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ABSTRACT

Good decision making requires machine-learning models to provide trustworthy
confidence scores. To this end, recent work has focused on miscalibration, i.e,
the over or under confidence of model scores. Yet, contrary to widespread belief,
calibration is not enough: even a classifier with the best possible accuracy and
perfect calibration can have confidence scores far from the true posterior probabili-
ties. This is due to the grouping loss, created by samples with the same confidence
scores but different true posterior probabilities. Proper scoring rule theory shows
that given the calibration loss, the missing piece to characterize individual errors is
the grouping loss. While there are many estimators of the calibration loss, none
exists for the grouping loss in standard settings. Here, we propose an estimator to
approximate the grouping loss. We use it to study modern neural network archi-
tectures in vision and NLP. We find that the grouping loss varies markedly across
architectures, and that it is a key model-comparison factor across the most accurate,
calibrated, models. We also show that distribution shifts lead to high grouping loss.

1 INTRODUCTION

Classification problems can be broken down into two stages: an inference step during which a
classifier is learned to obtain class-wise confidence scores, and a decision step: making an optimal
decision given the appropriate scores and the misclassification costs. Decisions are made by applying
a threshold on the confidence scores to enforce the desired cost-benefit tradeoffs. If a cancer-risk
model gives a score of 0.1 for cancer versus 0.9 for no cancer, it may still be relevant to predict
cancer to reflect the relative high cost of missing the diagnosis compared to the nuisance of a
biopsy (Vickers et al., 2016). Similarly, self-driving cars should adapt their speed to the certainty
of their computer-vision model, erring on the side of caution if there is even a small chance of a
pedestrian being identified, or if the road seems wet. Many situations call for confidence scores
beyond a discriminant classifier. Confidence scores are needed when the context of model deployment
is unknown at training time, when the decision is left to a human decision maker, when the model
should avoid making decisions when it is too uncertain, etc. But these confidence scores must be
trustworthy: they must capture the actual uncertainty of the prediction.

To evaluate probabilistic predictions, statistics and decision theory have put forward proper scoring
rules, such as the Brier or the log-loss (Gneiting et al., 2007). They have the desirable property of
being minimized when a model outputs the true posterior probabilities. However, they come with
an irreducible term and cannot be interpreted as an error rate. Machine learning has focused on
calibration, a sub-component of proper scores, with error rates easy to measure (Brocker, 2009).

Calibration characterizes when classifiers are systematically over or under-confident. Platt (1999) and
Zadrozny & Elkan (2001) introduced simple post-hoc recalibration methods that rescale a continuous
output of a classifier so that it matches the empirical error rate; and Niculescu-Mizil & Caruana
(2005) noted that, with such recalibration, classifiers scores approached true posterior probabilities
on simulated data. More recently, Guo et al. (2017) showed that very large neural networks are often
poorly calibrated. A few years later, Minderer et al. (2021) showed that further improvements in
architectures improved not only accuracy but also calibration.

Calibration is however an incomplete characterization of predictive uncertainty. It is a control at the
group level: among all samples to which a calibrated classifier gave the same confidence score, on
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average, a fraction equal to the confidence score is positive. It is not a control at the individual level.
Among a group of individuals to which a calibrated cancer-risk classifier assigns a probability of 0.6,
a fraction of 60% actually has cancer. But a subgroup of them could be composed of 100% cancer
patients while another would only contain 20% of cancer patients. In order to fully characterize
uncertainty, we study here the remaining term measuring the discrepancy between the calibrated
probabilities and the unknown true posterior probabilities (Kull & Flach, 2015), i.e the grouping loss,
for which no estimation procedure exists to date. In particular:

* We highlight a common confusion that an accurate and calibrated classifier approaches the true
posterior probabilities (Section 2).

* We provide a new decomposition of the grouping loss into explained and residual components,
together with a debiased estimator of the explained component as a lower bound (Section 4).

* We demonstrate on simulations that the proposed estimator can provide tight lower-bounds on the
grouping loss (Section 5.1).

* We evidence for the first time the presence of grouping loss on vision and language architectures,
notably in distribution shifts settings (Section 5.2).

2 CALIBRATION IS NOT ENOUGH

Calibration can be understood with a broad conceptual meaning of alignment of measures and
statistical estimates (Osborne, 1991). However, in the context of decision theory or classifiers, the
following definitions are used (Foster & Vohra, 1998; Gneiting et al., 2007; Kull & Flach, 2015):

True posterior probabilities Q: @ := P(Y = 1|X),
Confidence scores S: S := f(X) score output by a classifier,
Calibrated scores C: C := E[Q(X) | 5], average true posterior probabilities for a score S.

Confusion about calibration A common confusion is to mistake confidence scores of a calibrated
classifier with true posterior probabilities and think that a calibrated classifier outputs true posterior
probabilities, which is false. We identified three main sources of confusion in the literature —see
Appendix A for specific quotes. First, the vocabulary used sometimes leaves room for ambiguity, e.g.,
posterior probabilities may refer to confidence scores or to the true posterior probabilities without
further specifications. Second, plain-English definitions of calibration are sometimes incorrect,
defining calibrated scores as the true posterior probabilities. Lastly, even when everything is correctly
defined, it is sometimes implicitly supposed that true posterior probabilities are close to the calibrated
scores. While it may be true in some cases, equating the two induces misconceptions.

Calibration with good accuracy does not imply good individual confidences It is tempt-
ing to think that a calibrated classifier with optimal accuracy should provide confidence scores
close to the true posterior probabilities. However, caution is 10
necessary: Figure 1 shows a simple counterexample. The classi- U —SX)  =— 0(X)

fier presented gives an optimal accuracy as its confidence scores p—
are always on the same side of the decision threshold as the
true posterior probabilities. It is moreover calibrated, as for a
given score s (either 0.2 or 0.7 here), the expectation of () over
the region where the confidence score is s is actually equal to
s. Yet, the confidence scores are not equal to @ as () displays
variance over regions of constant scores. This variance can be
made as large as desired as long as both () and S stay on the
same side of the decision threshold to preserve accuracy. In fact, -1
the flaws of a perfectly calibrated classifier that always predicts
the same score are typically reflected by a high grouping loss.

oo
NN ®

Output
o
@]

decision threshold

Soeco
=\ AN

X~U(-1L1D) 1

Figure 1: A calibrated binary classi-
fier with optimal accuracy and con-

In Appendix B, we provide a more realistic example based on fidence scores S(X) everywhere
the output of a neural network that also builds on this key idea. different from the true posterior
As we formalize below, such variations of the true posterior probabilities Q(X).

probabilities over constant confidence scores are captured by

the grouping loss (Kull & Flach, 2015).
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3 THEORETICAL BACKGROUND

Notations Let (X,Y) € X x ) be jointly distributed random variables describing the features and
labels of a K-class classification task. Let e, be the one-hot vector of size K with its k*" entry equal
to one. The label space Y = {eq, ..., ek} is the set of all one-hot vectors of size K. We assume that
labels are drawn according to the true posterior distribution Q = (Q1,...,Qk) € Ak where Qy :=

P(Y = er|X) and Ak is the probability simplex Ax = {(pl, ...,pK) €10, 1]K S ek = 1}.

We consider a probabilistic classifier f giving scores S = f(X) with S = (S1,...,Sk) € Axk.
Note that S and @ are random vectors since they depend on X. This section introduces the formal
definition of the grouping loss, which uses the concepts of calibrated scores as well as scoring rules.

3.1 CALIBRATION IN A MULTI-CLASS SETTING

In multi-class settings various definitions of calibration give different trade offs between control
stringency and practical utility (Vaicenavicius et al., 2019; Kull et al., 2019). The strongest definition
controls the proportion of positives for groups of samples with the same vector of scores S.

Definition 3.1. A probabilistic classifier giving scores s = (s1, . . ., Si) is jointly calibrated if among
all instances getting score s, the class probabilities are actually equal to s:
Calibration PY =ey|S=s)=s, fork=1 ..., K (1)

The score S being a vector of size K the number of classes, estimating the probability of Y
conditioned on S is a difficult task that requires many samples. A weaker notion of multi-class
calibration, introduced in Zadrozny & Elkan (2002), requires calibration for each class marginally:

Definition 3.2. A probabilistic classifier giving scores s = (s1,. .., Sk) is classwise-calibrated if
among all instances getting score S, the probability of class k is actually equal to sj:
Classwise calibration P(Y =e|Sk =) =sp fork=1,...,K. 2)

As classwise calibration can still be challenging to estimate when the number of samples per class is
too small, an even weaker definition is used in the machine learning community (Guo et al., 2017).

Definition 3.3. A probabilistic classifier giving scores s = (s1, ..., sy) is top-label-calibrated if
among all instances for which the confidence score of the predicted class is s, the probability that the
predicted class is the correct one is s:

Top-label calibration P(Y = €argmax(s)| max(S) = s) =s. 3)

Top-label calibration simplifies the problem by reducing it to a binary problem. However, it has
an important limitation (Vaicenavicius et al., 2019): as it only accounts for the confidence of the
predicted class, it does not tell whether smaller probabilities are also calibrated.

3.2 PROPER SCORING RULES AND THEIR DECOMPOSITION

Scoring rules Scoring rules measure how well an estimated probability vector .S explains the
observed labels Y. The two most widely used scoring rules are the log-loss and Brier score:

K K
Log-loss :  ¢"(S,Y) Z Y, log S, Brierscore: ¢P5(SY) = Z Sy —Yi)> 4

k=1 k=1
Scoring rules are defined per sample, and the score over a dataset is obtained by averaging over
samples. More generally, the expected score for rule ¢ of the estimated probability vector S
with regards to the class label Y drawn according to () is given by s4(S, @) = Ey~q [¢(S,Y)].
Proper scoring rules decompositions have been introduced in terms of their divergences rather than
their scores. The divergence between probability vectors S and () is then defined as d, (S, Q) =
$6(9, Q) —54(Q, Q). The divergences for the Brier score and the Log-loss read:

K
. LL Qr : . BS — Z

Log-loss :  d"(5,Q) : ZQk log == S, Brierscore :  d°°(S5,Q) = ,; (S — Q) (35)
Minimizing the Brier score in expectation thus amounts to minimizing the mean squared error
between .S and the unknown @. A scoring rule is said strictly proper if its divergence is non-negative
and dy (S, Q) = 0 implies S = Q. Both the Log-loss and Brier score are strictly proper.
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Scoring rules decomposition Let C be the calibrated scores in the sense of Definition 3.1, the
strongest one i.e., C, = P(Y = e;|S = s) for k = 1,..., K. The divergence of strictly proper
scoring rules can be decomposed as (Kull & Flach, 2015):

Elds(5,Y)] = Eldy(S,C)] + E[ds(C, Q)] + E[dy(Q,Y)] (6)

Calibration: CL Grouping: GL Irreducible: IL

where the expectation is taken over Y ~ @ and X. CL is the calibration loss. IL is the irreducible
loss which stems from the fact that one point may not have a deterministic label, making perfect
predictions impossible. GL is the grouping loss. Intuitively, while the calibration loss captures the
deviation of the expected score in a bin vs the expected posterior probabilities, the grouping loss
captures variations of the true posterior probabilities around their expectation. The scoring rule
decomposition (6) trivially holds for top-label calibration (Definition 3.3) as it can be reduced to
a binary problem. In the case of classwise calibration, the extension is not straightforward in the
general case but we prove in Proposition C.3 that it holds for the Brier score and the Log-loss.

