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Université d’Angers, LARIS
SFR MATHSTIC

F-49000 Angers, France
ORCID: 0000-0003-0164-5540

J.-B. Fasquel
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Abstract—This paper addresses the fundamental task of se-
mantic image segmentation by exploiting structural information
(spatial relationships between image regions). To perform such
task, we propose to combine a deep neural network (CNN) with
inexact ”many-to-one-or-none” graph matching where graphs
encode efficiently class probabilities and structural information
related to regions segmented by the CNN. In order to achieve
node classification, a basic 2-layer graph neural network (GNN)
based on the edge-conditioned convolution operator (ECConv),
managing both node and edge attributes, is considered. Prelim-
inary experiments are performed on both a synthetic dataset
and a public dataset of face images (FASSEG). Our approach is
shown to be resilient to small training datasets that often limit
the performance of deep learning thanks to a preprocessing task
of graph coarsening. Results show that the proposal reaches a
perfect accuracy on synthetic dataset and improves performance
of the CNN by 6% (bounding box dice index) on FASSEG.
Moreover, it enhances by 27% the initial Hausdorff distance (i.e.
with CNN only) using the entire training dataset and by 41%
with only 75% of training samples.

Index Terms—image segmentation, structural information, in-
exact graph matching, graph neural network, edge-conditioned
convolution

I. INTRODUCTION

Semantic image segmentation is a fundamental task in
computer vision usually managed using modern convolutional-
neural-network-based (CNN) deep learning approaches [1].
CNNs do not explicitly model the structural information
at a higher semantic level (relationships between annotated
regions of the training dataset or qualitative description of the
scene content [2]). For segmentation, such information can be
exploited using inexact-graph-matching-based techniques (i.e.
matching regions produced by a CNN with the ones of the
model built from annotations or from a qualitative description).
This is classically formulated as a quadratic assignment prob-
lem (QAP) [3], [4], unfortunately limited by its intrinsic highly
combinatorial nature [5]. To overcome this limitation, one con-
siders graph neural networks (GNN), constituting an emerging
and active field in the context of deep learning, as recently
underlined [6], [7]. In computer vision, most related works
operate, to mention but a few recent studies, on point clouds

[8] or bounding boxes of detected objects [9]. In our context,
a crucial constraint is that the matching must integrate both
nodes (region information - membership probabilities provided
by the CNN) and edge attributes (weighted relationships), by
considering an appropriate message passing strategy and, in
particular, the appropriate neighborhood aggregation operator,
in charge of combining weighted node and edge information
[6] for finally identifying nodes (regions). Note that, there
are already some GNN-based works proposed for semantic
image segmentation but they do not exploit such combination
of information [10], [11].
The originality and main contribution regards the proposal of
a GNN-based method for inexact many-to-one-or-none graph
matching in this context of a CNN-based semantic image
segmentation using structural information. An important part
of this contribution concerns the study of the relevance of
a particular neighborhood aggregation operator, namely the
edge-conditioned convolution operator (ECConv) [8], allowing
to manage both attributed node and edge information on
arbitrary graphs. This convolution operator has been recently
proposed and evaluated for graph classification only and not
for node classification [8]. In our sense, this work will,
besides, contribute in reducing the gap between the research
community focusing on semantic image segmentation and
the one interested in other GNN-centered computer vision
applications.

The proposal is described in Section II. Preliminary experi-
ments are detailed in Section III and discussed in Section IV,
before concluding.

II. METHOD

Figure 1 provides an overview of the proposed approach.
A deep neural network (CNN) is trained for semantic image
segmentation using an annotated dataset. A graph neural net-
work (GNN) is also trained to match nodes of the graph built
from the segmented image produced by the CNN with nodes
of the graph built from the annotated dataset. When analysing
a new image (Figure 1-Semantic segmentation), the trained
CNN first provides a segmentation proposal from which a
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Fig. 1. Overview of the proposed approach.

graph is built before using the graph neural network to identify
nodes (node classification): this steps corresponds to a many-
to-one-or-none inexact graph matching. In the example related
to Figure 1, 11 regions are provided by the CNN. The 10 nodes
corresponding to 10 of them are matched with 8 nodes (many-
to-one as the CNN produces an oversegmentation) while the
last node is matched with none node (region artefact to be
removed). According to this matching, regions are finally
identified.

