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Camille Bonneaud2,6, Nicolas Pollet4 and Anthony Herrel2,7

Abstract

Background: Variation in locomotor capacity among animals often reflects adaptations to different environments.
Despite evidence that physical performance is heritable, the molecular basis of locomotor performance and
performance trade-offs remains poorly understood. In this study we identify the genes, signaling pathways, and
regulatory processes possibly responsible for the trade-off between burst performance and endurance observed in
Xenopus allofraseri, using a transcriptomic approach.

Results: We obtained a total of about 121 million paired-end reads from Illumina RNA sequencing and analyzed
218,541 transcripts obtained from a de novo assembly. We identified 109 transcripts with a significant differential
expression between endurant and burst performant individuals (FDR ≤ 0.05 and logFC ≥2), and blast searches
resulted in 103 protein-coding genes. We found major differences between endurant and burst-performant
individuals in the expression of genes involved in the polymerization and ATPase activity of actin filaments, cellular
trafficking, proteoglycans and extracellular proteins secreted, lipid metabolism, mitochondrial activity and regulators
of signaling cascades. Remarkably, we revealed transcript isoforms of key genes with functions in metabolism,
apoptosis, nuclear export and as a transcriptional corepressor, expressed in either burst-performant or endurant
individuals. Lastly, we find two up-regulated transcripts in burst-performant individuals that correspond to the
expression of myosin-binding protein C fast-type (mybpc2). This suggests the presence of mybpc2 homoeologs and
may have been favored by selection to permit fast and powerful locomotion.

Conclusion: These results suggest that the differential expression of genes belonging to the pathways of calcium
signaling, endoplasmic reticulum stress responses and striated muscle contraction, in addition to the use of
alternative splicing and effectors of cellular activity underlie locomotor performance trade-offs. Ultimately, our
transcriptomic analysis offers new perspectives for future analyses of the role of single nucleotide variants,
homoeology and alternative splicing in the evolution of locomotor performance trade-offs.
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Background
Locomotor performance has a strong impact on the
survival and reproduction of many organisms [1–3].
Burst performance is often most relevant in the context of
prey capture and predator escape, whereas endurance is
relevant in the context of territory defense, dispersal, or
migration. Yet, the evolution of locomotor performance
can be constrained if performance traits are involved in
traded-offs, as often observed between burst performance
and endurance capacity in vertebrates [4–9]. Conflicting
demands on muscles to express either fast-twitch glyco-
lytic fibers that facilitate burst performance or slow-twitch
oxidative muscle fibers that enhance stamina may explain
in part this performance trade-off [10–13]. Although the
physiological basis of this performance trade-off has been
documented, how it is governed at the gene expression
level remains poorly understood. Uncovering the molecu-
lar basis and biological pathways underlying performance
trade-offs is therefore essential for understanding the
adaptive evolution of these traits.
Because locomotor performance is heritable [14–16],

efforts have been made to explain differences in physical
performance by variation in coding DNA in humans
[17–19], racing pigeons [20], mice [21], horses [22] and
dogs [23]. While those studies highlighted a remarkable
number of genetic variants associated with variation in
physical performance, they provide little insight into the
potential processes underlying performance trade-offs.
Altogether, the myriad of genetic variants with little
phenotypic effects has led to the consensus that physical
performance is a polygenic trait that is governed by fea-
tures such as transcriptional regulation. Recently, micro-
RNAs have been found to regulate the expression of
target genes in skeletal muscle [24, 25], as well as target
genes involved in muscle cell proliferation, differenti-
ation, motility and regeneration [26]. In humans, a tran-
scriptional map established after endurance exercise
training highlighted an important regulation of gene ex-
pression to increase aerobic capacity [27]. Although a
few transcriptomic analyses have been performed in the
context of physical performance [20, 27, 28], none have

tried to understand the factors underlying performance
trade-offs.
In this study, we analyzed the transcriptomes of eight

adult Xenopus allofraseri males from a single population
that show a marked trade-off between endurance and
burst-performance capacity. We performed a RNA-seq
analysis of genes expressed in limb muscle that allowed
us to highlight the genes, signaling pathways, and regula-
tory processes such as alternative splicing likely under-
lying this locomotor performance trade-off.

