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Introduction

The study of random walks on groups has a long history and multiple connections to almost all areas of mathematics. It is therefore natural that from the early days of the theory of topological quantum groups, random walks on them were considered. The point of view was often that of discrete groups (the problem is interesting even for duals of classical compact Lie groups). In particular, the study of probabilistic boundaries has been the subject of several works and is still an active area of research. However, there is an aspect which has attracted no attention up to very recently, even though it is an important part of the subject for classical groups : the search for explicit estimates of convergence of random walks.

In the case of classical nite groups, the rst important results for us are due to P. Diaconis and his coauthors in the eighties and reveal a surprising behaviour called the cut-o phenomenon : for a number of steps, the total variation distance (see Subsection 2.2 for the denition) between the random walk and the uniform distribution stays close to one and then it suddenly drops and converges exponentially to zero. This triggered numerous works yielding more and more examples of cut-o in various settings, but also counterexamples so that the question of why and when this happens stays largely unanswered. In the quantum setting, the only results up to now are contained in the recent thesis of J.P. McCarthy [START_REF] Mccarthy | Random walks on nite quantum groups : Diaconis-Shahshahani theory for quantum groups[END_REF] which studies convergence of random walks on nite quantum groups. There, the author gives explicit bounds for families of random walks on the Kac-Paljutkin and Sekine quantum groups, as well as on duals of symmetric groups. Unfortunately, the estimates are not tight enough to yield a cut-o statement for these examples.

In the present work, we turn to the case of innite compact quantum groups. In particular, we will show that a specic random walk on the free orthogonal quantum groups O + N , coming from random rotations on SO(N ), has a cut-o with the same threshold as in the classical case, namely N ln(N )/2(1 -cos(θ)). This is the rst complete cut-o result for a compact quantum group and the statement is all the more surprising that the computations involve mainly representation theory, which is very dierent for SO(N ) and O + N . Moreover, the representation theory of O + N being in a sense simpler than that of SO(N ) we are able to give very precise statements for the bounds (not only up to some order) and the conditions under which they hold.

Using techniques from [START_REF] Hough | Cut-o phenomenon in the uniform plane Kac walk[END_REF], we can extend our result to random mixtures of rotations provided that the support of the measure governing the random choice of angle is bounded away from 0. We also consider other examples involving the free symmetric quantum groups S + N . In that case, the previous techniques often prove useless. One way round the problem is to compare the corresponding transition operators, which are always welldened. There are then several options for the choice of a norm and we give results for one of the simplest choices, namely the norm as operators on the L 2 space.

Let us conclude this introduction with an overview of the organization of this work. In Section 2 we give some preliminaries concerning compact quantum groups and random walks on them. We have tried to remain as elementary as possible so that the paper could be readable for people outside the eld of quantum groups. In Section 3 we study central random walks associated to pure states on free orthogonal quantum groups and prove a kind of cut-o phenomenon in Theorem 3.7 : for a number of steps, the walk is not comparable in total variation distance with the Haar measure and as soon as it is, it converges exponentially to it. Using this, we show in Theorem 3.12 that the uniform plane Kac walk on O + N has a cut-o with the same threshold as in the classical case. Eventually, we give in Section 4 other examples connected to free symmetric quantum groups and illustrate the analytical issue mentioned above.

Acknowledgment. The author is grateful to Cyril Houdayer and Maxime Février for discussions connected to the present work, as well as to the referees for their remarks and comments.

Preliminaries

In this section we recall the basic notions concerning compact quantum groups and random walks on them. Since the abstract setting is not really needed to perform concrete computations, we will mainly set notations and give some fundamental results.

2.1. Compact quantum groups. Compact quantum groups are objects of noncommutative topological nature and therefore belong to the world of operator algebras. However, in the present work most things can be treated at an algebraic level which is slightly simpler to describe. We will therefore rst give the main denitions in the setting of Hopf algebras and then briey introduce in the end of this subsection the related analytical objects. We refer the reader to Parts I and II of [START_REF] Timmermann | An invitation to quantum groups and duality[END_REF] for a detailed treatment of the algebraic theory of compact quantum groups and its link to the operator algebraic theory.

The basic example to keep in mind is that of a classical compact group G. In that case, the corresponding algebraic object is the complex algebra O(G) of regular functions, i.e. coecients of unitary representations. This is a Hopf algebra with an involution given by f * (g) = f (g). The Hopf algebra structure means that we have :

• An involutive algebra homomorphism

∆ : O(G) → O(G) ⊗ O(G) = O(G × G)
sending a function f to (g, h) → f (gh) called the coproduct,

• An involutive anti-multiplicative map S : O(G) → O(G) sending a function f to g → f (g -1 ) called the antipode,

• An involutive algebra homomorphism ε : O(G) → C sending a function f to f (e),
where e is the neutral element of G, called the counit.

Moreover, the Haar measure on G yields by integration a linear form h on O(G) which is positive (h(f * f ) 0 for all f ) and invariant under translation. Abstracting these properties leads to the following notion (with ⊗ denoting the algebraic tensor product over C) : Denition 2.1. A compact quantum group G is given by a Hopf algebra O(G) (i.e. an algebra with a coproduct ∆, an antipode S and a counit ε satisfying relations similar to those which hold in O(G)) with an involution and a unital positive linear map h : O(G) → C which is invariant in the sense that for all a ∈ O(G),

(h ⊗ id) • ∆(a) = h(a).1 = (id ⊗h) • ∆(a), where ∆ : O(G) → O(G) ⊗ O(G) is the coproduct.
In the present work we will always assume that G is of Kac type, meaning that for all a, b ∈ O(G) h(ab) = h(ba) (the Haar state is then said to be tracial). Since the fundamental work of P. Diaconis and M. Shahshahani [START_REF] Diaconis | Generating a random permutation with random transpositions[END_REF], it is known that convergence of random walks can be controlled using representation theory and we will see that the same is true in the quantum setting. As for classical compact groups, the results of [START_REF] Woronowicz | Compact matrix pseudogroups[END_REF] imply that any representation of a compact quantum group is equivalent to a direct sum of nite-dimensional unitary ones, so that we will only dene the latter.

Denition 2.2. A unitary representation of dimension

n of G is a unitary element u ∈ M n (O(G)) such that for all 1 i, j n, ∆(u ij ) = n k=1 u ik ⊗ u kj .
A morphism between representations u and v of dimension n and m respectively is a

linear map T : C n → C m such that (T ⊗ id)u = v(T ⊗ id).
Two representations are said to be equivalent if there is a bijective morphism between them. A representation u is said to be irreducible if the only morphisms between u and itself are the scalar multiples of the identity.

We will denote by Irr(G) the set of equivalence classes of irreducible representations of G and for each α ∈ Irr(G) we x a representative u α and denote by d α its dimension (which does not depend on the chosen representative). It then follows that O(G) is spanned by the coecients u α ij of all the u α 's. Moreover, the Haar state induces an inner product on O(G) for which the basis of coecients is orthogonal. More precisely, it was proven in [START_REF] Woronowicz | Compact matrix pseudogroups[END_REF] that for any α, β ∈ Irr(G) and

1 i, j d α , 1 k, l d β , h(u α ij u β * kl ) = δ α,β δ i,k δ j,l d α .
The key objects for computations with random walks are characters of irreducible representations. Let us therefore dene these :

Denition 2.3. The character of a representation u α of a compact quantum group G is dened as

χ α = dα i=1 u α ii ∈ O(G).
Moreover, it only depends on α and not on the chosen representative.

