
HAL Id: hal-03830019
https://hal.science/hal-03830019v1

Submitted on 2 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Predictive Models for Emergency Department Triage
using Machine Learning: A Review

Fei Gao, Baptiste Boukebous, Pozzar Mario, Alaoui Enora, Sano Batourou,
Sahar Bayat

To cite this version:
Fei Gao, Baptiste Boukebous, Pozzar Mario, Alaoui Enora, Sano Batourou, et al.. Predictive Models
for Emergency Department Triage using Machine Learning: A Review. Obstetrics and Gynecology
Research, 2022, 05 (02), pp.107-121. �10.26502/ogr082�. �hal-03830019�

https://hal.science/hal-03830019v1
https://hal.archives-ouvertes.fr


Obstet Gynecol Res 2022; 5 (2): 107-121   DOI: 10.26502/ogr082 

 

 

Obstetrics and Gynecology Research                                      Vol. 5 No. 2– June 2022. 107 

Research Article  

 

Predictive Models for Emergency Department Triage using 

Machine Learning: A Review 

 

Fei Gao
1*

, Baptiste Boukebous
3, 4

, Pozzar Mario
1, 2

, Alaoui Enora
1, 2

, Sano Batourou
1, 2

, 

Sahar Bayat-Makoei
1
 

 

1University of Rennes, EHESP, CNRS, Inserm, Research on Health Services and Management, Rennes, France 

2University of Rennes, Rennes, France 

3ECAMO, UMR1153, Centre of Research in Epidemiology and StatisticS, INSERM, Paris, France 

4Hoptial Bichat /Beaujon, APHP, Paris, France 

 

*
Corresponding Author: Fei Gao, EHESP School of Public Health, Department of Quantitative Methods for 

Public Health, Avenue of Professor Léon Bernard, 35043 Rennes, France 

 

Received: 15 March 2022; Accepted: 25 March 2022; Published: 05 April 2022 

 

Citation: Fei Gao, Baptiste Boukebous, Pozzar Mario, Alaoui Enora, Sano Batourou, Sahar Bayat-Makoei. 

Predictive Models for Emergency Department Triage using Machine Learning: A Review. Obstetrics and 

Gynecology Research 5 (2022): 107-121.   

 

Abstract  

Background: Recently, many research groups have 

tried to develop emergency department triage 

decision support systems based on big volumes of 

historical clinical data to differentiate and prioritize 

patients. Machine learning models might improve the 

predictive capacity of emergency department triage 

systems. The aim of this review was to assess the 

performance of recently described machine learning 

models for patient triage in emergency departments, 

and to identify future challenges. 

 

Methods: Four databases (ScienceDirect, PubMed, 

Google Scholar and Springer) were searched using 

key words identified in the research questions. To 

focus on the latest studies on the subject, the most 

cited papers between 2018 and October 2021 were 

selected. Only works with hospital admission and 

critical illness as outcomes were included in the 

analysis. 

 

Results: Eleven articles concerned the two outcomes  
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(hospital admission and critical illness) and 

developed 55 predictive models. Random Forest and 

Logistic Regression were the most commonly used 

prediction algorithms, and the receiver operating 

characteristic-area under the curve (ROC-AUC) the 

most frequently used metric to assess the algorithm 

prediction performance. Random Forest and Logistic 

Regression were the most discriminant models 

according to the selected studies.  

 

Conclusions: Machine learning-based triage systems 

could improve decision-making in emergency depart-

ments, thus leading to better patients’ outcomes. 

However, there is still scope for improvement 

concerning the prediction performance and explica-

bility of ML models. 