Results and discussion
Raw sequencing data, de novo assembly and quality
control
We obtained a total of about 121 million paired-end
reads using Illumina RNA sequencing. After trimming
and quality filtering, biological replicates produced be-
tween 5.2 and 28 million paired-end reads (Table 1).
The number of reads in each group was well balanced
with 5.5 million in the endurant group and 6.6 million
in the burst-performant group. The BUSCO analysis re-
sulted in 65.4% gene identification (54.9% completeness
and 10.5% of fragmented genes), which is relatively good
as only one muscle tissue was sampled. Next, we evalu-
ated the Trinity de novo assemblies by mapping the
trimmed reads. We obtained an overall alignment rate of
> 97% percent identity and > 89% of reads aligned as
proper pairs (Table 1). The de novo assembly consisted
of 218,541 transcripts and 163,981 ‘genes’ with an
E90N50 value (i.e. the N50 for transcripts that represent
90% of the total normalized expression data) of 1462 pb.
These different metrics testify that our transcriptome
assemblies were of good quality.

Physical performance
Transcript levels were quantified with respect to endur-
ant and burst performant classifications after measuring
four physical performance traits: maximum distance
jumped before exhaustion (m), maximum time jumped
before exhaustion (s), maximum burst velocity (m.s− 1),
and maximum burst acceleration (m.s− 2) (Table 2). The

Table 1 Summary of quality scores for the sequencing of the eight males Xenopus allofraseri (named sample A to H)

Sample Paired-end reads Total singleton reads > = Q30 (%) Mean quality score

A 8,961,655 17,923,310 94.02 36.42

B 16,672,325 33,344,650 93.97 36.41

C 28,509,462 57,018,924 93.71 36.31

D 14,145,979 28,291,958 94.07 36.44

E 20,664,890 41,329,780 94.19 36.49

F 15,697,497 31,394,994 94.06 36.44

G 11,647,327 23,294,654 94.37 36.54

H 5,288,288 10,576,576 94.00 36.41

Q30: Phred quality scores when probability of incorrect base call is 1 in 1000
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principal component analysis (PCA) followed by the ag-
glomerative hierarchical clustering allowed to clearly
segregate individuals into the two groups (burst perfor-
mant vs. endurant individuals; Fig. 1) confirming the ex-
istence of a locomotor trade-off in this species.
Maximum distance, maximum time and maximum vel-
ocity contributed mainly to the first axis of the PCA (re-
spectively 92.1, 90.5 and 81.3%), whereas maximum
acceleration contributed to the second axis (75.3%).

Phylogenetic analysis
Phylogenetic analysis of the mitogenomes indicated that
mitochondrial DNA from the eight Xenopus males
(Sample A to H, Fig. 2) are closely related and corres-
pond to specimens of the species Xenopus allofraseri.

These mitochondrial sequences are sister to those of
Xenopus pygmaeus and markedly diverge from other
Xenopus species such as Xenopus laevis and Xenopus
tropicalis. Noticeably, the eight Xenopus allofraseri
males were captured in a geographic range that was not
previously reported for this species [29].

Differentially expressed transcripts
We identified 109 transcripts with a significant differen-
tial expression between endurant and burst performant
individuals (Fig. 3). Six of those transcripts yielded no
similarities to either the Uniprot or the NCBI databases.
The blast searches resulted in 103 protein-coding genes
(Table S1) matching either Xenopus laevis (n = 94) or
Xenopus tropicalis (n = 9) proteins. Due to alternative

Table 2 Individual measures of locomotor performance of the eight males Xenopus allofraseri (named sample A to H)

Sample Category Velocity (m.s− 1) Acceleration (m.s− 2) Time (s) Distance (m)

A Endurant 1.17 54.41 71 1.190

B Burst-performant 1.67 47.75 46 0.530

C Burst-performant 1.87 61.83 36 0.590

D Endurant 1.10 45.17 55 0.840

E Endurant 1.20 43.80 96 1.310

F Burst-performant 1.87 49.69 54 0.575

G Endurant 1.56 46.05 73 1.040

H Burst-performant 1.44 48.42 32 0.560

Fig. 1 Principal Component Analysis (PCA) and agglomerative hierarchical clustering of the four locomotor performance traits in eight males
Xenopus allofraseri (named sample A to H): distance (total distance jumped until exhaustion), time (maximum time spent moving until
exhaustion), acceleration (maximal instantaneous acceleration during an escape locomotor burst), velocity (maximal instantaneous speed during
an escape locomotor burst)
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splicing, some transcripts blasted to the same gene,
therefore we identified 90 unique protein-coding genes.
Using the human STRING database, we generated nine
networks involving 46 differentially expressed protein-
coding genes (Fig. 4).
We highlighted differentially expressed protein-coding

genes involved in the structural organization and func-
tioning of muscle cells, such as actin cytoskeleton and
microtubule composition, conformation, mitochondrial
activity, and cellular trafficking. Yet, it appears that many
of those transcripts have regulatory properties or are
effectors of downstream signaling cascades, starting from
stimuli in the extracellular matrix and involving cell sur-
face or transmembrane proteins. Consequently, endurant
and burst-performant individuals differ in the functional
pathways that are initiated by those up-stream effectors.