A. Images and graphs

When segmenting an image, the CNN provides a segmen-
tation map being a tensor S ∈ RP×C with P the dimensions
of the image (e.g. P = I × J pixels for 2D images) and
C is the total number of considered classes. At each pixel
location p, the value S(p, c) ∈ [0, 1] is the probability of
belonging to class c. According to probabilities, one builds
a set R of all resulting connected components (i.e. set of
connected pixels a priori belonging to the same class according
to S(p, c)). From this, one finally constructs a complete graph
G = (V,E,X,L), where V is the set of nodes (each v ∈ V
corresponds to a region Rv ∈ R) and E the set of edges. X , a
node attribute assignment function: X : V → ℜC regards
the average membership probability vector over the set of
pixels p ∈ Rv . L is an edge attribute assignment function:
L : E → ℜs and depends on the considered relationships,
being an hyperparameter of the method.

B. Graph neural network

As illustrated by Figure 1 - C, the proposed GNN con-
tains only two layers : the first one focuses on convolution
and the second assigns a membership probability vector to
each node. One faces many-to-one-or-none matching (or node
classification) since the number of nodes to be matched is a
priori unknown (i.e. number of regions candidates built by a
CNN) and thus graphs are of arbitrary sizes. Consequently,
one considers a spatial-based approach rather than a spectral
one (spectral graph theory) [6].

The first layer consists in a convolution aiming at ag-
gregating neighborhood information related to each node
(general notion of message passing [6]). One considers the
edge-conditioned convolution operator [8] (ECConv), recently
proposed for graph classification [8], that we consider for node
classification in our context of semantic image analysis. For
a given node i ∈ V , such a layer computes a new attribute
at layer l + 1 (leading to X l+1(i)), by combining different
information from layer l : the attributes of the set N(i) of
nodes (N(i) = {j|(j, i) ∈ E}∪{i}) and the attributes of the
set of related edges (i.e. set {L(j, i)|j ∈ N(i)}). According
to [8], it can be formalized as follows:

X l+1(i) =
1

|N(i)|
∑

j∈N(i)

F l+1(L(j, i))X l(j) + bl+1

=
1

|N(i)|
∑

j∈N(i)

Θl+1
ji X l(j) + bl+1

(1)

where bl+1 is a bias and F l+1 is a differentiable function (a



multi-layer perceptron in our case). Both entities are learned
by training. X l+1 is computed from neighboring nodes (and
related edges) using the average operator, being a permutation
invariant operator (required in such context [6]). The probably
most important entity is the mapping function F l : ℜs →
ℜdl×dl−1 , where dl is the dimension of the node attributes
at layer l (i.e. ∀i ∈ V, X l(i) ∈ ℜdl ). This edge-conditioned
function manages the combination of information embedded
by nodes (weighted region property) with the one embedded
by edges (weighted relationships between regions), through
the product Θl+1

ji X l(j). The parameters of this function are
optimized, over the training dataset, for maximizing the node
classification rate. Except for the input of the first layer
(d0 = C as X0 = X), dimensions of node attributes are
hyperparameters (i.e. dl | l ̸= 0). In this work, only one
convolution layer is considered to study the relevance of
ECConv with d1 empirically defined in experiment. Note that
several convolution layers could be cascaded (as in [8]).

The second layer is a single layer perceptron SLP : ℜdl+1 →
ℜC providing a class membership probability vector to each
node of the graph. Note that one of the classes corresponds
to the background (none class). Dimension dl+1 is the one of
node attributes at the output of the convolution operator.

III. EXPERIMENTS

A. Datasets

The datasets considered for our experiments are a synthetic
dataset and the FASSEG-Instances1 public dataset created for
these experiments (based on the FASSEG).