4 CHARACTERIZATION OF THE GROUPING LOSS

In this section, we focus for simplicity on all settings where the calibrated scores can be expressed as
C), = E [Y%]|S], which includes binary classification as well as the multi-class setting with joint or
top-label calibration. For classwise calibration, Appendix C.9 shows that all the results presented in
this section also hold for the Brier score and Log-loss.

4.1 REWRITING THE GROUPING LOSS AS A FORM OF VARIANCE

To shed light on the grouping loss, we rewrite it using f-variances:

Definition 4.1 (f-variance). Let U,V : Q — R% be two random variables defined on the same
probability space, and function f : R — R. Assuming the required expectations exist, the f-variance
of U given'V is:

ViU V]:=E[f(U)|V] - FEU[V]).

The f-variance corresponds to the Jensen gap. It is positive by Jensen’s inequality when f is convex.
Beyond positivity, it can be seen as an extension of the variance as using the square function for f
recovers the traditional notion of variance.

Lemma 4.1 (The grouping loss as an h-variance). Let h : p — —s4(p, p) be the negative entropy of
the scoring rule ¢. The grouping loss GL of the classifier S with calibrated scores C = E[Q | S] and

scoring rule ¢ writes:
Elds(C,Q)] = EM[Q]S]] 7
—_———
GL(S)

The proof is given in Appendix C.1. In other words, the grouping loss associated to a scoring rule ¢ is
an h-variance of the true posterior probability () around the average scores C' on groups of same level
confidence S (Equation 7). In particular for the Brier score, the h-variance is a classical variance.
It measures discrepancy between @ and C' with a squared norm: V,[Q|S] = E[HQ - C? | S]
For the Log-loss, it is a Kullback-Leibler divergence: V,[Q|S] = E[Dkn(Q| C)|S]. These
expression highlight two challenges in estimating the grouping loss. First, it relies on the true
posterior probabilities ¢, which we do not have access to. Second, it involves a conditioning on the
confidence scores S, which are difficult to estimate for continuous scores.

4.2 GROUPING LOSS DECOMPOSITION AND LOWER-BOUND

As an h-variance of () given S, evaluating the grouping loss requires access to Q(X) for any point
X . Unfortunately Q(X) is difficult to estimate, except in special settings — e.g. multiple labels per
sample as in Mimori et al. (2021). In fact, the scores S of a classifier are generally one’s best estimate
of @, and the whole point of the grouping loss is to quantify how far this best estimate is from the
unknown oracle (). We show that it is nevertheless possible to estimate a lower bound on the grouping
loss. On the level set where a classifier score is .5, it is indeed possible to estimate the average of @)
on regions of the feature space. Since by definition () is non-constant on the level set of a classifier
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0.9

Figure 2: Intuition. In the feature space X, the level set
of confidence S = 0.7 displays E[Q | S] = 0.7, which
we expect from a calibrated classifier. However, a par-
tition of the level set into 2 regions R and Ry reveals
that E[Q | S, R;] = 0.6 while E[Q | S, R2] = 0.8, sug-
gesting a high grouping loss. Intra-region variances
Vo[Q ]S, Rq] and Vi [Q | S, Rz] remains uncaptured.

E[Q|S, Ry] = 0.6
[ Level set S =0.7

0.5

with non-zero grouping loss, it allows to capture part of the grouping loss (Figure 2). Intra-region
variance remains uncaptured but can be reduced by choosing smarter and more numerous regions in
the partition of the feature space. Theorem 4.1 formalizes this intuition:

Theorem 4.1 (Grouping loss decomposition). Let R : X — N be a partition of the feature space. It
holds that:

GL(S) = EMW,[E[Q|S, R]| S]] + EM[Q]S, R]] ®)
GLexplaineda(S) GLyesianal (S)
Moreover if the scoring rule is proper, then: GL(S) > GLeaxplainea(S) > 0. )

Appendix C.2 gives the proof by showing that the law of total variance is also valid for the h-variance,
which allows to decompose the grouping loss into explained and residual terms. GLxpiaines quantifies
the h-variance captured through the partition R, i.e. coarse-grained h-variance reflecting between-
region variations of @), while GL,4q captures the remaining intra-region h-variance. Due to the
positivity of GLyegiguars GLexplained is @ lower-bound of the grouping loss that ranges between 0 and GL
depending on how much h-variance the partition captures. Importantly, while V, [Q | S, R] cannot be
estimated because the oracle () is unknown, it is possible to estimate E[Q) | S, R] and thus GLeypiined-

4.3 CONTROLLING THE GROUPING LOSS INDUCED BY BINNING CLASSIFIER SCORES S

The grouping loss as well as GLeyiines involve a conditioning on the confidence scores S, which
cannot be estimated by mere counting when the scores are continuous. To overcome this difficulty,
standard practice in calibration approximates the conditional expectation using a binning strategy:
the classifier scores are binned into a finite number of values (Definition 4.2).

Definition 4.2 (Binned classifier). Let S : X — Ak be a classifier. Let 1
B := {B,}1<j< be a partition of Ak. The binned version of S outputs
the average of S on each bin:

X —=S
x — E[S|S € B;] where B is the bin S(x) falls into.

""""" Bin %dge
L GLierduCed
— C i

Sp: (10)
The binned calibrated scores are defined by:

Cp :=E[Q|SE| =E[C|SB] 0 S 1
This is the approach taken by the popular Expected Calibration Error Figure 3: Binning in-
(ECE) (Naeini et al., 2015). However, the loss estimated for a binned  flates the grouping loss.
classifier deviates from that of the original one. In particular, binning
biases the calibration loss downwards (Kumar et al., 2019). Here we show that on the contrary it
creates an upwards bias for the grouping loss. Binning a classifier S into Sp boils down to merging
the level sets S into a finite number of larger level sets of confidence score Sp. For example in
Figure 3, all level sets with S € [0.5,1] are merged into one level set of confidence Sp = 0.75,
which artificially inflates the variance of () in each bin. This intuition is formalized in Proposition 4.1

Proposition 4.1 (Binning-induced grouping loss). The grouping loss of the binned classifier GL(Sg)
deviates from that of the original classifier GL(S) by an induced grouping loss GLingucea(S, SB):

EVi[Q]SB]] = EMV[QIS]] + EVA[C|SB]] (1D
GL(Sg) GL(S) GLinduced(S,SB)
Moreover, if the scoring rule is proper: GLingucea(S, Sp) > 0.
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The proof is given in Appendix C.3. Proposition 4.1 shows that the difference between the grouping
loss of the binned and original classifier is given by the h-variance of the original calibrated scores
in a bin. This result provides an expression for GL;,4,c.¢ Which can then be estimated as shown in
Section 4.4.

Remark 1. Interestingly, the binning-induced grouping and calibration losses partly compensate
each other (Corollary C.1 in Appendix C.8).

Applying the decomposition of Theorem 4.1 to the binned classifier Sp and accounting for binning
using Proposition 4.1, we obtain a new decomposition of the grouping loss:

Proposition 4.2 (Explained grouping loss accounting for binning).

GL(S) = GLexplained<SB) - GLinduced(S; SB) + GLresidual(SB> (12)
If the scoring rule is proper, then: GL(S) > GLexplainea(SB) — GLinducea (S, SB) - (13)
GLLB(S,SB)

The proof is given in Appendix C.4. Importantly, contrary to the grouping loss, both terms in the
lower-bound (Equation 13) can be estimated. In the remainder of this paper, we will be interested in
the estimation and optimization of the lower bound GLy,5(S, Sg).

4.4 GROUPING LOSS ESTIMATION

We now derive a grouping-loss estimation procedure by focusing on each of its components in turn:
GLexplained(SB) and GLinduced<S7 SB)

A debiased estimator for the explained grouping loss GLeypuinea(Sp) The most natural estimator
for the explained grouping loss is a plugin estimator, replacing E[Q | S, R] by the empirical means
of Y over each region. It is nonetheless generally biased. We show below that in the case of the
Brier scoring rule, a direct empirical estimation of GLeyp/ainea ON the partition is biased upwards (cf
Appendix C.6), and propose a debiased estimator.

Proposition 4.3 (Debiased estimator for the Brier score). For all class k € {1,..., K} and bin
s €8, let n>F) (resp. n ) be the number of samples belonging to level set R(s) (resp. region
Rg»s ). We define the empirical average of Y over these regions as:

(sk) 1 () sk _ 1 (i)
= ) Z Y,” and =GR Z Y,
7 aX@WeRrS X eRE)

(s,k) __ s5,k)
The debiased estimator of GLexplainea i5: GLexph,Wd (SB) Z Z i ixp,umed(S B)

k=1seS
with:

k k) ~(s,k ~(s,k ) N
aily (Sp) = S A(5.k) Loy - ) b —aem)
explamed B - ; n(s (Mj —C ) ]; n(s:k) §s,k:) _1 - n(s:k) —1

plugin estimator (/}I,,lugi,, bias estimation éibim

Appendix C.5 gives the proof, with a debiasing logic similar to Brocker (2012) . The leftmost term
corresponds to the plugin estimate, that is the estimator of the explained grouping loss Theorem 4.1
with sample estimators for the quantities of interest. The two rightmost terms represent the variance
in estimating expectations over regions with a finite number of samples. Together they correct the
upwards bias of the plugin estimate.

Estimation of the grouping loss induced by binning classifier scores. GL;,guceq(S, Sp) involves
the h-variance of the calibrated scores C' inside each bin, thus its estimation requires C'. A solution is

to estimate a continous calibration curve C’, which amounts to a one-dimensional problem for which
various methods are available. In our experiments, we use a kernel-based method (e.g LOWESS). It

is then easy to compute the h-variance of C inside each bin by evaluating C for all available samples.
The resulting expression of the estimator GL,gyceq 18 given in Appendix C.7.
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A partition to minimize GL,sgq In order to achieve the best possible lower-bound, we choose
partitions in Theorem 4.1 to minimize GL,eg4.,. For this, we use a decision tree with a loss
corresponding to the scoring rule —squared loss for Brier score or Log-loss— on the labels Y to define
regions that minimize the loss on a given level set of S. As this approach relies on Y, a train-test split
is used to control for overfitting: a partitioning of the feature space is defined using the leaves of the

tree fitted on one part, then the empirical means used in GLeypqineq are estimated on the other part
given this partitioning.

5 EXPERIMENTAL STUDY

5.1 SIMULATIONS: FINER PARTITIONS GIVE A TIGHT GROUPING-LOSS LOWER BOUND

Here we investigate the behavior of our estimation procedure with respect to the number of bins and
number of regions on simulated data with known grouping loss. The importance of both corrections
- the binning-induced grouping loss (Proposition C.1) and the debiasing (Proposition 4.3) - is also
evaluated. For this, data Y € {0, 1} is drawn according to a known true posterior probability ¢) and
we consider a calibrated logistic regression classifier for the scores .S (details in Appendix B.2 and
Figure 11). The estimation procedures are then applied according to two different scenarios. First we
vary the number of samples per region (e.g region ratio) while the number of bins is fixed (Figure 4a.).
Then we vary the number of bins while the region ratio is fixed (Figure 4b.).

a.