Transmembrane proteins and focal adhesions
Focal adhesion are macromolecular assemblies that play
key roles in linking the extracellular matrix to the

cytoskeleton [33] and act as important signal transducer
[34]. In loading muscle, previous study highlighted the
role of focal adhesion kinase (FAK, PTK2 gene) to act as
a mediator, and transmit a stress and strain signal by
integrins (transmembrane receptors) that activate mul-
tiple anti-apoptotic, cell growth pathways [35] and in-
crease muscle mass [36]. Whereas FAK lead to slow
twitch muscle generation and to an up-regulation of
genes involved in mitochondrial metabolism [37], FAK-
related non-kinase (FRNK) - a protein transcribed from
the FAT portion of the FAK gene - acts to inhibit FAK
in many cell types, including skeletal muscle [38]. In our
study, we find ptk2 and other protein-coding genes (gca,
lmo7) involved in focal adhesion and the signal trans-
duction cascade through the activation of Rho-GTPases
(e.g. RhoG, rac1, cdc42) to be up-regulated in burst-
performant individuals. Also, kinectin 1 (ktn1), a recep-
tor for kinesin that accumulates in integrin-based adhe-
sion complexes, is up-regulated in endurant individuals,
whereas mef2a, a DNA-binding transcription factor of

Fig. 2 Geographic range of some Xenopus species in Africa and maximum-likelihood phylogenetic tree of the eight studied Xenopus males
captured in Cameroon in 2009 (represented by a red cross). Geographic ranges were downloaded from the IUCN 2020 red list [29] and the map
was created with QGIS v.3.14 (https://www.qgis.org/). The unrooted tree shows the phylogeny built with PhyML [30] based on mitogenomes
assembled de novo (Sample A to H correspond to the reconstructed mitochondrial sequence based on each individual data whereas Sample
ABCDEFGH corresponds to the reconstructed mitochondrial sequence from all individual data combined) and from mitogenomes of other
Xenopus species previously published (corresponding GenBank accession numbers are presented in Table S2). The phylogenetic tree was
designed using Figtree v.1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/). The branch lengths are proportional to the number of substitutions per
site with the scale indicated under the tree. The Shimoidara-Hasegawa (SH)-like branch support test is represented by node colors (p-value > 0.95
in green, p-value > 0.80 in orange, p-value < 0.80 in red)
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ktn1, is up-regulated in burst-performant individuals.
Remarkably, kinectin interacts with RhoG to activate
rac1 and cdc42 through a microtubule-dependent path-
way [39]. Indeed, kinesins are major microtubule motor
proteins that have different functional properties de-
pending on the ‘cargo’ (i.e. vesicle) they transport. We
found several genes involved in microtubule compos-
ition and elongation, such as tubg1 and ckap5, to be up-
regulated in burst-performant individuals. Those genes
interact with a centromere protein R-like (an ortholog of
ITGB3BP) that is up-regulated in endurant individuals
(Fig. 4).
Furthermore, we found a differential expression of sev-

eral protein-coding genes related to cellular trafficking
and the Golgi apparatus. This central organelle system
of the secretory pathway biosynthesizes proteoglycans
[40]. It is also an important center for the formation of
microtubules for its own functioning, also called
‘MTOC’ [41]. We found RhoGDI-3 (arhgdig) to be up-
regulated in burst-performant individuals and it targets
RhoG from the Golgi apparatus to be activated locally
[42]. Interestingly, arafgap1, which codes for a GTPase-
activating protein involved in membrane trafficking and
vesicle transport from the Golgi complex, is up-
regulated in endurant individuals. Yet, arafgap1 interacts
with copz1 (Fig. 4), which codes for a coatomer (i.e., a

protein complex that associates with Golgi coated
vesicles and mediate transport from the endoplasmic
reticulum). This protein-coding gene is up-regulated in
burst-performant individuals, as well as rab12 and grasp,
which both play a role in intracellular trafficking. We
emit the hypothesis that endurant and burst-performant
individuals differ in a range of downstream effectors,
transcription regulators, molecules involved in cellular
trafficking and microtubule activity in order to bio-
synthesize distinct extracellular matrix molecules and
cell surface proteins, such as proteoglycans in the Golgi
apparatus.