Synthetic dataset: To construct synthetic images, the ref-
erence image, composed of 5 classes (one regarding the
background or none class), illustrated in Figure 2 is used.
Figure 2 (left part) gives an example of the related graph G
built from the reference image. Each region corresponds to
a node whose attribute is a probability vector of belonging
to each of the 5 classes (mimics the CNN output). Spatial
relationships are carried by the edges. In fact, each edge
indicates the distance between the barycenter of regions Ri

and Rj corresponding to the connected nodes.
100 altered images are generated from the reference one
through different processing stages:

• modifying regions (number, location) and the correspond-
ing node attributes to address the issue of many-to-one
classification. A random number of regions (between 0
and 2) are added for each class. Their location is fixed
with a random shift around the initial position to simulate
variations that can occur between any two regions in
realistic images. To simulate the uncertainty in the CNN
output, membership probabilities are slightly modified.
For each node, the probability of its real class is reduced
by a random value a ∈ [0, 0.4] and probabilities of the
other classes are randomly increased so that the sum of
all probabilities is equal to 1.

1https://github.com/Jeremy-Chopin/FASSEG-instances

• incorporating artefacts (0, 1 or 2) belonging to a new class
(white regions in Figure 2) to address the issue of none
classification (when CNN detects artefacts corresponding,
for instance, to the background). The new nodes of
artefacts have a small probability of belonging to the 4
other classes (probability defined randomly in [0, 0.03]).

Examples of altered images are given in Figure 2. The
number of regions (and nodes) varies from one image to
another in order to deal with the issue of arbitrary graph sizes.

FASSEG-Instances: This public dataset is based on the
public FASSEG2 dataset containing 70 human face images
with the associated segmentation (hair, eyes, nose, etc.). Some
modifications were applied to the original dataset in order to
subdivide original labels (e.g. right-eye and left-eye instead
of eyes), leading to 9 classes (including the background). For
sake of simplicity, the term FASSEG is used in the rest of the
paper.

B. Evaluation protocol

All the experiments are carried out in a Python environment
on 64-bit Windows with an Intel Core i7 @ 2.70 GHz CPU
with 32GB of RAM and an Nvidia Quadro RTX 3000 GPU.
In all cases, the GNN model is trained with Adam (Adaptive
Moment Estimation). A strategy of reduction of the learning
rate on plateau is used with an initial learning rate lr0 = 0.01
and a reduction factor σ = 5e−4. The network parameters are
adapted to minimize the negative log likelihood loss function:

Loss(Y, ŷ) = −
N∑

n=1

C∑
c=1

Yn,c × log(ŷn,c) (2)

where N is the total number of nodes, C the number of classes,
Yn,c the real class of node n (1 if node n belongs to class c,
0 otherwise) and ŷn,c the probability of node n of belonging
to class c with ŷn = Softmax(yn).

In order to study the interest of considering both node
and edge attributes, we compare the use of ECConv with
the convolution operator GCNConv [6], efficient for semi-
supervised node classification [12], which relies only on node
attributes and local graph structure (related to incident edges
of a node) without considering edge attributes.

To see the impact of the size of the neighborhood [6],
especially when the number of nodes (and thus of edges) be-
comes important, we compare the use of complete graphs and
coarsened ones. Coarsening a graph G to Gc = (V,Ec, X, L),
where Ec ⊆ E, allows to remove edges in order to reduce
the number of neighbors of each node. Coarsening is based
on edge properties L(i, j) between regions Ri and Rj . In our
case, a radius ρ is considered so that for each region Ri (i ∈ V )
only the nodes corresponding to the regions Rj at a distance
(computed from L(i, j)) lower than ρ are connected to the
node of Ri.

2FASSEG: https://github.com/massimomauro/FASSEG-repository
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Fig. 2. Synthetic dataset. From a reference image (left part), altered ones are randomly created by modifying the regions (location and number) associated
to each class and by integrating outliers. Graphs similar to graph G are created from the images.

