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Estimating the depth of a buried polyethylene pipe by comparing propagation models

   

Introduction

The detection and location of buried pipes is an important issue, especially to update the mapping of networks in accordance with new standards. Our study is restricted to polyethylene pipes which is a non-conductive material. Different methods exist to trace and locate pipes [START_REF] Liu | A Comprehensive Review of Acoustic Methods for Locating Underground Pipelines[END_REF][START_REF] Muggleton | Mapping the Uderworld : recent developments in vibro-acoustic techniques to locate buired 16 ème Congrès Français d'Acoustique 11-15 Avril 2022[END_REF]. Our study focuses on an acoustic method. The principle is to inject an acoustic source signal into the pipe and to observe the signals received by receivers placed on the ground surface. The advantage of these methods based on the acoustic excitation of the pipe is to be able to discern the pipe of interest in a dense network. Tools based on this method allow to estimate the passage of the pipe plumb but do not provide any information on the depth. The objective of this work is to develop a method to estimate the depth of pipes in a non-destructive and non-invasive way and with an accuracy of 10 cm. It should be noted that in this problem we have different unknown parameters that must be taken into account to estimate the depth. We have no information on the propagation medium. This means that the propagation speeds in the medium are unknown. It is interesting to note also the scale at which we work. The distances between the pipe and the receivers are in the order of meter.

This article follows on from work already presented in which the modeling of the acoustic wave propagation medium is considered as a homogeneous medium [START_REF] Xerri | Preliminary Acoustic Study of 3D Localization of Buried Polyethylene Pipe[END_REF]. From the delay times between the sensors we want to estimate the depth. We had tested the depth estimation with the homogeneous medium modeling on real data. For a majority of the measurements performed on the test area we had, the results were of the desired accuracy (10 cm). These results were obtained by adapting the MUSIC algorithm to our problem. However, we are aware that the pipe buried in this test area is in a trench. There is therefore a change of medium. In the context of these tests we can imagine that the two media were close. Now we want to make the model evolve so that it takes into account two propagation media, and we will consider two strongly different media. We consider here a model covering a larger number of situations, by integrating a vertical variation of the medium between the inside of the trench where the pipe is buried, and the outside of the trench, for two propagation models, one based on a ray tracing code (time modeling) according to the Snell-Descartes laws, the other taking into account a finite difference model of the complete wave field [START_REF] Operto | Finite-differ-ence frequency-domain modeling of viscoacoustic wave propagation in two-dimensional tilted transversely isotropic media[END_REF].

Geometric configuration of the problem

In agreement with studies on vibro-acoustic propagation in pipes [START_REF] Liu | A Numerical Study of Axisymmetric Wave Propagation in Buried Fluid-Filled Pipes for Optimizing the Vibro-Acoustic Technique When Locating Gas Pipelines[END_REF] we consider the pipe as a cylindrical line source. From this consideration and the resulting symmetries, we model the problem in a plane radial to the pipe. The sensors are distributed perpendicular to the pipe (Figure 1) and the pipe section is considered as a point source.

In this paper, we propose to focus on a model with two propagation media. The idea is to take into account the change of medium between inside and outside the trench. We therefore consider a vertically stratified medium, with an average propagation velocity V1 inside the trench and an average velocity V2 outside.

We assume weakly heterogeneous environments, but it is obvious that the propagation environment is more complex in an urban context, particularly due to the presence of a layer of bitumen covering the ground or the protective layer of sand (granular environment) surrounding the pipe. The objective is to obtain a parametric model allowing, from travel time estimate, to estimate the depth. 
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Reasoning on signal traveling times from ray theory

In this part we reason in travel time between the source and the receivers by considering the Snell-Descartes law at the interface between the two media.

Description of the model

The principle is to determine the travel time of the signal between the source S and the receiver Ri. To do this it is necessary to calculate the point of interface between the two media Mi which respects the law of Snell-Descartes.

sin

(ϕ 1 )= V 1 V 2 sin (ϕ 2 ) (1)
With ϕ 1 the angle of incidence, ϕ 2 the angle of refraction, V1 the velocity in medium 1 (inside the trench) and V2 the velocity in medium 2 (outside the trench).

For each receiver Ri corresponds an interface point Mi.

Cramer-Rao bound

The Cramer-Rao bound gives an idea of the accuracy of depth estimation in relation to our time modeling [START_REF] Stoica | MUSIC, maximum likelihood, and Cramer-Rao bound[END_REF].

In order to calculate this bound we need to express the coordinates of the interface point Mi in terms of our parameters of interest : SX the X coordinate of the source, SZ the Z coordinate of the source, V1 the velocity inside the trench and V2 the velocity outside the trench. We note θ the vector of these parameters of interest.