0.010
— True GL. Figure 4: Simulation: estimat-
— G ing the grouping loss lower bound
T plugin QL g on a simulated problem (Ap-
0.005 — N\~ GLya:  pendix B.2, Figure 11). Right has a
— GLingueeq fixed ratio i?i’;’(’)f: = 30 per bin.
— GL Bins are equal-width. Averaged
0.000 —_ e LB curves are plotted with a +1 stan-

25 50 75 5 15 25 dard deviation envelop.

samples : ins
% per bin # bins
For a fine-enough partition (a large number of regions, and hence a small region ratio), GLg
provides a tight lower bound to the true grouping loss GL. If the average number of samples per

region becomes too small, some regions have less than two samples which breaks the estimate (grayed
out area in Figure 4a.). Conversely, the naive plugin estimate GL plugin substantlally overestimates the

true grouping loss as it does not include the corrections GLmdmd and Gmes Figure 4b. shows that
to control the GL;,guc.q due to binning, a reasonably large number of bins is needed, e.g 15 as typical
to compute ECE. Given these bins, we suggest to use a tree to divide them in as many regions as
possible while controlling the probability of regions ending up with less than two samples, typically

targeting a region ratio of a dozen, to obtain the best possible lower bound (/}iLB.

5.2 MODERN NEURAL NETWORKS DISPLAY GROUPING LOSS

The grouping diagram: visualization of the grouping loss In a binary setting, calibration curves
display the calibrated scores C' versus the confidence scores S of the positive class. To visualize
the heterogeneity among region scores in a level set, we add to this representation the estimated
region scores fi;, i.e the fraction of positives in each region obtained from the partitioning of level
sets (Figure 5). The further apart the region scores are, the greater the grouping loss.

Vision We evaluate 15 vision models (listed on Figure 7) pre-trained on the training set of ImageNet-
1K (Deng et al., 2009). Here we report evaluation on ImageNet-R (Hendrycks et al., 2021), an
ImageNet variant with 15 different renditions: paintings, toys, tattoos, origami... The dataset contains
30000 images and 200 ImageNet classes. Appendix D reports evaluation on the validation set of
ImageNet-1K and ImageNet-C (Hendrycks & Dietterich, 2019), an ImageNet variant with corrupted
versions of ImageNet images. As often with many classes, the small number of samples per class
(50) does not allow to study the classwise calibration and grouping loss. Hence, following common
practice, we consider top-label versions (Definition 3.3). Appendix D gives experimental details.
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100 = Figure 5: Grouping diagram. Calibration curve of a binned

(%) | Sizes N . . . . . ~
2 50 /2(-5 n binary c]gs'mﬁler augmented with the estlma.ted region scores /i,
21 @320 N for a partitioning of each level set into 2 regions. Region sample
g ® 500 gy sizes are plotted as a gradient color. The classifier is binned
3 ] . g}gi into 10 equal-width bins whose sample sizes n(*) are given as an
E ‘ g I histogram. A Clopper-Pearson 95% confidence interval is plotted
g i 7@ c on the region scores. Regions for which the calibrated score é(*)
“;) ‘ s lie within this interval are grayed out.

0  Confidence score 1

We find substantial grouping loss inside level sets for most networks on ImageNet-R (ConvNeXt Tiny
and ViT L-16 in Figure 6, others in Appendix D.1), even after post-hoc recalibration (Figure 6 right).
For instance, while ConvNext + Isotonic is calibrated (third graph), it is strongly over-confident in
one part of the feature space and under-confident in the other, creating a high grouping loss.

Figure 7 shows that the grouping loss varies across architectures, even with comparable accuracy.
For example, ViT has a slightly better accuracy than ConvNeXt, but a lower estimated grouping
loss. Post-hoc recalibration does not affect the grouping loss (Figure 6 right and Figure 7 right),
leading to the same conclusions. We observe the same effects on ImageNet-C (Appendix D.2), but
little or none on ImageNet-1K (Appendix D.3). This suggests that stronger grouping loss arises
in out-of-distribution settings. Visual inspection of the images suggests that the partitions capture
heterogeneity coming from how realistic an image is, or the different rendition types (Appendix D.1).

a. ConvNeXt

-

—_
(=]
(=]

N
W
1

o]
W

Correct predictions (%)
3

(=}
1

I T H H
0 0.5 1
Confidence score Confidence score Confidence score Confidence score

Figure 6: Vision: Fraction of correct predictions versus confidence score of predicted class (maxy, S})
for ConvNeXt Tiny and ViT L-16 on ImageNet-R, without post-hoc recalibration (a. and b.) and with
isotonic recalibration (c. and d.). In each bin on confidence scores, the level set is partitioned into 2
regions with a decision stump constrained to one balanced split, with a 50-50 train-test split strategy.

No recalibration Isotonic
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Figure 8: NLP: Fraction of positives versus confidence score of the positive class of fine-tuned BART
for zero-shot classification on the test set of Yahoo Answers Topics without post-hoc recalibration (a.
and b.) and with isotonic recalibration (c. and d.). The test set is either restricted to the 5 topics on
which the network was trained (in-distribution) or to 5 unseen topics (out-of-distribution). In each
level set clusters are built with a balanced decision stump and a 50-50 train-test split strategy.

NLP We evaluate the grouping loss on BART Large (Lewis et al., 2019) pre-trained on the Multi-
Genre Natural Language Inference dataset (Williams et al., 2018). We consider zero-shot topic
classification on the Yahoo Answers Topics dataset, composed of questions and topic labels. There
are 60 000 test samples and 10 topics. The model is fine-tuned on 5 out of the 10 topics of the training
set, totaling 700 000 samples. Given a question title and a hypothesis (e.g “This text is about Science
& Mathematics”), the model outputs its confidence in the hypothesis to be true. The classification
being zero-shot, the hypothesis can be about an unseen topic. We evaluate the model separately on
the 5 unseen topics and the 5 seen topics of the test set. Both results in a binary classification task on
whether the hypothesis is correct or not. Appendix E gives experimental details.

The partitioning reveals grouping loss in the out-of-distribution setting both before and after recali-
bration (Figure 8b. and d.). However, we found no evidence in the in-distribution one. This suggests
again that out-of-distribution settings lead to stronger heterogeneity, and thus grouping loss.

6 DISCUSSION AND CONCLUSION

A working estimator of grouping loss While calibrated scores can be estimated by solving a one-
dimensional problem, the grouping loss is much harder to estimate: it measures the discrepancy to the
true posterior probabilities, which are unknown. We show that combining debiased partition-based
estimators with an optimized partition captures well the grouping loss. This procedure allows us to
characterize the grouping loss of popular neural networks for the first time. We find that in vision and
NLP, models can be calibrated —if needed via post-hoc recalibration— but significant heterogeneity of
errors remains, e.g convnext has larger grouping loss than calibration loss.

Several avenues could be explored to better capture the grouping loss. Complex level sets may not be
approximated well with the partitioning defined by a tree, leaving a large residual in th. 4.1. In this
case, the estimated grouping loss may only be a rather loose lower bound. Such a lower bound is
nevertheless useful to reject models with high grouping loss. In addition, we apply the tree on the last
layer of neural networks, where class boundaries are simplified. Finally, complementing the proposed
lower bound with an upper bound would also allow to identify models without grouping loss.

We need to talk about grouping loss Model should be evaluated not only on aggregate measures,
but also on their individual predictions, using grouping loss. The presence of grouping loss means that
the model is systematically under-confident for certain groups of individuals and over-confident for
others, questioning the use of such models for individual decision making. The presence of grouping
loss also means that downstream tasks relying on confidence scores can be hindered, such as causal
inference with propensity scores or simulation-based inference. Finally, this heterogeneity raises
fairness concerns. In fact, the grouping loss and our lower bound are fundamentally related to fairness
(See Barocas et al., 2019, chap 2, notion of “Group calibration”). We hope that our demonstration
that grouping loss can be estimated will spur new research in this area.



Preprint

REPRODUCIBILITY STATEMENT

All datasets are publicly available (ImageNet-R, ImageNet-C, ImageNet-1K, Yahoo Answers Topics)
and all models involved are pretrained and publicly available on PyTorch and HuggingFace. Simulated
examples are described in Appendix B. Detailed experimental methods are given in Appendix D and E.
Proofs of all theoretical results are listed in Appendix C. The source code for the implementation of

the algorithm, experiments, simulations and figures is given as a zip archive on OpenReview'.

REFERENCES

Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning. fairml-
book.org, 2019.

Jochen Brocker. Reliability, sufficiency, and the decomposition of proper scores. Quarterly Journal
of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology
and physical oceanography, 135(643):1512-1519, 2009.

Jochen Brocker. Estimating reliability and resolution of probability forecasts through decomposition
of the empirical score. Climate dynamics, 39(3):655-667, 2012.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Teee, 2009.

Peter A. Flach. Classifier Calibration. Encyclopedia of Machine Learning and Data Mining, pp. 1-8,
2016.

Dean P Foster and Rakesh V Vohra. Asymptotic calibration. Biometrika, 85(2):379-390, 1998.

Matthieu Garcin and Samuel Stéphan. Credit scoring using neural networks and SURE posterior
probability calibration. 2021.

Tilmann Gneiting and Adrian E. Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102, 2007. ISSN 01621459. doi: 10.1198/
016214506000001437.

Tilmann Gneiting, Fadoua Balabdaoui, and Adrian E Raftery. Probabilistic forecasts, calibration
and sharpness. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(2):
243-268, 2007.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International Conference on Machine Learning, pp. 1321-1330. PMLR, 2017.

Kartik Gupta, Amir Rahimi, Thalaiyasingam Ajanthan, Thomas Mensink, Cristian Sminchisescu,
and Richard Hartley. Calibration of Neural Networks using Splines. 2020. ISSN 2331-8422.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corrup-
tions and perturbations. Proceedings of the International Conference on Learning Representations,
2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
The many faces of robustness: A critical analysis of out-of-distribution generalization. ICCV,
2021.

Max Kuhn and Kjell Johnson. Applied predictive modeling. 2013.

Meelis Kull and Peter Flach. Novel decompositions of proper scoring rules for classification: Score
adjustment as precursor to calibration. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 68—85. Springer, 2015.

1https ://openreview.net/forum?id=6wlk-IixnL8

10


https://openreview.net/forum?id=6w1k-IixnL8

Preprint

Meelis Kull, Miquel Perello Nieto, Markus Kangsepp, Telmo Silva Filho, Hao Song, and Peter Flach.
Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities with dirichlet
calibration. Advances in neural information processing systems, 32, 2019.

Ananya Kumar, Percy S Liang, and Tengyu Ma. Verified uncertainty calibration. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. pp. 7871-7880, 10 2019.

Takahiro Mimori, Keiko Sasada, Hirotaka Matsui, and Issei Sato. Diagnostic uncertainty calibration:
Towards reliable machine predictions in medical domain. In Arindam Banerjee and Kenji Fukumizu
(eds.), Proceedings of The 24th International Conference on Artificial Intelligence and Statistics,
volume 130 of Proceedings of Machine Learning Research, pp. 3664-3672. PMLR, 13-15 Apr
2021.

Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai, Neil Houlsby,
Dustin Tran, and Mario Lucic. Revisiting the calibration of modern neural networks. Advances in
Neural Information Processing Systems, 34, 2021.

Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos Hauskrecht. Obtaining well calibrated prob-
abilities using bayesian binning. Proceedings of the ... AAAI Conference on Artificial Intelligence.
AAAI Conference on Artificial Intelligence, 2015:2901-2907, 2015.

Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities with supervised learning.
In ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning, pp.
625-632, 2005.

Christine Osborne. Statistical calibration: a review. International Statistical Review/Revue Interna-
tionale de Statistique, pp. 309-336, 1991.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library. Advances in Neural Information Processing Systems, 32, 12 2019. ISSN 10495258.

