
HAL Id: hal-03830000
https://hal.science/hal-03830000

Submitted on 26 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Query Management for a Decentralised Enterprise
Knowledge Graph

Bastien Vidé, Max Chevalier, Franck Ravat

To cite this version:
Bastien Vidé, Max Chevalier, Franck Ravat. Query Management for a Decentralised Enterprise Knowl-
edge Graph. 16th International Conference on Signal Image Technology & Internet based Systems
(SITIS 2022), Oct 2022, Dijon, France. �10.1109/SITIS57111.2022.00012�. �hal-03830000�

https://hal.science/hal-03830000
https://hal.archives-ouvertes.fr

Query Management for a Decentralised Enterprise Knowledge Graph

Bastien Vidé∗†, Max Chevalier∗, Franck Ravat∗
∗ Institut de Recherche en Informatique de Toulouse

Toulouse, France
first.last@irit.fr

† Umlaut
Blagnac, France

first.last@umlaut.com

Abstract—Organisations manage large amount of data scat-
tered in multiple data sources disseminated within the organ-
isation. In this context, decision-making having a complete
vision of the available data to make the right decisions is
a challenge. Choosing the right strategy to bypass this issue
may be impactful on the enterprise data management policy.
A good alternative to limit data integration issues can be
found in Knowledge Graphs. These Knowledge Graphs allow
decision makers to understand which data of interest are
existing in the enterprise. They are integrating the semantic
of data rather than data itself. In a previous research, we
proposed a decentralised enterprise knowledge graph (DEKG)
architecture to facilitate decision making and consider the
scattered data sources of interest. Due to the decentralised
dimension of this architecture and the separation of the data
that is scattered in remote sources, but also to the ”centralised”
aspect of knowledge graphs, one of the remaining challenges
is the decentralised query management in order to answer a
decision-maker needs. As a result we define in this paper a four
step approach to manage queries and to build results based
on a DEKG. We illustrate the proposed approach through
examples and detail its implementation. We also show the
results of preliminary experiments before giving some future
work.

Index Terms—Knowledge representation, Distributed database,
Query processing

1. Introduction

Knowledge Graph (KG) initially originates from the
Semantic Web domain in order to organise Knowledge
contained in different web pages, making Internet data
machine-readable. The Enterprise Knowledge Graph is an
application of KG to the organisations [4], [3] that particu-
larly highlights the relationships existing between the data
available within the company. These relationships mostly
show semantic relationships between data. Thanks to the
potential it gives, the Enterprise Knowledge Graph is viewed
as a good alternative solution that overcomes the “data silos
problem” [6]. The EKG intends to highlight relationships

existing in data by ingesting as much data as possible of
an organisation into a centralised storage [2]. The end-users
then have an easy access to the whole organisation data
thanks to this EKG. Without such an EKG, the end-user
need to dig into different data sources and manually search
for the correspondence between those different sources to
understand how and what to query.

In previous work, we proposed a variation of EKG,
called Decentralised Enterprise Knowledge Graph (DEKG)
[11] which is a particular kind of Enterprise Knowledge
Graph that offers a unified view of the organisation data
without copying original data into a single centralised sys-
tem, which simplifies the access to the organisation data. In
order to have a good understanding of the available data, the
DEKG generates a Business View (BV) which is a particular
view that combines and simplifies all the underlying sources
schemata.

Beyond the visualisation, the BV also allows the end-
user to query data to answer decision-maker needs. Since
data sources are scattered, the challenge here is to query
the underlying sources in a decentralised way from the BV
presented earlier. As a conclusion, such business view allows
end-users to focus on the business perspective while ignor-
ing the technical aspects that is managed by the proposed
architecture.

This paper tackles the query management challenge in
a DEKG context. To answer this issue, we first underline
in Section 2 work related to EKG querying and distributed
databases query management. In Section 3, we then propose
an original 4-steps approach for query management in the
context of a DEKG. We lastly demonstrate its feasibility in
different conditions through an experimental implementation
using three different data sets with multiple sources type in
Section 4.

