities is still a matter of debate. There are also other rare atypical parkinsonism 89 

syndromes, not related to a synucleinopathy. Progressive supranuclear palsy (PSP) is a 90 

tauopathy (aggregation of tau protein) characterized by a non-responsive, axial predominant 91 

parkinsonism, early falls, supranuclear gaze palsy, and a frontal syndrome (8). The cortico-92 

basal degeneration (CBD) is also a tauopathy with asymmetric parkinsonism with dystonia and 93 

cognitive dysfunction. Table 1 summarizes the characteristics of all these disorders. 94 

Considering the complexity of these disorders, the lack of reliable biomarkers and the 95 

overlapping clinical presentation at the early stage, there is a need for more advanced 96 

approaches to support differential diagnosis. In addition, the pathophysiology of these 97 

disorders results from the complex interplay of multiple mechanisms. One current challenge is 98 
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to stratify patients according to specific mechanisms, and predict individual progression profile 99 

in order to move toward a more personalized medicine. Machine learning consists in extracting 100 

information from data by computer programs without providing explicit rules on what to 101 

extract, in the sense that machines learn by themselves which information to extract. Given the 102 

complexity of Parkinson’s disease and its related disorders, there still exist many challenges 103 

and open questions for which machine learning could help increase knowledge on these 104 

disorders, in particular diagnosis, disease understanding and precision medicine, and create 105 

better clinical decision support systems. Table 2 summarizes the potential benefits of machine 106 

learning for Parkinson’s disease and related disorders. 107 

The rest of this chapter is organized as follows. We first present research works on the 108 

diagnosis of Parkinson’s disease and the differential diagnosis between parkinsonian 109 

syndromes, including disease understanding (Section 2). We then focus on the detection and 110 

quantification of motor and non-motor symptoms in Parkinson’s disease (Section 3). Disease 111 

progression in Parkinson’s disease, with the prediction of individual progression trajectories, 112 

are presented in Section 4. We then describe research on the monitoring and adjustment of 113 

treatment in Parkinson’s disease and discuss the limitations of machine learning in terms of 114 

causality (Section 5). Finally, we conclude on the existing literature discuss open questions and 115 

research works (Section 6). Table 3 summarizes the studies described in this chapter. 116 

117 
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2. Diagnosis 118 

Having an automated model being able to accurately diagnose one or several diseases has not 119 

only a concrete utility in clinical routine, but interpreting the decision process of the model 120 

may also help better understand these diseases. To assist diagnosis, two different classification 121 

tasks are usually considered: (i) being able to differentiate PD patients from healthy controls 122 

(HC), and (ii) being able to differentiate several parkinsonian syndromes from each other. 123 

2.1. Parkinson’s disease diagnosis compared to healthy subjects 124 

Given the much larger prevalence of Parkinson’s disease compared to the atypical parkinsonian 125 

syndromes, gathering data from PD patients and HC is naturally easier, especially easy-to-126 

collect data from sensors compared to clinical, imaging or genetic data. 127 

 Digital technologies including wearable sensors, smartphone applications, and smart 128 

algorithms receive a strongly increasing interest and begin to move toward medical 129 

applications, particularly in PD (9). Two main types of sensor data are usually considered: 130 

voice data and motion data. Given that the cardinal symptoms of PD are motor, motion data is 131 

natural, but speech also involves motor muscles. Dysarthria, which is a motor speech disorder 132 

in which the muscles involved in producing speech are damaged, paralyzed, or weakened, is a 133 

symptom of PD. 134 

2.1.1. PD diagnosis using motion data 135 

Several types of sensors have been investigated to collect motion data depending on the 136 

movements of interest. 137 

 Wahid and colleagues (10) investigated the discrimination between PD patients and 138 

healthy controls using gait data collected during self-selected walking. They extracted spatial-139 

temporal features, such as stride length, stance time, swing time, and step length, from the 140 

signals, and investigated different strategies of data normalization using dimensionless 141 
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equations and multiple regression, and different machine learning algorithms such as naive 142 

Bayes (NB), k-nearest neighbors (kNN), support vector machines (SVM) and random forests 143 

(RF). They obtained the best predictive performance with the random forest trained on features 144 

normalized using multiple regression. 145 

 Mirelman and colleagues (11) also investigated gait and mobility measures that are 146 

indicative of PD and PD stages. They gathered data from sensors adhered to the participant’s 147 

lower back, bilateral ankles and wrists, during short walks, and extracted gait features. They 148 

investigated several strategies to perform feature selection, and use a random under-sampling 149 

boosting classification algorithm to tackle class imbalance. When comparing PD patients with 150 

mild PD severity (Hoehn & Yahr stage 1) to healthy controls, they obtained good 151 

discriminative performance (84% sensitivity, 80% specificity). Most discriminative features 152 

were extracted from the upper-limb sensors, with the remaining features extracted from the 153 

trunk sensor, while the lower-limb sensors did not contribute to discrimination accuracy. 154 

 Kostikis and colleagues (12) investigated upper limb tremor using a smartphone-155 

based tool. Signals from the phone’s accelerometer and gyroscope were computed, from which 156 

features were extracted. They trained several machine learning algorithms, including random 157 

forest, naive Bayes, logistic regression (LR) and support vector machine, using these features 158 

as input, and obtained the highest discriminative performance between PD patients and HC 159 

with the random forest model. 160 

 Kotsavasiloglou and colleagues (13) investigated the use of a pen-and-tablet device 161 

to study the differences in hand movement and muscle coordination between PD patients and 162 

HC. Data consisted of the trajectory of the pen’s tip and on the pad’s surface from drawings of 163 

simple horizontal lines, from which they extracted features. They investigated several machine 164 

learning algorithms such as logistic regression, support vector machine and random forest, and 165 
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used nested cross-validation to perform feature selection. They obtained the highest 166 

discriminative performance with the naive Bayes model. 167 

2.1.2. PD diagnosis using voice data 168 

Voice data is usually recorded from high-quality microphones or from smartphones during 169 

specific vocal tasks focused on characteristics such as phonation and speech. Features are then 170 

extracted from the corresponding signals and used as input to machine learning classification 171 

algorithms. 172 

 Amato and colleagues (14) analyzed specific phonetic groups in native Italian 173 

speakers, extracted several spectral moments from the signals and trained a SVM algorithm on 174 

these extracted features to distinguish PD patients from HC. They first worked on a public 175 

dataset called Italian Parkinson’s Voice and Speech1, with data recorded in ideal publications, 176 

and obtained great performance on the validation and test sets. They then merged this public 177 

data set with a data set that they collected, with data being recorded in more realistic, 178 

suboptimal conditions, and obtained good but lower performance on the validation and test sets 179 

of this merged data set. Experiments with training on one single data set and validation on the 180 

other data set were not performed, but it would have been interesting to estimate how well a 181 

trained model could generalize on other data sets with data being recorded in different 182 

conditions. 183 

 Jeancolas and colleagues (15) investigated the early diagnosis of PD and possible 184 

gender differences in voice data. They used a pre-trained deep neural network focused on 185 

speaker recognition system to extract features and obtained a higher performance than with a 186 

standard multidimensional Gaussian mixture model, although the increase was more important 187 

 
 
 
 
1 https://ieee-dataport.org/open-access/italian-parkinsons-voice-and-speech 
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among men than women. They also investigated the impact of the quality of the recordings 188 

