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Given a Baumslag-Solitar group, we study its space of subgroups from a topological and dynamical perspective. We first determine its perfect kernel (the largest closed subset without isolated points). We then bring to light a natural partition of the space of subgroups into one closed subset and countably many open subsets that are invariant under the action by conjugation. One of our main results is that the restriction of the action to each piece is topologically transitive. This partition is described by an arithmetically defined function, that we call the phenotype, with values in the positive integers or infinity. We eventually study the closure of each open piece and also the closure of their union. We moreover identify in each phenotype a (the) maximal compact invariant subspace.

Introduction and presentation of the results

The Baumslag-Solitar group of non-zero integer parameters m and n is defined by the presentation BSpm, nq :" @ b, t|tb m t ´1 " b n D .

(1.1)

These one-relator two-generators groups were defined by Baumslag and Solitar [START_REF] Baumslag | Some two-generator onerelator non-Hopfian groups[END_REF] to provide examples of groups with surprising properties, depending on the arithmetic properties of the parameters.

It results from the work of Baumslag and Solitar and of Meskin [Mes72] that the group BSpm, nq is

• residually finite if and only if |m| " 1 or |n| " 1 or |m| " |n|;

• Hopfian if and only if it is residually finite or m and n have the same set of prime divisors. The group BSpm, nq is amenable if and only if |m| " 1 or |n| " 1, and in this case, it is metabelian. All Baumslag-Solitar groups however share weak forms of amenability: they are inner-amenable [START_REF] Stalder | Moyennabilité intérieure et extensions HNN[END_REF] and a-T-menable [START_REF] Światosław | Gal and Tadeusz Januszkiewicz New a-Tmenable HNN-extensions[END_REF].

Over the years and despite the simplicity of their presentation, these groups have served as a standard source of examples and counter-examples, sometimes to published results (!). They have been considered from countless different perspectives in group theory and beyond.

Various aspects concerning the subgroups of the BSpm, nq have been considered such as the growth functions of their number of subgroups of finite index with various properties, or such as a description of the kind of fundamental group of graphs of groups that can be embedded as subgroups in some BSpm, nq; see for instance [START_REF] Gelman | Subgroup growth of Baumslag-Solitar groups[END_REF][START_REF] Fedor | Subgroups of Baumslag-Solitar groups[END_REF][START_REF] Levitt | Quotients and subgroups of Baumslag-Solitar groups[END_REF].

In this article, we consider global aspects of the space SubpBSpm, nqq of subgroups of the BSpm, nq and of the topological dynamics generated by the natural action by conjugation.

The perfect kernel

Let Γ be a countable group. We denote by SubpΓq the space of subgroups of Γ. If one identifies each subgroup with its indicator function, one can view the space SubpΓq as a closed subset of t0, 1u Γ . Thus SubpΓq is a compact, metrizable space by giving it the restriction of the product topology. See Section 2.2 for the generalities about SubpΓq.

By the Cantor-Bendixson theorem, SubpΓq admits a unique decomposition as a disjoint union of a perfect set, called the perfect kernel KpΓq of Γ, and of a countable open subset. It is a challenging problem to determine the perfect kernel of a given countable groups.

When Γ is finitely generated, the finite index subgroups are isolated in SubpΓq. It is thus relevant to introduce the subspace Sub r8s pΓq consisting of all infinite index subgroups of Γ. It is a closed subspace of SubpΓq exactly when Γ is finitely generated (see Remark 2.3).

Our first main result completely describes the perfect kernel of the various Baumslag-Solitar groups. When The fact that SubpBSpm, nqq is countable when |m| " 1 or |n| " 1 (Item 1), i.e. for the Baumslag-Solitar groups that are metabelian, was already observed by Becker, Lubotzky, and Thom [START_REF] Becker | Stability and invariant random subgroups[END_REF]Corollary 8.4]. Fortuitously or not, it turns out that KpBSpm, nqq " Sub r8s pBSpm, nqq exactly when BSpm, nq is not residually finite.

There is a general correspondence between the transitive pointed Γ-actions and the subgroups of Γ. It sends an action α to the stabilizer of its base point. This Γ-equivariant map is a bijection when one considers the actions up to pointed isomorphisms (see Section 2.2). Item 2 of Theorem A has a unified reformulation in this setting:

2'. if |m|, |n| ą 1, then KpBSpm, nqq is the space of subgroups Λ such that the right BSpm, nq-action on ΛzBSpm, nq has infinitely many xby-orbits. Note that this exactly means that the quotient of the Λ-action on the standard Bass-Serre tree (see Section 2.3) of BSpm, nq is infinite.

Let us now give some more context for Theorem A. By Brouwer's characterization of Cantor spaces, the space KpΓq is either empty or a Cantor space. It is empty exactly when SubpΓq is countable. This happens for example for groups all whose subgroups are finitely generated, also known as Noetherian groups. For instance all finitely generated nilpotent groups and more generally all polycyclic groups have a countable space of subgroups.