2. Related work

2.1. Query management

Pan et al. demonstrated the usefulness of an EKG [8] but
also explained how to query them and introduced Query An-
swering in Knowledge Graphs [7] which helps non-technical

17

2022 16th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)

978-1-6654-6495-6/22/$31.00 ©2022 IEEE
DOI 10.1109/SITIS57111.2022.00012

users to query an EKG. They present Graph Exploration
approach which translate the user natural language queries to
navigate the graph, and Machine Learning approach which
trains from the EKG itself and question/answers pairs. In the
same way, Song et al. also showed how to both build and
query an Enterprise Knowledge Graph [10] with question
answering aimed at non-technical end-users. Using feature-
based context-free grammar, they translate a user question
into a SPARQL query. Furthermore, they included auto-
completion to help the end-user to formulate their question,
which can lack familiarity with the organisation data. These
approaches show how important the EKG is for (non techni-
cal) end-users. However, they do not consider multiple data
sources and assume the data is stored in a centralised EKG.

In a decentralized (or distributed) context we can un-
derline work related to query management for Distributed
Databases. Özsu et al. introduced the basics of Distributed
Database, including all the principles of Query Processing
in Federated systems [13]. They defined the query decom-
position and data localization, and also how they both solve
queries in a distributed environment. Czejdo et al. also
worked on distributed queries of independent databases [1]
to answer multi-database queries using a relational model. In
Distributed Databases, the approaches are mainly working
with relational databases. Even though the local-as-view
(bottom-up) approach have been discussed, their Schema
Mapping methods are focusing on whether two entities
are identical or not. In a DEKG, the Schema Matching
is more precise, with different link types between entities,
relationships and properties (identical, similar, extends, ...).
Therefore, those different link types need to be considered
during the query decomposition.

2.2. Virtual Knowledge Graph

Previous work in EKG mainly relies on data integration.
Recent work tend to overpass some limitation of such data
integration strategy in designing a virtualized alternative of
an EKG.

Virtual Knowledge Graph (VKG) is a paradigm which
allows an end-users to access data without ingesting it
by leveraging data virtualisation [12] over a Distributed
Database system. For instance, Ontop1 is a VKG solution
focused on exposing a Knowledge Graph from multiple Re-
lational Databases, using SPARQL endpoints and R2RML
Schema Matching. The VKG, in its current state, seems to
be focusing on adding the Knowledge Graph philosophy
over existing relational databases only.

2.3. Discussion

Previous work mainly focused on either centralised sys-
tem, or relational decentralised systems. As an alternative,
we proposed in previous work [11] a Decentralised EKG
architecture to offer the simplicity of a centralised EKG
with heterogeneous and distributed data sources. Previously

1. https://ontop-vkg.org/

cited works are not applicable to this Decentralised EKG,
where the data sources are matched using different seman-
tic links. In this paper, we detail the remaining challenge
related to DEKG and a new method to manage queries in a
Decentralised EKG that is designed for distributed data such
as ”data silos” and which are shown within the business
view as defined earlier. The following section of this paper
discuss the DEKG architecture before detailing the 4-step
query management approach we propose.

3. Query management in a DEKG

3.1. DEKG principles

In a Decentralised Enterprise Knowledge Graph, the
Data is distributed on multiple heterogeneous systems. The
different data schemata are deduced, copied, matched in a
Global Schema and shown to the end-user as the Business
View [11]. The Figure 1 shows how the different schemata
are interconnected from bottom (data sources) to top (the
Business end-user).