John C. Platt. Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized
Likelihood Methods. ADVANCES IN LARGE MARGIN CLASSIFIERS, pp. 61—-74, 1999.

Rebecca Roelofs, Nicholas Cain, Jonathon Shlens, and Michael C Mozer. Mitigating bias in
calibration error estimation. In International Conference on Artificial Intelligence and Statistics,
pp- 4036-4054. PMLR, 2022.

Juozas Vaicenavicius, David Widmann, Carl Andersson, Fredrik Lindsten, Jacob Roll, and Thomas
Schon. Evaluating model calibration in classification. In The 22nd International Conference on
Artificial Intelligence and Statistics, pp. 3459-3467. PMLR, 2019.

Andrew J Vickers, Ben Van Calster, and Ewout W Steyerberg. Net benefit approaches to the evaluation
of prediction models, molecular markers, and diagnostic tests. BMJ, 352, 2016.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume I (Long Papers), pp. 1112—1122. Association for Computational Linguistics,
2018.

Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from decision trees
and naive bayesian classifiers. In Icml, volume 1, pp. 609-616. Citeseer, 2001.

Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multiclass probabil-
ity estimates. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 694-699, 2002.

11



Preprint

SUPPLEMENTARY MATERIALS

Table of Contents

A Examples of confusing statements on calibration

B Examples of accurate and calibrated classifiers with high grouping loss
B.1 Arbitrary link between true posterior probabilities Q and confidence scores S
B.2 Realistic example based on neural network’s output

C Proofs

C.1 Lemma 4.1: the grouping loss as an h-variance
C.2 Theorem 4.1: Grouping loss decomposition
C.3 Proposition 4.1: Binning-induced grouping loss
C.4 Proposition 4.2: Explained grouping loss accounting for binning
C.5 Proposition 4.3: debiased estimator for the Brier score
C.6 The plugin estimator for the grouping loss lower bound is biased upwards. . . . .

C.7 Estimator for the induced grouping loss

C.8 Analysis of binning-induced errors for the Brier score

C.9 Extension to classwise calibration

D ImageNet

D.1 ImageNet-R . . . . . . . . . .
D.2 ImageNet-C . . . . . . . . . e
D.3 ImageNet-1K validationset . . . . . . . . . . .. . ... ... ......

E NLP

Grouping diagrams of all vision networks

ImageNet-R . . . . . . . .
ImageNet-C . . . . . . . e e
ImageNet-1K . . . . . . o e

13

13

15

15
15
18
19
19
19
22
23
23
25

29
29
30
30

32

12



Preprint

A EXAMPLES OF CONFUSING STATEMENTS ON CALIBRATION

Here we detail specific examples of confusing statements on calibration in the literature. We choose
most of these examples in well-cited and well regarded works.

e Kuhn & Johnson (2013): “We desire that the estimated class probabilities are reflective of

the true underlying probability of the sample. That is, the predicted class probability (or
probability-like value) needs to be well-calibrated. To be well-calibrated, the probabilities
must effectively reflect the true likelihood of the event of interest.”
The authors write that it is desirable to have confidence scores S reflective of the true
posterior probabilities (), which is indeed desirable as discussed in Section 1. However,
they write this is obtained through calibration. Although post-hoc recalibration makes the
confidence scores closer to () in some sense, there is an implicit shortcut. As pointed out
in Section 2 and Appendix B, calibration, even with optimal accuracy, does not guarantee
confidence scores S to be close to the true posterior probabilities Q).

(Gupta et al., 2020): “A classifier is said to be calibrated if the probability values it associates
with the class labels match the true probabilities of correct class assignments.”

The authors write that calibration is matching the confidence scores .S of a classifier to the
true posterior probabilities (). In fact, calibration is matching the confidence scores S to the
calibrated scores C', which can be far from the true posterior probabilities () as pointed out
in Section 2 and Appendix B.

Garcin & Stéphan (2021): “Ideally, we would like machine learning models to output
accurate probabilities in the sense that they reflect the real unobserved probabilities. This is
exactly the purpose of calibration techniques, which aim to map the predicted probabilities
to the true ones in order to reduce the probability distribution error of the model.”

The authors write that calibration is outputting confidence scores S that are true posterior
probabilities (). As in the previous citations, calibration is outputting calibrated scores C,
which can be far from @ (Section 2 and Appendix B).

Flach (2016): “A probabilistic classifier is well calibrated if, among the instances receiving
a predicted probability vector p, the class distribution is approximately distributed as p.
Hence, the classifier approximates, in some sense, the class posterior.” “The main point
is that knowing the true class posterior allows the classifier to make optimal decisions. It
therefore makes sense for a classifier to (approximately) learn the true class posterior.”
Here, calibration is rightly defined as outputting confidence scores S that are equal to the
calibrated scores C'. However, by writing that confidence scores S of a calibrated classifier
approximate the true class posterior (), the author makes an implicit assumption that the
calibrated scores C' are close to the true posterior probabilities ), which is not guaranteed
in theory as pointed out in Section 2 and Appendix B.

B EXAMPLES OF ACCURATE AND CALIBRATED CLASSIFIERS WITH HIGH
GROUPING LOSS

Here we build simple binary classification examples of calibrated classifiers with optimal accuracy
having their confidence scores far from the true posterior probabilities. In Appendix B.1 we build
examples with an arbitrary link between true posterior probabilities () and confidence scores S (up to
a limit to keep the classifier’s accuracy optimal). In Appendix B.2 we build a more realistic example
based on the output of a neural network.

B.1 ARBITRARY LINK BETWEEN TRUE POSTERIOR PROBABILITIES Q AND CONFIDENCE
SCORES S

To show that calibration, even combined with optimal accuracy, does not impose strong constraints on
how close the true posterior probabilities () should be from the classifiers’ confidence scores S, we
build examples in which ) and S have an arbitrary link. For simplicity we consider binary examples
with a one-dimensional feature space X'. These can be extended to multiple dimensions by projecting
onto a vector w (via z — w’ z).

13
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Figure 9: Calibrated but not accurate. Example of calibrated classifiers S constructed from links
h following the procedure described in Appendix B.1. The accuracy of these two classifiers is not
optimal as () and .S are not on the same side of the decision threshold (%) wherever () # % Refer to
Figure 10 for an example with optimal accuracy. Calibration curves (in black on 2" and 4™ plot) are
obtained from 1 million samples.

The idea is to build a classifier that outputs confidence scores having at most two antecedents each.
One antecedent should have its true posterior probability ) at an arbitrary distance +A from the
associated confidence score S, while the other has a distance —A. Scores with only one antecedent
should have ( = S. This combined with an equal density weight of X onto the two antecedents
guarantees calibration: E[Q | S] = S. To maintain the classifier’s accuracy optimal, the offset A is
constrained to keep @ and .S on the same side of the decision threshold.

To achieve this, we cut the one-dimensional feature space X into three parts: R%, R* and {0}.
As a classifier, we take an even function S(X) with S~1({0}) reduced to a singleton so that each
confidence score has either two antecedents (one in R and one in R* ) or one antecedent in {0}. To
assign an equal weight to each antecedent, we choose a symmetric distribution for X, e.g a standard
normal distribution centered on 0. We build the true posterior probabilities () from deviations
h:[0,1] = [0,1] and g : [0, 1] — [0, 1] of the confidence scores S in R%. and R* :

Q: x> 150h(S(2)) + Lrcog(S(x)) + 1,-05(0) (14)
For S to be calibrated, deviations must average to identity, i.e Vs € S(R), 3 (h(s) + g(s)) = s. A
proof of this statement is given below:
Proof.
ElQ(X) | S(X)] = E[lx>o | S(X)] R(S(X)) + E[lx<o | S(X)] g(S(X)) + E[Lx=0 | S(X)] S(0)
= P(X>0[S(X)) h(S(X))+P(X <0|S(X)) g(S(X))+P(X =0[S(X)) 5(0)
=121 5(x)5(0) (R(S(X)) + g(S(X))) + Ls(x)=5(0)5(0)

h
h

since P(X > 0[S(X)) = P(X < 0}5(X)) = Fgx)250)-
Hence, S(X) calibrated < E[Q(X)|S(X)] = S(X) < L(h(S(X)) + g(S(X))) =5(X). O

From here, we choose A : [0, 1] — [0, 1] and define g : s — 2s—h(s). Note that to keep g(s) € [0, 1],
h is constrained by: Vs € S(R),2s — 1 < h(s) < 2s. At this point of the procedure, classifiers S
may not have an optimal accuracy. Figure 9 shows two examples of links A, one of which saturates
the constraint i(s) <= min(2s, 1).

To make the classifiers accurate, the deviations h(s) — s should be small enough to keep S and @) on
the same side of the decision threshold. This adds two constraints on h: Vs € S(R)N[0, /2], h(s) < 3
and Vs € S(R)N[1/2,1], h(s) > % (with the convention that a score of exactly  predicts the positive
class). Figure 10 (left) shows a classifier built following the above procedure. Figure 10 (right) shows
that we can release the constraint 1/2(h(s) + g(s)) = s if we tweak the distribution of X to adapt the
weights between the two antecedents accordingly (and take e.g g(s) = 1p(5)<s)-
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Figure 10: Calibrated and optimal accuracy. Example of calibrated classifiers S constructed
from links h following the procedure described in Appendix B.1. The accuracy of these two
classifiers is optimal as () and S are on the same side of the decision threshold (%) wherever () # %
However, confidence scores S are almost everywhere different from the true posterior probabilities
(. Calibration curves (in black on 2" and 4™ plot) are obtained from 1 million samples.

B.2 REALISTIC EXAMPLE BASED ON NEURAL NETWORK’S OUTPUT

The examples of Appendix B.1, while proving our point, are quite unusual in practice especially in
the choice of classifier S. In this section we build a more realistic example based on the output of
a neural network. We focus on a binary classification setting with a feature space X being at least
two-dimensional. The classifier is taken as a sigmoid of w? X (akin to the last layer of a neural
network predicting the confidence score of the positive class). Based on this choice of model, we
build a class of calibrated and accurate classifiers with confidence scores .S far from the true posterior
probabilities Q.

The idea is to create heterogeneity in the blind spot of calibration, i.e orthogonally to w. The
perturbations creating heterogeneity must balance each other out to keep the classifier calibrated.

To achieve this, we define:

* d > 2 the dimension of the feature space X.
* w € RY, the last layer’s weights.
* ¢ : R — [0,1] the link function mapping w” z to confidence scores, e.g a sigmoid.
¢ S:zeR— p(wlx) € [0, 1] the classifier’s confidence scores of the positive class.
e w, € R%such that wTw, = 0, the direction in which heterogeneity will be introduced.
* ¥ : R — [—1, 1] an odd perturbation introducing balanced heterogeneity along w .
* Apag @ — min(1—S(z), S(x)) modulating the range of the perturbation to keep @ € [0, 1].
¢ Q:xeRY— S(@) + Y (wlz)Anax(x) € [0,1] the constructed true posterior probabilities.
* X ~ N(0,X) the data distribution, with ¥ € R?*¢ having w and w, among its eigenvectors.
With the above construction, the classifier S is calibrated. Indeed,
E[Q(X) [ S(X)] = S(X) + E[$(w] X) Apmax (X) | S(X)] (15)
= S(X) + E[¢(wlX) | S(X)] Amax(X) (16)
since Ay,qz(X) is a function of S(X). We have E[¢(w?] X) | S(X)] = 0 by construction: ¢ is odd
and the distribution of X has a symmetric weight along w, since X is aligned on w and w, . Hence
E[Q(X)]|S(X)] = S(X). Figure 11 shows two examples generated with this procedure. However,
it is not yet accurate. As in Appendix B.1, the perturbation should be constrained to keep ) and S

on the same side of the decision threshold to keep the accuracy optimal. This is simply achieved by
defining A, : 2 — min(1-5(z), S(z), |3 — S(z)]).