Synthetic dataset The GNN is trained using 70 images and
tested over the remaining 30 images. The model is trained on
250 epochs. The output dimension of the ECConv operator d1
is set to 6. Different configurations of graphs are considered:

• Complete graphs with node (vector probability) and edge
(distance between barycenters) attributes.

• Complete graphs without node attributes.
• Coarsened graphs considering a radius ρ = 50 pixels and

L(i, j) = |bi − bj |, bi is the barycenter of region Ri.

Performance of classification is measured with the accuracy.

FASSEG U-Net [13] is considered for the preliminary CNN-
based segmentation. We split the dataset as follows: 20 images
are used for training, 10 for the validation and 40 for the
test. 50 epochs are used for training the U-Net and an early
stopping strategy is applied, based on the dice loss, to prevent
over-fitting. We apply a median filter to remove tiny artefacts
from the segmentation map provided. To study the influence of
the reduction of the training dataset, smaller datasets (75% of
the size of the reference training one i.e. 15 images) are used.
In such a case, results are averaged over 20 random selections
of such smaller datasets.
To extract connected components from the segmentation map
of the CNN, a 8-connectivity is considered. To reduce the
number of nodes, only components larger than 30 pixels are
associated to a node (smaller components being assigned to
the class given by the U-Net). For each image, a graph G is
created as detailed in Section II-A. To deal with the irregular
shape of the regions, especially the hair whose barycen-
ter can be in the middle of the face, spatial relationships
considered for edge attributes correspond to the minimum
(dRi,Rj

min = mina∈Ri,b∈Rj
|a − b|) and maximum distance

(dRi,Rj
max = maxa∈Ri,b∈Rj

|a − b|) between the connected
regions Ri and Rj (L(i, j) = [d

Ri,Rj

min , d
Ri,Rj
max ]).

The GNN is trained using the graphs constructed from the
training and validation images and tested over the 40 test
ones. The model is trained on 600 epochs and the output
dimension of ECConv d1 is set to 7. We compare our proposal
to the segmentation obtained at the output of the U-Net and
also to coarsened graphs considering a radius ρ = 100 pixels
(with respect to mean(dRi,Rj

min , d
Ri,Rj
max )). Figure 3 illustrates the

coarsening for some examples.

Fig. 3. Examples of coarsening on FASSEG using a 100 pixel radius

To assess the quality of the segmentation obtained, we
calculate the Dice (DSC) [14], the Hausdorff distance (HD)
[15] and the bounding box dice index (B-DSC), being the dice
index between the bounding box of the segmented region and
the one of the annotated region. HD and B-DSC are considered
to measure the spatial spread of the segmentation (maximum
distance between a point of the segmented region and the
closest point of the annotated one with HD, spatial coherence
with B-DSC).

C. Results

Table I reports involved graph sizes for all experiments,
in our many-to-one-or-none classification context, where the
number of classes is smaller that the number of nodes. We
see that we face arbitrary graphs size. Thus, for the synthetic
dataset, the number of nodes goes from 4 to 14 while for
FASSEG from 9 to 26 (100%) or 86 (75%).

TABLE I
GRAPHS PARAMETERS FOR SYNTHETIC DATASET AND FASSEG. VALUES

INDICATED ARE A MEAN OVER ALL IMAGES OF THE TEST DATASET.
NUMBER OF CLASSES (C), OF NODES (|V |) AND OF EDGES (|E| AND
|Ec|), WHERE |Ec| IS THE NUMBER OF EDGES AFTER COARSENING

Dataset C |V | |E| |Ec|
Synthetic 5 7 (max: 14) 44 (max: 90) 9 (max: 12)

FASSEG 100% 9 12 (max: 26) 172 (max: 650) 33 (max: 134)
FASSEG 75% 9 17 (max: 86) 378 (max: 3867) 99 (max: 728 )

Synthetic images
Table II compares the performance of classification of the
different graph configurations considered. The very low ac-
curacy (0.20) when ignoring the node features confirms the
importance of these attributes for the ECConv convolution



operator in the classification. Edge attributes, providing in-
formation on spatial relationships, seem to play a key role
in observing the poor performance obtained with GCNConv
(0.21) which does not take them into account. The reduction
of the number of neighbors by considering a radius of 50
pixels simplifies considerably the graphs by dividing by 5 the
number of edges according to Table I while providing perfect
classification results (accuracy of 1). Note that coarsening
brings additional spatial information to GCNConv (indication
of nearby nodes) improving its results (0.59 with coarsening
vs 0.21 with complete graphs).