On the opposite side, for the free group with a countably infinite number of generators, no subgroup is isolated, thus KpF 8 q " SubpF 8 q (see [CGLM22, Proposition 2.1]).

There are some classical groups for which we know that KpΓq " Sub r8s pΓq. This is the case for the free groups F n (for 1 ă n ă 8), see for instance [CGLM22, Proposition 2.1]. This is also the case for the groups with infinitely many ends, for the fundamental groups of the closed surfaces of genus ě 2, and for the finitely generated LERF groups with non-zero first ℓ 2 -Betti number (see [START_REF] Azuelos | Some subgroup spaces with maximal perfect kernel[END_REF]). Recall that a group Γ is LERF when its set of finite index subgroups is dense in SubpΓq (see for instance [GKM16, Theorem 3.1]).

Bowen, Grigorchuk and Kravchenko established that the perfect kernel of the lamplighter group pZ{pZq n ≀ Z " p' Z pZ{pZq n q ¸Z (for a prime number p) is exactly the space Subp' Z pZ{pZq n q of subgroups of the normal subgroup [BGK15, Theorem 1.1]. Skipper and Wesolek uncovered the perfect kernel for a class of branch groups containing the Grigorchuk group and the Gupta-Sidki 3 group [SW20].

The perfect kernel can be obtained by successively, and transfinitely, removing the isolated points. The Cantor-Bendixson rank rk CB pΓq of Γ is the first ordinal ζ for which the derived space SubpΓq pζq has no more isolated points. When |m|, |n| ą 1 and |m| ‰ |n|, then Theorem A implies that rk CB pBSpm, nqq " 1. The determination of the Cantor-Bendixson ranks rk CB pBSpm, nqq for the other cases is postponed to the sequel [START_REF] Carderi | On the space of subgroups of Baumslag-Solitar groups II: the Cantor-Bendixson rank[END_REF].

Dynamical partition of the perfect kernel

The compact space of subgroups SubpΓq is equipped with the continuous action of Γ by conjugation: γ ¨Λ :" γΛγ ´1. The perfect kernel is Γ-invariant. This action is of course not minimal in general, even when restricted to the perfect kernel: the latter may contain normal subgroups and these subgroups are fixed points! However, the first three named authors observed a particularly nice feature in the case of the free group F n (for 1 ă n ă 8): the action F n ñ KpF n q is topologically transitive (which means that the space admits a dense G δ subset of points whose individual orbits are dense). These F n -actions are called totipotent, see [CGLM22].

To our surprise, we uncovered a dramatically different and very rich situation for the Baumslag-Solitar groups.

Theorem B. Whenever |m|, |n| ‰ 1, the perfect kernel KpBSpm, nqq admits a countably infinite partition into BSpm, nq-invariant and topologically transitive subspaces. One of them is closed; all the other ones are open (for the induced topology).

Theorem B follows from Proposition 5.8 and Theorem 5.14. From now on in this introduction, we stick to the case |m| ‰ 1 and |n| ‰ 1. In order to describe the partition in Theorem B, we introduce a new invariant: the phenotype.

The relation tb m b ´1 " b n imposes some arithmetic conditions between the cardinalities of the b-orbit of a point x and the b-orbit of xt. For instance, the b-orbit of x is infinite if and only if the b-orbit of xt is infinite.

In Definition 4.1, we introduce a function Ph m,n : Z ě1 Y t8u Ñ Z ě1 Y t8u called the pm, nq-phenotype, with the following property, which directly follows from Proposition 4.6, Theorem 4.13 and Proposition 3.22:

Theorem C. Whenever |m|, |n| ‰ 1, there is a transitive BSpm, nq-action with two b-orbits of cardinal k and ℓ respectively if and only if Ph m,n pkq " Ph m,n pℓq.

If for instance m and n are coprime, the phenotype Ph m,n pkq of any natural number k P Z ě1 is obtained as k expunged of all its prime divisors that appear in either m or n. The general form is more complicated, see Definition 4.1 and Example 4.3, but it follows readily from Definition 4.1 that Ph m,n pqq " q for every q ě 1 that is coprime with m and n. Hence, the set of possible pm, nq-phenotypes

Q m,n :" tPh m,n pkq : k P Z ě1 u Y t8u.

is always infinite.

Theorem C allows us to define the phenotype of a transitive BSpm, nqaction as the common pm, nq-phenotype of the cardinalities of its b-orbits. Then, we define, the phenotype PhpΛq of a subgroup Λ P SubpBSpm, nqq as the phenotype of its action on the homogeneous space ΛzBSpm, nq.

Notice that the BSpm, nq-actions on ΛzBSpm, nq and pgΛg ´1qzBSpm, nq are isomorphic (both are transitive with some point stabilizer equal to Λ), so that they have the same phenotype. Hence, the partition

SubpBSpm, nqq " ğ qPQm,n Ph ´1pqq (1.2)
is invariant under the BSpm, nq-action (recall this is the action by conjugation). Let us mention from Proposition 5.8 that • for all finite q P Q m,n , the pieces Ph ´1pqq are open;

• the piece Ph ´1p8q is closed but not open. It now follows from Theorem 5.14 that: the restriction of the partition (1.2) to the perfect kernel

KpBSpm, nqq " ğ qPQm,n K q pBSpm, nqq, (1.3) 
where K q pBSpm, nqq :" KpBSpm, nqq X Ph ´1pqq, satisfies all the conclusions of Theorem B. The pieces K q pBSpm, nqq are indeed non-empty, see Remark 5.12.