(using either a high-quality microphone or a telephone) and obtained the same conclusions in 189 

both cases.  190 

 In another study, Jeancolas and colleagues (16) investigated the differentiation 191 

between early PD patients and patients with idiopathic rapid eye movement sleep behavior 192 

disorders (iRBD), which are important risk factors to develop PD in the near future. They 193 

extracted features related to prosody, phonation, speech fluency and rhythm abilities from 194 

speech recordings. They once again obtained a higher predictive performance among men than 195 

women in the PD vs HC classification tasked, and a better discriminative power for this 196 

classification task than for the iRBD vs HC one, suggesting that discriminating iRBD patients 197 

from HC using voice data is a much harder task, but it is also probably a most useful one in 198 

practice. 199 

 Quan and colleagues (17) investigated the extraction of global static features (from 200 

the whole signals) and local dynamic features (using a sliding window on the signals) from 201 

voice data during articulation tasks. They trained standard machine learning classification 202 

algorithms, such as decision trees (DT), k-nearest neighbors, naive Bayes and support vector 203 

machines, using the static features, while they trained a recurrent neural network, more 204 

specifically a bidirectional long short-term memory (LSTM), on the dynamic features, and 205 

obtained a higher predictive performance with the deep learning approach. 206 

 Although many studies reported high predictive performances, some results must be 207 

taken with caution. Indeed, a recent study reported methodological issues in several studies, 208 

including record-wise cross-validation instead of subject-wise cross-validation, high imbalance 209 

in ages between PD patients and HC, and performance metrics computed on the validation 210 

folds of k-fold cross-validation and not on an independent test set, which may lead to overly 211 

optimistic results (18). 212 
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2.1.3. PD diagnosis using imaging data 213 

The diagnosis of PD remains based on its clinical presentation (19). Imaging of dopaminergic 214 

terminals loss can be assessed using nuclear imaging, but it is not recommended in clinical 215 

routine, and does not differentiate PD from other related disorders associated with dopamine 216 

neuron loss (20). Standard brain magnetic resonance imaging (MRI) is normal in PD. However, 217 

several new markers have been recently been investigated in several studies, with mixed 218 

results. 219 

 Adeli and colleagues (21) investigated the use of T1-weighted anatomical MRI data 220 

to differentiate PD patients from HC. They developed a joint feature-sample selection 221 

algorithm in order to select an optimal subset of both features and samples from a training set, 222 

and a robust classification framework that performs denoising of the selected features and 223 

samples then learns a classification model. They analyzed data from 374 PD patients and 169 224 

HC from the Parkinson’s Progression Markers Initiative2 (PPMI) cohort, and included white 225 

matter, gray matter and cerebrospinal fluid measurements from 98 regions of interest. The 226 

combination of the proposed feature selection/extraction method and classifier achieved the 227 

highest predictive accuracy (0.819), being significantly better than almost every other 228 

combination of a feature selection/extraction method and a classification algorithm. 229 

 Solana-Lavalle and Rosas-Romero (22) investigated the use of voxel-based 230 

morphometry features extracted from T1-weighted anatomical MRI to perform a PD vs HC 231 

classification task. Their pipeline consisted of 5 stages: (i) identification of regions of interest 232 

using voxel-based morphometry, (ii) analysis of these regions for PD detection, (iii) feature 233 

extraction based on first- and second-order statistics, (iv) feature selection based on principal 234 

 
 
 
 
2 https://www.ppmi-info.org 
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component analysis, and (v) classification with 10-fold cross-validation based on 7 different 235 

algorithms (including k-nearest neighbors, support vector machine, random forest, naive Bayes 236 

and logistic regression). They obtained excellent predictive performance for both male and 237 

female genders and for both 1.5T and 3T MRI scans (accuracy scores ranging from 0.93 to 238 

0.99 for the best classification algorithms). However, cross-validation was performed very late 239 

in their pipeline (after the feature subset selection), which could lead to biased models and 240 

overly optimistic predictive performances. 241 

 Mudali and colleagues (23) investigated another modality, [18F]-fluorodeoxyglucose 242 

positron emission tomography (FDG-PET), to compare 20 PD patients and 18 HC. They 243 

applied the subprofile model/principal component analysis method to extract features from the 244 

images. They considered a DT algorithm and used leave-one-out cross-validation to evaluate 245 

the predictive performance of the models. They obtained really low predictive performance 246 

(50% sensitivity, 45% specificity), close to chance level. 247 

 Overall, it is unclear if machine learning applied to anatomical MRI or FDG-PET can 248 

bring added value for the diagnosis of PD. However, advanced MRI sequences have the 249 

potential to bring much more valuable information (24). 250 

2.2. Differential diagnosis 251 

The PD vs HC binary classification task has limited utility as, even at the early stage of PD, 252 

patients have clinical symptoms strongly suggesting that they suffer from a movement disorder, 253 

and thus are not healthy subjects. However, the accurate early diagnosis of parkinsonian 254 

syndromes is difficult but needed due to the different pathologies and thus the different care. 255 

Although one study investigated the differential diagnosis using sensor-based gait analysis 256 

(25), most studies investigated it using imaging data, particularly diffusion MRI. 257 

 Huppertz and colleagues (26) investigated the differential diagnosis with data from a 258 

relatively large cohort (73 HC, 204 PD, 106 PSP, 20 MSA-C and 60 MSA-P). Using atlas-259 
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based volumetry of brain MRI data, they extracted volumes in several regions of interest, and 260 

trained and evaluated a linear SVM algorithm using leave-one-out cross-validation. They 261 

obtained good predictive performance in most binary classification tasks, and showed that 262 

midbrain, basal ganglia, and cerebellar peduncles were the most relevant regions. 263 

 A landmark study on this topic was published in 2019 by Archer and colleagues (27), 264 

with diffusion-weighted MRI data being collected for 1002 subjects from 17 MRI centers in 265 

Austria, Germany and the USA. They extracted 60 free-water and 60 free-water-corrected 266 

fractional anisotropy values from diffusion-weighted MRI data, and the other features 267 

consisted of the third part of the Movement Disorder Society-Sponsored revision of the Unified 268 

Parkinson’s Disease Rating Scale (MDS-UPDRS III), sex and age. They trained several SVM 269 

models and showed that the model trained using MDS-UPDRS III (with sex and age also, for 270 

all the models) performed poorly in most classification tasks, whereas the model trained using 271 

DWI features had much higher predictive performance (particularly for the MSA vs PSP task) 272 

and adding MDS-UPDRS III to this model did not improve the performance. 273 

More recently, Chougar and colleagues (28) investigated the replication of such 274 

differential diagnosis models in clinical practice on different MRI systems. Using MRI data 275 

from 119 PD, 51 PSP, 35 MSA-P, 23 MSA-C and 94 HC, split into a training cohort (n=179) 276 

and a replication cohort (n=143), they extracted volumes and diffusion tensor imaging (DTI) 277 

features (fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity) in 13 278 

regions of interest. They investigated two feature normalization strategies (one based on the 279 

data of all subjects in the training set, and one based on the data of HC for each MRI system to 280 

tackle the different feature distributions, in particular for DTI features, because of the use of 281 

different MRI systems) and four standard machine learning algorithms, including logistic 282 

regression, support vector machines, random forest. They obtained high performances in the 283 

replication cohort for many binary classification tasks (PD vs PSP, PD vs MSA-C, PSP vs 284 
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MSA-C, PD vs atypical parkinsonism), but lower performances for other classification tasks 285 

involving MSA-P patients (PD vs MSA-P, MSA-C vs MSA-P). They showed that adding DTI 286 

features did not improve performance compared to using volumes only, and that the usual 287 

normalization strategy worked best in this case. 288 

 Shinde and colleagues (29) investigated the automatic extraction of contrast ratios of 289 

the substantia nigra pars compacta from neuromelanin sensitive MRI using a convolutional 290 

neural network. Based on the class activation maps, they identified that the left side of 291 

substantia nigra pars compacta played a more important role in the decision of the model 292 

compared to the right side, in agreement with the concept of asymmetry in PD. 293 