θ = [S X S Z V 1 V 2 ] T (2) 
We consider that the position of the interface between the two media along the X axis, MX is known. We therefore have to express MiZ the Z coordinate of Mi.

Taking equation ( 1) again, we have as a starting equation S Z -M iZ

| SM i | = M iZ | M i R i | V 1 V 2 (3) 
This is equivalent to solving the following 4th order equation :

M Z 4 [ V 2 2 -V 1 2 ] +M Z 3 [-2R Z V 2 2 -2S Z V 2 2 +2S Z V 1 2 ] +M Z 2 [S Z 2 V 2 2 +R Z 2 V 2 2 + V 2 2 (R X -M X ) 2 + 4R Z S Z V 2 2 -S Z 2 V 1 2 -V 1 2 (M X -S X ) 2 ] (4) +M Z [-2RZSZ 2 V 2 2 -2S Z R Z 2 V 2 2 -2S Z V 2 2 (R X -M X ) 2 ] +[ R Z 2 S Z 2 V 2 2 +S Z 2 V 2 2 (R X -M X ) 2 ] = 0
By identification, we can write

M iZ 4 m 1 +M iZ 3 m 2 +M iZ 2 m 3 +M iZ m 4 +m 5 = 0 (5)
Solving the equation, we obtain

M iZ = √ A - √ A -2(p +A + q √ A ) 2 - m 2 4 m 1 (6) with A = ( -R + √ R 2 + 4Q 3 27 2 ) 1/ 3 - Q 3( -R + √ R 2 + 4 Q 3 27 2 ) 1/3 - 2 p 3 (7) Q = - p 2 3 -4 r (8 ) R = 8 r p 3 - 2 p 3 27 -q 2 (9) p = m 3 m 1 - 3m 2 2 8m 1 2 (10) q = m 4 m 1 - m 2 m 3 2 m 1 2 + m 2 3 8 m 1 3 (11) r = m 5 m 1 - m 2 m 4 4 m 1 2 + m 2 2 m 3 16 m 1 3 - 3 m 2 4 256 m 1 4 (12) 
We also need to calculate the gradient of MiZ as a function of our parameters of interest which we will note ∇ θ (M iZ ) . We will express the Cramer-Rao bound in terms of ∇ θ (M iZ ) . The Cramer-Rao bound, noted here CRB, is calculated according to the Fisher information matrix, noted F.

CRB(θ) = F -1 (θ/ τ 1i ) (13)
with τ 1i the relative delay time between the sensors 1 and i.

To express the τ 1i two cases are possible :

• If Ri is inside the trench this returns us to the case of a homogeneous medium.

τ 1i = | SR i |-| SR 1 | V 1 (14)
• If Ri is outside the trench

τ 1i = | SM i |-| SR 1 | V 1 + | M i R i | V 2 (15) 
Here we are interested in the case of equation (15). We express the Fisher information matrix

F (θ/ τ 1i ) = ∑ i=2 N 1 Var ( τ 1i ) ∇ θ ( τ 1i ) ∇ θ T ( τ 1i ) (16)
with N the number of sensors and Var ( τ 1i ) the variance of the relative delay time between sensor 1 and i. Let's focus on the calculation of the gradient of a relative delay time. From equation (15) we have

∇ θ ( | S M i | V 1 ) = [ (S X -M iX ) -(S Z -M iZ ) ∂ ∂ S X M iZ V 1 | S M i | (S Z -M iZ ) (1 -∂ ∂ S Z M iZ ) V 1 | S M i | -V 1 (S Z -M iZ ) ∂ ∂ V 1 M iZ -| S M i | 2 V 1 2 | S M i | -(S Z -M Z ) ∂ ∂ V 2 M iZ V 1 | S M i | ] (19) ∇ θ ( | M i R i | V 2 ) = [ (M iZ -R iZ ) ∂ ∂S X M iZ V 2 | M i R i | (M iZ -R iZ ) ∂ ∂ S Z M iZ V 2 | M i R i | (M iZ -R iZ ) ∂ ∂ V 1 M iZ V 2 | M i R i | V 2 (M iZ -R iZ ) ∂ ∂ V 2 M iZ -| M i R i | 2 V 2 2 | M i R i | ] (20)
In our case the receivers are all placed on the ground so the RiZ = 0. Now that we have calculated the Cramer-Rao bound we can vary our parameters and observe the impact on the depth estimation accuracy.

For example we consider the following case: the sensors are spaced of 0.2 m, the X coordinate of the source SX =0, the Z coordinate of the source SZ = 0.8 m, the velocity inside the trench V1 = 500 m/s, the velocity outside the trench V2 = 700 m/s, the X coordinate of the interface points between the media MX = 0.35 m.