Approximations by subgroups of other phenotypes

We still stick to the case |m| ‰ 1 and |n| ‰ 1. Since the only non-open piece in partition (1.2) is Ph ´1p8q, the subgroups of infinite phenotype are the only ones which can be approximated in SubpBSpm, nqq by subgroups of other (that is, finite) phenotypes.

The set of limits of subgroups of finite phenotype depends on whether we fix the phenotype or we let it vary. About approximations by subgroups with a constant phenotype, we have the following result (see Proposition 5.8 and Theorem 6.2).

Theorem D. Assume |m|, |n| ‰ 1 and let us fix a finite pm, nq-phenotype q.

1. If |m| " |n|, then Ph ´1pqq is closed, hence no infinite phenotype subgroup can be approximated by subgroups of phenotype q. 2. If |m| ‰ |n|, then an infinite phenotype subgroup Λ can be approximated by subgroups of phenotype q if and only if Λ ď xxbyy, where xxbyy is the normal subgroup generated by b.

It is remarkable that the set Ph ´1pqq X Ph ´1p8q is independent of q in the previous result.

Allowing the finite phenotype to vary yields new limit points. Our result is the following (see Proposition 6.7 and Corollary 6.11).

Theorem E. Assume |m|, |n| ‰ 1.

1. If |m| " |n| then every infinite phenotype subgroup is a limit of finite (and varying) phenotypes subgroups. 2. On the contrary, if |m| ‰ |n|, then the set of subgroups in Ph ´1p8q which are limits of finite (and varying) phenotypes subgroups has empty interior in Ph ´1p8q.

Therefore, in the case |m| " |n|, all subgroups of infinite phenotype are limits of subgroups of finite phenotype, but none of them is a limit of subgroups of fixed finite phenotype.

The case |m| ‰ |n| is more complex. We do not have a nice description of the limit set from the above theorem. We can show however that this limit set is strictly larger than its fixed phenotype counterpart, see Proposition 6.12 and Theorem 6.14.

Closures of orbits in finite phenotype

We still stick to the case |m| ‰ 1, |n| ‰ 1, and assume moreover |m| ‰ |n|. The previous subsection shows that for any finite phenotype q, we have

Ph ´1pqq Ĺ Ph ´1pqq Ĺ Ph ´1pqq Y Ph ´1p8q.
Theorem B yields that Ph ´1pqq contains orbits that are unbounded (i.e. adherent to Ph ´1p8q). In Theorem D, we described their limit points. We now turn our attention to the bounded orbits. Quite remarkably, they form a compact set.

Theorem F (see Theorem 5.20). Suppose |m|, |n| ‰ 1 and |m| ‰ |n|. For every finite phenotype q, there is a positive integer s " spq, m, nq such that the subset MC q :" Ph ´1pqq X tΛ P SubpBSpm, nqq : Λ ě xxb s yyu is compact and contains all the invariant compact subsets of Ph ´1pqq.

In particular every normal subgroup of phenotype q, and hence every finite index subgroup, contains xxb s yy. Moreover, MC q X K q pBSpm, nqq has empty interior in K q pBSpm, nqq (Theorem 5.20-(4)).

When gcdpm, nq " 1, the above theorem takes an easier form: s " q and MC q X KpBSpm, nqq " txxb q yyu. In particular, xxb q yy is the unique normal subgroup of phenotype q and infinite index, see Theorem 5.20-(5). On the other hand, if gcdpm, nq ‰ 1, then the perfect kernel contains continuum many normal subgroups of phenotype q, see Theorem 5.24.

An example: the case of BSp2, 3q

Let us specialize our theorems to the case of BSp2, 3q. An illustrative picture is given in Figure 1.

Since 2 ‰ 3, Theorem A tells us that KpBSp2, 3qq " Sub r8s pBSp2, 3qq. In this case the phenotype is given by the following simple formula

PhpΛq " I 2 |I| 2 3 |I| 3
where I :" rxby : Λ X xbys. Therefore, the possible phenotypes for the subgroups of BSp2, 3q are given by all the positive integers not divisible by 2 and 3, and infinity. Denoting K q " tΛ ď BSp2, 3q : PhpΛq " qu, the partition (1.3) becomes KpBSp2, 3qq " K 8 \ ğ q : gcdpq,2q"gcdpq,3q"1

K q .
By Theorem B, the action on each K q is topologically transitive. Note that all finite index subgroups have finite phenotype. The set K 8 is closed and colored in black in Figure 1; the subsets K q are open and colored in gray in the figure. Finally the finite index subgroups are denoted by the dotted lines. Note that there are infinitely many finite index subgroups and they accumulate on the sets K q . Note that for every finite q, the set K q XK 8 is non-empty and independent of q; indeed by Theorem D this is the set of subgroups of infinite phenotype contained in xxbyy. This set is illustrated as the black central disk in the figure. As one can guess in the figure, Y q finite K q is strictly bigger than this set, and yet not the entirety of K 8 , as prescribed by Theorem E.