TABLE 1. DATA SOURCE STRUCTURES AND CONTENT

In order to be independent of all the underlying source
types and systems, the different source schemata are repre-
sented as a graph of nodes and links. Each source sn schema
is represented by a graph gn. This graph contains different
nodes types, which can be Entity En, Relationship Rn, and
Property Pn as shown on the Figure 1. All these nodes
are linked together with Ln structural links, with different
link types: hasRel linking Entities to Relationships and
hasProp linking Entities and Relationships to Properties.
For instance, the source schemata described in Table 1 are
represented as graphs in the Figure 2.

The Global Schema GS is the union of all the source
graph schemata g1, g2, ..., gn, using multiple Schema Match-
ing general algorithms and rules [11]. The GS contains a
set of semantic links lSM , Entity nodes ESM , Relationship
nodes RSM . lSM links can be typed as identical, similar,
extends, includes or aggregates, and may also contain
additional values (i.e. inclusion percentage). All the Entities,
Relationships and Properties in the Global Schema GS have
pointers to their original Source URIs, using nodes attribute,
which will allow us to query the original data sources to
reply to the end-user query. To continue on the previous
example, Figure 3 shows the final GS, where the previous

18

Figure 1. Distributed Query Management

schemata from deduced from the sources in Table 1 were
matched together using general algorithms. The coloured
arrows represent links that have been added during the
DEKG schema matching (different colours mean different
algorithms used).

Finally, those new links are used to create the Unified
View, called Business View, shown to the top non-technical
end-user. The Business View BV is a synthesis of the Global
Schema GS using a grouping algorithm κ:
BV = κ (GS)
The objective of the algorithm ρ is to present a business
vision to end-users, that focuses on conceptual entities con-
nected through semantic relationships, while ignoring the
physical implementation of the underlying databases. In the
BV, the Entity nodes are kept as nodes, whereas Relationship

nodes become links and Property nodes are included inside
Entities and Relationships as attributes. Also, identical, sim-
ilar and extended Entities and Relationships can be grouped
together to simplify the final Business View.

Following the previous example, Figure 4 shows the
deduced business view from the GS Global Schema. The
end-user queries the DEKG directly using that proposed
business view. We detail in the further sections how the end-
user query is modelled, and the algorithms used to answer
such queries.

3.2. Querying a DEKG: general principles

The end-user expresses their query using the BV. Our
system will need the GS to query the different sources
behind the queried entities, and reply a unified result to the

19

Figure 2. Data source deduced graph schema

Figure 3. Full matched Global Schema example

Figure 4. Generated Business View

end-user. To do so, multiple sub-queries will be built from
the user query depending on the queried entities and their
corresponding sources and all their sub-results merged into
a single result, matching the original user query.

3.2.1. User’s query expression. To be independent of any
query languages, we model the user query Q expressed
on the Business View BV using Graph Pattern Matching
formalised as a Conjunctive Query. In a graph context, a
Conjunctive Query is defined as the following expression:
CQ = {(h1, ..., hi)|∃b1, ..., bj (a1 ∧ ... ∧ ak ∧ r1 ∧ ... ∧ rl)}
where h1, ..., hi is a set of head variables, b1, ..., bj is a
set of body variables, and a1, ..., ak is a set of selection
conditions and r1, ..., rl is a set of relationship conditions
[9]. Head hn and body bn variables can be Nodes,
Relationships, or their attributes. Head variables are replied
in the final reply, where body variables are used to apply
selection or relationship conditions without them to be
included in the final reply. The labelling functions are
ηp (n) giving the label of a node n in G, and ξp (e) giving
the label of an edge e in G. Finally, the relationships are
expressed using either εDE(n1, e1, n2) function which
represents a direct edge e1 between the two nodes n1 and
n2; or εΦ(n1, e1, ..., em, n2) which represents a path of m
connected edges between the two nodes n1 and n2.

Additionally, we allow the end-user to specify a broad
parameter B, which gives the ability to query more data
sources following the ”similar” link types created during
the Schema Matching process.