 A recent study (30) investigated the use of positron emission tomography of the 294 

translocator protein, expressed by glial cells, and extracted normalized standardized uptake 295 

value images and normalized total distribution volume images. Using a linear discriminant 296 

analysis algorithm with leave-one-subject-out cross-validation, they obtained great 297 

discriminative power between MSA and PD patients, with better performance with normalized 298 

total distribution volume images. 299 

2.3. Disease understanding 300 

Rather than focusing on the diagnosis of Parkinson’s disease itself, several studies were more 301 

focused on interpreting the trained machine learning models in order to better understand the 302 

mechanisms of Parkinson’s disease. 303 

 Khawaldeh and colleagues (31) investigated the task-related modulation of local field 304 

potentials of the subthalamic nucleus before and during voluntary upper and lower limb 305 

movements in 18 consecutive Parkinson’s disease patients undergoing deep brain stimulation 306 

(DBS) surgery of the subthalamic nucleus in order to improve motor symptoms. Using a naive 307 

Bayes classification algorithm, they obtained chance-level performance at rest, but much 308 

higher performance during the pre-cue, pre-movement onset and post-movement onset tasks. 309 
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They showed that the presence of bursts of local field potential activity in the alpha, and even 310 

more so, in the beta frequency band significantly compromised the prediction of the limb to be 311 

moved, concluding that low frequency bursts restrict the capacity of the basal ganglia system 312 

to encode physiologically relevant information about intended actions. 313 

 Poston and colleagues (32) investigated brain mechanisms that allow some PD patients 314 

with severe dopamine neuron loss to remain cognitively normal. Using functional MRI data 315 

from PD patients without cognitive impairment and from HC collected during a working 316 

memory task, they trained a support vector machine classifier and identified robust differences 317 

in putamen activation patterns, providing novel evidence that PD patients maintain normal 318 

cognitive performance through compensatory hyperactivation of the putamen. 319 

 Trezzi and colleagues (33) investigated cerebrospinal fluid biomarkers, and more 320 

precisely the metabolome, in early-stage PD. The logistic regression model trained on such 321 

data provided good discriminative power, and the most associated biomarkers were mannose, 322 

threonic acid and fructose. These biomarkers were associated with antioxidative stress 323 

response, glycation, and inflammation, and may help better understand PD pathogenesis. 324 

 Vanneste and colleagues (34) investigated thalamocortical dysrhythmia, which is a 325 

model proposed to explain divergent neurological disorders, and is characterized by a common 326 

oscillatory pattern in which resting-state alpha activity is replaced by cross-frequency coupling 327 

of low- and high-frequency oscillations. The trained support vector machine model identified 328 

specific brain regions that provided good discriminative power between PD patients and HC, 329 

including subgenual anterior cingulate cortex, posterior cingulate cortex, parahippocampus, 330 

dorsal anterior cingulate cortex, motor cortex. Another model also identified brain areas that 331 

are common to the pathology of Parkinson’s disease, pain, tinnitus, and depression, including 332 

dorsal anterior cingulate cortex and parahippocampal area.  333 
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3. Symptom detection and quantification 334 

Given the complexity and heterogeneity of Parkinson’s disease, prompt accurate assessment of 335 

symptoms is needed. A detailed scale, called the Movement Disorders Society-Sponsored 336 

revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) (35), is currently the 337 

gold standard to assess motor (and non-motor) features of PD patients by movement disorders 338 

specialists. The scale is divided into four sections. The first two sections allow for assessing 339 

the non-motor and motor activities of daily living respectively, while the third section consists 340 

of a motor exam and the fourth section allows for assessing motor complications. 341 

 Nonetheless, the MDS-UPDRS has several limitations. First, it requires time (30-45 342 

minutes for the full scale) and a trained movement disorder specialist to fill it, limiting its use 343 

during clinical routine visits. Second, part of subjectivity from a human evaluation, and thus 344 

variance in the MDS-UPDRS scores, cannot be excluded, with a recent study suggesting that 345 

MDS-UPDRS scores contain a substantial amount of variance (36). Moreover, other scales are 346 

typically used to more precisely assess non-motor symptoms such as depression, anxiety and 347 

cognition. Finally, scales are addressed during a visit at the hospital and may not reflect the 348 

symptoms in a more ecological setting, at home, during the daily life of the patient. Automatic 349 

detection and quantification of symptoms using machine learning may help tackle these 350 

limitations, and several studies investigated this topic. In the remaining of this section, we 351 

group these studies based on the symptoms investigated. 352 

3.1. Freezing of gait 353 

Freezing of gait (FOG) is a common motor symptom and is associated with life-threatening 354 

accidents such as falls. Prompt identification or prediction of freezing of gait episodes is thus 355 

needed. 356 

 Ahlrichs and colleagues (37) investigated freezing of gait in 20 PD patients (8 with 357 

FOG, 12 without FOG), split into a training set (15 patients) and a test set (5 patients). They 358 
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collected sensor (accelerometer, gyroscope and magnetometer) data during scripted activities 359 

(e.g., walking around the apartment, carrying a full glass of water from the kitchen to another 360 

room) and non-scripted activities (e.g., answering the phone). Two recording sessions were 361 

considered: one in “OFF” motor state and one in “ON” motor state and the data was labeled by 362 

experienced clinicians based on the corresponding video recordings. The task was a binary 363 

classification tasks (FOG vs no FOG) for each window. They extracted sub-signals from the 364 

whole signals using a sliding window, then extracted features and in the time and frequency 365 

domains for each sub-signal. They trained two SVM algorithms (one with a linear kernel, one 366 

with a Gaussian kernel) and obtained high and better results with the linear kernel. 367 

 Aich and colleagues (38) gathered sensor data for 36 PD patients with FOG and 15 PD 368 

patients without FOG from two wearable triaxial accelerometers during clinical experiments. 369 

They extracted features, such step time, stride time, step length, stride length and walking 370 

speed, from the signals. They trained several classic machine learning classification algorithms 371 

(SVM, kNN, DT, NB) and obtained good predictive performances with all of them, although 372 

the SVM model had the highest mean accuracy on the test sets of the cross-validation 373 

procedure. 374 

 Borzì and colleagues (39) collected data from two inertial sensors placed on each shin 375 

of the 11 PD patients during the “timed up and go” test in order to investigate FOG and pre-376 

FOG detection. They extracted features in the time and frequency domains and trained decision 377 

tree algorithms. They obtained great predictive performance to detect FOG episodes, but lower 378 

performance to predict pre-FOG episodes, with the performance decreasing even more as the 379 

window length increased. 380 

 Dvorani and colleagues (40) were interested in detecting foot motion phases using a 381 

shoe-placed inertial sensor in order to detect FOG episodes. They extracted ten features, 382 

including stride length, maximum gait velocity and step duration, from each motion phase, and 383 
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trained a SVM algorithm to detect FOG episodes. They obtained great performance when using 384 

features from the current and two preceding motion phases, but lower performance when using 385 

only features from the two preceding motion phases, highlighting the higher difficulty to 386 

predict FOG episodes in advance. Shalin and colleagues (41) reached the same conclusion 387 

using plantar-pressure data and a long short-term memory neural network. 388 

3.2. Bradykinesia and tremor 389 

Bradykinesia and tremor are two other motor-symptoms that are frequently investigated for 390 

automatic assessment. 391 

 Park and colleagues (42) investigated automated rating for resting tremor and 392 

bradykinesia from video clips of resting tremor and finger tapping of the bilateral upper limbs. 393 

They extracted several features from the video clips, including resting tremor amplitude and 394 

finger tapping speed, amplitude and fatigue, using a pre-trained deep learning model. These 395 

features were used as input of a SVM algorithm to predict the corresponding scores from the 396 