TABLE II
RESULTS OF CLASSIFICATION OF SYNTHETIC DATA WITH DIFFERENT

CONFIGURATIONS OF GRAPHS AND CONVOLUTION OPERATORS.

Method Accuracy
GCNConv 0.21

GCNConv (coarsening) 0.59
ECConv (no node attributes) 0.20

ECConv 0.98
ECConv (coarsening) 1.00

FASSEG
Table III shows that the use of a GNN with ECConv improves
the results of the U-Net : +0.024 for B-DSC and -7.44 for HD
(i.e. improvement of about 27%). In particular, it improves
the results of classification for all classes (except the left
eyebrow) as illustrated in Table IV. The very poor efficiency
of GCNConv proves the importance of edge attributes for
classification. We can also see that coarsening with a radius
ρ = 100 pixels divides by 5 the number of edges (33 against
172 for complete graphs). In this situation, coarsening does
not improve the results obtained with ECConv but it improves
considerably performance of GCNConv (which remains less
efficient than ECConv and the U-Net alone). These findings
can also be seen in the first line of Figure 4 where ECConv
manages to correct the artefact at the top of the image while
ECConv considering coarsening fails and GCNConv produces
new segmentation errors (disappearance of the face, two eyes
with the same label).
The positive impact of coarsening is shown by the results
based on the smaller datasets (75% of the training dataset),
with a significant improvement of 41% in terms of HD.
Small dataset size leads to degraded CNN performance (DSC
of 0.798 vs 0.845 at 100%) and therefore to many more
connected components (i.e. 17 nodes against 12 on average)
and thus of edges (378 against 172). Coarsening reduces the
average number of edges to 99 and improves the performance
of ECConv according to Table III. Table IV shows that our
solution significantly improves the performance of the U-Net
for all considered classes (up to 10% for B-DSC, 3% for DSC,
75% for HD considering the nose). This is also confirmed
by the last three lines of Figure 4, for which ECConv with
coarsening most accurately corrects CNN errors. With 75% of
the training dataset, GCNConv with coarsening also produces
new segmentation errors (lines 2 and 4 of Figure 4).

TABLE III
SEGMENTATION RESULTS ON FASSEG WITH CNN ONLY AND CNN
FOLLOWED BY GNN (USING ECCONV OR GCNCONV). COMPLETE

GRAPHS AND COARSENED ONES (100 PIXEL RADIUS: Gc) ARE
COMPARED.

75% 100%
Method DSC B-DSC HD DSC B-DSC HD

CNN 0.798 0.675 54.40 0.845 0.745 27.20
ECConv 0.798 0.728 33.53 0.845 0.769 19.76

ECConv (Gc) 0.804 0.731 32.00 0.845 0.759 22.80
GCNConv 0.011 0.017 295.74 0.025 0.029 294.45

GCNConv (Gc) 0.537 0.470 124.87 0.599 0.516 100.95

GT CNN
ECConv -

coarsening ECConv 
GCNConv -
coarsening

100%

75%

Fig. 4. Examples of segmentation results with the different configurations
studied. Bounding boxes highlight regions with significant improvements.