We finally apply Theorem F. Since gcdp2, 3q " 1, for every finite phenotype q the largest compact invariant subset of K q consists only of one point: the unique normal subgroup xxb q yy contained in K q , pictured with a star in the figure .   Remark. Figure 1 is actually quite general: as soon as |m| ‰ |n|, we have the exact same picture except that the possible phenotypes are different, and the stars turn into bigger compact maximal invariant subsets. Moreover, the phenotype is given by a more complicated formula.

Some ideas on the techniques of proofs

Topology questions lead us to look at the trace of transitive actions on some parts of their Schreier graph and most statements consist in assembling such parts from different actions (to form new actions): this leads us to the notion of pre-action, as considered in [FMMS20], where to facilitate the verification of the group relation, we impose that b is defined everywhere, i.e. on the whole domain of the pre-action (see Section 3.1). These pre-actions are more malleable but the algebraic conditions underlying them still make them difficult to manipulate.

We then move on to purely combinatorial objects associated with actions and pre-actions: the pm, nq-graphs (Section 3.3). These are oriented graphs which carry labels on the vertices and on the edges and which satisfy simple arithmetic conditions linking valences and labels (Definition 3.12, equalities (3.13) and inequalities (3.14)). They generalize the Bass-Serre graphs of preactions used in [FMMS20] by adding their labels which record the size of the orbits of b, b m or b n according to the graph element considered. Notice that in [FMMS20] the b-orbits were assumed to be infinite.

All the vertex labels of a connected pm, nq-graph have the same pm, nqphenotype (Proposition 4.6) which is thus defined to be the phenotype of the graph (Definition 4.8).

We have some gluing results between two pm, nq-graphs. The phenotype is a complete invariant of gluing, more precisely: consider two connected pm, nq-graphs that are non-saturated (at least one of the inequalities (3.14) is strict); then they can appear as subgraphs of the same pm, nq-graph if and only if they have the same phenotype (Theorem 4.13). This relies on the Welding Lemma 4.16 and the Connecting Theorem 4.17.

We then have statements that allow us to upgrade pm, nq-graphs to preactions. These upgrades are not univocal, however if an pm, nq-graph G 2 contains the pm, nq-graph G 1 of a pre-action α 1 , then the upgraded pre-action α 2 can be chosen to extend α 1 (Proposition 3.23).

We will thus use several times the following construction scheme: considering two actions, we restrict them to their traces on large but proper parts of their domain. We degrade the resulting pre-actions to pm, nq-graphs and glue them together. We saturate the resulting pm, nq-graph and upgrade it into an action which "contains" the traces of the original actions. 

Preliminaries and notations

In this text, we denote by Z ě0 :" t0, 1, 2, . . .u the set of non-negative integers and by Z ě1 :" t1, 2, 3, . . .u the set of positive integers. Given two integers k, l P Zzt0u, we denote by gcdpk, lq P Z ě1 the greatest common divisor of k and l. We use the convention that gcdpk, 8q " k and 8 k " k8 " 8. Let P be the set of prime numbers. Given an integer k P Zzt0u and a prime p P P, we denote by |k| p the p-adic valuation of k, that is |k| p is the largest positive integer such that p |k| p divides k.

Graphs and Schreier graphs

All our graphs are defined as in [START_REF] Serre | Trees[END_REF]. That is, a graph G is a couple pV pGq, EpGqq where V pGq is the vertex set and EpGq is the edge set, endowed with:

• two maps s, t : EpGq Ñ V pGq called source and target respectively;

• a fixed-point-free involution EpGq Ñ EpGq, e Þ Ñ ē;

such that spēq " tpeq and tpēq " speq.

An orientation of the graph G is a partition EpGq " E `pGq \ E ´pGq whose pieces are exchanged by the involution e Þ Ñ ē. Edges in E `pGq are called positive edges and edges in E ´pGq are negative.

Remark 2.1. In order to define an oriented graph G, it is enough to define the set of vertices V pGq, the set of positive edges E `pGq, and the restrictions of the source and target maps s, t to E `pGq. Indeed, we can define E ´pGq to be a copy of E `pGq and the involution e Þ Ñ ē to be the natural identification of E `pGq with E ´pGq. We extend the source and target map by setting spēq :" tpeq and tpēq :" speq.

The degree a vertex v in a graph G, is the cardinal degpvq :" |te P EpGq : speq " vu| " |te P EpGq : tpeq " vu|.

If G is oriented, we say that an edge e is:

• a v-outgoing edge if it is positive and speq " v;

• a v-incoming edge if it is positive and tpeq " v. The outgoing degree deg out pvq of v is the number of v-outgoing edges while its incoming degree deg in pvq is the number of v-incoming edges. We clearly have deg out pvq `deg in pvq " degpvq.