 

Keywords: Triage; Emergency Department/Emerg-

ency Room; Machine Learning; Modeling; Model; 

Classification; Predictive; Artificially Intelligence; 

Decision Support Systems; Patient Prioritization 

 

1. Background 

Emergency departments (ED), where diagnostic and 

therapeutic interventions must be executed rapidly 

and effectively [1], are one of the biggest sources of 

hospitalization [2, 3]. On arrival at the ED, patients 

are first classified according to the severity of their 

condition, in order to prioritize those requiring 

immediate medical intervention. This triage is usually 

performed by a nurse on the basis of the patients’ 

vital signs and main complaint [4-5]. Recently, there 

has been increased interest in developing ED triage 

decision support systems based on big volumes of 

historical clinical data to differentiate and prioritize 

patients. Several studies showed that machine 

learning (ML) prediction models are valuable for 

improving ED triage of patients [3, 6-10]. The aim of 

this review was to assess the performance of recently 

described ML models used for patient triage in ED, 

and to identify the future challenges.  

 

2. Method 

2.1 Study search and eligibility criteria 

Four databases (ScienceDirect, PubMed, Google 

Scholar and Springer) were manually searched  using 

key words (“triage”, “emergency department”/ 

“emergency room”, “machine learning”, “modeling”, 

“model”, “classification” ,“predictive”, “artificially 

intelligence”, “decision support systems”, “patient 

prioritization”) identified in the research questions , 

as done in previous studies [11-16]. Studies were 

selected in two steps. First, studies published between 

2018 and October 2021, with the highest number of 

citations, and with hospital admission and/or critical 

illness as outcomes were pre-selected. Then, the final 

selection was based on sample size, number and type 

of feature variables, type of model (s) constructed, 

and programming language/statistical tools. 

 

3. Results 

3.1 Study selection 

First, 19 papers published between 2018 and October 

2021 were pre-selected. Their characteristics are 

summarized in Table 1. Then, 11 studies were analy-

zed in detail (final selection: highlighted in Table 1): 

six studies performed in the USA (one included data 

from USA and Portugal), two in Korea, one in the 

Netherlands, one in Northern Ireland, and one in 

Australia. 

 

3.2 Data sample and predictors 

In all selected articles, the study population conce-

rned patients visiting the ED, with the exception of 
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the article by Kim et al. in which the study focused 

on the prehospital environment [17]. Sample sizes 

varied from ~20,000 to ~3,000,000 individuals. 

Figure 1 summarizes the variables used to build the 

ML models in each study. Hong et al. [18] included 

972 explanatory variables, while the other articles 

used fewer than 20 predictors. Although the data used 

for the ML model implementation were specific to 

each study, several common categories could be 

identified, such as demographic variables (age and 

sex), clinical variables (vital signs and diagnosis), 

arrival information (time and transport mode), ED 

visit outcome (hospital admission or discharge). 

Hong et al., Raita et al. and Araz et al. took into 

account also the Emergency Severity Index [19, 18, 

20]. Seven articles linked data to the common main 

complaints, but only Goto et al. [21] included 

information on comorbidities. Less than half of the 

articles presented information on the use of hospital 

metrics (e.g. number of previous ED visits and 

number of previous hospitalizations). Only Hong et 

al. [18], Rendell et al. [22] and Levin et al. [23] 

included the patients’ past medical history. Hong et 

al. [18] and De Hond et al. [24] added also 

information on historical laboratory test results, and 

imaging and electrocardiogram exams. For each 

article, the included variables are shown by a green 

diamond. Variables that were not included (or not 

available) and variables for which no clear 

information was found are shown with red and gray 

diamonds, respectively.  

 

3.3 Machine learning process  

3.3.1 Candidate variable handling and feature 

engineering: In the majority of the selected studies, 

all variables were included in the implemented 

models (Figure 2). Rendell et al. [22], Kwon et al. 

[25], Fernandes et al. [26] and Araz et al. [19] used 

Stepwise or Correlation-based methods for feature 

selection to reduce the number of input variables. 

When building a predictive model, it is often possible 

to improve its predictive performance by trans-

forming variables. The most common transformation 

methods include categorization (e.g. bucketing, 

binning), interactions, and polynomial or spline 

transformation for numerical variables. Only Rendell 

et al. proposed predictor interactions features [22]. 

None of the authors used polynomial or spline 

transformation. Levin et al. [27] and Kim et al. [17] 

did not provide any clear information on the variables 

retained in their models.  