C PROOFS

C.1 LEMMA 4.1: THE GROUPING LOSS AS AN H-VARIANCE
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Figure 11: Calibrated but not accurate. Example of a calibrated classifier .S constructed following
the procedure described in Appendix B.2. Its accuracy is not optimal as () and .S are not on the same
side of the decision threshold (%) wherever Q) # % Refer to Figure 12 for an example with optimal
accuracy. Calibration curves (in black on last column) are obtained from 1 million samples.
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Lemma 4.1 (The grouping loss as an h-variance). Let h : p — —s4(p, p) be the negative entropy of
the scoring rule ¢. The grouping loss GL of the classifier S with calibrated scores C = E[Q | S] and
scoring rule ¢ writes:

E[d,(C,Q)] = EM[Q] S]] (7
—_———

GL(S)

Proof of Lemma 4.1. Let ¢ be a scoring rule, h : p — —s4(p,p) and C' = E[Q | S].

Elds(C,Q)] = E[s4(C,Q) — 54(Q, Q)] Definition of divergence  (17)
=E[s4(C,Q) + h(Q)] Definition of . (18)
MK
=E Z d(C,er)Qr + h(Q)] Definition of expected score  (19)
Lk=1
K
=E|E [Z #(C,er)Qr + h(Q) SH Law of total expectation  (20)
L Lk=1
=E E[¢(C, ex)Qk | S]+E[R(Q) | S]] Linearity of expectation  (21)

QS(C er)E[Qk | S] + E[h(Q) | S]} ¢(C, er) is S-measurable  (22)

I
HMN ANERANIE

=E gb C ek Ck + E[ (Q) | S] Cr = E[Qk | S] (23)
= E[ h(C’) E[R(Q)|S5]] Definition of A (24)
= E[E[n(Q)|S] - h(E[Q]S])] C=EQ[S] (5
=EMW[Q| S]] Definition of Vj,[Q | S]  (26)

O

C.2 THEOREM 4.1: GROUPING LOSS DECOMPOSITION

Lemma C.1 (Law of total h-variance). Let X,Y, Z : Q — R® be random variables defined on the
same probability space and a function f : R% — R. The law of total variance holds for the f-variance:

VelY' | Z] = E[V¢[Y | X, Z]| Z] + f[E[Y | X, Z]| Z] @27)
Proof.
E[f(Y)] = E[E[f(Y) | X]] Law of total expectation
— EN,[Y | X]] + E[f(E[Y | X])] Definition of V;[Y' | X]

E[f(Y)] — f(E[Y]) = E[V,[Y | X]] + E[f(E[Y | X])] — f(E[E[Y | X]])  Law of total expectation
= E[V{[Y | X]] + V;[E[Y | X]] Definition of V; [E[Y" | X]]

The same proof holds when the expectations and h-variances are conditioned on Z. O

Theorem 4.1 (Grouping loss decomposition). Let R : X — N be a partition of the feature space. It
holds that:

GL(S) = EM[E[Q|S,R][ S]] + EM[Q S, R]] (8)
GLﬂpraiued (S) GLesidual ( S)
Moreover if the scoring rule is proper, then: GL(S) > GLexplginea(S) > 0. 9
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Proof of Theorem 4.1. Applying Lemma C.1 with (R, @, 5) as (X,Y, Z) gives the decomposition.
Proper scoring rules have a convex negative entropy h (see Gneiting & Raftery, 2007, th. 1). Note
that depending on the convention (maximization or minimization of scoring rules), one may find in
the litterature that the entropy is either convex or concave. In the convention taken by this article
(minimization of scoring rules), the entropy is concave and the negative entropy is convex. Using
Jensen’s inequality, we thus have V;,[Q | S, R] > 0. Hence both GL,ypiaines a0d GL esiauar are positive,
which gives GL > GLeyined- O]

C.3 PROPOSITION 4.1: BINNING-INDUCED GROUPING LOSS

Proposition 4.1 (Binning-induced grouping loss). The grouping loss of the binned classifier GL(Sg)
deviates from that of the original classifier GL(S) by an induced grouping loss GLingucea(S, SB):

EM.[Q[SB]] = EL[Q]S]] + EMWI[C[SB]] (1)
GL(SB) GL(S) GLinducea(S,SB)
Moreover, if the scoring rule is proper: GLinducea(S, Sp) > 0.

Proof of Proposition 4.1.
Vh[Q|SB] = E[WL[Q|S,SB]|Se] + VLE[Q| S, SB]|Sg] Law of total h-variance (Lemma C.1)

=EMW[Q|S]|SB] + W[E[Q| S]] SE] Sp is S-measurable
= EM,[Q[ S]] SB] + Va[C'| SB] C=EQ|S]
EVL[Q|SE]] = E[VL[Q| S]] + EWL[C | SE]] Law of total expectation
GL(SB) = GL(S) 4+ GLinducea(S, SB) Lemma 4.1 and definition of GL;,g,ceq

Remark: this proposition does not require S to be the average scores on the bins E[S | S € B;]. O

C.4 PROPOSITION 4.2: EXPLAINED GROUPING LOSS ACCOUNTING FOR BINNING

Proposition 4.2 (Explained grouping loss accounting for binning).

GL(S) - GLexplained(SB) - GLinduced(Sa SB) + GLresidual(SB) (12)
If the scoring rule is proper; then: GL(S) > GLexplainea(SB) — GLinducea(S; SB) - (13)
GLLg(S,SB)
Proof of Proposition 4.2.
GL(S) = GL(SB) — GLinducea(S; SB) Propostion 4.1

= GLexplained(SB) + GLresidual(SB) - GLinduced(87 SB) Theorem 4.1 on GL(SB)
For proper scoring rules, Theorem 4.1 gives GL¢sigua(Sp) > 0 which completes the proof. O
C.5 PROPOSITION 4.3: DEBIASED ESTIMATOR FOR THE BRIER SCORE

Proposition 4.3 (Debiased estimator for the Brier score). For all class k € {1,..., K} and bin
s €S, let n®F) (resp. n](fg’k)) be the number of samples belonging to level set R®) (resp. region

R;S) ). We define the empirical average of Y over these regions as:

c(sk) L (i) ek _ L (i)
AN D) > % and ) > Y

J iXMeR XD ER()
. . . s,k /\ (s k)
The debiased estimator of GLexpiained 1S: GLepoamed (SB) E E Levpiained(SB)
k=1s€eS
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with:
J o (s:k) I (k) f (k) (sk) A(s,k) A(s,k)
(s,k) . n; < (s,k) A(SJg)) n ,u (1 — My ) o (1 —Cc\” )

GLexplamed(SB) - Z n(s:k) (MJ ¢ Z n(s:k) (S,k?) 1 n(sk) — 1

j=1 Jj=1 7

plugin estimator @plugin bias estimation éibim

! 50 ny )

Proof. Lets € S and k € {1, K}, and define p := &7 We now compute the bias of the

k) . . .
plugin estimator for GLexplained. To ease calculatlons, we start by rewriting the plugin estimate:

J
— (s,k) ~(s, ~ (s, ~(s 2
Lyt = Y5 () — &) (28)
j=1
J 2
_ Zé;,k) <ﬂ§s,k)) _ op(s.h) Z A(s.k) -~ (s DR (é(s,k)) (29)
j=1 =1
J 2
_ Zﬁ§s,k) (ugs k)) <é(s,k)) (30)

1

<.
Il

From now on, we omit the exponent (s, k) to lighten notations. We now take the expectation of both
terms in the lower-bound.

E [¢*] = E[&” + Var(e) 31)

=2 4+ M (32)
n

where we made use of Lemma C.2 for equation 32. Similarly,

E[42 | B;] = Elit]* + Var(ji;) (33)
(1 — 11
:“§+M](nj 1) (34)

When n; = 0 (or equivalently p; = 0), which happens with probability v; = (1 — p;)", f1; as well
as the right term in equation 34 are undefined. The problem disappears when multiplying by p;, and
agreeing that fi; = 0 whenever n; = 0.

J
E (> 0| =D E[E[p;ai1p,50 | By]] (35
j=1 j=1
: i (1 = p5)
=D E [ﬁjlﬁPO (N? + Jnjﬂ (36)
i=1 /

(1 = .
=> (pju; +E [1’”ZOMD 37

(
= zJ: (pju? +(1- Vj)uj(ln_uj)) (38)
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Putting together equations 32 and 38, we get:
J

J

E | Glpugin| = Z i — ¢+ Z ) C(ln_ 2 (39)
"
2 il

J
243 (1 —pyytal=p) 1= 0) (40)
jz:; ] n n

GLexplained GLpias

In practice v;, which gives the probability that no sample falls in component j, is very close to 0
unless p; and n are very small. Hence, we will approximate v; ~ 0. More importantly, the expression
of the bias given in 40 depends on oracle quantities j; and ¢, which are unavailable. Therefore, we
resort to debiasing the plugin estimate of the lower-bound using sample estimates of the bias, which
gives:

T (k) J o (s.k) A(S k)1 — &) A(s,k) ~(s,k)
~ (s,k) - n; (s.5) sk) n; ( Hj ) &8s (1—0’ )
GLexplamed - Z n(s:k) (/J‘ ) Z n(s:k) (s.,k)
]

j=1 j=1

~1 + n(sk) — 1

plugin estimator éTJplugin
(41)
where we used a Bessel correction for the estimation of population variances. Finally, a debiased
estimator of GLypiaineq 1 Obtained by summing over the debiased estimators for all k € {1, K'} and
all s € Sy.

Lemma C.2. Define fi; (%K) and 5% as in Proposition 4.3. Then:

,U(‘S k) (1 - (.s k))
A(s.k) 1 (s,k) - (5,k) J J
E [,uj } = ; and Var( ) = R . (42)
J

Similarly,

(s,k) _ (s,k)
E [é(s’k)} =% and Var (é(s’k)) = ¢ (1 —ch)

ovewo) (43)

The labels Yk(i) are by definition drawn from a Bernoulli distribution with probability
P(Yk,(l) |IX®) = Q,(f), i.e, for each sample i, the probability of the Bernoulli changes.

This lemma shows that despite these varying Bernoulli probabilities, the empirical average of labels
Y} over a given subspace has the same expectation and variance as a binomial variable that would be
drawn with a probability equal to the expectation of (). over this subspace.