MDS-UPDRS scale. For resting tremors, the automated approach had excellent reliability 397 

range with the gold standard rating and higher performance than that of non-trained human 398 

rater. For finger tapping, the automated approach had good reliability range with the gold 399 

standard rating and similar performance than that of non-trained human rater. 400 

Kim and colleagues (43) performed a study in which they investigated tremor severity 401 

using 3-dimensional acceleration and gyroscope data obtained from wearable device. They 402 

investigated a convolutional neural network to automatically extract features and perform 403 

classification, compared to extracting defined features from the time and frequency domains 404 

and training standard machine learning algorithms (random forest, naive Bayes, linear 405 

regression, support vector machines) using these features. They obtained better higher 406 

predictive performance with the deep learning approach than the standard machine learning 407 
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approach. Eskofier and colleagues (44) obtained similar results using inertial measurement 408 

units collected during motor tasks. 409 

3.3. Cognition 410 

Cognitive impairment is frequent in PD, with the point prevalence of PD dementia being 411 

around 30% and the cumulative prevalence for patients surviving more than 10 years being at 412 

least 75% (45). Due to its high negative impact on the quality of life of PD patients and their 413 

caregivers, it is important to identify and quantify cognitive impairment. Several scales to 414 

assess cognition already exist, such as the Mini-Mental State Examination and the Montreal 415 

Cognitive Assessment, but automatic assessment of cognition could be helpful. 416 

 Abós and colleagues (46) investigated discriminating cognitive status in PD through 417 

functional connectomics. Using resting-state functional MRI data, they extracted features 418 

consisting of connection-wise pattern of functional connectivity. They performed feature 419 

selection using randomized logistic regression with leave-one-out cross-validation, then trained 420 

a SVM algorithm. They obtained good discriminative performance between PD patients with 421 

mild cognitive impairment and with no cognitive impairment, but could not report significant 422 

connectivity reductions between both groups. 423 

 Betrouni and colleagues (47) investigated the use of electroencephalograms to 424 

automatically assess their cognitive status. A cluster analysis of the neuropsychological 425 

assessments of 118 PD patients revealed 5 cognition clusters. They extracted quantitative 426 

features from the electroencephalograms and performed feature selection based on Pearson 427 

correlation tests. They trained two machine learning algorithms (kNN and SVM), using a 5-428 

fold cross-validation procedure that was repeated 5 times, and obtained good similar predictive 429 

performances for the 5-class classification task with both models. 430 

 García and colleagues (48) investigated cognitive decline using dysarthric symptoms. 431 

They extracted prosodic, articulatory and phonemic identifiability features from speech signals 432 
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recorded during the reading of two narratives. Using a SVM algorithm and nested cross-433 

validation, they obtained correct discriminative performance (area under the receiver operating 434 

characteristics curve of 0.76), with the highest performance being obtained using phonemic 435 

identifiability features. 436 

 Morales and colleagues (49) investigated the classification of PD patients with no 437 

cognitive impairment (n=16), with mild cognitive impairment (n=15) and with dementia 438 

(n=14). They trained several variants of the naive Bayes algorithm and one SVM algorithm on 439 

112 MRI features consisting of volumes of subcortical structures and thickness of cortical 440 

parcels, and obtained good discriminative performance in the 3 binary classification tasks, the 441 

lower performance corresponding to the differentiation between PD patients with no cognitive 442 

impairment with mild cognitive impairment. The most important features involved the 443 

following brain regions: left cerebral cortex, left caudate, left entorhinal, right inferior left 444 

hippocampus, and brain stem. 445 

 A recent study (50) also investigated MRI data, more specifically quantitative 446 

susceptibility mapping images parcellated into 20 regions of interest, for early detection of 447 

cognitive impairment in PD. Using tree-based ensemble machine learning algorithms, such as 448 

random forest and extreme gradient boosting, they obtained acceptable predictive performance 449 

and showed that the features corresponding to the caudate nucleus were important for 450 

classification and also inversely correlated with Montreal Cognitive Assessment scores. 451 

3.4. Other symptoms 452 

Although less prevalent in the literature, studies also investigated other PD symptoms such as 453 

falls and motor severity. 454 

 An early study by Hannink and colleagues (51) was performed to investigate gait 455 

parameter extraction from sensor data using convolutional neural networks. Using 3d-456 

accelerometer and 3d-gyroscope data from 99 geriatric patients, the objective was to predict 457 
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the stride length and width, the foot angle, and the heal and toe contact times. They investigated 458 

two approaches to tackle this multi-output regression task, training either a single convolutional 459 

neural network to predict the five outcomes, or training a convolutional neural network for 460 

each outcome, and obtained better performance on an independent test set with the latter 461 

approach. Although the considered population was not parkinsonian, the prevalence of gait 462 

symptoms in this population and the obtained results might be relevant to better understand 463 

gait in this population. Lu and colleagues (52) investigated gait in PD, as measured by MDS-464 

UPDRS item 3.10, which does not include freezing of gait. They collected video recordings of 465 

MDS-UPDRS exams from 55 participants which were scored by three different trained 466 

movement disorder neurologists, and the ground truth score was defined using majority voting 467 

among the three raters. They performed skeleton extraction from the videos and trained a 468 

convolutional neural network, with regularization using rater confusion estimation to tackle 469 

noise in labels, to predict gait severity. They obtained correct performance on the test set (72% 470 

accuracy with majority voting, 84% accuracy with the model predicting at least one of the 471 

raters’ scores). 472 

 Gao and colleagues (53) investigated falls in two data sets independently collected at 473 

two different sites. Using clinical scores as input, they trained several classic machine learning 474 

classification algorithms to differentiate fallers from non-fallers. They obtained acceptable 475 

predictive performance in both data sets when training and evaluating (using cross-validation) 476 

a model in each data set independently. They also showed that the predictive performance was 477 

lower when training the model on one data set and evaluating it on the other data set, which is 478 

not surprising, but it is important to have this possible issue in mind when a model is not 479 

evaluated on a different cohort.  480 
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4. Disease progression 481 

Given the complexity and heterogeneity of Parkinson’s, prediction of disease progression with 482 

individual trajectories is challenging. Two subtypes of PD, one with more postural instability 483 

and gait difficulty and the other one with more tremor symptoms, are already known. 484 

Nonetheless, there are other motor symptoms in PD and many PD symptoms are non-motor, 485 

thus deeper knowledge is required to understand disease progression.  486 

4.1. Disease subtypes 487 

Several studies focused on the identification of more specific disease subtypes than the two 488 

aforementioned well-known ones characterized by postural instability and gait difficulty for 489 

one, and tremor-predominant for the other. 490 

 Severson and colleagues (54) worked on the development of a statistical progression 491 

model of Parkinson’s disease accounting for intra-individual and inter-individual variability, 492 

as well as medication effects. They built a contrastive latent variable model followed by a 493 

personalized input-output hidden Markov model to define disease states and assessed the 494 

clinical significance of the states on seven key motor or cognitive outcomes (mild cognitive 495 

impairment, dementia, dyskinesia, presence of motor fluctuations, functional impairment from 496 

motor fluctuations, Hoehn & Yahr score, and death). They identified eight disease states that 497 

were primarily differentiated by functional impairment, tremor, bradykinesia, and 498 

neuropsychiatric measures. The terminal state had the highest prevalence of key clinical 499 

outcomes, including almost every recorded instance of dementia. The discovered states were 500 

non-sequential, with overlapping disease progression trajectories, supporting the use of non-501 

deterministic disease progression models, and suggesting that static subtype assignment might 502 

be ineffective at capturing the full spectrum of PD progression. 503 

 Salmanpour and colleagues (55) performed a longitudinal clustering analysis and 504 

prediction PD progression. They extracted almost a thousand features, including motor, non-505 