Example. We will follow an example illustrating all
the steps, based on the sources depicted in Table 1. The
end-user wants to display all the People, all the Classes
and all the People-Class relationships where People and
Classes are linked by a People-Class relationship. Its query
Q would be expressed as the following Conjunctive Query:
Q = {p, pc, c|∃ (∅) εDE (p, pc, c) ∧ ηp (p) =
People ∧ ηp (c) = Class ∧ ξp (pc) = People-Class ∧B}

3.2.2. Decentralised querying problems. In order to suc-
cessfully answer the user query, we need to address two
main problems [13], [5]: the Resource Selection, and the
Results Merging. The Resource Selection objective is to
determine subsets of queries to be executed on the under-
lying data stores (query decomposition). On the other side,
the Results Merging objective is to combine all the received
sub-replies into a unified reply to the user.

3.2.3. Preliminary Concepts. In order to query the graph,
each entities, relationships and their properties contain the
following information:

• Source Se: Source URI of the element e
• Type Te: Type of the e element (Entity, Relationship,

Property)
• Name Ne: Name of the e element
• Level Le: Context of the queried e element: main if

it is directly queried by the user and sub or similar
if it is required by another element.

• Parent Element Pe: If the Level L is sub or similar,
represents the main element that requires the e ele-
ment to be queried

20

The same way, we define multiple fuctions to get in-
formation from the DEKG Global Schema and query the
underlying sources:

• γ(BV,GS, e): From any element e in a Business
View BV , returns the corresponding element from
the GS.

• β(S,C, L, P): Builds a query on the source S with
the required set C of selection conditions. If the L
level specified is sub or similar, the parent element
P must be specified.

• λ(GS, e, T): Returns all elements linked to an ele-
ment e within the Global Schema GS by a link of
a specified type T .

• ε(S,Q): Executes the set of queries Q on the spec-
ified source S.

• ρ(R,GS): Rearrange rows of a unified reply R from
a sub or similar type using their shared properties in
GS.

• π(GS, e1, e2, ..., en): Returns a set of property types
from GS that all the given elements e1, e2, ..., en
have in common (linked by identical, similar or
includes links).

3.3. Resource Selection

We designed two different algorithms aiming at resolv-
ing the Resource Selection. First, the Query Decomposer
aims at processing the initial Query Q made on the Business
View BV from the User, and decomposing it as as a set of
sub-queries SQ using the semantics links contained in the
GS. The second algorithm, named Query Dispatcher, then
sends each sub-query of SQ to the different concerned data
sources and translates the concerned Conjunctive Query into
the source native query language.

The Algorithm 1 represents this first step operation: it
iterates over all the elements from Q, meaning all entities
and relationships stated in the query, and includes them
to the sub-queries set SQ. The SubQueries SQ is a set
of all the queries corresponding to Q. Each entry in Sub-
Queries represent an entity or relationship to be queried,
with their source, and eventual level and parentElement.
Then, it smartly selects all other useful elements: sub-
elements (linked by extends links) of the queried elements,
as well as identical elements and similar elements (if user
specified it using the B broad option). Our solution offers
the advantage of using the semantic links previously defined
during Schema Matching.

Algorithm 1: Query Decomposer

Data: GS (Global Schema), BV (Business View),
Q (Query)

Result: SQ (SubQueries)
1 SQ← ∅;
2 foreach e ∈ Q do
3 GSe ← γ(BV,GS, e);
4 S ← Q.filter(”element” = e)

SQ.push(β(GSe.source, S, ”main”));
5 Esub ← S.types;
6 if Esub = ∅ then
7 Esub ←

λ(GS,GSe.relationships, ”EXTENDS”);

8 foreach es ∈ Esub do
9 SQ.push(β(es.source, S,

10 ”sub”, e.Type));

11 Esim ← λ(GS,GSe, ”IDENTICAL”);
12 if Q.broad then
13 Esim.push(λ(GS,GSe, ”SIMILAR”));

14 foreach es ∈ Esim \ Esub do
15 SQ.push(β(es.source, S,
16 ”similar”, e));