Extracellular matrix and proteoglycans
The extracellular matrix (ECM) is a primary macrostruc-
ture composed of several molecules such as collagen,
hyaluronan, proteoglycans and glycoproteins that assem-
ble into an organized meshwork [31, 43]. Proteoglycans
for instance have diverse and essential roles in matrix re-
modeling and can act as receptors or co-receptors to
affect signaling pathways but also to initiate and modu-
late signal transduction cascades independently of other
receptors [44, 45]. In this study, we highlighted the up-
regulation of genes coding members of two large groups
of proteoglycans: neurocan (ncan), a chondroitin sulfate
proteoglycan that is up-regulated in burst-performant

Fig. 3 a Heatmap representation of the regularized log-transformed counts for the de novo assembly. All transcripts (n = 109) shown had
significance levels with (FDR)≤ 0.05. The expression values are plotted in log2 space and mean-centered, and show up- and down-regulated
expression as yellow and blue, respectively. b Volcano plot of all de novo transcripts and the red data points corresponding to the significantly
differentially expressed transcripts. Gene symbol of the top 10 most differentially expressed transcripts in endurant and in burst-performant
groups are plotted

Ducret et al. BMC Genomics          (2021) 22:204 Page 5 of 14



individuals, and glypican (gpc5), a heparan sulfate pro-
teoglycan that is up-regulated in endurant individuals. In
addition, we found an up-regulation of a cartilage oligo-
meric matrix protein-like (comp) in endurant individuals
that has the molecular functions to bind calcium, hep-
arin or proteoglycans. Therefore, it is plausible that
endurant and burst-performant individuals differ in the
proteoglycans and other extracellular proteins synthe-
sized because their diversity and properties make them
advantageous for powerful bursts of speed or long-
duration exercise.
Chondroitin sulfates that partly compose aggrecan

are able to absorb shocks by binding and releasing
water content during compression in cartilaginous tis-
sues, tendons, or ligaments [46, 47] which can protect
against injury during short and powerful physical per-
formance. In addition, it has been shown that
glypican-1 is able to enhance growth factor activity
and is therefore used in therapeutic treatment to cre-
ate new vasculature and restore blood flow in ische-
mic tissues [48]. Therefore, there could be a link
between gpc5 and the positive relationship between
endurance training and capillary densities [49], which
may be beneficial for transporting oxygen to muscle

[50]. Interestingly, we also found ppox, which codes
for an essential component of hemoglobin and myo-
globin, and spib, a hematopoietic transcription factor,
to be up-regulated in endurant individuals. The coup-
ling of increased blood oxygenation and muscle mi-
crovasculature is expected to render the aerobic
pathway used during prolonged exercise more effi-
cient. Finally, the study of Mao and colleagues [51]
suggests that spib could be phosphorylated and acti-
vated by mitogen-activated protein kinase 8 (mapk8),
which is also up-regulated in endurant individuals,
and is part of a vast network comprising numerous
genes involved in lipid metabolism, mitochondrial
activity, and stress responses.

Lipid metabolism, mitochondrial activity and stress
response
Almost all differentially expressed transcripts related to
lipid metabolism, energy production, mitochondrial ac-
tivity (mfn1, esrra, atp5b, dgat2, gls2, nfs1) are up-
regulated in endurant individuals compared to burst-
performant individuals. Yet, one protein-coding gene, a
A-kinase anchor protein 1 (akap1), has 2 transcript iso-
forms, one being up-regulated in burst-performant and

Fig. 4 Gene interaction networks that contain 46/109 differentially expressed transcripts between endurant and burst-performant individuals.
Differentially expressed transcripts were analyzed using STRING [31] using gene symbols of human orthologous genes for analysis (see the
supplementary table to find corresponding X. allofraseri annotated transcripts), and visual inspection was finalized using Cytoscape [32]. The node
color is based on the log2FC of expression data, with negative (blue) and positive (yellow) values representing up-regulated transcript expression
in endurant and burst-performant individuals, respectively (grey color correspond to gene with transcript isoforms expressed in both groups).
Node size represents the number of interactions with other protein-coding genes and allows to rapidly visualize central genes
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one in endurant individuals. Those splice variants are
proteins found in the mitochondria transmembrane, but
at different position (position 7–26 and 42–61 in burst-
performant and endurant individuals, respectively). The
A-kinase anchor protein 1 binds to different regulatory
subunits of protein kinase A (PKA) that has regulatory
properties in lipid, sugar, and glycogen metabolism.
Interestingly, we found an up-regulation of fsd2 in
burst-performant individuals, which is an important
paralog of CMYA5 that mediates subcellular compart-
mentation of protein kinase A and may attenuate the
ability of calcineurin to induce a slow-fiber gene pro-
gram in muscle [52]. Thus, we suggest that alternative
splicing of akap1, in association with other mitochon-
drial or cytoplasmic genes, is a mechanism enabling the
shift between different types of metabolism in endurant
and burst-performant individuals.
Furthermore, our results are consistent with the fact