We conclude this subsection with some analysis. As already mentioned, the bilinear map (a, b) → h(b * a) denes an inner product on O(G) and the corresponding completion is a Hilbert space denoted by L 2 (G). For any element of O(G), left multiplication extends to a bounded operator on L 2 (G), yielding an injective * -homomorphism O(G) → B(L 2 (G)). The closure of the image of this map with respect to the weak operator topology is a von Neumann algebra denoted by L ∞ (G). We will also need the analogue of L 1 functions. For a ∈ L ∞ (G), set a 1 = h(|a|) where |a| = √ a * a is dened through functional calculus. Then, L 1 (G) is dened to be the completion of L ∞ (G) with respect to this norm. 2.2. Random walks and central states. We will now introduce some material concerning random walks on compact quantum groups and the total variation distance. For nite quantum groups the subject has been treated in great detail by J.P. MacCarthy in [START_REF] Mccarthy | Random walks on nite quantum groups : Diaconis-Shahshahani theory for quantum groups[END_REF]. The generalization to the compact case is not dicult so that this subsection will be rather expository. If G is a compact group and µ is a measure on G, the associated random walk consists in picking elements of G at random according to µ and then multiplying them. The probability of being in some measurable set after k steps is then given by the k-th convolution power µ * k of µ, which can be expressed at the level of functions as

G f (g)dµ * k (g) = G k f (g k • • • g 1 )dµ(g 1 ) • • • dµ(g k ).
Studying the random walk associated to µ is therefore the same as studying the sequence of measures (µ * k ) k∈N .

Turning to quantum groups, rst note that measures yield through integration linear forms on O(G). If the measure is moreover positive, then so is the linear form and if its total mass is 1 then the linear form sends the unit of O(G) to 1. Thus, probability measures yield states in the following sense : Denition 2.4. A state on an involutive unital algebra A is a linear form ϕ : A → C such that ϕ(1) = 1 and ϕ(a * a) 0 for all a ∈ A.

A random walk on a compact quantum group G is therefore given by a state ϕ on O(G). The denition of convolution translates straightforwardly to this setting and one can for instance dene ϕ * k by induction through the formula

ϕ * (k+1) = (ϕ ⊗ ϕ * k ) • ∆ = (ϕ * k ⊗ ϕ) • ∆.
The key tool to estimate the rate of convergence of a random walk is a fundamental result of P. Diaconis and M. Sahshahani [START_REF] Diaconis | Generating a random permutation with random transpositions[END_REF] bounding the total variation distance of the dierence between a measure and the uniform one. Classically, if µ and ν are any two Borel probability measures on G, then

µ -ν T V = sup E |µ(E) -ν(E)|
where the supremum is over all Borel subsets E ⊂ G. This denition can be extended to quantum groups thanks to the fact that Borel subsets correspond to projections in the associated von Neumann algebra. This however requires that the states extend to L ∞ (G), which may not be the case (see for instance Lemma 3.6).

Denition 2.5. The total variation distance between two states ϕ and ψ on L ∞ (G) is dened by

ϕ -ψ T V = sup p∈P(L ∞ (G)) |ϕ(p) -ψ(p)|,
where

P(L ∞ (G)) = {p ∈ L ∞ (G) | p 2 = p = p * }.
Assume now that we consider a state ϕ which is absolutely continuous with respect to the Haar state h, in the sense that there exists an element a ϕ ∈ L 1 (G) such that ϕ(x) = h(a ϕ x) for all x ∈ O(G). Then, the total variation distance can be expressed in terms of a ϕ . This is a general fact about tracial von Neumann algebras, thus we state it in full generality.

Lemma 2.6. Let M be a nite von Neumann algebra with trace τ and let ϕ be a state on M with an L 1 -density a ϕ ∈ L 1 (M ) with respect to τ . Then,

sup p∈P(M ) ϕ(p) -τ (p) = 1 2 a ϕ -1 1 .
Proof. Let 1 R + be the indicator function of the positive real numbers and dene the projection p + = 1 R + (a ϕ -1) through functional calculus. We claim that the supremum in Denition 2.5 is attained at p + . Indeed, for any projection q ∈ P(M ), setting b ϕ = a ϕ -1 we have

|ϕ(q) -τ (q)| = |τ (b ϕ p + q) + τ (b ϕ (1 -p + )q)| max(τ (b ϕ p + q), τ (b ϕ (p + -1)q))
and observing that p + commutes with b ϕ we get

|ϕ(q) -τ (q)| max(τ (b ϕ p + qp + ), τ (b ϕ (p + -1)q(p + -1))) max(τ (b ϕ p + ), τ (b ϕ (p + -1))).
We conclude using the fact that τ

(b ϕ ) = (ϕ -τ )(1) = 0, so that τ (b ϕ (p + -1)) = τ (b ϕ p + ). Now since |b ϕ | = |b ϕ |p + + |b ϕ |(1 -p + ) = 2b ϕ p + -b ϕ we get a ϕ -1 1 = τ (|b ϕ |) = 2τ (b ϕ p + ) -τ (b ϕ ) = 2(ϕ -τ )(p + ) = 2 ϕ -τ T V .
This equality, which links the total variation distance with the dual norm, is the trick leading to the Diaconis-Shahshahani upper bound lemma which, in the end, does not involve a ϕ any more. To state this result, let us rst introduce a notation : if ϕ is a state and α ∈ Irr(G), we denote by ϕ(α) the matrix with coecients ϕ(u α ij ). We can then consider ϕ as an element of the ∞ -sum of the matrix algebras B(H α ), denoted by ∞ ( G).

Lemma 2.7 (Upper bound lemma). Let G be a compact quantum group and let ϕ be a state on G which is absolutely continuous with respect to the Haar state. Then,

ϕ * k -h 2 T V 1 4 α∈Irr(G)\{1 G } d α Tr ϕ(α) * k ϕ(α) k , where 1 G = 1 ∈ M 1 (O(G)) denotes the trivial representation.
Proof. The proof for compact groups (assuming that the measure is central) was given in [START_REF] Rosenthal | Random rotations : characters and random walks on SO(n)[END_REF]Lem 4.3] and the proof for nite quantum groups was given in [START_REF] Mccarthy | Random walks on nite quantum groups : Diaconis-Shahshahani theory for quantum groups[END_REF]Lem 5.3.8]. The argument here is the same so that we simply sketch it. The Cauchy-Schwarz inequality yields

a ϕ -1 2 1 = h(|a ϕ -1|) 2 h(1 * 1)h ((a ϕ -1) * (a ϕ -1)) 2 = a ϕ -1 2 2
Moreover, the formula

h(x) = α∈Irr(G) d α Tr(x)
denes a positive weight on ∞ ( G). This is the analogue of the counting measure on a discrete group and one can dene a Fourier transform

F : L 2 (G) → 2 (G) (see for instance [11, Sec 2]
) which is isometric. The conclusion now follows from the fact that the Fourier transform of a ϕ is ϕ and the relationship between convolution and Fourier transform.

Remark 2.8. Because of the Cauchy-Schwarz inequality, L 2 (G) ⊂ L 1 (G) so that if ϕ is not absolutely continuous with respect to h, then the right-hand side of the inequality is innite and the inequality trivially holds.