17 return SQ

Algorithm 2: Query Dispatcher

Data: GS (Global Schema), SQ (SubQueries)
Result: SR (SubReplies)

1 SR← ∅;
2 Qs← SQ.groupBy(”source”);
3 foreach tuple S,Q ∈ Qs do
4 SR.push(ε(S,Q));

5 return SR

Example. Following the previously defined query Q, we
select and query People and Class entity sources and also
the People-Class relationship source. We will then follow
all similar (due to the broad B setting) and extends
link inside the Global Schema. That means, we will query
the source corresponding to the People sub-entities: the
Student and the Teacher entities. The same goes for
the People − Class relationships, which is decomposed
as Student − Class and Teacher − Class relationships

TABLE 2. SUB-QUERIES OF Q EXPRESSED IN CQ

Sub-queries CQ Type Level Parent Source

{p|∃ (∅) ηp (p) = People} Entity main People.csv
{s|∃ (∅) ηp (s) = Student} Entity sub People db.Student
{t|∃ (∅) ηp (t) = Teacher} Entity sub People db.Teacher
{sc|∃ (∅) ξp (sc) = Student-Class} Relationship sub People-Class db.Student
{tc|∃ (∅) ξp (tc) = Teacher-Class} Relationship sub People-Class db.Teacher
{c|∃ (∅) ηp (c) = Classes} Entity main db.Classes

21

queries. The resulting Sub-Queries for this example, to
be executed on each source from this step’s operation is
depicted in the Table 2.

The Query Dispatcher then groups all sub-queries re-
garding the same source using key-value pairs, as depicted
in algorithm 2, minimising the different system impacts. All
the queries are then translated and sent to their original
sources in parallel. All replies are stored as set of sub-
replies SR, corresponding to their respective sub-queries
in SQ. The results of sub-queries executed in this step is
passed onto the Results Merging steps as a set of source
sub-replies.

Example. Here, each Sub-query in SQ, depicted in
Table 2, are executed onto each corresponding Source. For
each source, we get a set of replies, as follows:
SR = {

db.Student = { { Properties = {
FirstName = ‘Doe’,
LastName = ‘Joe’, ... },
type = ‘entity’,
level = ‘subElement’,
parentElement = ‘People’ },

{ Properties = {
FirstName = ‘Jane’,
LastName = ‘Doe’,
... },

... },
... },
db.Teacher = { ... },
...
db.Classes = { ... }

}

3.4. Results Merging

The Result Merger uses all sub-replies queried by the
Query Dispatcher and merges them into a single, unified
reply based on the Global Schema links. This step, described
by the algorithm 3, first joins all the replies corresponding
to queried relationships and their linked entities together.
It continues with unifying all the other queried entities
replies and finally joins all the replies corresponding to sub,
identical and similar elements to their parent elements.

Example. Following our example, the replies from the
previous step are merged into a single reply. Here, Teacher
and Students data will be joined with People reply data.
To join correctly, it will be done using the properties couple
FirstName, LastName of People and Student, and the
FullName property of Teacher. The Class data is merged
using the existing Student−Class and Teacher−Class
relationships. The Unified reply can now be depicted as
a table of properties (Table 3). The meta-data for each
entity and relationships (level, parentElements...), despite
not being explicitly shown in the Table, are still stored.