Proof of Lemma C.2. Below we write the proof for the case of ﬂ§s’k) (equation 42) as the one for
¢(=k) (equation 43) follows exactly the same lines. Let I](s) = {z C X ¢ R;s)}, be the subset of
samples such that X () belongs to bin ’Rﬁs).
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~(s 1 [\ (G i .
B[] = D B 18k = s, R(XD) = j] (44)
i e
1 I i i i .
= "5k Z E E[Yk-()|X()} \SkzsﬂQ(X()):J} (45)
" i€z )
1 PNG i .
= o5 2 Bl 8= s R(X©) =] (46)
n; )
€1,
1 k
= 24 (47)
n; ()
J zEIj
=" (48)
where we used the law of total expectation in eq 45, the definition of () in eq 46, and the definition
of ugs’k) ineq47.
var (a§P) = E[(a{ = u{"P) | 81 = 5, R(XD) = ] (49)
2 .
=E [(ﬂ§s,k)> ’Sk =5, R(XD) _]} ( § )) (50)
1 ; ; . s,
— B | 2 YO S v s s m ) =] - (W) 6
<”j ’ ) il rez{?
1 i i . . s, 2
AT S0+ 3 OV | s =5 REXD) = | = (V)
(nj& ) ieT( il
L’ ileT}”)
(52)
1 s,k (s,k (s,k
—— | X A Y (1) ) (53)
(715 )) iz il
! ilez(”
1 (5,k) (s k) (s k) (k) _ (5, k (s k) 2
= T n; +n; ( 14 ) (54)
()
(s,k) (s,k)
R U )
’ 5.k) . (55
n.
J
where we used the fact that Yk(i) and Yk(l) are independent when ¢ # [ in eq 52. O

C.6 THE PLUGIN ESTIMATOR FOR THE GROUPING LOSS LOWER BOUND IS BIASED UPWARDS.

Analytical evaluation of the sign of the bias Letk € {1,...,K} and s € S. The bias of the

plugin estimate GL (Sp) is given by (40):

explamed

J (a kY1, (s:k) s,k) (s,k)
, (o (1=p™") P = k)
bias (GLexpzamed (Sp) ) = Z (1 - ) (k) T aGR (56)
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By convexity of the function z — (z — E [2])?, we have:

J (s,k)

L n{ (s,k) i (s,k) L nf (s.k) (s0)7)2
~(s ~ (s, s ~(s,k
Z nZs k) 'u'J -E Z nis,k) /~Lj S Z ni k) (MJ -E |:'uj ]) (57)

j=1 j=1 j=1

)
Using the fact that ¢(5%) = Z =1 n'('s ) ﬂ; ®) , and taking the expectation of both sides, we get:

J (s k)
Var(&(54) Z 7 Var( (S’k)) (58)
Finally, using Lemma C.2, we get:
s,k s,k
N Y el ) .
Eny <> Eny (59)
j=1
Hence, we have:
J o (sk)q  (sk) (s:5) (1 (s, k) (s k) 1— (s,k)
: (s,k)\ _ K (1 K )_c ( —C (s,k) M ( My )
bias ([’ ) Z ) k) Z Vi (R (60)
Jj=1 Jj=1
>0
Because of the term involving VJ(»S’IC), this inequality does not prove that the bias is always positive.
(s
However in practice y}s’k) = (1 pgs k)) , which represents the probability that no point
(s,k) (s,k)

belongs to region j, is very close to 0 unless p;”" is very small or the total number of points n
is small. Hence, equality 60 shows that the bias can only be ’slightly’ negative. In the simulations
below, the upwards bias of the plugin estimate appears clearly.

C.7 ESTIMATOR FOR THE INDUCED GROUPING LOSS

Proposition C.1 (Estimator for the induced grouping loss). Let C be an estimator of C. An estimator
of Cpis Cp(s) = ﬁ DS p (X ()=s C(S(X®)) with n'®) the number of sample in the level set s.
An estimator of the grouping loss induced by the binning of S into Sp is:

— n(s) 1 R )
GLinwcea(S,55) =D —— | =5 > e(C(S(XD)) —e(C(s)) (61)
seS 1:Sp(X(M)=s

C.8 ANALYSIS OF BINNING-INDUCED ERRORS FOR THE BRIER SCORE

It is well known that binning can induce error in estimating calibration loss, leading to underestimating
it (Brocker, 2012; Kumar et al., 2019; Roelofs et al., 2022). Proposition 4.1 shows that it also leads to
errors on the grouping loss, overestimating it. Here we characterize the errors on the calibration and
grouping loss for the Brier score and show that they partly compensate each other and the error on
the sum of both can be bounded.

Proposition C.2 gives the deviation term induced by the binning for the calibration loss with the Brier
scoring rule.

Proposition C.2 (Calibration loss decomposition). Let h be the negative entropy of the Brier scoring
rule and C' = E[Q | S]. The binned calibration loss CL(Sp) deviates from the calibration loss CL(S)
by a negative induced calibration loss CLiygucea(S, SB):

E[llSs - Csl?] = E[IIS-CI*] — E[W[S~C|S5]] (62)
CL(SB) CL(S) CLinduced(S; SB)
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The calibration loss induced by the binning, CLuiuceq(S, Sp), is always negative. CL(Sp) is
thus biased downward, which is already known from Kumar et al. (2019); Roelofs et al. (2022).
Conversely, the grouping loss induced by the binning, GLjgcea(S, SB), is always positive. GL(Sg)
is thus biased upward. The mere effect of binning artificially creates grouping loss and artificially
reduces calibration error. For calibrated continuous classifiers, CL;,guceq = 0 and induced grouping
loss is small: with N equal-width bins, GLjugceq < ﬁ. If in addition the scores are uniform on
the bins: GL;uced = ﬁ (Lemma C.3). Both induced calibration and grouping losses can be
large since V[C'| Sp] can be large. High GL;uuccq €Xpresses strong miscalibrations within the bin.
However interestingly, both induced losses compensate. In a binary setting, the sum of induced
calibration and grouping losses is contained as showed by Theorem C.1, and can be bounded by
estimable quantities (Corollary C.1). While measuring CL(Sp) and GL(Sg) separately can lead
to high binning-induced bias, measuring CL(Sg) + GL(Sg) through CL(SB) + GLexpuinea(SB)
enables reducing binning-induced errors and minorizing MSE(S, Q) (Corollary C.2).

Theorem C.1 (Bounds on induced calibration and grouping losses). In a binary setting, the calibra-
tion and grouping losses induced by the binning of classifier S into Sp sums to:

CLinduced + GLinducea = E[2Cov([S, C' | Sp] — V[S | SB]]
which is bounded by:
~E[VVISTSa] (2VMCTSa] + VVISTSa]) | < Clistuces + CLiniice

< E[VVISTS5] (2VVICTS5] - VVISTS5])]
Suppose that [0, 1] is divided in N equal-width bins. Then:
~$E[VB{T = C)| ~ sk < Clinteea + Clintucea < HE[v/Co{1 — C)]
Corollary C.1.
—E[VVISTS5] (2V/Ca(1 = Cp) + VMSTSH]) | < Clintucea + CLintuea
< E{\/V[S | S5l (2\/03(1 —Cp) — VS| SB})}

With N equal-width bins:
—%E[ Cp(1— CB)} — 157 < CLinduced + GLinducea < %E{ Cp(1— CB)}

Corollary C.2. The mean square error (MSE) between continuous S and Q) is lower bounded by:
MSE(S, Q) = CL + GL

> (-ECEp + Lov, — E|VVIS[ S5l (2VVMCTS5] - VVISTSH]) |
> (*-ECEp + LL, — E{\/V[S | S5l (2\/03(1 —Cp) — VVS| SB])]

With N equal bins: > (*-ECEp + LqL,, — %E[ Cp(l— C’B)]

where (>-ECEgp is the (* Expected Calibration Error of the binned classifier Sg and Lcy,,, is the
grouping loss lower bound of Sp.

PROOFS

Proof of Proposition C.2. Let h the negative entropy of the Brier scoring rule.

IS5 — C5l* = |IE[S | SB] — E[C| Sp] |I? Sp =E[S]58],Cp = E[C] SB]
= |[E[S — C| Sg]|? Linearity of expectation
=E[||S = C|?| SB] — Wu[S — C| S5] Definition of V,[S — C'| Sp]
E[(Sp — CB)*] =E[||S — C|I?] —E[WI[S — C|S5]] Law of total expectation
O
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Lemma C.3. In a binary setting, suppose that [0, 1] is divided in N equal-width bins. Then:
VS| S5] < 13 (63)
If in addition, scores S are uniform:

VIS|SB] = 5o (64)

Proof of Lemma C.3. Without loss of generality, consider the first bin [0, %} with binned score s;.

VIS |Sp =s1] = E[S2 | Sp = 81] —E[S|SE = 31]2 Definition of the variance

< LE[S|Sp = s1] —E[S|Sp = s1]° 0<S<i=82<4isg

= nz(1 - NE[S|Sp = s1]) NE[S | S5 = s1]

< e Max when NE[S | Sp = s;] = L
For uniform scores: S|Sp = s1 ~ U([0, %]) Hence V[S | Sp = 51] = %(% —0)? = 12%\[2.

Other bins have same variance as V[S | Sp = s;] (variance is translation-invariant).
Remark: this proves that GL;,guceq < ﬁ for S calibrated (S = C = V[C'| Sg] = V|S|Sg]). O

Proof of Theorem C.1. In a binary setting for the Brier scoring rule, we have V;, = V. Hence:
CLinduced + GLinducea = —E[VR[S — C'| Sg]] + EVL[C'| SB]] Propositons 4.1 and C.2
= —E[V[S — C| Sg]] + E[V[C | SB]] V, =V
= E[2Cov[S,C | Sg] — V[S| SB]] Expansion of V[S — C'| Sg]

2Cov[S,C'| Sp] — V[S | Sp] < 24/V[S|SB]\/VIC|S5] — VIS |Sp]  Cauchy-Schwarz

2Cov([S,C'|Sg) — V[S | SB] > —2| Cov[S,C| Sg]| — V[S| SB]
> —2/V[S|Sp]/VIC|SB] — V[S|Sp] Cauchy-Schwarz

With N equal-width bins:

2Cov[S,C' | Sp] — V[S| Sp] < 24/V[S|SB]\/VI[C | SB] Positivity of the variance
< ¥ VVIC|SB] VIS|SB] < 1
S% CB(I*CB) V[C|SB]§CB(1*CB)
2Cov[S,C'| Sp] = VIS | Sp] > —xVVIC | SB] — 172 VIS |SB] < 3=
> —+1/Cp(1-Cg) — 1= VIC'|Sg] < Cp(1 —Cp)
O

C.9 EXTENSION TO CLASSWISE CALIBRATION

C.9.1 PROPER SCORING RULES DECOMPOSITION
We show below that the proper scoring rules decomposition of Kull & Flach (2015) holds for
classwise-calibration (Definition 3.2) for the Brier score and the Log-loss.

Proposition C.3 (Brier and Log-loss classwise decomposition). For the Brier score as well as the
Log-loss, the decomposition into calibration, grouping, and irreducible losses (Equation 6) holds
when replacing the calibrated scores by the classwise-calibrated scores (Definition 3.2).