Faouzi et al                                        Machine learning for Parkinson’s disease and related disorders 

Machine Learning for Brain Disorders, Chapter 26  22 

motor, and radiomics features. They performed a cross-sectional clustering analysis and 506 

identified 3 distinct progression trajectories, with two trajectories being characterized by 507 

disease escalation and the other trajectory by disease stability. They also investigated the 508 

prediction of progression trajectories from early stage (baseline and year 1) data and obtained 509 

the highest predictive performance with a probabilistic neural network. 510 

4.2. Prediction of future motor and non-motor symptoms 511 

Prediction of future symptoms and individual disease trajectories was the main focus of several 512 

studies. 513 

 Oxtoby and colleagues (56) aimed at estimating the sequence of clinical and 514 

neurodegeneration events, and variability in this sequence, using data-driven disease 515 

progression modelling, with a focus on PD patients with higher risk of developing dementia 516 

(defined as PD patients being diagnosed at age 65 or later). They analyzed baseline visit data 517 

from two separate cohorts: a local discovery cohort (100 PD patients and 33 HC) and a 518 

replication cohort (PPMI study, 350 PD patients and 127 HC). They considered 42 features, 519 

including 8 clinical/cognitive measures, 6 vision measures, 4 retinal measures, 8 regional 520 

measures of cortical thickness, 4 measures of white matter neurodegeneration in the substantia 521 

nigra, and 12 regional measures of brain iron content. They trained event-based models that 522 

incorporate non-parametric mixture modelling using 10 5-fold cross-validation procedures to 523 

estimate the robustness of the models. The authors showed that Parkinson’s progression in 524 

patients at higher risk of developing dementia starts with classic prodromal features of PD 525 

(sleep and olfactory disorders), followed by early deficits in visual abilities and increased brain 526 

iron content, followed later by a less certain ordering of neurodegeneration in the substantia 527 

nigra and cortex, neuropsychological cognitive deficits, retinal thinning in dopamine layers, 528 

and further visual deficits. Their results support the growing piece of evidence that visual 529 

processing specifically is affected early in PD patients with high risk of developing dementia. 530 
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 Latourelle and colleagues (57) investigated the development of predictive models of 531 

motor progression using longitudinal clinical, molecular and genetic data. More specifically, 532 

the objective was to predict the annual rate of changes in combined scores from the second and 533 

third parts of the MDS-UPDRS. The trained model showed strong performance in the training 534 

cohort (using 5-fold cross-validation), and lower but still significant performance in an 535 

independent replication cohort. The most relevant features included baseline MDS-UPDRS 536 

motor score, sex, and age, as well as a novel PD specific epistatic interaction. Genetic variation 537 

was the most useful prediction of motor progression, and baseline CSF biomarkers had a lower 538 

but still significant effect on predicting motor progression. They also performed simulations 539 

with the trained model and concluded that incorporating the predicted rates of motor 540 

progression into the final models of treatment effect reduced the variability in the study 541 

outcome, allowing significant differences to be detected at sample sizes up to 20% smaller than 542 

in naive trials. 543 

 Ahmadi Tastegar and colleagues (58) investigated the prediction of longitudinal 544 

clinical outcomes after 2-year follow-up from baseline and 1-year follow-up data. They also 545 

measured 27 inflammatory cytokines and chemokines in serum at baseline and after 1 year to 546 

investigate cytokine stability. Training random forest algorithms, the best prediction models 547 

were for motor symptom severity scales (Hoehn & Yahr stage and MDS-UPDRS III total 548 

score), and several inflammatory cytokine and chemokine features were among the most 549 

relevant features to predict Hoehn and Yahr stage and MDS-UPDRS III total score, giving 550 

evidence that peripheral cytokines may have utility for aiding prediction of PD progression 551 

using machine learning models. 552 

 Amara and colleagues (59) investigated the prediction of future incidents of excessive 553 

daytime sleepiness. They trained a random survival forest using 33 baseline variables, 554 

including anxiety, depression, rapid eye movement sleep, cognitive scores, a-synuclein, p-tau, 555 
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t-tau and ApoE e4 status. The performance of the model was only marginally better than 556 

random guess, but the strongest predictive features were p-tau and t-tau. 557 

 Couronné and colleagues (60) performed longitudinal data analysis to predict patient-558 

specific trajectories. They proposed to use a generative mixed effect model that considers the 559 

progression trajectories as curves on a Riemannian manifold and that can handle missing 560 

values. They applied their model to PD progression with joint modelling of two features (MDS-561 

UPDRS III total score and striatal binding ration in right caudate). Interpretation of the model 562 

revealed that patients with later onset progress significantly faster and that a-synuclein mean 563 

level was correlated with PD onset. 564 

 Faouzi and colleagues (61) investigated the prediction of future impulse control 565 

disorders (psychiatric disorders characterized by the inability to resist an urge or an impulse 566 

and which include a wide range of types including compulsive shopping, internet addiction, 567 

and hypersexuality for instance) in Parkinson’s disease. The objective of their study was to 568 

predict the presence or absence of these disorders at the next clinical visit of a given patient. 569 

Using clinical and genetic data, they trained several machine learning models on a training 570 

cohort and evaluated the models on the training cohort (using cross-validation) and on an 571 

independent replication cohort. They showed that a recurrent neural network model achieved 572 

significantly better performance than a trivial model (predicting the status at the next visit with 573 

the status at the most recent visit), but the increase in performance was too small to be deemed 574 

clinically relevant. Nevertheless, this proof-of-concept study highlights the potential of 575 

machine learning for such prediction.  576 
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5. Treatment adjustment and adverse event prevention 577 

Being able to predict future adverse events in Parkinson’s disease is useful, but being able to 578 

prevent them would be even more useful. Parkinson’s disease is one of the few 579 

neurodegenerative diseases where current therapies can greatly improve the quality of life the 580 

patients, but these therapies also have adverse effects. Providing personalized adapted therapies 581 

to every patient is of high importance. 582 

 Machine learning allows for unveiling complex correlations or patterns from data. 583 

However, correlation does not imply causality: if two variables are correlated, one variable 584 

does not necessarily cause an effect on the other. Therefore, standard machine learning is not 585 

always well adapted to draw conclusions for personalized therapies. Ultimately, clinical trials 586 

with a specific hypothesis tested are the best solution to draw causality effect conclusions. 587 

Nonetheless, several machine learning approaches can investigate causality effects. Causal 588 

inference, that is being able to discover which variables have which impacts on which other 589 

variables, is an open research topic in machine learning, but usually requires a lot of data, 590 

limiting its use in Parkinson’s disease. Nonetheless, exploratory studies suggesting potential 591 

options for personalized therapies and adverse event prevention have been published.  592 

5.1. Dopamine replacement therapy 593 

Dopamine replacement therapy, as a way to compensate the loss of dopamine neurons in the 594 

brain, is the most common therapy due to its efficacy and simplicity (drug intake). Nonetheless, 595 

it also comes with adverse effects and long-term motor complications such as motor 596 

fluctuations (worsening or reappearance of motor symptoms before the next drug intake) and 597 

dyskinesia (involuntary muscle movements) (62). 598 

 Yang and colleagues (63) investigated utility of amplitude of low-frequency fluctuation 599 

computed from functional MRI data of 38 PD patients in order to predict individual patient’s 600 

response to levodopa treatment. They applied principal component analysis to perform 601 
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dimensionality reduction and trained gradient tree boosting algorithms to discriminate between 602 

moderate and superior responders to levodopa treatment. Treatment efficacy was defined based 603 

on motor symptoms improvement from the state of medication off to medication on, as assessed 604 

by MDS-UPDRS III total score. They obtained great discriminative performance between both 605 

groups, even though no significant difference in clinical data was observed between both 606 

groups. The mainly contributed regions for both models included the bilateral primary motor 607 

cortex, the occipital cortex, the cerebellum, and the basal ganglia. These results suggest the 608 

potential utility of amplitude of low-frequency fluctuation as promising predictive markers of 609 

dopaminergic therapy response in PD patients. 610 

 Kim and colleagues (64) investigated the use of reinforcement learning to predict 611 

optimal treatment for reducing motor symptoms. They derived clinically relevant disease states 612 

and an optimal combination of medications for each of them by using policy iteration of the 613 