A subgraph G 1 of a graph G is a graph such that V pG 1 q Ď V pGq, EpG 1 q Ď EpGq and the structural maps of G 1 are restrictions of those of G.

Still following [START_REF] Serre | Trees[END_REF], we call circuit a subgraph isomorphic to a circular graph (of length l ě 1) and loop a circuit of length 1. We also call loop an edge such that speq " tpeq. A path in a graph G is a finite sequence of edges pe 1 , . . . , e n q, such that for all 1 ď k ď n ´1, tpe k q " spe k`1 q. Similarly, an infinite path is a sequence of edges pe k q kě1 such that tpe k q " spe k`1 q for all k ě 1. Finally a (possibly infinite) path is called simple when the induced sequence of vertices is injective.

The ball Bpv, Rq of radius R centered at a vertex v in a graph G is the subgraph induced by the set of vertices of G at distance ď R from v in the path metric.

Schreier graphs Let Γ be a group and let S be a generating set of Γ. Consider a (right) action α : X ð Γ. The Schreier graph of α relatively to S is the oriented graph Schpαq " Schpα, Sq defined by V pSchpαqq :" X and E `pSchpαqq :" tpx, sq : x P X, s P Su where spx, sq " x and tpx, sq " xs, together with the following labeling: the edge px, sq is labeled s and its opposite px, sq is labeled by s ´1.

Given a subgroup Λ ď Γ, we denote by SchpΛ, Sq the Schreier graph of the natural action ΛzΓ ð Γ.

The Cayley graph of Γ relatively to S is the Schreier graph Schpα, Sq of the action α : Γ ð Γ by (right) translations. This graph is denoted by CaypΓ, Sq and clearly CaypΓ, Sq " Schptidu, Sq. The Γ-action by left translations extends to the standard left action of Γ on CaypΓ, Sq by graph automorphisms1 . In particular ΛzCaypΓ, Sq " SchpΛ, Sq.

Let φ : X Ñ Y be a Γ-equivariant map from α : X ð Γ to β : Y ð Γ and let S be a generating set of Γ. The map φ extends to a graph morphism from Schpα, Sq to Schpβ, Sq which respects the labelings. In particular, given subgroups Λ 1 ď Λ 2 ď Γ, the equivariant map Λ 1 zΓ Ñ Λ 2 zΓ defines a surjective morphism SchpΛ 1 , Sq Ñ SchpΛ 2 , Sq.

Space of subgroups

Let Γ be a countable group. We identify its set of subsets with t0, 1u Γ and we endow it with the product topology, thus turning it into a Polish compact space. The space of subgroups of Γ is the closed, hence compact Polish, subspace SubpΓq :" tΛ P t0, 1u Γ : Λ is a subgroupu, which is also totally disconnected. The clopen subsets VpI, Oq :" tΛ P SubpΓq : I Ď Λ and Λ X O " Hu of SubpΓq where I, O run over finite subsets of Γ, form a basis of the topology. Note that a sequence pΛ n q ně0 of subgroups converges to Λ if and only if for all γ P Γ, pγ P Λq ðñ pγ P Λ i for i large enoughq . By the Cantor-Bendixson Theorem [Can1884, Ben1883] (see e.g. [Kec95, Thm. 6.4]), there is a unique decomposition

SubpΓq " CpΓq \ KpΓq
where CpΓq is a countable open subset and KpΓq is a closed perfect 2 subspace called the perfect kernel of Γ. The set KpΓq is the largest subset K Ď SubpΓq without isolated points for the induced topology. In fact, KpΓq is exactly the set of condensation points, that is, the points whose neighborhoods in SubpΓq are all uncountable.

Remark 2.2. By a theorem of Brouwer, the space KpΓq is either empty or a Cantor space, see [Kec95, Thm. 7.4].

Remark 2.3. The subset Sub r8s of infinite index subgroups of Γ is closed in Γ if and only if Γ is finitely generated. Indeed if Γ is finitely generated, then its finite index subgroups are isolated. If Γ is not finitely generated, then all its finite index subgroups are not finitely generated. Such a subgroup is a limit of finitely generated subgroups, thus of infinite index.

The group Γ acts (on the right) by conjugation via Λ ¨γ :" γ ´1Λγ on the space of its subgroups SubpΓq. This action is continuous and the Cantor-Bendixson decomposition SubpΓq " CpΓq \ KpΓq is Γ-invariant.

By the Baire category theorem, any countable closed subset of SubpΓq contains an isolated point, so SubpΓq has trivial perfect kernel if and only if it is countable. The following well-known proposition is useful for showing the latter property.

Proposition 2.4. Let Γ be a countable group, let N be a normal subgroup of Γ such that Γ{N is Noetherian (all its subgroups are finitely generated), and assume that SubpN q is countable. Then SubpΓq is countable.