IV. DISCUSSION

This preliminary work illustrates the ability of a basic GNN,
exploiting CNN prediction and spatial relationships between
regions, to improve deep neural network semantic image
segmentation. Promising results of the original approach,
combining both node and edge attributes in the message pass-
ing strategy and outperforming more common neighborhood
aggregator like GCNConv, demonstrates the relevance of using
the edge-conditioned convolution (ECConv). Furthermore, the
simplicity of the proposed network (only 2 layers) makes
it more understandable and reduces the ”black box” effect
that some GNN can have [6] while avoiding the highly
combinatorial nature of QAP approaches [4], [5]. In fact, for
instance, the inference time for each face (graph construction
and inexact graph matching) is less than 20 seconds.
Moreover, our proposal is robust to small datasets which often
lead to larger graphs (many connected components detected
by deep learning). This efficiency seems to be helped by
graph coarsening as illustrated in Table III and Figure 4.
Viewing the benefit of coarsening, influenced by the value of
the hyperparameter (neighborhood radius), it appears relevant
for future studies to combine in the final SLP the convolution
output of several graph configurations with more or less edges
depending on the considered radius. This multi-coarsening-



TABLE IV
SEGMENTATION RESULTS PROVIDED BY THE CNN ONLY AND OUR PROPOSAL. RESULTS ARE PROVIDED FOR EACH CLASS (NOT THE BACKGROUND): HR

(HAIR), FC (FACE), L-BR (LEFT EYEBROW), R-BR (RIGHT EYEBROW), L-EYE (LEFT EYE), R-EYE (RIGHT EYE), NOSE AND MOUTH.

75% 100%
Method CNN Proposal CNN Proposal

Class DSC B-DSC HD DSC B-DSC HD DSC B-DSC HD DSC B-DSC HD
Hr 0.924 0.773 126.26 0.925 0.841 86.15 0.941 0.825 85.18 0.941 0.838 73.54
Fc 0.948 0.917 48.29 0.949 0.960 25.06 0.957 0.955 24.38 0.956 0.965 19.17

L-br 0.681 0.547 65.33 0.686 0.617 30.19 0.751 0.679 11.41 0.751 0.678 11.41
R-br 0.667 0.537 65.77 0.652 0.599 42.44 0.744 0.584 42.50 0.745 0.653 21.10
L-eye 0.783 0.670 36.47 0.804 0.707 23.06 0.865 0.740 19.88 0.865 0.782 10.11
R-eye 0.783 0.643 36.97 0.783 0.681 29.30 0.837 0.718 14.29 0.837 0.750 8.27
Nose 0.742 0.559 41.41 0.771 0.662 10.14 0.797 0.684 8.47 0.797 0.697 7.18

Mouth 0.859 0.752 14.69 0.858 0.779 9.42 0.867 0.770 11.46 0.867 0.791 7.31

based GNN architecture would allow to combine complemen-
tary neighborhood information from different graph structures
and thus enrich the predictions for each node. Note that other
works dealing with multi-scale GNN exist but do not consider
both node and edge attributes [16].
Although our approach is promising, certain limitations may
be pointed out. First, we only compare our results with a U-
Net network but we should in future works consider other
more recent CNN-based method [17], [18]. Then, performance
is evaluated on short datasets. It is sufficient to show the
relevance of the method but additional studies will evaluate
our method on other applications, such as medical ones [19],
with larger datasets.

V. CONCLUSION

We propose a GNN-based technique to improve deep neural
network image segmentation using an inexact graph matching
procedure. Considered approach exploits vector probability
from the CNN output as node attributes and spatial relations
between regions as edge attributes. The simple architecture of
the GNN considered, composed of a edge-conditioned convo-
lution and a single-layer perceptron demonstrates the relevance
of ECConv to perform node classification in a context of
semantic image segmentation. The speed and simplicity of the
proposed model are major advantages over traditional QAP
approaches. Proposal is also robust to small datasets thanks to
a preprocessing graph coarsening. Preliminary experiments on
both a synthetic dataset and FASSEG are promising as they
show that our approach significantly improves segmentation
provided by a CNN.
Future works will evaluate our method on other applications
with larger datasets and compare it with different CNN-
based segmentation method. The multi-coarsening GNN path
remains to be exploited to refine segmentation performance.
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