Our goal is therefore to bound d α Tr(ϕ(α) * k ϕ(α) k ) by an explicit function of k. This requires the computation of the trace of arbitrary powers of matrices which can be very complicated. As already observed in [START_REF] Rosenthal | Random rotations : characters and random walks on SO(n)[END_REF], things get more tractable when the measure is assumed to be central, i.e. invariant under the adjoint action, since then the Fourier transform of its density consists in scalar multiples of identity matrices. The same is true in the quantum setting, thanks to [5, Prop 6.9] which we recall here for convenience. Recall that the adjoint action is the map ad :

O(G) → O(G) ⊗ O(G) dened by ad = (m ⊗ id)(id ⊗S ⊗ id)(id ⊗Σ)(id ⊗∆)∆.
Proposition 2.9. Let G be a compact quantum group and let ϕ : O(G) → C be a state. Then, ϕ is invariant under the adjoint action if and only if for any irreducible representation α ∈ Irr(G), there exists ϕ(α) ∈ C such that ϕ(u α ij ) = ϕ(α)δ ij . Such central states are completely determined by their restriction to the so-called central algebra of G, which is simply the algebra O(G) 0 generated by the characters, thanks to the equality

ϕ(χ α ) = dα i=1 ϕ(u α ii ) = d α ϕ(α).
In several key examples, the central algebra is commutative, hence states exactly correspond to measures on its spectrum. A particular case is that of Dirac measures, i.e. evaluation at one point. This setting covers natural analogues of the random walk associated to the uniform measure on a conjugacy class. To see this, assume that O(G) is generated by the coecients of a representation u of dimension N and let G be the abelianization of G, that is to say the compact group such that O(G) is the maximal abelian quotient of O(G). By construction, G is realized as a group of N × N matrices. Let g ∈ G and let ev g : O(G) → C be the algebra map sending u ij to g ij . Then,

ϕ g = h • m (2) • (id ⊗ ev g ⊗S) • ∆ (2)
is a state on O(G), where

∆ (2) = (id ⊗∆) • ∆, m (2) = m • (id ⊗m)
and S is the antipode. If G is classical, then for any function f one has

ϕ g (f ) = G f (kgk -1 )dk
so that ϕ g is the uniform measure on the conjugacy class of g. In the general case, the centrality of ϕ g is easily checked :

ϕ g (u α ij ) = dα k,l=1 h(u α ik ev g (u α kl )u α * jl ) = dα k,l=1 ev g (u α kl )h(u α ik u α * jl ) = dα k,l=1 ev g (u α kl ) δ ij δ kl d α = δ ij ev g (χ α ) d α .
Several interesting random walks on compact Lie groups are of this type and we will study them in the quantum setting in the next sections.

Free orthogonal quantum groups

The main example which we will study in this work is that of free orthogonal quantum groups. These objects, denoted by O + N , were rst introduced by S. Wang in [START_REF] Wang | Free products of compact quantum groups[END_REF]. Here is how the associated involutive Hopf algebra is dened : 

u ik u jk = δ ij = N k=1 u ki u kj .
The formula

∆(u ij ) = N k=1 u ik ⊗ u kj extends to a * -algebra homomorphism ∆ : O(O + N ) → O(O + N ) ⊗ O(O + N ).
There is a compatible antipode, counit and invariant positive linear form making O + N a compact quantum group.

The relations dening O(O +

N ) are equivalent to requiring that the matrix [u ij ] 1 i,j N is orthogonal. Using this, it is easy to see that the abelianization of O + N is the orthogonal group O N . To compute upper bounds for random walks, we need a description of the representation theory of these objects. In fact, since we will only consider central states, all we need is a description of the central algebra which comes from the work of T. Banica [START_REF] Banica | Théorie des représentations du groupe quantique compact libre O(n)[END_REF]. Theorem 3.2 (Banica). The irreducible representations of O + N can be labelled by positive integers, with u 0 being the trivial representation and u 1 = [u ij ] 1 i,j N . Moreover, the characters satisfy the following recursion relation :

(1)

χ 1 χ n = χ n+1 + χ n-1 .
In particular, the central algebra O(G) 0 is abelian and in fact isomorphic to C[X]. Moreover, the recursion relation ( 1) is reminiscent of that of Chebyshev polynomials of the second kind. Indeed, let U n be these polynomials, i.e. U n (sin(θ)) = sin(nθ) for all θ ∈ R. Then, u n (x) = U n (x/2) satises Equation [START_REF] Banica | Théorie des représentations du groupe quantique compact libre O(n)[END_REF]. With this in hand, it can be proven that the map sending χ n to u n is an isomorphism of * -algebras. Moreover, we have the equality d n = u n (N ).

3.1. Pure state random walks. A state is said to be pure if it cannot be written as a non-trivial convex combination of other states. Moreover, pure states on O(O + N ) are still pure when restricted to the central algebra and it is well-known that pure states on an abelian algebra are given by evaluation at points of the spectrum.

For O + N , the spectrum of χ 1 in the enveloping C*-algebra of O(O + N ) is [-N, N ] by [4, Lem 4.2] so that for any t ∈ [-N, N ] there is a central state ϕ t on O(O + N ) dened by ϕ t (n) = u n (t)/d n ∈ R. It follows from the denition that for a central state ϕ, we have ϕ * k (n) = ϕ(n) k , so that by Lemma 2.7 ϕ * k t -h 2 T V 1 4 +∞ n=1 d n u n (t) 2k d 2k-1 n = 1 4 +∞ n=1 u n (t) 2k d 2k-2 n = 1 4 +∞ n=1 u n (t) 2k u n (n) 2k-2
and we will have to bound specic values of the polynomials u n . It turns out that the behaviour of Chebyshev polynomials is very dierent if |t| is less than or greater than two and this will be reected in the existence or absence of a kind of cut-o phenomenon for the associated random walks. Before turning to this, let us give general tools for the computations. Assume that t > 2 and let 0 < q(t) < 1 be such that t = q(t) + q(t) -1 , i.e.

q(t) = t - √ t 2 -4 2 .
Then, it can be shown by induction that

u n (t) = q(t) -n-1 -q(t) n+1 q(t) -1 -q(t) .
This enables us to eciently bound u n (t) :

Lemma 3.3. For all n 1 and t 2,

tq(t) -(n-1) u n (t) q(t) -n 1 -q(t) 2
Proof. Consider the sequence a n = u n (t)q(t) n . Then,

a n+1 a n = q(t) u n+1 (t) u n (t) = q(t) q(t) -n-1 -q(t) n+1 q(t) -n -q(t) n = q(t) -n -q(t) n+2 q(t) -n -q(t) n > 1
so that (a n ) n∈N is increasing. It is therefore always greater than its rst term, which is q(t)t = 1 + q(t) 2 and always less than its limit, which is

q(t) -1 q(t) -1 -q(t) = 1 1 -q(t) 2 .

To lighten notations, let us set

A k (t) = +∞ n=1 u n (t) 2k u n (N ) 2k-2
3.1.1. Random walks associated to small pure states. We start with the case where |t| is less than 2. As we will see, things are then rather simple. Proposition 3.4. Let |t| < 2 be xed. Then, for any k 2,

ϕ * k t -h T V N 2 1 -q(N ) 2 1 N 1 -t 2 /4 k In particular, if |t| < 2 √ 1 -N -2
then the random walk associated to ϕ t converges exponentially. Proof. Because |t| 2, there exists θ such that t = 2 cos(θ). Thus,

|u n (t)| = |U n (cos(θ))| = sin ((n + 1)θ) sin(θ) 1 | sin(θ)| and A k (t) +∞ n=1 1 | sin(θ) 2k |u n (N ) 2k-2 1 | sin(θ)| 2k +∞ n=1 q(N ) n-1 N 2k-2 = 1 | sin(θ)| 2k N 2k-2 1 1 -q(N ) 2k-2 N 2 1 -q(N ) 2 1 N | sin(θ)| 2k
The result now follows from Lemma 2.7 and the fact that | sin(θ)| = 1 -t 2 /4. Note that for k = 1, we get the sum of | sin((n + 1)θ)|/| sin(θ)| which need not converge even though ϕ t is bounded on L ∞ (O + N ). Proposition 3.4 shows that for a xed t, the distance to the Haar state decreases exponentially provided N is large enough and it is natural to wonder how optimal the rate 1/(N 1 -t 2 /4) is. We give a partial answer through a lower bound obtained by the duality between the noncommutative L 1 and L ∞ spaces of a tracial von Neumann algebra. Concretely, this means that for any a ∈ L 1 (G), and ϕ : x →= h(ax),

a 1 = sup{h(ax) | x ∞ 1} = ϕ .
Proposition 3.5. For any t ∈ [-N, N ] and any k 1,

ϕ * k t -h T V N 4 t N k . Proof. Recall that ϕ * k t (n) = ϕ t (n) k and that h(χ n ) = 0 for all n 1. Thus, ϕ * k t -h 1 2 sup n 1 ϕ * k t (χ n ) χ n ∞ = 1 2 sup n 1 d n χ n ∞ u n (t) d n k .
Taking n = 1 and using χ 1 ∞ = 2 then yields the result.