Proof. Let Λ ď Γ and denote by π : Γ Ñ Γ{N the quotient map. Since Γ{N is Noetherian, we have πpΛq " xSy for some finite set S. Fix a finite set S 1 Ď Λ such that πpS 1 q " S. Then we can recover Λ from S 1 and its intersection with N as Λ " xS 1 Y pΛ X N qy .

In other words, the map pS 1 , N 1 q Þ Ñ xS 1 Y N 1 y surjects P f pΓq ˆSubpN q onto SubpΓq, where P f pΓq is the set of finite subsets of Γ, which is countable. Since SubpN q is countable as well we conclude that SubpΓq is countable.

Corollary 2.5. If |m| " 1 or |n| " 1 then SubpBSpm, nqq is countable.
Sketch of proof. We sketch the proof contained in [START_REF] Becker | Stability and invariant random subgroups[END_REF]Cor. 8.4]. By symmetry we may as well assume m " 1. Then BSpm, nq is isomorphic to the semi-direct product Zr1{ns ¸Z where Z acts by multiplication by n. As explained in the proof of [BLT19, Cor. 8.4], SubpZr1{nsq is countable, so the result follows from the previous proposition.

Space of pointed actions Let us now interpret the topological space

SubpΓq in terms of pointed transitive group actions and their pointed Schreier graphs. To any pointed transitive group action pα, vq, where α : V ð Γ and v P V , we associate the stabilizer Stab α pvq P SubpΓq, and we notice that Stab α 1 pv 1 q " Stab α 2 pv 2 q if and only if pα 1 , v 1 q and pα 2 , v 2 q are isomorphic as pointed transitive actions.

Notation 2.6. We denote by rα, vs the isomorphism class of any pointed transitive action pα, vq.

We therefore have a canonical bijection rα, vs Þ Ñ Stab α pvq between the collection of isomorphism classes of pointed transitive actions and SubpΓq. Its inverse is given by Λ Þ Ñ rΛzΓ ð Γ, Λs. Through this bijection, the action by conjugation of Γ on SubpΓq becomes rα, vs ¨γ " rα, vαpγqs, i.e., it moves the basepoint.

Via the above identification, we obtain a topology on the set of isomorphism classes of pointed actions rα, vs.

It is clear that two pointed actions are isomorphic if and only if their Schreier graphs are isomorphic as pointed labeled graphs. Given two pointed labeled oriented graphs pG, vq, pH, wq and a positive integer R, we write pG, vq » R pH, wq to mean that the R-balls around v in G and around w in H are isomorphic as pointed oriented labeled graphs. It is an exercise to check that if Γ is generated by a finite set S, then the sets of the form N prα, vs, Rq :"

␣ rα 1 , v 1 s : pSchpα, Sq, vq » R pSchpα 1 , Sq, v 1 q ( , (2.7) 
constitute a basis of clopen neighborhoods of rα, vs.

Bass-Serre theory

Associated with the standard HNN-presentation of

BSpm, nq " @ b, t|tb m t ´1 " b n D ,
we have the BSpm, nq-action on its Bass-Serre tree T . Recall that T is the oriented tree with V pT q " BSpm, nq{ xby, E `pT q " BSpm, nq{ xb n y, spγ xb n yq " γ xby , and tpγ xb n yq " γt xby and given a subgroup Λ ď BSpm, nq, the quotient ΛzT has the structure of a graph of groups whose fundamental group is Λ, see [START_REF] Serre | Trees[END_REF].

Remark 2.8. Let Λ ď BSpm, nq be a subgroup. If Λ X xby " tidu, then Λ acts freely on T ; thus it is the fundamental group of the quotient graph ΛzT , hence Λ is a free group.

Let us now concentrate on a subgroup Λ ď BSpm, nq such that Λ X xby ‰ tidu. Then for the induced action Λ ñ T , each edge and vertex stabilizer is infinite cyclic: the tree T is a GBS-tree (for Generalized Baumslag-Solitar), in the sense of [START_REF] Forester | Splittings of generalized Baumslag-Solitar groups[END_REF][START_REF] Levitt | On the automorphism group of generalized Baumslag-Solitar groups[END_REF]. One can use this point of view to understand the graph of groups description of Λ. However, taking advantage of the transitivity of the BSpm, nq-action on the edges and the vertices, we provide a slightly more precise description.

Proposition 2.9. Let m and n be non-zero integers. Let Λ ď BSpm, nq be a subgroup such that Λ X xby ‰ tidu. The quotient graph of groups arising from the action Λ ñ T is isomorphic to the graph of groups obtained by attaching a copy of Z to every vertex and every edge of the quotient graph ΛzT , with structural maps of positive edges

Z e ãÑ Z speq , k Þ Ñ n deg out pspeqq ¨k, Z e ãÑ Z tpeq , k Þ Ñ m deg in ptpeqq ¨k.
Proof. In this proof we set Γ :" BSpm, nq. Let us consider the action of Λ on the tree T . Since T is locally finite, any edge adjacent to a vertex with infinite stabilizer has itself infinite stabilizer. It follows that all vertex and edge Λ-stabilizers are infinite. Being subgroups of the Γ-stabilizers, they are all isomorphic to Z.