Markov decision process. Their model achieved a lower level of motor symptom severity 614 

scores than what clinicians did, whereas the clinicians’ medication rules were more consistent 615 

than their model. Their model followed the clinician’s medication rules in most cases but also 616 

suggested some changes, which leads to the difference in lowering symptoms severity. This 617 

proof of concept showed the potential utility of reinforcement learning to derive optimal 618 

treatment strategies. 619 

5.2. Deep brain stimulation 620 

Deep brain stimulation is a neurosurgical procedure that uses implanted electrodes and 621 

electrical stimulation, and has proven efficacy in advanced Parkinson’s disease by decreasing 622 

motor fluctuations, dyskinesia, and improving quality of life (65). The most commonly 623 

stimulated region is the subthalamic nucleus, but the globus pallidus is sometimes preferred. 624 

Although DBS usually greatly improves the motor symptoms, it also has downsides, such as 625 
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requiring personalized parameters and potential adverse events such as postoperative cognitive 626 

decline. 627 

 Boutet and colleagues (66) investigated the prediction of optimal deep brain stimulation 628 

parameters from functional MRI data. They extracted blood-oxygen-level-dependent (BOLD) 629 

signals in 16 motor and non-motor regions of interest for 67 PD patients, from which 62 630 

underwent DBS of the subthalamic nucleus and 5 underwent DBS of the globus pallidus. They 631 

trained a linear discriminant analysis algorithm on normalized BOLD changes using 5-fold 632 

cross-validation and obtained great performance in classifying optimal vs non-optimal 633 

parameter settings, although the performance was lower on two additional (a priori clinically 634 

optimized and in stimulation naive patients) unseen data sets. 635 

 Geraedts and colleagues (67) also investigated deep brain stimulation in the context of 636 

cognitive function, as a downside of DBS for PD is the potential deterioration of cognition 637 

postoperatively. They extracted features from electroencephalograms, trained random forest 638 

algorithms using 10-fold cross-validation, and obtained great discrimination between PD 639 

patients with the best and worst cognitive performances. However, it should be noted that they 640 

only included the best and worst cognitive performers (n=20 per group from 112 PD patients), 641 

making the classification task probably much easier than if it was performed on the 112 PD 642 

patients, thus requiring their model to be evaluated on PD patients independently on their 643 

cognitive performance. Nonetheless, their results suggest the potential utility of 644 

electroencephalography for cognitive profiling in DBS. 645 

5.3. Others 646 

Phokaewvarangkul and colleagues (68) explored the effect of electrical muscle stimulation as 647 

an adjunctive treatment for resting tremor during “ON” period, with machine learning used to 648 

predict the optimal stimulation level that will yield the longest period of tremor reduction or 649 

tremor reset time. They used sensor data from a glove incorporating a 3-axis gyroscope to 650 
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measure tremor signals. The stimulation levels were discretized into five ordinary classes, with 651 

the objective to predict the accurate class from the sensor data. They observed a significant 652 

reduction in tremor parameters during stimulation. The best performing machine learning 653 

model was a LSTM neural network in comparison to classic algorithms such as logistic 654 

regression, support vector machine and random forest. The high predictive performance of the 655 

LSTM model confirmed the potential utility of electrical muscle stimulation for reduction of 656 

resting tremors in PD. 657 

 Panyakaew and colleagues (69) investigated the identification of modifiable risk factors 658 

of falls. The input data consisted of clinical demographics, medications and balanced 659 

confidence scaled by the 16-item Activities-Specific Balance Confidence (ABC-16) scale, 660 

from 305 PD patients (99 fallers, 58 recurrent fallers and 148 non-fallers). They trained two 661 

gradient tree boosting algorithms using 7-fold cross-validation. They obtained good predictive 662 

performance at differentiating fallers from non-fallers, the most relevant features being item 7 663 

(sweeping the floor), item 5 (reaching on tiptoes) and item 12 (walking in a crowded mall) 664 

from the ABC-16 scale, followed by disease stage and duration. They obtained even better 665 

performance at differentiating recurrent fallers from non-fallers, the most relevant features 666 

being items 12, 5 and 10 (walking across a parking lot) from the ABC-16 scale, followed by 667 

disease stage and current age.  668 
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6. Conclusion 669 

Many research works on Parkinson’s disease and related disorders using machine learning have 670 

been published in the literature, investigating diagnosis, symptom severity, disease progression 671 

and personalized therapies. These studies provide new insights to better understand these 672 

neurodegenerative disorders. 673 

 However, many questions and challenges are still open. The early-stage, and even more 674 

so the prodromal-stage, classification of Parkinson’s disease is still very challenging. The early 675 

differential diagnosis of parkinsonian syndromes is another topic for which higher performance 676 

is needed at an early stage. More highly personalized therapies are also needed to better 677 

improve the quality of life of the PD patients. All the research works on these topics also need 678 

to be evaluated in non-research environments in order to be translated to the clinics.  679 

 Right usage of machine learning is required to try to answer these questions and 680 

challenges. The most common methodological issues are usually related to the cross-validation 681 

procedure used, which can lead to biased, overly optimistic, reported predictive performance. 682 

Nonetheless, our anecdotal experience after performing this literature review is that these issues 683 

are less and less frequent over time. Nonetheless, many studies use small data sets and leave-684 

one-out cross-validation, which provides an unbiased estimation of the predictive performance, 685 

but with high variance. The few studies that investigated replicating their results in another 686 

independent data set all reported (much) lower predictive performance, highlighting the critical 687 

need of replication. Using artificial intelligence algorithms also rises ethical and legal issues 688 

regarding the collection, processing, storage and reuse of potentially sensitive patient data, 689 

particularly coming from sensor-based digital data (9). These aspects will have to be taken into 690 

consideration when transferring results obtained from clinical research to clinical routine use. 691 

 To conclude, the use of machine learning has allowed researchers to better understand 692 

Parkinson’s disease and related disorders and suggested potential to better diagnose these 693 
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disorders as well as to provide better care for the patients, but more research works and 694 

replication studies are required to translate these results into the clinics through clinical 695 

decision support systems.696 



 
 
 

 
 

Tables 697 

Table 1. Main characteristics of Parkinson’s disease and its related disorders 698 

Disorder Parkinson’s disease Multiple system atrophy Progressive 
supranuclear palsy 

Dementia with Lewy 
bodies 

Cortico-basal 
degeneration 

Pathophysiology Aggregates of a-synuclein in 
dopaminergic neurons in 
brainstem 

Aggregates of a-synuclein 
in neurons (cerebellum, 
pons, basal ganglia) and 
oligodendrocytes (glial 
cytoplasmic inclusions) 
 

Aggregates of 4-repeat 
tau in astrocytes (tufts), 
oligodendrocytes (coiled 
bodies) and neurons 
(neurofibrillary tangles) 
in basal ganglia and 
brainstem 

Aggregates of a-
synuclein in neurons of 
the neocortex and 
brainstem 

Aggregates of 4-repeat 
tau in astrocytes 
(astrocytic plaques), 
oligodendrocytes (coiled 
bodies) and neurons 
(neurofibrils) in 
neocortex and basal 
ganglia 
 