Even though this bound is very general since it works for all t, it yields the same exponential rate as Proposition 3.4 for t = ± √ 2, meaning that the bound of Proposition 3.4 is rather tight.

3.1.2. The cut-o phenomenon. From now on, we will assume N 3 and consider the case when |t| is larger than two and note that this requires N 3. The corresponding states will exhibit a kind of cut-o phenomenon : for a number of steps (depending on t and N ), the state is not absolutely continuous and as soon as it is, it converges exponentially. Let us rst consider the boundedness problem. Lemma 3.6. Let |t| > 2 be xed. Then,

• If q(t) < q(N ) 1-1/k then ϕ * k t does not extend to L ∞ (O + N ), • If q(t) > q(N ) 1-1/k then ϕ * k t extends to L ∞ (O + N ). Proof. Because χ n ∞ = n + 1, ϕ * k t (χ n ) χ n ∞ = 1 n + 1 u n (t) k u n (N ) k-1 so that Lemma 3.3 yields ϕ * k t (χ n ) χ n ∞ 1 n + 1 q(N ) n (1 -q(N ) 2 ) k-1 q(t) -n+1 t k = q(N ) k-1 q(t) k n (tq(t)) k (1 -q(N ) 2 ) k-1 n + 1
and this is not bounded in n if q(t) < q(N ) 1-1/k . If now k satises the inequality in the statement, then a similar estimate shows that the sequence

a t,p = p n=0 u n (t) k u n (N ) k-1 χ n converges in L ∞ (G) ⊂ L 1 (G)
and its limit is the density of ϕ * k t , which is therefore bounded.

The previous statement may be disappointing in that for a xed t, the number k goes to 1 as N goes to innity. However, in the cases coming from classical random walks, t depends on N and we then get a cut-o parameter which also depends on N , see Subsection 3.2. Let us now prove that as soon as ϕ * k t is absolutely continuous, it converges exponentially to the Haar state. This is the main result of this section. Theorem 3.7. Let |t| > 2 be xed and let k 0 be the smallest integer such that q(t) > q(N ) 1-1/k 0 . Then, for any k k 0 ,

ϕ * k t -h T V 1 2 N q(t) k 0 q(t) 2k 0 -q(N ) 2k 0 -2 1 N q(t)(1 -q(t) 2 ) k
Moreover, there exist t 0 and t 1 depending on N satisfying 2 < t 0 < 4/ √ 3 < t 1 < N and such that if t 0 < |t| < t 1 , then the random walk associated to ϕ t converges exponentially after k 0 steps.

Proof. We start the computation by using Lemma 3.3 :

u n (t) 2k u n (N ) 2k-2 1 q(t) n (1 -q(t) 2 ) 2k q(N ) n-1 N 2k-2 = q(N ) 2k-2 q(t) 2k n-1 1 N 2k-2 (q(t)(1 -q(t) 2 )) 2k .
By assumption, q(t) > q(N ) 1-1/k so that

A k (t) 1 N 2k-2 (q(t)(1 -q(t) 2 )) 2k 1 1 -q(N ) 2k-2 q(t) 2k 1 N 2k-2 (q(t)(1 -q(t) 2 )) 2k 1 1 -q(N ) 2k 0 -2 q(t) 2k 0 = N 2 q(t) 2k 0 q(t) 2k 0 -q(N ) 2k 0 -2 1 N q(t)(1 -q(t) 2 )
2k and the result follows by Lemma 2.7.

The condition for exponential convergence is q(t)(1 -q(t) 2 ) > N -1 . Consider the function f : x → x(1 -x 2 ). Elementary calculus shows that its maximum is

f 1 √ 3 = 2 3 √ 3 > 1 3 1 N .
Thus, there exists an open interval I containing 1/ √ 3 such that f (q(t)) > 1/N as soon as q(t) is in I. Since q(t) = 1/ √ 3 corresponds to t = q(t) + q(t) -1 = 4/ √ 3, the proof is complete.

So far our use of the term cut-o has been a little improper since we did not provide an upper bound for the total variation distance depending only on (k -k 0 )/N . We will see however that when considering particular values of t related to classical random walks, one can sharpen the previous result into a genuine cut-o statement. To conclude this section, let us give an explicit formula for the threshold k 0 . Taking the logarithm of both sides of the equality q(t) k > q(N ) k-1 and noting that q(t) > q(N ) yields k 0 = -ln(q(N )) ln(q(t)/q(N )) .

3.2. The quantum uniform plane Kac walk. In this section we will give an explicit example of cut-o phenomenon by considering the quantum analogue of the uniform plane Kac walk on SO(N ). As before, we will always assume N 3 since we know that there is no cut-o otherwise. In the classical case, this was studied by J. Rosenthal in [START_REF] Rosenthal | Random rotations : characters and random walks on SO(n)[END_REF] and by B. Hough and Y. Jiang in [START_REF] Hough | Cut-o phenomenon in the uniform plane Kac walk[END_REF] (who coined the name). In this model, a random rotation is obtained by randomly choosing a plane in R N and then performing a rotation of some xed angle θ in that plane. The corresponding measure is the uniform measure on the conjugacy class of a matrix R θ corresponding to a rotation in a plane (they are all conjugate once the angle θ is xed, so that the choice of the plane does not matter). As explained in Subsection 2.2, this uniform measure has a natural analogue on O + N . In a sense, we are now "quantum rotating" the plane of R θ and the corresponding state is ϕ R θ . In general, for a element g ∈ O N , we have ev g (χ 1 ) = Tr(g) so that by induction,

ev g (χ n ) = u n (Tr(g)).
This has a surprising interpretation in terms of conjugation. Let us say that two classical orthogonal matrices g 1 and g 2 are quantum conjugate if ϕ g 1 = ϕ g 2 , i.e. the uniform measure on their quantum conjugacy class coincide. Then, it follows from the discussion above that two matrices are quantum conjugate if and only if they have the same trace. Unlike the classical case, there is no "quantum determinant" preventing matrices with equal trace to be conjugate. As a consequence, there can be no analogue of SO(N ) in O + N . This is conrmed by the fact that O + N is connected in the quantum group sense by [17, Thm 4.1]. In our case, Tr(g) = Tr(R θ ) = N -2 + 2 cos(θ) so that we are considering the state ϕ t for t = N -2 + 2 cos(θ). Assuming that θ is xed once and for all, we will show that the corresponding random walk has a cut-o. This means that we have to prove that there exists k 1 such that for k 1 + cN steps the total variation distance decreases exponentially in c while for k 1 -cN steps it is bounded below by a function which decreases slowly in c. We will therefore split the arguments into two parts. To simplify notations let us set τ = 2(1 -cos(θ)).

Upper bound.

We start with the upper bound. Since the parameter t now depends on N , it is not even clear that the convolution powers of the state will ever extend to L ∞ (G). To get some insight into this problem, let us rst consider the threshold for t = N -τ obtained in the previous section. Because q(x) ∼ 1/x as x goes to innity, for large N we have

- ln(q(N )) ln(q(N -τ )/q(N )) ∼ - ln(1/N ) ln(N/(N -τ )) = - ln(N ) ln(1 -τ /N ) ∼ N ln(N ) τ
which is exactly the cut-o parameter conjectured by J. Rosenthal the classical case (and proven there to be valid for θ = π) and later conrmed by B. Hough and Y. Jiang in [START_REF] Hough | Cut-o phenomenon in the uniform plane Kac walk[END_REF]. This suggests that the same phenomenon should occur for O + N . However, proving it requires some suitable estimates on the function q(t). We start by giving some elementary inequalities.