We note (Figure 2) that to obtain an accuracy of 10 cm on the depth estimation we must, with 5 sensors, have an accuracy on the relative delay times of the order of 10 -7 s, with 6 sensors 1 2 10 -6 s and with 7 sensors 10 -6 s. The more sensors we add, the more error we can tolerate on the estimation of relative delay times.

Comparisons of arrival times estimate with finite difference modeling of the full wave field

In this section, we compare the time estimates obtained with the method presented in section 3 with a finite difference wave propagation simulation in a simple model. Firstly, we recall the basis of the classic approach of wave propagation based on of the acoustic and isotropic finite difference approach, then we present a test of propagation in simple models to perform comparison of arrival times.

Finite Difference Modeling of Acoustic Isotropic Wave Propagation

In this study we used the acoustic and isotropic version of the code developed by Operto et al. [START_REF] Operto | Finite-differ-ence frequency-domain modeling of viscoacoustic wave propagation in two-dimensional tilted transversely isotropic media[END_REF] from the original formulation proposed by Jean Virieux [START_REF] Virieux | P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method[END_REF].

The 2D velocity-stress (21) is expressed as an equation of order one in the following form

{ ∂ υ x (x, t) ∂ t = b( x) ∂ p(x , t ) ∂ x + f x ∂ υ z (x, t ) ∂ t = b( x) ∂ p( x , t ) ∂ z + f z ∂ p(x, t) ∂ t = κ( x) ( ∂ υ x (x , t) ∂ x + ∂ υ z ( x, t) ∂ z ) (21) 
In this system υ and p are the velocity and the pressure respectively, b = 1 ρ is the buoyancy of the medium (with ρ the density) and κ = ρ c 2 is the compressibility. fx and fz are the components of the vertical and horizontal forces and correspond to the source terms. The density ρ is estimated from the velocity model by using the empirical Gardner law [START_REF] Gardner | Formation velocity and density -The diagnostic basics for stratigraphic traps[END_REF] which is valid for short offset data [START_REF] Forgues | Parameterization study for acoustic and elastic ray+Born inversion[END_REF]. To solve numerically this system of equations the time and space are discretized by using a step Δ t , Δ x and Δ z respectively. The index are n for time and i and j for the directions x and z. The discretization is performed on a cartesian grid Δ x = Δ z = h . As usual, to optimize the computational cost the velocity field is discretized over grid shifted in time Δ t 2 and a half step in space along x and z. The discretized system of equations is 

υ xi+1/2, j n+1 /2 -υ xi+1/2,j n-1 /2 Δ t = b i+1 / 2, j h ( p i +1, j n -p i , j n ) + f x i+ 1/2, j n υ z i , j+1 / 2 n+1 /2 -υ z i , j +1/ 2 n-1/2 Δ t = b i , j +1/ 2 h ( p i , j +1 n -p i, j n ) + f z i , j+1 / 2 n p i , j n +1 -p i, j n Δ t = κ i , j h ( υ x i +1/ 2, j n+1 /2 -υ x i -1 / 2, j n+1 / 2 +υ z i, j+1 / 2 n+1 / 2 -υ z i , j-1 / 2 n+ 1/2 ) (22)
From a practical point of view, the spatial discretization is of order 4, which is a good compromise between accuracy and efficiency. Indeed, the sampling step h depends on the wavelength and the order of the discretization. By dispersion analysis, a numerical anisotropy is highlighted [START_REF] Virieux | An overview of full-waveform inversion in exploration geophysics[END_REF][START_REF] Igel | Computational Seismology, A Practical Introduction[END_REF]. In the simulation, the numerical phase velocity depends on the incidence angle ϕ of the plane wave. According to [START_REF] Operto | Finite-differ-ence frequency-domain modeling of viscoacoustic wave propagation in two-dimensional tilted transversely isotropic media[END_REF][START_REF] Virieux | An overview of full-waveform inversion in exploration geophysics[END_REF], the choice of 5 points per wavelength in the order 4 corresponds to the limit for the speed to be independent of the angle ϕ (precision). In addition, this number of points satisfies the Shannon-Nyquist theorem without exceeding too much the required number of points (efficiency) [START_REF] Virieux | An overview of full-waveform inversion in exploration geophysics[END_REF] and the grid h of the model satisfies

h ≤ c min 5 f max ( 23 
)
where cmin is the minimum velocity and fmax the maximum frequency of the wave.

The stability analysis gives a criterion on the time sampling step Δ t also dependent on the discretization order. In the case of order 4, the time step is conditioned by [START_REF] Virieux | An overview of full-waveform inversion in exploration geophysics[END_REF] 

Δ t ≤ √ 3 8 h c max ( 24 
)
where cmax is the maximum velocity.