Prevalence 100-300/100,000 5/100,000 5-10/100,000  50/100,000 1/100,000 
Main symptoms • Levodopa-responsive 

parkinsonian syndrome  
• Non-motor symptoms: 

Dysautonomia, anxiety, 
depression, sleep disorders, 
late cognitive dysfunction 

• Parkinsonian 
syndrome with poor 
response to levodopa 

• Early and severe 
dysautonomia, or 
cerebellar syndrome 

• Axial predominant 
parkinsonian 
syndrome 
nonresponsive to 
levodopa 

• Early gait 
disturbance and falls 

• Supranuclear gaze 
palsy 

• Frontal syndrome 

• Parkinsonian 
syndrome 
responsive to 
levodopa 

• Early dementia 
• Early hallucinations 

or illusions 
• Fluctuations in 

alertness and 
attention 

• Asymmetric 
parkinsonian 
syndrome 
nonresponsive to 
levodopa 

• Apraxia and 
dystonia 

• Early dementia  

Symptomatic 
treatment 

• Levodopa, dopamine 
agonists, C-dopamine 
metabolism inhibitors, 
amantadine 

• Deep brain stimulation for 
advanced cases 

• Levodopa 
• Droxidopa, ephedrine, 

midodrine or 
fludrocortisone for 
hypotension 

• Levodopa • Levodopa  
• Cholinesterase 

inhibitors 

• Levodopa 
• Botulinum toxin A 

for treating focal 
dystonia 
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Table 2. Summary of the potential benefits of machine learning for Parkinson’s disease 700 

and related disorders 701 

Disease stage Potential benefits 

Early PD diagnosis • Better clinical decision support systems 

• Higher performance than current diagnostic criteria 

• Better management and improved quality of life  

• Potential preventive therapeutic strategies 

Differential diagnosis • Better clinical decision support systems 

• Higher performance than current diagnostic criteria 

• Better management and improved quality of life 

Symptom detection 

and quantification 

• More frequent, more robust assessment of symptoms with 

automatic analysis of sensor data 

• Better management and improved quality of life 

Disease progression • Identification of disease subtypes 

• Prediction of future symptoms 

• Treatment adjustment for potential prevention 

Treatment adjustment  • Better clinical decision support systems 

• Personalized therapy 

• Prevention of adverse events 

• Better management and improved quality of life 

 702 



 
 
 

 
 

Table 3. Summary of the studies reviewed in this chapter. 703 

Study Section Objectives / Tasks Modalities Datasets Number of subjects Methods 
Wahid et al. 2015 (10) 2.1.1 PD diagnosis (PD vs HC) Motion data (gait) Local 23 PD, 26 HC NB, kNN, SVM, 

RF, KFD 
Mirelman et al. 2021 (11) 2.1.1 PD diagnosis (PD vs HC), PD 

stage classification 
Motion data (gait) Local 100 HC, 58 PD-HYI, 190 

PD-HYII, 84 PD-HYIII 
RUSBoost 

Kostikis et al. 2015 (12) 2.1.1 PD diagnosis (PD vs HC) Motion data (hand 
movement) 

Local 25 PD, 20 HC NB, LR, SVM, 
AdaBoost, DT, RF 

Kotsavasiloglou et al. 
2017 (13) 

2.1.1 PD diagnosis (PD vs HC) Motion data (hand 
movement) 

Local 24 PD, 20 HC NB, LR, SVM, 
AdaBoost 

Amato et al. 2021 (14) 2.1.2 PD diagnosis (PD vs HC) Voice data IPVC, local 28 PD, 22 HC; 26 PD, 18 
HC 

NB, kNN, SVM, 
RF, AdaBoost, 
gradient boosting, 
bagging ensemble 

Jeancolas et al. 2021 (15) 2.1.2 PD diagnosis (PD vs HC) Voice data Local 121 PD, 100 HC MFCC-GMM, X-
Vector 

Jeancolas et al. 2022 (16) 2.1.2 PD diagnosis (PD vs HC) Voice data Local 117 PD, 41 iRBD, 98 HC SVM 

Quan et al. 2021 (17) 2.1.2 PD diagnosis (PD vs HC) Voice data Local 30 PD, 15 HC DT, kNN, NB, 
SVM, MLP, LSTM 

Adeli et al. 2016 (21) 2.1.3 PD diagnosis (PD vs HC) Imaging data (MRI) PPMI 374 PD, 169 NC JFSS+Robust LDA 

Solana-Lavalle and 
Rosas-Romero 2021 (22) 

2.1.3 PD diagnosis (PD vs HC) Imaging data (MRI) PPMI 114 PD, 49 HC; 234 PD; 
110 HC 

kNN, SVM, RF, 
NB, LR, MLP, BNN 

Mudali et al. 2015 (23) 2.1.3 PD diagnosis (PD vs HC), 
differential diagnosis 

Imaging data (FDG-
PET) 

Local 20 PD, 21 MSA, 17 PSP, 
18 HC 

DT 

Huppertz et al. 2016 (26) 2.2 Differential diagnosis Imaging data (MRI) Local 204 PD, 106 PSP, 21 
MSA-C, 60 MSA-P, 73 
HC 

SVM 

Archer et al. 2019 (27) 2.2 Differential diagnosis Imaging data (MRI) Local 511 PD, 84 MSA, 129 
PSP, 278 HC 

SVM 

Chougar et al. 2021 (28) 2.2 Differential diagnosis Imaging data (MRI) Local 63 PD, 21 PSP, 11 MSA-
P, 12 MSA-C, 72 HC; 56 

LR, SVM, RF 
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PD, 30 PSP, 24 MSA-P, 
11 MSA-C, 22 HC 

Shinde et al. 2019 (29) 2.2 Differential diagnosis Imaging data (MRI) Local 45 PD, 20 APS, 35 HC CNN, Gradient 
boosting 

Jucaite et al. 2022 (30) 2.2 Differential diagnosis Imaging data (PET) Local 24 PD, 66 MSA LDA 

Khawaldeh et al. 2020 
(31) 

2.3 Parkinson's disease 
understanding (subthalamic 
nucleus activity) 

Signal data (LFP) Local 18 PD NB 

Poston et al. 2016 (32) 2.3 Parkinson's disease 
understanding (cognition) 

Imaging data 
(fMRI) 

Local 54 PD SVM 

Trezzi et al. 2017 (33) 2.3 Parkinson's disease 
understanding (metabolism) 

CSF Local 44 PD, 43 HC LR 

Vanneste et al. 2018 (34) 2.3 Parkinson's disease 
understanding (thalamocortical 
dysrhythmia) 

Signal data (rs-
EEG) 

Local 31 PD, 264 HC, 153 
tinnitus, 78 CP, 15 MDD 

SVM 

Ahlrichs et al. 2016 (37) 3.1 Symptom detection and 
quantification (freezing of gait) 

Motion data (gait) Local 20 PD (8 with FOG, 12 
without FOG) 

SVM 

Aich et al. 2018 (38) 3.1 Symptom detection and 
quantification (freezing of gait) 

Motion data (gait) Local 51 PD (36 with FOG, 15 
without FOG) 

SVM, kNN, DT, NB 

Borzì et al. 2021 (39) 3.1 Symptom detection and 
quantification (freezing of gait) 

Motion data (gait) Local 11 PD SVM, kNN, LDA, 
LR 

Dvorani et al. 2021 (40) 3.1 Symptom detection and 
quantification (freezing of gait) 

Motion data (gait) Local 16 PD SVM, AdaBoost 

Park et al. 2021 (42) 3.2 Symptom detection and 
quantification (bradykinesia 
and tremor) 