Observe that since Γ acts transitively and the Γ-stabilizers are abelian, the Γ-stabilizers are canonically pairwise isomorphic: given any vertex u P V pT q and a P Stab Γ puq, one has gag ´1 " hah ´1 for any g, h P Γ such that gu " hu.

(2.10) Indeed since h ´1g P Stab Γ puq, we get that h ´1gag ´1h " a.

We now focus on the quotient graph of groups arising from the action Λ ñ T . Let us recall from [START_REF] Serre | Trees[END_REF] that its vertex groups are G v :" Stab Λ pṽq and edge groups are G e :" Stab Λ pẽq, where ṽ, ẽ are some lifts of v, e in T . Given any e P E `pΛzT q, the structural map G e ãÑ G tpeq is

G e " Stab Λ pẽq ãÑ Stab Λ ptpẽqq Ñ Stab Λ ´Ą tpeq ¯" G tpeq a Þ Ñ a Þ Ñ gag ´1 (2.11)
where g P Λ is any element such that g ¨tpẽq " Ą tpeq and the map G e ãÑ G speq is similar. This is unambiguous by (2.10).

Let us call orientation of an infinite cyclic group the choice of one generator (over two). This provides an identification to Z. Once every stabilizer is oriented, the inclusions G e ãÑ G speq and G e ãÑ G tpeq become multiplications by non-zero integers λ Λ peq and λ Λ peq, respectively. It now suffices to prove that, for well-chosen orientations, one has

λ Λ peq " n deg out pspeqq and λ Λ peq " m deg in ptpeqq (2.12)
for every positive edge e P E `pΛzT q.

Let us first observe that the absolute value of λ Λ peq does not depend on the orientations: it is equal to rG v : G e s. In other words, if ẽ is a lift of e, ṽ :" spẽq " and w :" tpẽq, we have

λ Λ peq " rStab Λ pṽq : Stab Λ pẽqs " |Stab Λ pṽq ¨ẽ| (2.13) λ Λ peq " rStab Λ p wq : Stab Λ pẽqs " |Stab Λ p wq ¨ẽ| . (2.14)
Let E out pṽq be the set of ṽ-outgoing edges. Its cardinal is |E out pṽq| " |n|. Any generator of Stab Γ pṽq acts as a single |n|-cycle on E out pṽq. Hence E out pṽq splits into Stab Λ pṽq-orbits of equal size, that is λ Λ peq according to (2.13). The number of these Stab Λ pṽq-orbits is deg out pvq, thus |n| " λ Λ peq deg out pvq. We obtain similarly |m| " λ Λ peq ¨deg in pwq, using ingoing edges and (2.14). We have established that (2.12) holds in absolute value.

Let us now turn to the signs in (2.12), for which we need explicit orientations of the Λ-stabilizers. We actually start by orienting the Γ-stabilizers.

Pick the vertex ũ0 :" xby P V pT q, then Stab Γ pũ 0 q " xby and the edge d0 :" xb n y P E `pT q has source ũ0 and target tũ 0 . Since the Γ-stabilizers are canonically pairwise identified by conjugation (2.10), these choices induce a canonical conjugation-invariant orientation x ˚of all the vertex and edge Γ-stabilizers: x g ũ0 :" gbg ´1 for Stab Γ pgũ 0 q and x g d0 :" gb n g ´1 for Stab Γ pg d0 q.

The inclusions Stab Γ pẽq ãÑ Stab Γ pspẽqq and Stab Γ pẽq ãÑ Stab Γ ptpẽqq become multiplications by non-zero integers that we denote by µ Γ pẽq and µ Γ pẽq. We have µ Γ pẽq " n since x ẽ " x n spẽq and µ Γ pẽq " m since x ẽ " gb n g ´1 " gptbt ´1q m g ´1 " x m tpẽq . The Λ-stabilizers have finite index in the corresponding Γ-stabilizers. We orient them coherently with the ambient Γ-stabilizers by using positive powers. The Λ-conjugations between Λ-stabilizers remain orientation-preserving, therefore by (2.11) the inclusion Stab Λ pẽq ãÑ Stab Λ ptpẽqq becomes the multiplication by λ Λ peq. Similarly, the inclusion Stab Λ pẽq ãÑ Stab Λ pspẽqq becomes multiplication by λ Λ peq. Since the orientations are coherent, we conclude that λ Λ peq has the same sign as µ Γ peq " n and λ Λ peq has the same sign as µ Γ peq " m.

Corollary 2.15. Let m and n be non-zero integers. Let Λ ď BSpm, nq be a subgroup such that Λ X xby ‰ tidu. The isomorphism type of Λ is completely determined by the oriented graph ΛzT .

Proposition 2.16. Let m and n be non-zero integers and let Λ ď BSpm, nq be a subgroup.

1. If Λ X xby ‰ tidu, then either Λ » Z is virtually a subgroup of xby or Λ is not a free group. 2. If |m| " 1 or |n| " 1, then the fundamental group of the underlying graph ΛzT has rank ď 1.