The Result Formatter is the last step. Its goal is to im-
prove the readability and usability of the reply by matching
the reply with the original BV. The algorithm 4 consists in
rewriting the original Types of the entities and relationships

Algorithm 3: Result Merger

Data: GS (Global Schema), SR (SubReplies), Q
(Query)

Result: R (reply)
1 R← ∅;
2 foreach r ∈ Q.filter(”type” = ”relationship”)

do
3 P, S ← λ(r,GS);
4 L← SR.filter(”element” = r);
5 L← innerJoin(L, SR.filter(”element” =

P), π(GS, r, P));
6 L← innerJoin(L, SR.filter(”element” =

S), π(GS, r, S));
7 R← R.union(L);

8 foreach
entity ∈ Q.elements.filter(”type” = ”entity”)
do

9 R← R.union(entity);

10 foreach e ∈ SR.filter(”level” = ”subElement”)
do

11 if Q.filter(′element′ = e) �= ∅ then
12 R[e.parentElement]←

innerJoin(R[e.parentElement], e);

13 else
14 R[e.parentElement]←

outerJoin(R[e.parentElement], e);

15 foreach
e ∈ SR.filter(”level” = ”similarElement”) do

16 R[e.parentElement]←
outerJoin(R[Sub.parentElement], e);

17 return R

Algorithm 4: Result Formatter

Data: GS (Global Schema), R (Reply)
Result: UR (Unified Reply)

1 foreach e ∈ R.filter(”@level” = ”subElement”)
do

2 Te ← NPe ;

3 foreach element ∈ R.filter(”@level” =
”similarElement”) do

4 Te ← NPe
;

5 return ρ(R,GS)

to their corresponding parent Types. Therefore, the new
Type of each element corresponds to the original element
type of the end-user Q query on the Business View BV . Ad-
ditionally, the raw results are grouped by all their common
properties, in order to offer the user more readability.

Example. The different results of Teacher and
Student, resulting from the previous step, will be unified
as People and a new column Type will be added. This
allows the user keep a track of the underlying entity that

22

TABLE 3. MERGED QUERY RESULT

People Class
Teacher
LastName FirstName id id
Machin Alice 1 A
Lambda Bob 2 B
Doe John 3 C

Student
Doe John 1 A
Doe Jane 2 B

TABLE 4. FORMATTED QUERY RESULT

People Class
LastName FirstName Type id id
Machin Alice Teacher 1 A
Lambda Bob Teacher 2 B

Doe John
Teacher 3 C
Student 1 A

Doe Jane Student 2 B

matches the meta-data provided by the Business View BV .
The formatted reply in our example is presented in the Table
4.

4. Implementation & Experiments

In order to evaluate our proposition, we implemented
the algorithms previously presented and demonstrate our
proposition feasibility. We conducted an experimentation on
different types of queries and datasets described below, and
gathered key metrics. We used Javascript (NodeJS), getting a
JSON formatted Conjunctive Query, the Global Schema, the
Business View, and returns the reply as a JSON array with
the execution time and intermediate metrics. We based this
implementation on the DEKG architecture [11] and assumed
here that all our sources were fully working and replying
back tabular content of the source entities and relationships.

We executed our experiments with three datasets, which
are presented in the first part of Table 5, which summarises
the sources characteristics and those results. It first presents
the three sources characteristics with the underlying source
composition and database types. The second part of the
table shows the resulting Global Schema and Business View
composition.
Those three sources represent different use cases and dif-
ferent structural characteristics, whether in data volume, or
number of total structural attributes they contain. Comparing
those three sources will allow us to validate our proposal.
The first source is our toy dataset, presented and used in the
Section 3. It has a low volume of data, but the schema is
semantically rich. The second dataset is built against three
France OpenData sets, which can be used to easily search
vaccination centers from all Toulouse surrounding cities.
This dataset is the highest volume we experimented, but is
really well structured. Finally, we used enterprise employees
skills data set used for Team of Teams, that was acquired
with internal survey. This latest is lower volume than France
OpenData but contains a higher number of properties per
entities.