Motion data (resting 
tremor and finger 
tapping) 

Local 55 PD SVM 

Kim et al. 2018 (43) 3.2 Symptom detection and 
quantification (tremor) 

Motion data 
(tremor) 

Local 92 PD CNN, RF, NB, LR, 
DT, SVM, MLP 

Eskofier et al. 2016 (44) 3.2 Symptom detection and 
quantification (bradykinesia) 

Motion data (motor 
tasks) 

Local 10 PD CNN, AdaBoost, 
kNN, SVM 

Abós et al. 2017 (46) 3.3 Symptom detection and 
quantification (cognition) 

Imaging data (rs-
fMRI) 

Local 27 PD-MCI, 43 PD-CN, 
38 HC 

SVM 

Betrouni et al. 2019 (47) 3.3 Symptom detection and 
quantification (cognition) 

Signal data (EEG) Local 118 PD SVM, kNN 
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García et al. 2021 (48) 3.3 Symptom detection and 
quantification (cognition) 

Voice data Local 40 PD, 40 HC SVM, AdaBoost 

Morales et al. 2013 (49) 3.3 Symptom detection and 
quantification (cognition) 

Imaging data (MRI) Local 16 PD-CN, 15 PD-MCI, 
14 PD-D 

NB, SVM 

Shibata et al. 2022 (50) 3.3 Symptom detection and 
quantification (cognition) 

Imaging data (MRI) Local 61 PD-MCI, 59 PD-CN RF, gradient 
boosting, light 
gradient boosting 

Hannink et al 2017 (51) 3.4 Symptom detection and 
quantification (gait) 

Motion data (gait) eGaIT 99 geriatric subjects CNN 

Lu et al. 2021 (52) 3.4 Symptom detection and 
quantification (gait) 

Motion data (gait) Local 55 PD CNN 

Gao et al. 2018 (53) 3.4 Symptom detection and 
quantification (falls) 

Clinical data (motor 
exams) 

Local 148 PD (45 fallers, 97 
non-fallers); 103 PD (41 
fallers, 62 non-fallers) 

LR, SVM, RF, 
gradient boosting 

Severson et al. 2021 (54) 4.1 Disease progression (disease 
states) 

Clinical data PPMI, local 423 PD, 196 HC; 610 PD HMM 

Salmanpour et al. 2022 
(55) 

4.1 Disease progression (disease 
trajectories) 

Clinical and 
imaging (MRI) data 

PPMI 885 PD k-means 

Oxtoby et al. 2021 (56) 4.2 Disease progression (prediction 
of sequence of events) 

Clinical and genetic 
data 

Local, PPMI 100 PD, 33 HC; 350 PD, 
127 HC 

Event-based model 

Latourelle et al. 2017 (57) 4.2 Disease progression (prediction 
of motor progression) 

Clinical and genetic 
data 

PPMI, local 312 PD, 117 HC; 317 PD REFS 

Ahmadi Tastegar et al. 
2019 (58) 

4.2 Disease progression (prediction 
of motor and non-motor 
symptoms) 

Clinical data and 
inflammatory 
cytokine 
measurements 

LRRK2 
Cohort 
Consortium 

80 iPD, 80 PD-LRRK2 Elastic-net, RF 

Amara et al. 2017 (59) 4.2 Disease progression (prediction 
of excessive daytime 
sleepiness) 

Clinical and 
imaging (DaTscan) 
data 

PPMI 423 PD, 196 HC Random survival 
forest 

Couronné et al. 2019 (60) 4.2 Disease progression (prediction 
of motor and non-motor 
symptoms) 

Clinical and 
imaging (DaTscan) 
data 

PPMI 362 PD Generative mixed 
effect model 

Faouzi et al. 2022 (61) 4.2 Disease progression (prediction 
of impulse control disorders) 

Clinical and genetic 
data 

PPMI, local 380 PD; 388 PD LR, SVM, RF, 
gradient boosting, 
RNN 
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Yang et al. 2021 (63) 5.1 Treatment adjustment (motor 
symptoms) 

Imaging data 
(fMRI) 

Local 38 PD Ridge, SVM, 
AdaBoost, gradient 
boosting 

Kim et al. 2021 (64) 5.1 Treatment adjustment (motor 
symptoms) 

Clinical and 
medication data 

PPMI 431 PD Markov decision 
process 

Boutet et al. 2021 (66) 5.2 Optimal deep brain stimulation 
parameters 

Imaging data 
(fMRI) 

Local 67 PD LDA 

Geraedts et al. 2021 (67) 5.2 Optimal deep brain stimulation 
parameters 

Signal data (EEG) Local 112 PD RF 

Phokaewvarangkul et al. 
2021 (68) 

5.3 Electrical muscle stimulation 
(resting tremor) 

Motion data (hand 
tremor) 

Local 20 PD LR, RF, SVM, 
MLP, LSTM 

Panyakaew et al. 2021 
(69) 

5.3 Adverse event prevention 
(identification of modifiable 
risk factors of falls) 

Clinical data Local 305 PD Gradient boosting 

        704 

Modalities: CSF, cerebrospinal fluid; DaTscan, dopamine transporter scan; EEG, electroencephalography; FDG-PET, [18F]-fluorodeoxyglucose positron 705 
emission tomography; fMRI, functional magnetic resonance imaging; LFP, local field potential; MRI, magnetic resonance imaging; PET, positron emission 706 
tomography; rs-EEG, resting-state electroencephalography; rs-fMRI, resting-state functional magnetic resonance imaging.    707 
   708 
Datasets: eGaIT, embedded Gait analysis using Intelligent Technologies (https://www.mad.tf.fau.de/research/activitynet/digital-biobank/); IPVC, Italian 709 
Parkinson's Voice and Speech (https://ieee-dataport.org/open-access/italian-parkinsons-voice-and-speech); LRRK2 Cohort Consortium 710 
(https://www.michaeljfox.org/news/lrrk2-cohort-consortium); PPMI, Parkinson's Progression Markers Initiative (https://www.ppmi-info.org).  711 
     712 
Subjects: APS, atypical parkinsonian syndromes; CP, chronic pain; FOG, freezing of gait; HC, healthy controls; iPD, idiopathic Parkinson's disease; iRBD, 713 
idiopathic rapid eye movement sleep behavior disorder; MDD, major depressive disorder; MSA, multiple system atrophy; MSA-C, cerebellar variant of multiple 714 
system atrophy; MSA-P, parkinsonian variant of multiple system atrophy; PD, Parkinson's disease; PD-CN, Parkinson's disease with normal cognition; PD-D, 715 
Parkinson's disease with dementia; PD-HYI, Parkinson's disease with Hoehn & Yahr stage 1; PD-HYII, Parkinson's disease with Hoehn & Yahr stage 2; PD-716 
HYIII, Parkinson's disease with Hoehn & Yahr stage 3; PD-LRRK2, Parkinson's disease with LRRK2 mutation; PD-MCI; Parkinson's disease with mild 717 
cognitive impairment; PSP, progressive supranuclear palsy. 718 
       719 
Methods: BNN, Bayesian neural network; CNN, convolutional neural network; DT, decision tree; HMM, hidden Markov model; JFSS, joint feature-sample 720 
selection; KFD, kernel Fisher discriminant; kNN, k-nearest neighbors; LR, logistic regression; LDA, linear discriminant analysis; LSTM, long short-term 721 
memory; MFCC-GMM, Mel-frequency cepstral coefficients - Gaussian mixture model; MLP, multi-layer perceptron; NB, naive Bayes; REFS, reverse 722 
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engineering and forward simulation; RF, random forest; RNN, recurrent neural network; RUSBoost, random under-sampling boosting; SVM, support vector 723 
machine.     724 
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