that endurant individuals rely preferentially on lipid me-
tabolism, because oxidative phosphorylation of fatty
acids in muscle mitochondria produces a high yield of
ATP, necessary for prolonged contraction of muscle fi-
bers [53, 54]. On the contrary, individuals excelling at
burst performance may rely mostly on anaerobic glycoly-
sis in the cytosol (fast rate but low yield of ATP) [55]. In
this context, we found diacylglycerol acyltransferase 2
(dgat2) to be up-regulated in endurant individuals. This
endoplasmic reticulum enzyme catalyzes the final step in
triglyceride synthesis and is part of the glycerolipid me-
tabolism [56]. In addition, we found an up-regulation of
atp5b, a mitochondrial ATP synthase subunit, by the
estrogen-related receptor α (ERRα, coded by esrra) that
regulates the transcription of metabolic genes and has a
role in oxidative metabolism (Fig. 4) [57, 58]. ERRα has
been found to be under control of myocyte enhancer
factor 2 (MEF2) [59], a transcription factor that belongs
to the MADS-box superfamily and that activates numer-
ous muscle specific, growth factor-induced and stress-
induced genes [60, 61]. Yet, we found a transcript that
matches the mRNA of myocyte enhancer factor 2A L
homoeolog of Xenopus laevis (mef2a) to be up-regulated
in burst-performant individuals. This transcript has a
non-synonymous mutation in the coding part of the
MADS-box protein domain (Arg4Lys) which is respon-
sible for DNA recognition and cofactor interaction.
Therefore, it is not clear if the mef2a transcript of
our study negatively regulates esrra (and also ktn1)
expression or if it activates another gene that has yet
to be identified. Intriguingly, we found an up-
regulation of an inhibitor of cyclin-dependent kinase
(CDKI xic1) in endurant individuals, while cyclin-
dependent kinase (CDK5) has been found to inhibit
MEF2 [62].

Several studies have suggested a link between the
MEF2 family of transcription factors and calcium-
dependent signaling pathways [63, 64]. Calcium
signaling is known to be essential for increasing en-
durance, oxidative capacity, and mitochondrial bio-
genesis [65, 66]. Likewise, we found an up-regulation
in endurant individuals of the calcium/calmodulin-
dependent protein kinase (CAMK) 2 A (camk2a)
along with filamin B (flnb), an actin-binding protein
(Fig. 4). Interestingly, CAMKs have also been found
to activate mitogen-activated protein kinase (MAPK)
which mediates early gene expression in response to
various cell stimuli. Consistently, mapk8, which is up-
regulated in endurant individuals, is known to posi-
tively regulate the expression of bnip3, an apoptosis-
inducing protein located in the outer mitochondrial
membrane [67]. On the contrary, bnip3 is negatively
controlled by the translation initiation factor 5B
(eif5b) [68], the latter having an increased expression
in burst-performant individuals, along with the
ribosomal protein S4 (rps4x) and the ribosomal pro-
tein S6 kinase α4 (rps6ka4). Noticeably, Clarke and
colleagues [69] predicted the translation factor Eif6 to
be a key regulator of energy metabolism, affecting
mitochondrial respiration efficiency, reactive oxygen
species (ROS) production, and exercise performance.
Also, mapk8 and a transcription factor jun-D-like
(jund) interact with ddit3 (Fig. 4) which encodes a
member of the C/EBP family of transcription factors
implicated in adipogenesis, erythropoiesis or promoting
apoptosis, and which has two transcript isoforms up-
regulated in endurant individuals and one transcript
isoform up-regulated in burst-performant individuals.
We found a notable relationship between the calcium