Proof of Proposition C.3. Forall k € {1,...,K}, let C, = E[Y}|Sk] be the classwise-calibrated
scores (Definition 3.2).
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Brier Score Given any two probability vectors P and (), the divergence associated to the Brier
score reads:

K
d(P,Q) =Y (Px — Qx)’ (65)
k=1
Forall k € {1, . ,K}, let dy. : Py, Qk = (Pk — Qk)z.
(S, Yi) = (Sk — Yi)? (66)
= (Sk—Cr+ Cr — Qi + Q1 — Y3)? (67)
= (Sk — Ck)* + (Cr — Qk)* + (Qk — Y2)* + 2(Sk — Ci)(Cr — Q) 68)
+2(Sk — C)(Qr — Yi) +2(Cr — Qi) (Qr — Yi)
Taking the expectation on both sides conditional on X:
E [di(Sk, Ya) | X] = (Sk — Ci)* + (Ck — Qr)* +E [(Qr — Y2)* | X] 69)

+2(Sk — Cr)(Cr — Qr)

since S, and @y, are function of X, Cj; is a function of Sy, and thus of X, and E [V}, | X]| = Q.
Then taking the expectation conditional on Sk:
E [di(Sk, Vi) | Sk] = (Sk — Ci)* + E[(Cr — Qi)? | Sk] + E[(Qr — Y2)? | Sk] (70)

where we use the fact that C, is a function of S, that E [Qy, | Sk] = Cj, and the property according
to which for two random variables U and V and a function h, E[E[V | U] | h(U)] = E[V | h(T)].
Finally, taking the expectation over Sj we get:

E [di(Sk, V&) = E [(Sk — Ck)*] + E [(Cr — Qr)?] + E [(Qr — Y&)?] (71)

The desired decomposition is then obtained by summing over the K classes on both sides.

log-loss Given any two probability vectors P and @), the divergence associated to the log loss reads:

> Qr
d(P,Q) = ;Qk log (Pk) (72)
Forallk € {1,..., K}, letdy : Py, Qp s Qp log (%:)
Yi
di(Sk, Yi) = Yy log (Sk> (73)
B Yy Qk Ck
=Y} log (Qk) + Y} log (Ck) + Y% log (Sk) (74)
E[di(Sk,Yr) | X] =E l:Yk log <Yk> ‘ X] + Qp log <Qk> + Qr log <Ck> (75)
Qk Ck Sk
_ Yy Qk Cy,
E [dk(Sk,Yk) | Sk] =E|Y. log @ S| +E Qk log CTC Si| + Cy, log ka (76)
= E[dk(Qk, Yk) | Sk} + E[dk(Ck, Qx) | Sk} + di(Sk, C) (a7

where we have used the same properties as those described for the proof of the Brier score classwise
decomposition above. The desired decomposition is then obtained by taking the expectation over S,
and summing over the K classes.

O

The proper scoring rule decomposition holds for top-label calibration. Unlike classwise cal-
ibration, top-label calibration does not define a vector C' € RE of calibrated probabilities. Instead,
it defines a notion of calibration for a simpler binary problem in which labels indicate whether
the classifier predicts the correct class for a given X. More precisely, the labels for this binary
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problem are given by Y := ly—c_ ... - Since S is a function of X, the random variable Y is a
function of Y and X . Define now the scores associated to this binary problem as S’ := max(.S) € R.
Reformulated in terms of these notations, top-label calibration states that S” is well calibrated if for
all s, P(Y' = 1|8’ = s) = s. Thus, as for a classical binary problem, we can define C’ := E[Y”|5]
and Q' = E[Y’|X]. C’ (resp Q') gives the probability that the classifier predicts the correct class for
a given score S’ (resp. a given input X). As the quantities S’, C’, Q' and Y define a classical binary
problem, the decomposition (6) into calibration, grouping, and irreducible loss holds for this problem.
Compared to the classwise definition of calibration and grouping, here the calibration loss measures
whether on average over all points scored S across all classes, the proportion of correctly predicted
points in actually S. In this setting, the grouping loss also measures to what extent there exist
over-confident scores for certain classes that compensate under-confident scores for other classes.

C.9.2 RESULTS HOLD FOR BRIER AND LOG-LOSS IN CLASSWISE SETTING

Appendix C.9.1 proves the scoring rule decomposition (6) in a classwise setting for Brier and Log-loss
scoring rules, which is necessary for the other results to hold. However, the proof of Lemma 4.1
does not readily apply to classwise calibration. Equation 22 uses a conditioning on the full vector
of joint confiences S to move ¢(C, ex) outside of the conditional expectation on S and turn Q)
into C; in expectation. In classwise calibration the conditioning is on each marginal S}, instead of
the joint S. As a result, in the general case, ¢(C, e) cannot be moved outside of the conditional
expectation given Sy, since C' depends on all marginals of C, not just Cx. However for some scoring
rules, ¢(p, ex,) depends only on py, and the proof can be adapted. This is the case of the Log-loss for
which ¢**(p, ) = —log(py).

Lemma C.4 (Adaptation of Lemma 4.1 for classwise calibration). Suppose there exists g : R — R
such that for all k in {1,... , K} and x in RE, ¢(x,ey) = g(xy). Define hy, : p — —d(p, ex)pr, the
k™ component of the negative entropy of the scoring rule ¢. The grouping loss GL of the classifier S
with calibrated scores Cy, = E[Qy, | Si] and scoring rule ¢ writes:

E[dg(C, Q)] = 32y EVae [Qr | S]] (78)
—_———
GL(S)
Proof of Lemma C.4. Define the vector C' with C, = E[Qy | Sg] for all k in {1,...,K}. Let ¢

be a scoring rule, h : p — —s4(p,p). Suppose for all kin {1,..., K}, ¢(x,ex) = g(zx) with
g:RX — R. Then:

Eldy(C, Q)] = E[s4(C, Q) — 54(Q, Q)] Definition of d,  (79)
=E [Zszl #(C,er)Qr + Zszl o(Q, ek)Qk} Definition of s;  (80)
= S E[0(C, er)Qk — H(Q, €1) Q] Linearity of expectation  (81)
= S E[g(Cr)Qk — 9(Qr) Q4] Hypothesis on ¢ (82)
= Zszl E[E[g(Cr)Qk | Sk] — E[g(Qk)Qk | S]] Law of total expectation  (83)
= Zszl Elg(Cr)E[Qw | Sk] — E[9(Q#)Qx | Sk]] C}, is a function of S;;  (84)
= Y211 Elg(Ch)Cx — Elg(Qu)Qx | Si]] Definition of Cj ~ (85)
= EVa [Qk | S]] Definition of Vi, (86)

O

Theorem C.2 (Results in classwise setting). Suppose Equation 78 is satisfied for the scoring rule ¢.
Forallk € {1,...,K}, let Ry, : X — N be a partition of the feature space. It holds that:

GL(S) = Y5 EVi, [E[Qn | Sky Ri] | Skl] + S pe ) ENVay [Qk | Sk Ril]] (87)

GLexpiained (S) GLesidual (S)
Y hey EN @k [S5,]] = iy BV, @k | Skl] + Xiy EVi, [Ci | S, ] (88)
GL(Sp) GL(S) GLinduced(S,SB)
GL(S) = GLexpiained(SB) — GLinducea(S; SB) + GLresiauar(SB) (89)
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Moreover, if hy, is convex, then:

GL(S) > GLexptainea(S) > 0 (90)

GLinduced(S, SB) > 0 1)

GL(S) > GLexplained(SB) — GLinducea(S; SB) (92)
GLLB(S,SB)

Proof of Theorem C.2. Applying the law of total variance (Lemma C.1) on each of the Vj,, [Qy | Sk]
with Ry, as conditioning variable proves Equation 87. Similarly, applying the law of total variance
on each of the V;,, [Qk | Sp, ] with Sj as conditioning variable proves Equation 88. The proof for
Equation 89 is the same as Proposition 4.2.

Using Jensen’s inequality, if Ay, is convex, then Vj,, > 0, which proves Equation 90, 91 and 92. [

For the Log-loss scoring rule, we have ¢%(p,ex) = —log(py) and hy(p) = log(pk)pr Wich is
convex. Thus, Theorem C.2 holds for the Log-loss. Unfortunately the Brier score does not satisfy the
assumptions of Lemma C.4 since ¢ (p, e;,) is not a function of py,. But a forumlation similar to
Equation 78 holds for the Brier score:

Eldszs(C,Q)] = E[s¢Bs C,Q) — s455(Q, Q)] Definition of dzs (93)
=E[(C-Q) - (C—-Q)] Definition of s,5s (94)
=E[(C-C-20-Q+Q-Q)] 95)
=E[(Q-Q@-C- C)] ElC-Q]=C-C (96)
=y, E[(Q7 —C})] Linearity of expectation 97)
= ZkK LE[(E [Q2 | Sk] — CP)] Law of total expectation (98)
= Zkl,(zl E[VIQk | Sk]] Definition of the variance (99)

with: (100)
E[C- Q] = Y1, E[ChQu] (101)
= Zszl E[E[CkQk | Sk]] Law of total expectation (102)

= K E[CLE[Qk | Sk]] C}, is a function of Sy, (103)
=Y E[CE] Definition of C, (104)

=E[C - C] (105)

Since V = Vy with f : z — x? Equation 78 is satisfied for the Brier score. Since f is convex,
Theorem C.2 holds for the Brier score.

To conclude, Theorem C.2 holds for the Brier score and the Log-loss in a classwise setting. It is likely
that some other proper scoring rules satisfy Equation 78 and Theorem C.2.
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D IMAGENET

ImageNet-1K (ILSVRC2012) (Deng et al., 2009) is a classification dataset for computer vision with
1000 classes. Networks studied in this article are pre-trained on the training set of ImageNet-1K,
comprising 1.2 million samples. Models’ architectures and weights are available on PyTorch v0.12
(Paszke et al., 2019). We evaluated the networks on ImageNet variants’ ImageNet-R and ImageNet-C
(Appendix D.1, D.2) as well as the validation set of ImageNet-1K (Appendix D.3).

For each of ImageNet-R, ImageNet-C and the validation set of ImageNet, we plot the grouping
diagrams of each network with and without post-hoc recalibration, obtained with a balanced decision
stump. For each network, if several versions are available, we study both the smallest and the best
performing one on the validation set of ImageNet-1K (usually the largest version). For ImageNet-R
we also provide the grouping diagrams obtained with a 2-cluster k-means.

Each experiment is detailed in Appendix D.1, D.2 and D.3.

Detailed experimental method First, we forward each sample of the evaluation dataset (ImageNet-
R, ImageNet-C or the validation set of ImageNet-1K) through the studied network. We build
confidence scores by applying a softmax to the output logits. We extract a representation of the
input images in the high-level feature space of the network (i.e the input space of the last linear
layer). Since there is not enough samples per class (50), we restrict our study to the top-label problem
(Definition 3.3). For each sample, the class with the highest confidence is predicted. The label is 1 if
the network predicted a correct class (0 otherwise) and the associated confidence score is the one of
the predicted class. We divide the samples of the evaluation set in half making sure that the confidence
score distribution is the same in both resulting subsets. On one set, we train the isotonic regression
for calibration and calibrate the confidence scores of both sets. If no post-hoc recalibration is used,
we skip this step. Then, we create groups of same-level confidences by binning the confidence scores
with 15 equal-width bins in [0, 1]. We partition each of the 15 level sets independently. For each
of them, we create the partition by training the partitioning method on the training samples of the
isotonic regression. We then evaluate region scores on the remaining samples to avoid overfitting.
For the grouping diagrams, we mainly use a balanced decision stump with 2 clusters (e.g using
scikit-learn’s DecisionTreeRegressor withmin_samples_1leaf taken as half the samples
in the bin), resulting in one split along one of the axis of the high-level feature space. For comparison,
we also used k-means with 2 clusters. Constraining the partitioning methods to 2 regions is a choice to

provide visually informative grouping diagrams rather than to maximize the lower bound @explai,,ed.
When optimizing the lower bound, (Figure 7 and Figure 14), we increase the number of allowed
regions in the partition by setting a region ratio: the number of training samples in the bin over the
number of allowed regions in the bin. Fixing a region ratio prevents from having regions with too few
samples. In our experiments, we fix the region ratio to 30.