Lemma 3.8. The following inequalities hold for all N 4 and 0 τ < N -2 :

(1)

q(N ) q(N -τ ) N -τ N , (2) q(N ) > 1/N , (3) N ln 1 - τ N -τ .
Proof. Consider the function f : t → tq(t). Noticing that

q (t) = 1 2 - 1 2 t √ t 2 -4 = √ t 2 -4 -t 2 √ t 2 -4 = -q(t) √ t 2 -4 ,
we see that

f (t) = q(t) + tq (t) = 1 - t √ t 2 -4 q(t) < 0
so that f is decreasing. Applying this to N > N -τ yields the rst inequality while f (t) > lim +∞ f (t) = 1 yields the second one. The third equality follows from the wellknown bound ln(1 -x) -x valid for any 0 x < 1.

In the proof of Theorem 3.7 we saw that the total variation distance can be bounded by

N q(N -τ ) k 2 q(N -τ ) 2k -q(N ) 2k-1 1 N q(N -τ )(1 -q(N -τ ) 2 )
k and the inequalities above will enable us to bound the rst part of this expression. For the second part, we need to study N q(N -τ )(1 -q(N -τ ) 2 ). Note that it is not even clear that this is greater than one and in fact, for τ = 0 it equals 1 -q(N ) 4 < 1. However, as soon as τ > 0, assuming that N is large enough everything will work. To show this we will rst prove two computational lemmata. Lemma 3.9. Consider the following functions dened for t > 2 :

f (t) = τ 2 2t(t + τ ) 2 and g(t) = 16 5 1 t 3 (t 2 -4)
and set

C(τ ) = 2 τ √ 5 (2 + √ 2 + 9τ 2 )
Then, f (t) g(t) as soon as t C(τ ).

Proof. The inequality f (t) g(t) can be written as

(2)

5τ 2 t 2 (t 2 -4) 32(t + τ ) 2 .
Because t 2 t 2 -4, the left-hand side is greater than [ √ 5τ (t 2 -4)] 2 and (2) will be satised as soon as √ 5τ (t 2 -4) 4 √ 2(t + τ ), which amounts to the quadratic inequality

√ 5τ t 2 -4 √ 2t -4τ ( √ 5 + √ 2) 0.
The discriminant is 32 + 16τ 2 (5 + √ 10) 32 + 16 × 9 × τ 2 so that ( 2) is satised as soon as

t 2 √ 2 √ 5τ + 2 √ 5τ √ 2 + 9τ 2 .
The result now follows from the observation that C(τ ) is greater than the right-hand side because 2/3 2/5.

With this in hand we can prove the main inequality that we need.

Lemma 3.10. Let 0 < τ 4. Then, for any N τ + C(τ ),

q(N -τ )(1 -q(N -τ ) 2 ) e τ /N N .
Proof. Let us set a 1 = 1/2 and for n 2,

a n = 1 × 3 × • • • × (2n -3) 2 × 4 × • • • × 2n = (2n -3)! 2 n-2 (n -2)! × 2 n (n!) = 1 n4 n-1 2n -3 n -1 so that √ 1 + x = 1 + n (-1) n+1 a n x n . It follows that q(t) = t 2 1 -1 - 4 t 2 = 1 t + +∞ n=2 a n 2 t 2n-1
.

Moreover, using twice the identity 1 + q(t) 2 = tq(t), we see that

q(t)(1 -q(t) 2 ) = q(t)(2 -tq(t)) = 2q(t) -t(tq(t) -1) = 2q(t) -t 2 q(t) + t
and we deduce from this a series expansion, namely (setting t = N -τ )

q(N -τ )(1 -q(N -τ ) 2 ) = 2 t + +∞ n=2 2a n 2 t 2n-1 -t - +∞ n=2 a n 2 2n-1 t 2n-3 + t = 1 t + +∞ n=2 (2a n -4a n+1 ) 2 t 2n-1 = 1 t - +∞ n=2 b n 2 t 2n-1 with b n = -2(a n -2a n+1 ) = 2a n (n -2)/(n + 1) > 0.
We have to nd an upper bound for the sum in this expression. Using the fact that a b 2 a , we see that for n 4

b n 2 n -2 n + 1 1 n4 n-1 2 2n-3 = n -2 n(n + 1) 1 10
where the last inequality comes from the fact that the sequence (n -2)/n(n + 1) is decreasing for n 4. Since b 2 = 0 and b 3 = 1/32 < 1/10, we have for all t > 2

+∞ n=2 b n 2 t 2n-1 1 10 +∞ n=3 2 t 2n-1 = 16 5 1 t 3 (t 2 -4) = g(t).
Moreover,

1 t - e τ /(t+τ ) t + τ = 1 t - 1 t + τ - τ (t + τ ) 2 - τ 2 2(t + τ ) 3 - +∞ k=3 τ k k!(t + τ ) k+1 τ 2 (t + τ ) 2 1 t - 1 2(t + τ ) - τ 3 (t + τ ) 4 +∞ k=3 1 k! = τ 2 (t + τ ) 2 1 2t + τ 2t(t + τ ) - τ 3 (t + τ ) 4 +∞ k=3 1 k! τ 2 2t(t + τ ) 2 + τ 3 2t(t + τ ) 3 -e - 5 2 τ 3 (t + τ ) 4 τ 2 2t(t + τ ) 2 = f (t)
Summing up, by Lemma 3.9, (3)

q(t)(1 -q(t) 2 ) - e τ /(t+τ ) t + τ f (t) -g(t) 0
as soon as t C(τ ), i.e. N τ + C(τ )

Remark 3.11. The condition N τ + C(τ ) could probably be sharpened by considering better bounds for the binomial coecients and improving Lemma 3.9. However, it is already quite good since for instance for τ = 4 it yields N 8 and for τ = 2 it yields N 6.

We are now ready to establish the upper bound for the cut-o phenomenon announced in the beginning of this section, which is the main result of this work.

Theorem 3.12. The random walk associated to 0 < θ π has an upper cut-o at

N ln(N ) 2(1 -cos(θ))
steps in the following sense : if N τ + C(τ ), then for any c 0 > 0 and all c c 0 , after

k = N ln(N ) 2(1 -cos(θ))
+ cN steps we have

ϕ * k R θ -h T V 1 2 √ 1 -e -4c 0 (1-cos(θ)) e -2c(1-cos(θ)) . Proof. Let us set k 1 = N ln(N )/τ , B k (N ) = N q(N -τ ) k 2 q(N -τ ) 2k -q(N ) 2k-2 and D k (N ) = 1 N q(N -τ )(1 -q(N -τ ) 2 ) k .
We will bound each part separately and then combine them to get the desired estimate. First, using Lemma 3.8 we see that

N ln q(N ) q(N -τ ) N ln N -τ N -τ, so that ln q(N ) 2k-2 q(N -τ ) k = (2k 1 + 2cN ) ln q(N ) q(N -τ ) -2 ln(q(N )) -2τ c
and it then follows that

B k (N ) = N 2 1 -q(N ) 2k-2 q(N -τ ) k N 2 √ 1 -e -2τ c N 2 √
1 -e -2τ c 0 .

Turning now to D k (N ), we have by Lemma 3.10

(k 1 + cN ) -ln(N q(N -τ )(1 -q(N -τ ) 2 )) ln(N ) -τ c so that D k (N ) 1 N e -τ c
Gathering both inequalities eventually yields the announced estimate.

Remark 3.13. The fact that the statement is not uniform in c may be disappointing, but we cannot do better with the upper bound lemma in the sense that for k = k 1 + cN , all the inequalities we used become equivalences as N goes to innity, so that e cτ A k (N -τ ) is not bounded above uniformly in c. Note that the result could also be stated in the following way : for any > 0, there is a uniform (in c) upper cut-o at k 1 (1 + ) steps.