signaling pathway and stress-induced genes that are up-
regulated in either endurant or burst-performant indi-
viduals. This is consistent with previous reports of a link
between endoplasmic reticulum (ER) stress, unfolded
protein response, and the contractile activity of muscle
[70, 71] and suggests a need to further recycle damaged
proteins and organelles that are used during muscle ac-
tivity [72]. For instance, one of those actively used pro-
teins during contraction and relaxation of the muscle is
the calcium cycling protein parvalbumin that reduces
the free calcium concentration in the sarcoendoplasmic
reticulum and cytoplasm [73, 74]. In our study, ocm4.1,
which codes for a protein that belongs to the paravalbu-
min family, is significantly up-regulated in burst perfor-
mant frogs compared to endurant individuals. Similarly,
the paravalbumin gene (pvalb) was found to be highly
expressed in beltfish (Trichiurus lepturus), a fish species
with high swimming activity [75] and particularly
associated with fast contracting muscle fibers [76].
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Rho-GTPases, ARP2/3 and WAVE complexes, and actin
cytoskeleton
Many studies interested in physical performance in
general and performance trade-offs in particular, have
focused on the physiological aspects of muscle and par-
ticularly on fiber type differences [12, 77]. Whereas one
major factor contributing to the differences in contract-
ile properties between fiber types is the presence of
different myosin heavy chain (MHC) isoforms [78, 79],
we found the third most up-regulated transcripts in
burst-performant individuals (LOC108701289) to be an
ortholog of Xenopus tropicalis speg gene, which encodes
a protein with similarity to members of the myosin light
chain kinase family. In addition, we primarily found
genes involved in the polymerization and
depolymerization of the actin filament to be differentially
expressed between endurant and burst-performant indi-
viduals. Indeed, the network of actin and actin binding
proteins, along with the microtubules and intermediate
filaments, constituting the actin cytoskeleton of skeletal
striated muscle, is highly dynamic and allows crucial
processes like cell migration and division, signal trans-
duction, organelle transport and coordination of muscle
contraction [33]. This dynamic system is made possible
through the reversible polymerization of globular actin
monomers (G-actin) into filaments (F-actin) [80].
Polymerization and depolymerization of the actin fila-

ments is the culmination of a signaling cascade that be-
gins with extracellular stimulation, adhesion interaction
(ECM cell-cell interaction) or mechanical stress, which
then acts upon guanine-nucleotide-exchange factors
(GEFs) and GTPase-activating proteins (GAPs) to con-
trol the activation state of the small GTPases Rho, Rac,
and Cdc42. After activation, the GTPases bind to a var-
iety of effectors to stimulate downstream signaling path-
ways [81]. For instance, the non-receptor protein kinase
2 (ptk2, up-regulated in burst-performant individuals)
can modulate the RhoA regulation pathway, but also ac-
tivates MAP kinase signaling cascade and mediates acti-
vation of the Rho GTPase rac1. Rac1 activates the
WAVE regulatory complex that drives Arp2/3 complex-
mediated actin polymerization [82]. In our study, arpc4,
an actin-binding component of the Arp2/3 complex is
up-regulated in burst-performant individuals, whereas
abi2, coding a component of the WAVE complex, is up-
regulated in endurant individuals. Interestingly, we
found two isoforms of the nif3l1 gene, one isoform being
up-regulated in endurant individuals, the other in burst-
performant individuals. This gene may function as a
transcriptional corepressor and interacts with arpc4 and
abi2 in the network involving also ptk2 and comp (Fig. 4).
Further examination would be necessary to test the hy-
pothesis that the two isoforms of the nif3l1 transcript
serve as a switch to activate or inhibit proteins of the

WAVE and ARP2/3 complex, and thus actin
polymerization.
Additionally, we found two up-regulated genes in

endurant individuals that are responsible for the actin
thin filament length. An F-actin uncapping protein,
lrrc16a, generates uncapped barbed ends that enhance
actin polymerization, as well as a CapZ-interacting
protein, rcsd1, which induces phosphorylation of CapZIP
and regulates the ability of the F-actin-capping protein
to remodel actin filament assembly. Antagonistically, the
tropomodulin-4 gene (tmod4) is up-regulated in burst
performant individuals and codes for a type of actin-
capping protein that blocks the depolymerization of the
actin filaments at the pointed end, thus contributing to
the formation of short actin protofilaments. In one net-
work, this gene interacts with a myosin-binding protein
C fast-type (mybpc2) for which we find two different up-
regulated transcripts in burst-performant individuals
(Figs. 3, 4). These two transcripts are globally dissimilar,
which suggests the presence of two mybpc2 homoeologs
in the allotetraploid Xenopus allofraseri. Homoeologs
are homologous genes in the same species that started
diverging through speciation but were reunified in the
same genome by allopolyploidization [83]. The up-
regulation of mybpc2 transcription in burst performant
individuals, along with the over-expression of tmod4,
may lead to the creation and renewal of a short fast-type
actin-like filament, necessary for fast and powerful loco-
motion. Therefore, it seems that there is further
depolymerization and polymerization of the actin
filaments in respectively burst-performant and endurant
individuals, and this may be linked to the need to rapidly
recycle and rearrange or to stabilize the actin
cytoskeleton.