 

3.3.2 Data resampling: In most articles, the datasets 

were randomly partitioned into training and test 

datasets (Table 1). The percentage of data contained 

in each dataset differed among studies (e.g. 90:10 in 

the study by Hong et al. [18], and 70:30 in the study 

by Raita et al. [20]). Levin et al. used the boot-

strapping resampling technique [23]. Nine studies 

used the cross-validation method to validate the 

model performance or to tune hyperparameters, 

which helps to avoid the risk of overfitting or 

underfitting [28, 29]. 

 

3.3.3 Prediction algorithms and calibration of 

hyperparameters: In total, 55 models were used to 

predict hospital admission or critical illness outcomes 

(Figure 3). Random Forest and Logistic Regression 

were the two most widely used models (n=9/11 

articles), followed by Gradient Boosting and Deep 

Neural Network models (n=6/11 studies). Conv-

ersely, some models were only used in one study: K-

Nearest Neighbors and Naive Bayes (Rendell et al. 

[30]), Support Vector Machine (Araz and al. [19]), 

and Random Under Sampling Boost (Fernandes et al. 

[26]). Among the used tools, R and Python were the 
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most common, followed by Matlab and the SQL 

language. With the exception of the articles by 

Rendell et al. [30] and Levin et al. [27], in all other 

studies at least one hyperparameter was calibrated, 

depending on the method used. 

 

3.3.4 Evaluation metrics: The metrics used to 

evaluate the performance of the different models 

(Figure 4) included the F1 score, the receiver 

operating characteristic-area under the curve (ROC-

AUC), sensitivity and specificity, and accuracy. The 

sensitivity and specificity and ROC-AUC metrics 

were the most used. 

 

3.3.5 Model agnostic methods: Most authors used 

Logistic Regression coefficients to identify signify-

cant variables. For models that cannot be interpreted 

directly, such as Random Forests, Gradient Boosting 

and Neural Networks, the Permutation Feature 

Importance model-agnostic method was used in 

seven studies to identify the variables that most 

contributed to discrimination [17, 18, 20, 21, 24, 26, 

27]. This method assesses the predictor importance 

by measuring the increase of the prediction error 

when the feature values are permuted.  

 

3.4 Model performance assessment 

3.4.1 Hospitalization outcome: In the selected 

studies, 44 models were developed (Table 1) with 

hospital admission as outcome. Figure 5 illustrates 

the performance of the prediction models based on 

the C-statistic method (AUC). Gradient Boosting was 

the most discriminant (median AUC = 0.860 and 

interquartile ranges (IQR) = 0.859-0.863), compared 

with Logistic Regression (median AUC = 0.840, IQR 

= 0.815-0.850) and Single Layer Neural Networks 

(median AUC = 0.825, IQR = 0.820-0.830), and also 

Deep Neural Networks and K-Nearest Neighbors 

(median AUC = 0.82 for both, IQR = 0.800-0.860 

and 0.815-0.850, respectively). 

 

3.4.2 Critical illness: Eleven models used critical 

illness as outcome measure (Figure 6). Deep Neural 

Networks displayed the best performance in 

differentiating between patients with and without a 

critical illness (median AUC = 0.875, IQR = 0.857-

0.895), followed by Random Forest (median AUC = 

0.870, IQR = 0.850-0.881), Logistic Regression 

(median AUC = 0.851, IQR = 0.846-0.860), and 

Gradient Boosting (median AUC = 0.840, only one 

model). Figure 7 shows the most relevant variables 

according to the Permutation Feature Importance 

model-agnostic method: age, sex, mode of transport 

to the ED, vital signs, and common chief complaints. 

For each article, the significant variables are shown 

by green diamonds. Not relevant variables and 

variables for which no clear information on their 

relevance was given in the selected articles are 

indicated by red and gray circles with a cross, 

respectively. 
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Figure 1: Predictors/candidate variables included in the selected articles. 
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Figure 2: Candidate variable handling and feature engineering for model building in the different studies. Green 

diamond, yes; red circle with a cross, no; gray circle with a cross, no clear information. 