Lower bound.

To have a genuine cut-o phenomenon, we must now show that if k = N ln(N )/τ -cN , then the total variation distance is bounded below by something which is almost constant. Usually, such bounds are proven using the Chebyshev inequality. Note that if x is a self-adjoint element in a von Neumann algebra, then it generates an abelian subalgebra which is therefore isomorphic to L ∞ (X) for some space X (the spectrum of x). Then, any state on the original algebra restricts to a probability measure on X so that it makes sense to apply the Chebyshev inequality to x. In our case, we will apply it to x = χ 1 , so that we have to estimate the expectation and variance of this element under the state ϕ * k R θ . To keep things clear, we rst give these estimates in a lemma. Lemma 3.14. For k = N ln(N )/τ -cN and N 5, we have

ϕ * k R θ (χ 1 )
e cτ 5

and

var ϕ * k R θ (χ 1 ) 1.
Proof. As explained in the proof of [13, Thm 2.1], for any N 5 and any -4 τ 4,

N 1 - τ N N ln(N )/τ 1 5
so that

ϕ * k R θ (χ 1 ) = (N -τ ) k N k-1 = N 1 - τ N N ln(N )/τ 1 - τ N -cN e cτ 5 .
As for the second inequality, rst note that χ 2 1 = χ 2 + 1 so that

var ϕ * k R θ (χ 1 ) = 1 + ((N -τ ) 2 -1) k (N 2 -1) k-1 - (N -τ ) k N k-1 2 = 1 + (N -τ ) 2k N 2k-2 (1 -(N -τ ) -2 ) k (1 -N -2 ) k-1 -1 1.
We are now ready for the proof of the lower bound.

Proposition 3.15. The random walk associated to 0 < θ π has a lower cut-o at

N ln(N ) 2(1 -cos(θ))
steps in the following sense : for any c > 0, at

k = N ln(N ) 2(1 -cos(θ))
-cN steps we have

ϕ * k R θ -h T V 1 -200e -2cτ
Proof. We will evaluate the states at projections obtained by functional calculus and use the original denition of the total variation distance. Let us denote by 1 S the indicator function of a subset S of R. The proof relies on the same trick as in the classical case (see for instance [START_REF] Rosenthal | Random rotations : characters and random walks on SO(n)[END_REF]) using Chebyshev's inequality : noticing that because of the rst inequality of Lemma 3.14,

1 [0,e cτ /10] (|χ 1 |) 1 [e cτ /10,+∞] (|ϕ * k R θ (χ 1 ) -χ 1 |), we have ϕ * k R θ 1 [0,e cτ /10] (|χ 1 |) ϕ * k R θ (1 [e cτ /10,+∞] |ϕ * k R θ (χ 1 ) -χ 1 |) 100e -2cτ var ϕ * k R θ (χ 1 ) 100e -2cτ
On the other hand, since h(χ 1 ) = 0 and h(χ

2 1 ) = 1, h 1 [0,e cτ /10] (|χ 1 |) = 1 -h 1 ]e cτ /10,+∞[ (|χ 1 |) 1 -100e -2cτ .
Gathering these facts, we get

ϕ * k R θ -h T V h(1 [0,e cτ /10] (|χ 1 |)) -ϕ * k R θ (1 [0,e cτ /10] (|χ 1 |)) 1 -200e -2cτ
The combination of Theorem 3.12 and Proposition 3.5 establishes the announced cuto phenomenon. For θ = π, J. Rosenthal proved [START_REF] Rosenthal | Random rotations : characters and random walks on SO(n)[END_REF] that N ln(N )/4 steps suce to get exponential convergence, in accordance with our result (for N 8). For θ = π, he could only show that at least N ln(N )/2(1 -cos(θ)) steps are required and the suciency was proved by B. Hough and Y. Jiang in [START_REF] Hough | Cut-o phenomenon in the uniform plane Kac walk[END_REF]. One can also consider the random walk given by a random reection since they form a conjugacy class. Noting that any reection has trace N -2 the previous argument shows that for N 6 there is a cut-o with parameter N ln(N )/2, in accordance with the results of U. Porod in the classical case [START_REF] Porod | The cut-o phenomenon for random reections[END_REF]. As already mentioned, there is no analogue of SO(N ) in O + N because matrices with opposite determinant are quantum conjugate if they have the same trace. This idea is illustrated here by the fact that the random walk spreads on the whole of O + N even though we always use matrices with positive determinant. There is another quantum group linked to SO(N ), which is the quantum group of trace-preserving automorphisms of the algebra M N (C) of N by N matrices. We will see in Subsection 4.3 that the uniform plane Kac walk on it has a cut-o with the same parameter as for O + N .

3.3. Mixed rotations. One may also consider random walks associated to states which are "mixed" instead of being pure. For instance, let ν be a probability measure on the circle T, and set

ϕ ν (x) = T ϕ R θ (x)dν(θ).
This denes a central state ϕ ν on O + N corresponding to a random walk where θ is chosen randomly according to ν and then R θ is randomly conjugated. B. Hough and Y. Jiang obtained in [START_REF] Hough | Cut-o phenomenon in the uniform plane Kac walk[END_REF] cut-o results for these random walks with the sole restriction that ν = δ 0 . In our context, a stronger assumption will be needed, due to an analytic issue. Assume for instance ν({0}) = p > 0, then ϕ ν can be written as

ϕ ν = pϕ N + (1 -p)ϕ ν
where ν = (1-p) -1 (ν -p.δ 0 ). But ϕ N = ε is the counit and for a compact quantum group, the counit is bounded on L ∞ (G) if and only if G is co-amenable. Since co-amenability is known to fail for O + N as soon as N 3 by [2, Cor 1] and ϕ * k N = ϕ N for any k, we see that ϕ * k ν p k ϕ N never extends to L ∞ (O + N ) so that the total variation distance between ϕ ν and h is not dened.

This suggests to assume that ν({0}) = 0, but we were not able to prove a cut-o in this generality. However, if we assume that the support of ν is bounded away from 0, then everything works. The proof closely follows that of B. Hough and Y. Jiang in [START_REF] Hough | Cut-o phenomenon in the uniform plane Kac walk[END_REF] except for some computations, which we rst treat separately. Lemma 3.16. For any N τ + C(τ ) and any 0 < τ 4,

ϕ N -τ (n) N ln(N )/τ d -1 n .
Moreover, for any N 3 and any λ > 0,

+∞ n=1 d -λ/ ln(N ) n e -λ/2 1 -e -λ/2
Proof. Setting k = N ln(N )/τ , we have by Lemma 3.10 and the bounds of Lemma 3.3 and Lemma 3.8,

ϕ N -τ (n) k = u n (N -τ ) u n (N ) k q(N ) n-1 q(N -τ ) n 1 N (1 -q(N -τ ) 2 ) k = q(N ) q(N -τ ) k(n-1) 1 N q(N -τ )(1 -q(N -τ ) 2 ) k 1 N 1 - τ N k(n-1) 1 N n 1 d n .
For the second inequality, we use again Lemma 3.3 to get

d -λ/ ln(N ) n q(N ) n-1 N λ/ ln(N )
= e -λ q(N ) (n-1)λ/ ln(N ) .

Using √ x 1/2 + x/2, we see that q(N ) 2/N for all N 4, so that the right-hand side of the above inequality is bounded by e -λ exp (n -1)λ ln( 2) ln(N ) -1 e -λ(n+1)/2 , from which the result follows.