D.1 IMAGENET-R

ImageNet-R (Hendrycks et al., 2021) is a variant of ImageNet containing renditions of the ImageNet
classes. Example of renditions are: paintings, toys, tattoos and origami. There are 15 rendition types
in total listed in Figure 13. The dataset contains 30 000 images and is limited to 200 of the 1 000
ImageNet classes. Figure 14a. compares estimated grouping loss lower bound and calibration errors
of all networks (small and best versions) on ImageNet-R. Overall, we observe a strong grouping loss
in most of the networks, especially those with highest accuracy. The estimated debiased lower bound
remains high after post-hoc recalibration. Grouping diagrams of all networks are available at:

 Section D.1.1: ImageNet-R — No post-hoc recalibration, small versions.

* Section D.1.2: ImageNet-R — No post-hoc recalibration, small versions, k-means.
* Section D.1.3: ImageNet-R — No post-hoc recalibration, best versions.

¢ Section D.1.4: ImageNet-R — Isotonic calibration, small versions.

 Section D.1.5: ImageNet-R — Isotonic calibration, best versions.

We also investigate whether there is heterogeneity among renditions. In Figure 13 we observe that
some renditions are better predicted than average (e.g deviant art, sketch or art) while some others are

29



Preprint

predicted worse than average (e.g embroidery, cartoon, tattoo). These considerations would be useful
in a fairness setting. Also, Figure 13 highlights that if we could build regions out of renditions (i.e
renditions are well separated in the feature space), this would result in a high grouping loss lower
bound.

D.2 IMAGENET-C

ImageNet-C is a variant of ImageNet containing corrupted versions of ImageNet images. Examples
of corruptions are: blur, noise, saturate, contrast, brightness and compression. There are 19 corruption
types in total. Each corruption has a severity ranging from 1 to 5. The dataset contains the 50 000
images of the validation set of ImageNet, each of them being applied 19 corruptions with 5 severity
levels each. We built a merged version of ImageNet-C by randomly sampling one corruption for each
image. We also study one corruption only (snow). For both the merged version and the snow version,
we study the maximum severity of the corruption (5). Figure 14b. and c. compare estimated grouping
loss lower bound and calibration errors of all networks (small and best versions) on ImageNet-C
merged and snow. Overall, we observe similar effect than on ImageNet-R. However, when all samples
have the same corruption (snow), we exhibit more grouping loss among the networks than when
the 19 corruptions are randomly applied on the dataset (merged) (Figure 14c.). An intuition is that
heterogeneity created by one corruption is canceled out by another one having heterogeneity in the
opposite direction, leading to region scores closer to the average. Grouping diagrams of all networks
are available at:

 Section D.2.1: ImageNet-C — No post-hoc recalibration, small versions.
* Section D.2.2: ImageNet-C — No post-hoc recalibration, best versions.
 Section D.2.3: ImageNet-C — Isotonic calibration, small versions.

* Section D.2.4: ImageNet-C — Isotonic calibration, best versions.

D.3 IMAGENET-1K VALIDATION SET

The validation set of ImageNet-1K comprises 50 000 samples for 1 000 classes. Figure 14d. compares
estimated grouping loss lower bound and calibration errors of all networks (small and best versions)
on the validation set of ImageNet-1K. Conversely to ImageNet-R and ImageNet-C, we cannot exhibit
substantial grouping loss on any of the networks. The grouping diagrams (Figure 24) show however
that ConvNeXt Tiny displays more heterogeneity than the other networks on this dataset. Grouping
diagrams are available in:

* Section D.3.1: ImageNet-1K — No post-hoc recalibration, small versions.
 Section D.3.2: ImageNet-1K — No post-hoc recalibration, best versions.

* Section D.3.3: ImageNet-1K — Isotonic recalibration, small versions.

* Section D.3.4: ImageNet-1K — Isotonic recalibration, best versions.
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a. ImageNet-R b. ImageNet-C (merged)
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Figure 14: Comparing vision models: a debiased estimate of the grouping loss lower bound GLrp
(Equation 13) and an estimate of the calibration loss CL, both accounting for binning, evaluated on
ImageNet-R, ImageNet-C and ImageNet-1K, sorted by model accuracy. Partitions R are obtained
from a decision tree partitioning constrained to create at most #samples in bin/30 regions in each bin.
Isotonic regression is used for post-hoc recalibration of the models (right).

31



Preprint

E NLP

We use BART Large (Lewis et al., 2019) pre-trained on the Multi-Genre Natural Language Inference
dataset (Williams et al., 2018) and fine-tuned on the Yahoo Answers Topics dataset for zero-shot topic
classification. The fine-tuned model is available on HuggingFace at https://huggingface.
co/joeddav/bart-large-mnli-yahoo-answers. Yahoo Answers Topics is composed
of question titles and bodies and topic labels. There are 1400000 training samples, 60 000 test
samples and 10 topics. The dataset is available at https://huggingface.co/datasets/
yvahoo_answers_topics. The model is fine-tuned on 5 out of the 10 topics of the training set,
totalizing 700 000 samples. Given a question title and a hypothesis (e.g “This text is about Science &
Mathematics”), the model outputs its confidence in the hypothesis to be true for the given question.
The classification being zero-shot, the hypothesis can be about an unseen topic. We evaluate the
model separately on the 5 unseen topics and the 5 seen topics of the test set (i.e seen topics but unseen
samples). This results in a binary classification task in which each sample is composed of a question
title and a hypothesis and each label is 1 or O whether the hypothesis is correct or not. As for the
clustering and calibration procedure, we used a balanced decision stump in the same way as described
in Section D: “Detailed experimental method”.
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D.1.1 IMAGENET-R — NO POST-HOC RECALIBRATION, SMALL VERSIONS
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Figure 15: Vision: Fraction of correct predictions versus confidence score of predicted class
(maxy, Sy) on ImageNet-R for small versions of pretrained networks, without post-hoc recalibration.
In each bin on confidence scores, the level set is partitioned into 2 regions with a decision stump
constrained to one balanced split, with a 50-50 train-test split strategy.
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D.1.2 IMAGENET-R — NO POST-HOC RECALIBRATION, SMALL VERSIONS, K-MEANS
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Figure 16: Vision: Fraction of correct predictions versus confidence score of predicted class
(maxy, Sy) on ImageNet-R for small versions of pretrained networks, without post-hoc recalibration.
In each bin on confidence scores, the level set is partitioned into 2 regions with a k-means clustering,
with a 50-50 train-test split strategy (for a fair comparison with decision stump clustering).
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D.1.3 IMAGENET-R — NO POST-HOC RECALIBRATION, BEST VERSIONS
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Figure 17: Vision: Fraction of correct predictions versus confidence score of predicted class
(maxy, Si) on ImageNet-R for best versions of pretrained networks, without post-hoc recalibra-
tion. In each bin on confidence scores, the level set is partitioned into 2 regions with a decision stump
constrained to one balanced split, with a 50-50 train-test split strategy.
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D.1.4 IMAGENET-R — ISOTONIC CALIBRATION, SMALL VERSIONS
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Figure 18: Vision: Fraction of correct predictions versus confidence score of predicted class
(maxy, Si) on ImageNet-R for small versions of pretrained networks, with isotonic calibration.
In each bin on confidence scores, the level set is partitioned into 2 regions with a decision stump
constrained to one balanced split, with a 50-50 train-test split strategy.
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D.1.5 IMAGENET-R — ISOTONIC CALIBRATION, BEST VERSIONS
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Figure 19: Vision: Fraction of correct predictions versus confidence score of predicted class
(maxy, Si) on ImageNet-R for best versions of pretrained networks, with isotonic calibration. In each
bin on confidence scores, the level set is partitioned into 2 regions with a decision stump constrained
to one balanced split, with a 50-50 train-test split strategy.
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D.2.1 IMAGENET-C — NO POST-HOC RECALIBRATION, SMALL VERSIONS
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Figure 20: Vision: Fraction of correct predictions versus confidence score of predicted class
(maxy, Sy) on ImageNet-C for small versions of pretrained networks, without post-hoc recalibration.
In each bin on confidence scores, the level set is partitioned into 2 regions with a decision stump
constrained to one balanced split, with a 50-50 train-test split strategy.

38



Preprint

D.2.2 IMAGENET-C — NO POST-HOC RECALIBRATION, BEST VERSIONS
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Figure 21: Vision: Fraction of correct predictions versus confidence score of predicted class
(maxy, Si) on ImageNet-C for best versions of pretrained networks, without post-hoc recalibra-
tion. In each bin on confidence scores, the level set is partitioned into 2 regions with a decision stump
constrained to one balanced split, with a 50-50 train-test split strategy.
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Figure 22: Vision: Fraction of correct predictions versus confidence score of predicted class
(maxy, Si) on ImageNet-C for small versions of pretrained networks, with isotonic calibration.
In each bin on confidence scores, the level set is partitioned into 2 regions with a decision stump
constrained to one balanced split, with a 50-50 train-test split strategy.
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Figure 23: Vision: Fraction of correct predictions versus confidence score of predicted class
(maxy, Si) on ImageNet-C for best versions of pretrained networks, with isotonic calibration. In each
bin on confidence scores, the level set is partitioned into 2 regions with a decision stump constrained
to one balanced split, with a 50-50 train-test split strategy.
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Figure 24: Vision: Fraction of correct predictions versus confidence score of predicted class
(maxyg, Si) on ImageNet-1K (validation set) for small versions of pretrained networks, without
post-hoc recalibration. In each bin on confidence scores, the level set is partitioned into 2 regions
with a decision stump constrained to one balanced split, with a 50-50 train-test split strategy.

42



Preprint

D.3.2 IMAGENET-1K — NO POST-HOC RECALIBRATION, BEST VERSIONS

VGG 19 BN . ResNet 152 DenseNet 161 g ShuffleNet V2 Xl.Oﬂ
Sizes ,‘ Sizes
111 d i 15
1 @ 3000 - ;‘,o" @ 3000

@ 5817 | ®5868

4
ot
4
o
70

Aﬂ
o Correct predictions X 8

0  Confidence score 1 0 Confidencescore 1 0  Confidence score 1 0 Confidence score 1

MobileNet V3 Large ResNext 101 WideResNet 101 MNASNet 1.0
1 , A Sizes , f—'
4 1 Joilo 2
1 / © 3000 gy
.,5

| ®@5817 ,

S

o A_.
o Correct predictions 3 8

* * T * T * — T — T
0 Confidencescore 1 0 Confidencescore 1 0 Confidencescore 1 0  Confidence score 1

EfficientNet B7 RegNet y_32gf ViT L-16 ConvNeXt Large
]

.

A_
o Correct predictions X 8

0  Confidence score 1 0 Confidencescore 1 0  Confidence score 1 0 Confidence score 1

Figure 25: Vision: Fraction of correct predictions versus confidence score of predicted class
(maxy, Sy) on ImageNet-1K (validation set) for best versions of pretrained networks, without post-hoc
recalibration. In each bin on confidence scores, the level set is partitioned into 2 regions with a
decision stump constrained to one balanced split, with a 50-50 train-test split strategy.
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Figure 26: Vision: Fraction of correct predictions versus confidence score of predicted class
(maxy, Sy) on ImageNet-1K (validation set) for small versions of pretrained networks, with iso-
tonic calibration. In each bin on confidence scores, the level set is partitioned into 2 regions with a
decision stump constrained to one balanced split, with a 50-50 train-test split strategy.
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Figure 27: Vision: Fraction of correct predictions versus confidence score of predicted class
(maxy Si) on ImageNet-1K (validation set) for best versions of pretrained networks, with iso-
tonic calibration. In each bin on confidence scores, the level set is partitioned into 2 regions with a
decision stump constrained to one balanced split, with a 50-50 train-test split strategy.
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