In reality, the waves propagate outside the study area. In a numerical model, it is then necessary to define boundary conditions that prevent side effects. The most used method for this is the definition of an absorbing edge around the digital grid. This PML (Perfectly Matched Layer) is defined by two functions γ x and γ z which play the role of attenuating factors for propagation in directions x and z [START_REF] Berenger | A perfectly matched layer for the absorption of electromagnetic waves[END_REF]. In general, the number of PML points NPML is determined by

N PML = 2λ min h ( 25 
)
where λ min is the minimum wavelength.

The boundary conditions at the surface are that of a free surface :

{ p(x , z=0, t) = 0 υ x ( x, z=0 -, t) = υ x ( x, z=0 + , t ) υ z ( x, z=0 -, t) = υ z (x , z=0 + , t ) (26) 
The symmetry of the velocity around the free surface ensures that the pressure is 0 at any time t and the antisymmetry of the pressure ensures the symmetry of the velocity.

Numerical tests

In the first test, we consider a homogeneous medium characterized by constant velocity v = 500 m/s of dimensions x = 0.7 m and z = 1.5 m. We consider the Ricker function (Figure 3.a) with the central frequency of 500 Hz (Figure 3.b). Then we shifted this function in order to obtain the maximum at time t = 0 s. We use this function as a source for our numerical experiment (Figure 3.c). A set of 30 receivers is located at the bottom of the model at z = 1.5 m. The first receiver is located at x = 0.35 m and z = 1.5 m, the distance between receivers is 0.01 m. The vertical velocity wavefield recovered at the receivers is presented in Figure 3.d. The estimated arrival times computed by using the method presented in section 3 are plotted on Figure 3.d (blue dashed curve). We can observe a very good fit for short offsets and acceptable fit for long offsets because of the broadening of the signal associated with the propagation. Now that we have verified that in the case of a homogeneous medium, the arrival times estimated with the model presented in section 3 fit well with the signals calculated with finite differences, we can examine the case of vertical stratification. In a second numerical test, we are interested in an extreme case where the depth is 1.5 m and where the difference in propagation velocity in the two media varies very strongly. In order to compare the travel times accurately, we need to estimate the arrival times on the signals from the finite difference simulation. When we look at the signals in detail, we see a distortion, especially at x= 1.1 m at the boundary of the two media. Following this observation, the question is how to calculate precisely the arrival times of distorted signals from the finite difference simulation. The answer is not obvious. Here, we decide to pick the first arrival breaking point to an idea of travel times (Figure 5.b). We find that both models fit well for the sensors closest away from the source, and also for the sensors farthest away from the change of medium outside the trench. In contrast, in the proximity of the boundary of the two media we observe differences. For the model of section 3 there is a brutal variation whereas on the finite difference data there is a continuous variation. The objective would be to understand these differences in order to improve the simplified modeling presented in section 3, maybe by considering multiple paths. This is the subject of our current work. The goal is to obtain a simplified formulation of the analytical travel time estimate but sufficiently accurate for our problem at the meter scale. The next step of our work is to test the model of section 3 on real data in a controlled test area.

Conclusion

Following our results obtained on real data considering a homogeneous propagation medium, presented in a previous work [START_REF] Xerri | Preliminary Acoustic Study of 3D Localization of Buried Polyethylene Pipe[END_REF], we presented here, an evolution of our time modeling, and we compared it to a finite difference modeling of the full-wave field. In this study, we presented two numerical experiments. The first medium is a simple homogeneous model. The second is more complex medium with vertical stratification in order to take into account the trench. We presented the calculation of the Cramer-Rao bound which is an essential tool to understand the impact of each parameter on the accuracy of the depth estimate. We compared our temporal modeling to a complete modeling of the wave field estimated by finite differences. We have noted the limits of our estimate of the travel time. We will now have to understand these limits to improve our temporal modeling. In our comparison with the finite differences the question arises of the calculation of the arrival time of distorted signals. We will be able to evolve the time modelisation by looking at possible multiple paths. In addition, we plan to test our temporal modeling on real data from a controlled test area. 
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 1 Figure 1 : Scheme of model
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 2 Figure 2 : Depth error as a function of relative delay time error
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Figure 3 :

 3 Figure 3 : Simulation results with finite differences in the case of homogeneous medium; a) Ricker function; b) Ricker function spectrum; c) Source signal used in finite difference simulations; d) The vertical velocity wavefield recovered at the receivers. The estimated arrival times computed by using the method presented in section 3 are plotted dashed curve

Figure 4 :

 4 Figure 4 : Picture of the wavefront propagation in the finite difference simulation in the case of vertical stratification, the star indicates the source located at x=0.75, z=0. m .
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 5 Figure 5 : Simulation results with finite differences in the case of vertical stratification; a) The vertical velocity wavefield recovered at the receivers. The estimated arrival times computed by using the method presented in section 3 are plotted dashed curve; b) Comparison of the travel times between the model estimate of section 3 and the estimate on the signals from the finite differences.
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