We are now ready for the proof of the cut-o phenomenon. For convenience, we will rather consider a probability measure µ on the interval [0, 4] and set

ϕ µ = 4 0 ϕ N -τ dµ(τ ).
Theorem 3.17. Let µ be a probability measure on [0,[START_REF] Brannan | Approximation properties for free orthogonal and free unitary quantum groups[END_REF] such that there exists δ > 0 satisfying µ([δ, 4]) = 1 and set η = τ dµ. Then, for any N max τ ∈[δ,4] (τ + C(τ )), the random walk associated to ϕ µ has a cut-o at N ln(N )/η steps. Proof. The proof closely follows the argument of [9, Sec 4] and we rst treat the upper bound. Let us set k = N ln(N )/η + cN . We start by the straightforward inequality

ϕ * k µ -h T V [δ,4] k ϕ N -τ k * • • • * ϕ N -τ 1 -h T V dµ(τ 1 ) • • • dµ(τ n )
and set

E = {(τ 1 , • • • , τ k ) ∈ [δ, 4] k | k i=1 τ i N ln(N ) + cηN/2}.
Consider the random variable X = k i=1 τ i , which has expectation kη under µ. The measurable set E corresponds to the event

X E(X) 1 - cη 2(ln(N ) + cη)
so that by Hoeding's inequality [START_REF] Hoeding | Probability inequalities for sums of bounded random variables[END_REF] (using the fact that 0 τ 4),

µ ⊗k (E) exp - 2k 16 cη 2(ln(N ) + cη) 2 = exp - c 2 ηN 32(ln(N ) + c) .
The function x → x/(ln(x) + c) is increasing as soon as x e e 1-c . In particular, for N 3 it can be bounded below by 3/(ln(3) + c). Moreover, c 2 /(ln(3) + c) > c -ln(3) so that µ ⊗k (E) 3 η/32 e -cη/32 3 1/8 e -ηc/32 .

close to that of O + N . The irreducible representations are still labelled by nonnegative integers but this time the recursion relation for characters is (4)

χ 1 χ n = χ n+1 + χ n + χ n-1 .
To translate this into an explicit isomorphism with C[X], rst note that keeping the notations of Section 3, u 2n (X) has only even powers of X for any n. Thus, v n (X) = u 2n ( √ X) is a polynomial in X and it is easily checked that this new sequence satises the above recursion relation. Once again, one has

d n = v n (N ) = u 2n ( √ N ).
4.1. Pure state random walks on free symmetric quantum groups. As for free orthogonal quantum groups, we can study pure state random walks. In view of the link between the polynomials u n and v n , estimates of the total variation distance for the random walk associated to a pure state on S + N can be easily deduced from Proposition 3.4 and Theorem 3.7. We will therefore simply give the statements, starting with the case of small t. 

ϕ * k t -h T V 1 2 N q( √ N ) 2 (1 -q( √ N ) 4 ) q( √ N ) N 1 -t 2 /4 k In particular, if |t| < 2 1 -q( √ N ) N
2 then the random walks converges exponentially.

One can also get a lower bound like in Proposition 3.5 : noticing that u

2 (X) = X 2 -1 yields ϕ * k t -h T V N -1 6 t -1 N -1 k .
For larger |t|, the proof is also the same as in Theorem 3.7.

Proposition 4.3. Let |t| > 4 and let k 0 be the smallest integer such that q(t) > q(N ) 1-1/k 0 . If k k 0 then the state ϕ * k t is not bounded on L ∞ (S + N ) and otherwise

ϕ * k t -h T V 1 2 √ N q( √ N ) q( √ t) 4k 0 q( √ t) 4k 0 -q( √ N ) 4k 0 -4 q( √ N ) √ N q( √ t) 2 (1 -q( √ t) 2 ) k
The main point in the above statement is that the threshold k 0 is the same as for O + N , so that the cut-o parameter of a uniform random walk on a conjugacy class should be given by the same formula as before. One of the simplest examples of such a random walk is the one associated to the uniform measure on the set of transpositions, or equivalently on the conjugacy class of a transposition. Since the trace of a transposition matrix is N -2, this is given by the state ϕ N -2 and the expected cut-o parameter is N ln(N )/2. This can be proven by the same strategy as for Theorem 3.12 but the computations are more involved. Theorem 4.4. For any N 16, the random walk associated to ϕ N -2 on S + N has a cut-o at N ln(N )/2 steps. Proof. We have to make computations similar to the ones for O + N , in the particular case τ = 2, so that t = N -τ = N -2. For the upper bound, the part concerning B k is the same as in the proof of Theorem 3.12, so let us focus on D k . It is enough to prove that

√ N q( √ N ) q( √ N -2) 2 1 -q( √ N -2) 2 e 2/N .
Indeed, we will then have for k = N ln(N )/2 + cN ,

q( √ N ) √ N q( √ t) 2 (1 -q( √ t) 2 ) k 1 N e -2τ c q( √ N ) √ N e -2τ c .
Writing q(t) 2 (1 -q(t) 2 ) = (3t -t 3 )q(t) + t 2 -2 and expanding we get

q(t) 2 (1 -q(t) 2 ) = t +∞ n=2 (3a n -4a n+1 ) 2 t 2n-1
.

Write c n := 4a n+1 -3a n . Then, c n = (n -5)a n /(n + 1) and the sum splits as

1 t 2 + 1 t 4 + 1 t 6 -t +∞ n=6 c n 2 t 2n-1
.

Moreover, the same estimate as for b n yields c n (n -5)/2n(n + 1) and the sequence on the right-hand side is increasing up to n = 10 and then decreasing. Its maximum is therefore 1/44. Using √ t instead of t and the fact that c n 1/44, we eventually get

q( √ t) 2 (1 -q( √ t) 2 ) = 1 t + 1 t 2 + 1 t 3 - +∞ n=6 2c n 4 t n-1 t 2 + t + 1 t 3 - 4 5 22 × t 4 (t -4)
.

On the other hand,

e 2/(t+2) +∞ k=0 2 t + 2 k = t + 2 t = 1 + 2 t
so that it is enough to have (noticing that q(x)

-1 = (x + √ x 2 -4)/2) √ t + 2 √ t + 2 + √ t -2 2 t 2 + t + 1 t 3 - 4 5 22 × t 4 (t -4) -1 - 2 t 0.
To see when this inequality holds, let us rst prove that for t 12, 1/2t 3 4 5 /22(t 4 (t-4)).

Proceeding as in the proof of Lemma 3.9, we reduce the problem to 11t(t -4) 4 5 , i.e. We will prove the stronger inequality obtained by removing the terms with t 3 at the denominator in the right-hand side. After simplifying and multiplying by 2t This is negative, thus f is decreasing and for t 14 it is smaller than f (14) ≈ 2.15 < 5/2.

Since P h is the projection onto the linear span of 1, the above Lemma means that the distance in operator norm is exactly given by the spectral gap of the operator P ϕ . In this setting it is not very dicult to prove that there is a cut-o phenomenon.

Proposition 4.7. The random walk associated to ϕ rt has a cut-o in the L 2 -operator norm at k = N/2 steps.

Proof. We rst show that the supremum of

N -1 N v n (N -2) v n (N ) + 1 N k is attained at n = 1.
Let us set, for n 1, a n (t) = u n+1 (t)/u n (t). The recursion relation (4) implies

a n+1 (t) = t - 1 a n (t)
from which it follows by induction (and the fact that a 1 (t) = t -1/t) that for all n, t -1/t a n (t) t. Using this, we see that

u n+1 ( √ N -2) u n+1 ( √ N ) u n ( √ N ) u n ( √ N -2) = a n ( √ N -2) a n ( √ N ) N (N -2) N -1 < 1.
Thus, the sequence u n ( √ N -2)/u n ( √ N ) is decreasing and the claim is proved. As a consequence,

P ϕ * k rt -P h B(L 2 (S + N )) = N -1 N N -3 N -1 + 1 N k = 1 - 2 N k .
Because The cut-o in total variation distance for the classical random walk associated to µ rt occurs at N ln(N )/2 steps (see [START_REF] Diaconis | Generating a random permutation with random transpositions[END_REF]) and this was one of the rst important results of the theory. Since we considered a weaker norm, we get a better cut-o parameter. However, there are other norms available for operators on a von Neumann algebra which may be closer to the total variation distance and therefore yield a dierent cut-o parameter. In particular, since transition operators are completely positive, it would be interesting to have estimates for the completely bounded norm of P ϕ * k rt -P h . One may also investigate the norm as linear forms on the enveloping C*-algebra C(S + N ) or the various noncommutative L p -norms. N there is another quantum generalization of SO(N ), called the quantum automorphism group of (M N (C), tr). This means that it is a universal object in the category of compact quantum groups acting on M N (C) in a trace-preserving way. For N = 2, this is known to be isomorphic to SO [START_REF]Symmetries of a generic coaction[END_REF].