 

 

 

Figure 3: Algorithms used in the selected studies. Green diamond, algorithm used in that study; red circle with a 

cross, not used in that study. 
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Figure 4: Evaluation metrics used in the included studies. 

 

 

 

Figure 5: C-statistic of the algorithms used to predict hospitalization. 
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Figure 6: C-statistic of the algorithms used to predict critical illness. 

 

 

 

Figure 7: Relevant variables.  
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Author Year Country Population Outcome Method Used Predictors Sample size Validation Method Tools (R, Python packages) 

Araz et al. 

[19] 
2019 USA ED Hospitalization 

LR, ANN, DT, 

RF, SVM, 

XGBoost 

7 118,005 

Randomly partitioned 

(70:15:15) 

Training: validation: test 

R (packages: glm, 

NeuralNetTools, ksvm, 

randomForest, XGBoost) 

Choi et al. 

[8] 
2019 Korea ED KTAS level 

LR, RF, 

XGBoost 
10 138,022  

Python (pandas, scikit-learn, 

soynlp libraries) 

De Hond et 

al. [24] 
2021 

The 

Netherlands 
ED Hospitalization 

LR, RF,GBDT, 

DNN 
20 172,104 

Split sample (66.6:33.3) + 

cross validation 
Python, R 

Fernandes 

et al. [26] 
2019 

Portugal and 

USA 
ED Hospitalization (ICU) LR, RUSB, RF 13 

599,276 and 

267, 257 

respectively 

Random stratified sample 

(70:30) + 10-fold cross -

validation 

 

Goto et al. 

[21] 
2019 USA ED 

Critical illness and 

hospitalization 

LASSO, RF, 

GBDT, DNN 
8 52,037 

Random split sample (70:30) 

+ cross-validation 
R, Keras 

Graham et 

al. [31] 
2018 

Northern 

Ireland 
ED Hospitalization LR, RF,GBDT 13 107,545 

Split sample (80:20) + cross-

validation 
SQL, R 

Hong et al. 

[18] 
2018 USA ED Hospitalization LR, GBDT, DNN 972 560,486 Random split sample (90:10)  

R (caret, xgboost, Keras, 

pROC) 

Kim D et al. 

[17] 
2018 Korea Prehospital Critical illness LR, RF, DNN 5 460,865 10-fold cross-validation 

MATLAB, Python 

(tensorflow) 

Klug et al. 

[33] 
2019 Israel ED 

Early and short-term 

mortality 
GBDT 11 799,522 

Training (year 2012 to 2017) 

and Validation (year 2018) 
Python, R (XGBoost library) 

Kwon et al. 

[25] 
2019 Korea ED 

Critical illness, 

hospitalization 
DNN, RF, LR 8 2,937,078 10-fold cross-validation 

Python (TensorFlow), R 

(glmulti, randomForest) 
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Levin et al. 

[27] 
2018 USA ED 

Critical care,  

Hospitalization, 

emergency procedure 

RF 18 172,726 
Random split sample (66:33), 

bootstrapping 
 

Nemati et 

al. [33] 
2018 USA ICU Onset of sepsis 

Weilbull-Cox 

proportional 

hazards model 

65 27,527 Split sample (80:20)  

Olivia et al. 

[34] 
2018 India ED Triage Level 

DT, SVM, NN, 

NB 
8  10-fold cross-validation Python (Keras) 

Raita et al. 

[20] 
2019 USA ED 

Critical illness, 

hospitalization 

LR, LASSO, 

RF,GBDT, DNN 
6 135,470 

Random split sample (70:30) 

+ 10-fold cross-validation 

R (glmnet, ranger, caret, 

xgboost, Keras) 

Rendell et 

al. [30] 
2019 Australia ED Hospitalization 

B, DT, LR, 

NN,NB, KNN 
11 1,721,294 10-fold cross-validation 

START, Python (scikit-

learn) 

Roquette et 

al. [22] 
2020 Brazil Pediatric ED Hospitalization 

SVM, ElasticNet, 

DNN, 

Catboost, 

XGBoost 

62 499,853 

Training (Jan 2015 to Apr 

2018) 

Test (May to Aug 2018) 

R version 3.5 and Python 

version 3.6 (Keras version 

2.2.4 with Tensorflow back-

end version 1.10.0 for the 

deep learning part) 

Sterling et 

al. [35] 
2019 USA ED Hospitalization 

NLP (BOW, PV, 

TM) & NN 
1 260,842 Random split sample (50:50)  

van Rein et 

al. [36] 
2019 Netherlands Prehospital Critical illness LR 48 6,859 Separate external validation R 

Wolff et al. 