We experimented around different types of queries on
each source: Single entity type selection, multiple entity
types selection, relationship selection with two entities. We
also tried out manually joining two entity types when they
were not linked by a relationship, in the case where the
schema matching was not able to match two similar entities.
We gathered some key metrics about those queries. The
results per query are available on our Github repository2.
We selected the 4 more interesting queries in Table 6,
listing their metrics, type and sources. The Decomposed and
Merged columns show the number of decomposed entities
and the number of results merged using the Global Schema
semantic links and the Volume column depicts the number
of elements returned in the query. The goal is to show

2. https://github.com/Mavyre/dekg-query-reply

TABLE 5. QUERY & REPLY EXPERIMENT METRICS

S
o
u
rc

es

Dataset School example France OpenData Team of Teams
Source composition DB + 2 CSV 3 REST APIs 2 CSV
Total tables/documents 5 3 2
Min/Max row per table/file 2 - 4 22 - 2307 34 - 40
Total number of attributes 34 9582 10524
Data volume 1 KB 12MB 340KB

D
E

K
G

GS Nodes 22 52 281
GS Links 31 56 7766
BV Entities 5 10 214
BV Relationships 6 13 7681

TABLE 6. PER-QUERY METRICS

Source Query Type Avg Time Decomposed Merged Volume

School Single Node subtype + Broad selection 41.044ms 0 0 4
School Two entities with Relationship selection + single entity selection 40.213ms 4 2 12
OpenData All nodes selection 89.536ms 0 0 2366
Team of Teams Manually joined nodes 215.386ms 0 0 68

23

the feasibility of our proposition, and that the different
algorithms are used to enhance the end-user final reply.

The results show that the query execution time mainly
depends on the structure of the Global Schema and Business
view, rather than the data volume queried and the number of
properties per entity. For instance, the data in the Team of
Team source have a lot more properties per entity than the
other sources and a higher data volume, but still outperforms
all the Team of Teams queries as it is structurally less com-
plex. Also, the number of decomposed types doesn’t entirely
depend on the number of Semantic Links included in the
Global Schema. Instead, it depends on the quality and their
types (extends, identical and similar are the most important
ones) and the compression rate between the BV and the GS.
In our experiments, the company Team of Teams and Open-
Data France didn’t trigger any decomposition as the source
data schemata were not redundant, despite being related,
showing the importance of the Global Schema construction
and completeness to fully use the Query Decomposition and
Results Merging algorithms.

However, even without the use of semantic links, these
experiments show that our approach can still help query
multiple sources at once without the end-user intervention.
All the queries we executed in those experiments would
need multiple manual queries on underlying sources (in
the case of DB sources), manual file search and manual
matching to obtain the same result as we did. In the case of
big data sources, the manual approach is not a viable, nor
doable option, and would have needed a specific script for
each different queries we did. This shows that our approach
enables an end-user to access to the data of multiple sources
without any technical knowledge of the underlying sources.

5. Conclusion and future work

Non-technical end-users in organisation really need easy
access to organisation information by focusing on business
entities and their relationships without the need for unneces-
sary technical information or actions, such as locating source
data in heterogeneous environments. To address this issue,
we have defined the DEKG principle and in this paper and
addressed the problem of querying its multiple underlying
sources. To do so, we proposed a query process to answer
Conjunctive Queries using semantic links contained in a
DEKG, and shown how this query is then executed on the
different sources. The proposed process is based on 4 steps
we detailed throughout the paper: Query Decomposition,
Query Dispatching, Result Merging and Result Formatting.
Those steps use semantic contained in a DEKG Global
Schema in order to provide the end-user all the data available
and efficiently address the problems raised by heterogeneous
data sources querying. Finally, our experiments highlighted
that we allow a user to query the DEKG multiple data
sources at once, directly from the simple Business View.
We also shown that we provide the end-user a merged and
formatted result using the Global Schema semantic links.