It was shown in [START_REF]Symmetries of a generic coaction[END_REF] that the representation theory of this quantum group is the same as S + N . The only dierence is that the dimensions are given by u 2n (N ) = v n (N 2 ). We can therefore consider the pure states ϕ t as before for 0 t < N 2 and the same arguments as in Theorem 4.4 would show that the random walk associated to random rotations with a xed angle θ has a cut-o at N ln(N )/2(1 -cos(θ)) steps. There is however a quicker way to this. Consider the subalgebra of O(O + N ) generated by all products u ij u kl of two generators. Then, this is isomorphic to the Hopf algebra of the quantum automorphism group of (M N (C), tr). The random walk can therefore be obtained by simply restricting the state to this subalgebra and as far as Lemma 2.7 is concerned this is just restricting to the sum of even terms. The upper bound for the cut-o then trivially follows from Theorem 3.12. As for the lower bound, it is a computation similar to that of Proposition 3.5 using χ 2 instead of χ 1 .

Proposition 4 . 2 .

 42 Let |t| < 4 be xed. Then, for any k 2,

1 -

 1 x e -x , for any c > 0P * (N/2+cN ) ϕrt -P h B(L 2 (S + N ))e -1 e -2c , yielding the upper bound.As for the lower bound, using an estimate already mentioned in Lemma 3.14 we have for N (N ) = e -1-ln(5)/ ln(N ) e -2 so that for c < 1,P * (N/2-cN ) ϕrt -P h B(L 2 (S + N ))e 2c-2 e -2 (1 -e -2c ).

4. 3 .

 3 Quantum automorphisms of matrices. As mentioned in the end of Subsection 3.2, apart from O +

  Denition 3.1. Let O(O + N ) be the universal * -algebra generated by N 2 self-adjoint elements u ij such that for all 1 i, j N ,

	N
	k=1

  is satised as soon as t is greater than 2 + 2 1 + 16 2 /11 12. Using this, it is now enough to check that

						t 2 -4t -	4 5 11	0.				
	1 +	2 t	=	1 t	1 + + 1 2 t t 2 + +	√ 1 2t 3 + t 2 -4 2 1 2 +	1 2t	1 t + + 4t 2 + 1 t 2 + 1	1 2t 3 √ t 2 -4 2t	+	√	t 2 -4 2t 2 +	√	t 2 -4 4t 3 .

which

  2 we get the inequality

	t 2 + t	5 2	+ t √	t 2 -4 +	√	t 2 -4.
			√	t t 2 -4	=	t -√ √ t 2 -4 t 2 -4

Now, the function

f : t → (t + 1)(t -√ t 2 -4) satises f (t) = t -√ t 2 -4 + (t + 1) 1 -√ t 2 -4 -(t + 1) .

We still have to bound the integral on the complement of E. To do this, we apply Lemma 2.7 and Lemma 3.16 to the integrand (recall that τ i δ for all i), which is therefore less than

By denition of the complement of E, each term is bounded by exp(-ln(d n )cη/ ln(N )) and by Lemma 3.16 we conclude that

For the lower bound, we proceed as in Proposition 3.15 and all that is needed is estimates of the mean and variance of χ 1 . Noticing that

) k and as before we conclude that this is greater than or equal to e ηc /5 for any N 5. As for the variance,

Using the same argument as in Proposition 3.15 then yields

Extending the previous result seems impossible with the techniques of the present work since it is clear that our estimates for xed τ can only be valid for N larger than a function of τ going to innity as τ goes to 0.

Further examples

In this section we will consider random walks on other compact quantum groups which were also introduced by S. Wang in [START_REF]Quantum symmetry groups of nite spaces[END_REF] and called free symmetric quantum groups (or quantum permutation group). As before, we dene them through a universal algebra : Denition 4.1. Let O(S + N ) be the universal * -algebra generated by N 2 self-adjoint elements u ij such that for all 1 i, j N ,

The formula

There is a compatible antipode, counit and invariant positive linear form making O + N a compact quantum group.

As the name and notation suggest, the abelianization of O(S + N ) is exactly O(S N ) and the two even coincide for N 3. However, as soon as N 4 the compact quantum group

N is innite (in the sense that the algebra O(S + N ) is innite-dimensional) and therefore behaves very dierently from the classical symmetric group. This will raise an analytic issue in the sequel. Let us now describe the representation theory of S + N , which is quite Concerning the lower bound, rst note that the expectation and variance of χ 1 with respect to h are respectively equal to 0 and 1. Moreover, by the same argument as for

for k = N ln(N )/2 -cN and the variance can be bounded independently from N by the norm of χ 2 1 . Remark 4.5. Plotting the function appearing in the study of the upper bound suggests that it is positive as soon as t 12, which would give a cut-o for all N 14. This indicates that even though they look loose, our estimates are close to optimal.

The cut-o parameter is the same as in the classical case (see [START_REF] Diaconis | Generating a random permutation with random transpositions[END_REF]). We can even consider the conjugacy class of m-cycles for any integer m and, for N large enough, the cut-o will appear at N ln(N )/m steps, again as in the classical case [START_REF] Hough | The random k-cycle walk on the symmetric group[END_REF].

Mixed states and transition operators. There are many examples of mixed states on S +

N coming from classical random walks. However, their study in the quantum case is prevented by the fact that S + N is not co-amenable for N 5, a phenomenon which was alluded to for O + N in Subsection 3.3. We will now illustrate this in more details on a simple example with random transpositions as follows : assume you have a deck of N cards and spread them on a table. Randomly select one card uniformly (i.e. with probability 1/N for each card) and then select another one in the same way. If the same card has been selected twice, nothing is done. Otherwise, the two cards are swapped. This corresponds to the measure on S N giving probability 1/N 2 to all transpositions and 1/N to the identity. Since transpositions form a conjugacy class, the measure can be restated as being

where µ tran is the uniform measure on the set of transpositions. The equation above directly gives the state on O(S + N ) corresponding to "random quantum transposition" :

The state ϕ * k N -2 is bounded on L ∞ (S + N ) for k large enough but not ϕ * k N since it is the counit and S + N is not co-amenable for N 5. This implies that no convolution power of ϕ rt is bounded on L ∞ (S + N ) so that the total variation distance is never dened (it is clear that the sum in the upper bound lemma diverges since each term is greater than N -k ). This is in sharp contrast with the classical case (a nite quantum group is always amenable).

However, it is known (see for instance [START_REF] Brannan | Approximation properties for free orthogonal and free unitary quantum groups[END_REF]Lem 3.4]) that the associated transition operator P ϕrt = (id ⊗ϕ rt ) • ∆ always extends to a bounded linear map on L ∞ (G). We can therefore compare it with P h using operator norms. In particular, we can see them as operators on L 2 (S + N ) and the corresponding norm is then easy to compute : Proof. By Woronowicz' Peter-Weyl theorem, the elements u α ij form an orthogonal basis of L 2 (G). Moreover, a straightforward calculation yields P ψ (u α ij ) = ψ(α)u α ij so that P ψ is diagonal in this basis and the result follows.