Conclusions
Locomotor performance trade-offs have received consid-
erable attention in the literature over the past three
decades [11, 13, 84–87], yet the molecular origins of
such trade-offs remain unclear. Because locomotor per-
formance is heritable [14–16], substantial effort has been
devoted to uncover its molecular basis. However, contra-
dictory results regarding candidate genes suggest that
locomotor performance is a complex polygenic trait and
that gene expression regulation could be a non-
negligible factor. Accordingly, our study reveals numer-
ous transcription factors (DNA and RNA binding), ribo-
somal proteins, protein kinase, ubiquitin ligase,
methyltransferase, and effectors of the signaling cascade
that may help explain the trade-off between burst per-
formance and endurance observed in male Xenopus allo-
fraseri. Specifically, endurant individuals show an over-
expression of protein-coding genes related directly or in-
directly to lipid metabolism, mitochondrial activity, ATP
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production and muscle oxygen supply. Moreover, endur-
ant individuals appear to have increased actin
polymerization, whereas burst-performant individuals
have increased actin depolymerization along with an up-
regulation of two fast-type myosin-binding protein C
transcripts. Finally, burst-performant and endurant indi-
viduals show several differentially expressed transcripts
coding for proteoglycans and extracellular matrix pro-
teins, or proteins involved in intracellular trafficking,
apoptosis and the ER stress response. Interestingly, sev-
eral differentially expressed protein-coding genes are in-
volved in both the calcium signaling and mitogen-
activated pathways. How, and if, this relationship could
explain the evolution of performance trade-offs remains
unclear and would require further investigation.
Previous studies in humans have shown that differ-

ences in fiber type can be affected by a stop codon poly-
morphism (R577X) at actn3 [88, 89] and this same
mutation can alter muscle function in mice [90]. Yet,
there are contradictory results regarding the effects of
actn3 polymorphism to explain performance trade-offs
in humans [91]. In our study, none of the transcripts
corresponding to actn3 or any member of the α-actin
binding protein gene family were differentially expressed.
The great variation observed within or between species
for muscle fiber type composition can be attributed to
the use of alternative splice forms by structural proteins
[92]. Indeed, the regulation of, for instance, alternative
splicing plays a major role in the production of func-
tional complexity [93] and interestingly, a previous study
detected an association between flight performance in
dragonflies and alternative splicing in relation to muscle
calcium sensitivity [94]. In our study, we found key
genes (akap1 for metabolism, ddit3 for apoptosis,
ranbp3 for nuclear export, nif3l1 as a transcriptional co-
repressor) with transcript isoforms expressed in either
burst-performant or endurant individuals. Although our
results are biologically meaningful, we want to acknow-
ledge that we were not able to validate these observa-
tions by quantitative methods such as RT-QPCR. In
addition, RNAseq and qPCR results are known to be
closely correlated [95] and the confirmation of these re-
sults would rather require testing additional samples. Fi-
nally, future studies dedicated to clarify the critical role
of alternative splicing and its regulatory mechanism in
explaining physical performance trade-offs would be
insightful.

Methods
Model species
Eight Xenopus allofraseri males were caught in the wild
(December 2009) in a single pond between Manengo-
teng (N 04.8090, E 09.8011) and Manjo (N 04.8435, E
09.8218) in Cameroon (Fig. 2). Animals were exported

to France with authorization from the Cameroonian
Ministry of Forestry and Wildlife (MINFOF) and were
housed at the National Museum of Natural History in
Paris, France. Frogs were placed in aquaria (60 × 30 × 30
cm) at 24ºC and fed every week with beef heart, earth-
worms or mosquito larvae ad libitum. All individuals
were pit tagged (Nonatec, Rodange, Luxembourg) for
permanent identification.

Physical performance
Performance traits were measured for the eight males at
a fixed temperature of 24ºC. Maximal exertion capacity
was measured by chasing each individual down a three-
meter long circular terrestrial track until exhaustion, as
indicated by the lack of a righting response. The floor of
the track was covered with moistened cork to improve
traction and prevent dehydration. For each individual,
we recorded both the total distance covered and time
spent moving until exhaustion. Burst performance cap-
acity was quantified by measuring maximal instantan-
eous swimming speed and acceleration (see additional
information about materials and measurement protocol
in [8]). From the four physical performance traits, we
performed a Principal Component Analysis (PCA)
followed by an agglomerative hierarchical clustering
using respectively the ade4 and FactoMineR packages of
the R software.