[37] 
2019 

Chile and 

Spain 
Pediatric Hospitalization 

DL, RF, NB, 

SVM 
7 189,718 Hold-out scheme (80:20)  

 

Table 1: Characteristics of the selected articles. 
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4. Discussion 

The objective of these studies that developed ED 

triage algorithms was to propose decision support 

systems to help health professionals in prioritizing 

high-risk patients. As mentioned in previous review 

articles [17-21, 25-27, 31], the reference standard on 

which ED triage is currently based, such as the 

Emergency Severity Index, can hardly recognize 

critically ill patients. Indeed, it is hard to deal with 

such detailed data on the little time available. 

Advanced artificial intelligence (AI) models based on 

big volumes of historical clinical data may allow 

overcoming this obstacle.  

 

The aim of the present review was to identify the 

tools needed to build robust and efficient prediction 

algorithms that offer higher discrimination perfor-

mance than the reference standard models. The 

eleven recent and most cited studies from 2018 to 

October 2021, selected for this review, described 

ML-based decision support systems to improve 

patient triage in ED. Two outcomes were selected: 

hospital admission and critical illness. The most 

common methods were Random Forest and Logistic 

Regression (12 models/each), followed by Gradient 

Boosting (11 models) and Deep Neural Networks (10 

models).  

 

The objective of this review was not only to describe 

the developed methods and techniques, but also to 

identify possible improvements. A common problem 

with the selected studies was that they did not 

describe in detail or did not report their feature 

engineering process. Only one study mentioned that 

they took into account the predictor interactions [30]. 

No study explained how they would model non-linear 

numerical predictors and non-linear relationships 

(e.g. polynomials or splines). Furthermore, nine of 

the included studies mentioned that they took into 

account the hyperparameter calibration [18-21, 24, 

26, 31]. However, the majority did not explain the 

rationale behind the choice of calibration method and 

did not include the results of this analysis. Yet, the 

calibration result analysis might be crucial during the 

development of a transportable model that needs to 

be adapted to new settings [10, 38-40]. 

 

Many authors mentioned the necessity to offer the 

widest possible range of prediction approaches. For 

example, Rendell et al. highlighted the different 

advantages of each ML algorithm and emphasized 

that these algorithms overcome the limitations of 

more traditional regression techniques by offering 

both linear and non-linear decision forms. However, 

in our selected studies, only two studies implemented 

six models [19, 22], and most proposed only three to 

four prediction algorithms. Lastly, model-agnostic 

interpretation methods help to understand how 

features can affect the model prediction. They are 

flexible and can be applied to any ML model to find 

new patterns and to know more about the dataset [41-

43]. In the selected studies, the authors used 

exclusively the Permutation Feature Importance 

method to identify relevant features. Other methods, 

such as Partial Dependence Plot, Accumulated Local 

Effect Plots, Feature interaction (H-statistic), 

Functional Decomposition, and Global Surrogate 

Models, could be investigated in future works to 

identify predictors that might affect the patient triage 

prediction [41]. 

 

5. Conclusion 

This review found that combining machine learning 

with historical clinical data for patient triage in ED 
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has a clear advantage over the reference standard 

currently in use. However, there is still scope for 

improvement to enhance the prediction performance 

and explicability of ML models: 1) integration of 

predictors’ interactions and non-linear relationships; 

2) precise information on hyperparameter calibration 

to make models more transportable, and 3) more 

studies on the different model-agnostic interpretation 

methods to identify predictors that affect the triage 

process. The goal is to optimize the patient flow in 

order to improve their management, reduce waiting 

time, and efficiently use resources [44, 45]. 
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