We’re now working on extending our proposal by adding
aggregation functions, such as COUNT, SUM, MIN, MAX,

AVERAGE... Such functions might be really useful for busi-
ness end-users, especially about decision-making queries.
We’re currently working on adding these functions even if
one or more of the underlying data source do not support it
natively. We also are continuing experimenting our approach
against real-world very high-volume data which can contain
inconsistencies between the different sources. We’re also
working on interactive and user-friendly user interface that
will allow a non-technical end-user to easily browse and
query a DEKG. The user queries would then be translated
from the interface to a Conjunctive Query for the system to
process them.

References

[1] B. Czejdo, M. Rusinkiewicz, and D. W. Embley. An approach
to schema integration and query formulation in federated database
systems. In 1987 IEEE Third International Conference on Data
Engineering, pages 477–484, Los Angeles, CA, USA, Feb. 1987.
IEEE.

[2] R. Denaux, Y. Ren, B. Villazon-Terrazas, P. Alexopoulos, A. Faraotti,
and H. Wu. Knowledge Architecture for Organisations. In J. Z. Pan,
G. Vetere, J. M. Gomez-Perez, and H. Wu, editors, Exploiting Linked
Data and Knowledge Graphs in Large Organisations, pages 57–84.
Springer International Publishing, Cham, 2017.

[3] L. Ehrlinger and W. Wöß. Towards a Definition of Knowledge
Graphs. In Joint Proceedings of the Posters and Demos Track of
12th International Conference on Semantic Systems, page 4, Sept.
2016.

[4] J. M. Gomez-Perez, J. Z. Pan, G. Vetere, and H. Wu. Enterprise
Knowledge Graph: An Introduction. In J. Z. Pan, G. Vetere, J. M.
Gomez-Perez, and H. Wu, editors, Exploiting Linked Data and
Knowledge Graphs in Large Organisations, pages 1–14. Springer
International Publishing, Cham, 2017.

[5] A. K. A. Hassan and M. J. Hadi. Distributed Information Retrieval
Based On Metaheuristic Search and Query Expansion. page 9, 2017.

[6] Kendall Clark. What is a Knowledge Graph, June 2017.

[7] A. Moschitti, K. Tymoshenko, P. Alexopoulos, A. Walker, M. Nicosia,
G. Vetere, A. Faraotti, M. Monti, J. Z. Pan, H. Wu, and Y. Zhao.
Question Answering and Knowledge Graphs. In J. Z. Pan, G. Vetere,
J. M. Gomez-Perez, and H. Wu, editors, Exploiting Linked Data and
Knowledge Graphs in Large Organisations, pages 181–212. Springer
International Publishing, Cham, 2017.

[8] J. Z. Pan, G. Vetere, J. M. Gomez-Perez, and H. Wu, editors. Ex-
ploiting Linked Data and Knowledge Graphs in Large Organisations.
Springer International Publishing, Cham, 2017.

[9] C. Sharma, R. Sinha, and K. Johnson. Practical and comprehensive
formalisms for modelling contemporary graph query languages. In-
formation Systems, 102:101816, Dec. 2021.

[10] D. Song, F. Schilder, S. Hertz, G. Saltini, C. Smiley, P. Nivarthi,
O. Hazai, D. Landau, M. Zaharkin, T. Zielund, H. Molina-Salgado,
C. Brew, and D. Bennett. Building and Querying an Enterprise
Knowledge Graph. IEEE Transactions on Services Computing,
12(3):356–369, May 2019.

[11] B. Vidé, J. Marty, F. Ravat, and M. Chevalier. Designing a Business
View of Enterprise Data: An approach based on a Decentralised Enter-
prise Knowledge Graph. In 25th International Database Engineering
& Applications Symposium, pages 184–193, Montreal QC Canada,
July 2021. ACM.

[12] G. Xiao, L. Ding, B. Cogrel, and D. Calvanese. Virtual Knowledge
Graphs: An Overview of Systems and Use Cases. Data Intelligence,
1(3):201–223, June 2019.

[13] M. T. Özsu and P. Valduriez. Principles of Distributed Database
Systems, Third Edition. Springer New York, New York, NY, 2011.

24