Illumina transcriptome sequencing and de novo assembly
The individuals used for performance measurements
were euthanized with a lethal injection of sodium pento-
barbital (dosage of 150 mg/kg), a chemical compound
acting quickly on the central nervous system, rendering
the animal unconscious with little distress (a method
validated by the European Commission (https://op.
europa.eu/s/olzw). The knee extensor muscles of the
right leg were extracted for subsequent RNA sequencing.
Tissues were extracted, transferred to labeled tubes con-
taining RNA-later and conserved at − 80ºC until further
processing. The protocol for RNA extraction using
Trizol, RNA quantification and quality checking can be
found in Dhorne-Pollet et al. [96]. PolyA-RNA was iso-
lated and sequencing libraries prepared using ScriptSeq
(Illumina). Pooled libraries were 100 paired-end
sequenced using an Illumina HiSeq 2500 located at the
University of Exeter Sequencing Service facility.
Paired-end sequence reads were pooled together to

generate a de novo transcriptome assembly. The raw
sequence reads were trimmed and Illumina adapters
emoved using Trimmomatic [97] with the following
parameters: leading:5 trailing:5 slidingwindow:4:15 min-
len:36. Transcriptome assembly was then performed de
novo with the program Trinity [98]. We assessed the
completeness of our transcriptome assembly by
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searching for a tetrapod set of 3950 orthologs using
BUSCO version 4.0.2 [99]. To obtain assembly quality
statistics, paired-end reads were aligned back to the
assembly with Bowtie2 [100]. A high-quality transcrip-
tome assembly is expected to have strong representation
of the reads input to the assembler and specifically for a
trinity transcriptome assembly at least 80% of reads
should mapped back to the assembly and exist as proper
pairs. Transcript-level abundance was estimated using
Kallisto [101], in addition to a normalized measure of
transcript expression (TPM).

Phylogenetic analysis
To evaluate the phylogenetic position of the eight
Xenopus males, we implemented a phylogenetic analysis
with previously published mitogenomes of most known
Xenopus species downloaded from GenBank [102]
(Table S2). We retrieved reads mapping to the mito-
chondrial genome and performed a reference-based as-
sembly of the complete mitochondrial genome for each
sample using Geneious (www.geneious.com) and the
Xenopus allofraseri mtDNA sequence [98]. We used
MAFFT v.7 to compute a multiple alignment of all
Xenopus mtDNA [103]. From this multiple alignment,
we discarded the control region and all positions with
too many gaps or misalignments using Gblocks. The
phylogeny was then constructed using PhyML v.3.0 [30]
including the Shimodaira-Hasegawa (SH) statistic test.
For visualization purposes, the phylogenetic tree was
designed using Figtree v.1.4.4 [104] (Fig. 2).

Differential expression analysis
To detect differentially expressed transcripts, we ran
edgeR [105], integrated in the R Bioconductor suite
[106], using as input the TPM expression values that
were cross-sample normalized using the Trimmed Mean
of M-values (TMM) method. We chose edgeR rather
than DESeq2 as it can detect differentially expressed
transcripts between our two conditions even for tran-
scripts that are expressed at low levels, and in cases
where there is high variability between the biological
replicates, as we observed during data exploration.
Differentially expressed transcripts were defined by a
log2 fold change (log2FC) of 2 between burst-performant
and endurant groups, and a false discovery rate (FDR) of
0.05. Expression data analysis using Volcano and heat-
map plots relied on transcripts identified using the
Trinity analysis framework.

Transcript annotation
We compared the significantly differentially expressed
transcript sequences to the combined proteomes of
Xenopus laevis and Xenopus tropicalis extracted from
the Uniprot database using BLAST. We manually

annotated the transcript sequences lacking detectable
protein homologies by comparing them to the nucleo-
tide (nr/nt) database using BLASTN with an e-value
threshold of 1e− 5. Differentially expressed transcripts
were analyzed using STRING [107]. The STRING data-
base allows the construction of protein-protein inter-
action networks, ranging from direct protein-protein
interactions to indirect interactions (such as co-
expression and text mining). The human database was
selected for the network analysis as it contained substan-
tially more information than the one for Xenopus tropi-
calis (the STRING database does not include data for
Xenopus laevis). Gene symbols for each protein were
used to find human orthologues and generate STRING
networks using default settings. TSV files with inter-
action data were then exported and processed using
Cytoscape [32] for visual inspection.
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