The first item of the proposition follows from standard techniques in ℓ 2cohomology: if Λ X xby ‰ tidu, then Λ is the fundamental group of a graph of groups whose vertex and edge groups are isomorphic to Z; all the ℓ 2 -Betti numbers of such a group vanish. For the comfort of the reader we propose a proof by hand.

Proof. We start with the first item. Recall that in a free group F , whenever non-trivial elements g, h P F satisfy gh k g ´1 " h l with k ‰ 0 ‰ l, then there is a P F such that g, h are both powers of a. In particular, such elements g, h always commute. Now, assume that Λ is free and Λ X xby ‰ tidu, say Λ X xby " xb s y where s ą 0. Pick any λ P Λ and set H λ :" xb s yXλ xb s y λ ´1, which is the intersection of Λ with the stabilizer of the geodesic rxby , λ xbys in T . Observe that H λ is a finite index subgroup of both xb s y and λ xb s y λ ´1. Therefore, there are k ‰ 0 ‰ l such that λb sk λ ´1 " b sl . As Λ is free, λ and b s commute.

Consequently, the center of Λ contains xb s y. Thus, the rank of Λ is 1; in other words Λ is infinite cyclic. It is now clear that xb s y has finite index in both Λ and xby, so that Λ is virtually a subgroup of xby.

Let us turn to the second item. The fundamental group of a graph of groups surjects onto the fundamental group of the underlying graph. The condition in Item 2 implies the amenability of BSpm, nq. It thus cannot surject onto a non-amenable free group.

3 Bass-Serre graphs

Pre-actions

Let m, n P Zzt0u. Recall that BSpm, nq " xb, t | tb m " b n ty and that our actions are on the right. Accordingly, in a product of (partial) bijections στ , σ is applied first. Definition 3.1. Given a bijection β of a set X and a partial bijection τ of X, we say that τ is pβ n , β m q-equivariant if τ β m " β n τ as partial bijections, that is:

• dompτ q is β n -invariant; • rngpτ q is β m -invariant;
• xτ β m " xβ n τ for all x P dompτ q. A pre-action of BSpm, nq on a set X is a couple pβ, τ q where β is a bijection of X and τ is a pβ n , β m q-equivariant partial bijection of X. The set X is called the domain of the pre-action. Such a pre-action is saturated if dompτ q " X " rngpτ q.

Remark 3.2. Saturated pre-actions pβ, τ q correspond to actions α of BSpm, nq on the same set X under the association β Ø αpbq and τ Ø αptq. Definition 3.3. Given a pre-action pβ, τ q of BSpm, nq, its Schreier graph is the oriented labeled graph Schpβ, τ q " G defined by V pGq :" X, " E `pGq :" X ˆtbu \ dompτ q ˆttu, E ´pGq :" X ˆtb ´1u \ rngpτ q ˆtt ´1u,

where the label of any edge is its second component and:

• for all x P X, we set spx, bq :" x, tpx, bq :" xβ, and px, bq :" pxβ, b ´1q;

• for all x P dompτ q, we set spx, tq :" x, tpx, tq :" xτ, and px, tq :" pxτ, t ´1q.

Notice that the orientation of any edge px, lq is determined by its label l and that the source of px, lq is x, regardless of its orientation.

Noting that a BSpm, nq-action is transitive if and only if the associated Schreier graph is connected, we make the following definition. Definition 3.4. A pre-action of BSpm, nq is transitive if its Schreier graph is connected.

Bass-Serre graphs

We now introduce an important tool for our study. It is the labeled graph obtained from the Schreier graph defined in Section 3.1 by "shrinking each β-orbit to one point". We identify together the t-edges whose initial vertices belong to the same β n -orbit. Note that their terminal vertices automatically belong to the same β m -orbit.

We label the vertices by the cardinality of the corresponding β-orbit and the edges by the cardinality of the corresponding β n -orbit. This is illustrated by Figure 2. The formal definition is as follows.

Definition 3.5. The Bass-Serre graph associated to a pre-action α " pβ, τ q of BSpm, nq on a set X is the oriented labeled graph BSpαq defined by Remark 3.6. For any x P dompτ q, the pβ n , β m q-equivariant partial bijection τ induces a bijection from xxβ n y to xτ xβ m y. Thus both the target and the opposite maps of BSpαq are well-defined and the label of each edge is equal to the label of its opposite.

Remark 3.7. We view the sets E `pBSpαqq and E ´pBSpαqq as disjoint sets, even though we might have that dompτ q{ xβ n y X rngpτ q{ xβ m y ‰ H. Note that the source of an edge x @ β k D P E ˘pBSpαqq is x xβy regardless of its orientation.

Remark 3.8. The groups BSpm, nq and BSpn, mq are isomorphic via b Þ Ñ b and t Þ Ñ t ´1. For every pre-action pβ, τ q of BSpm, nq, the couple pβ, τ ´1q is a pre-action of BSpn, mq. At the level of Bass-Serre graphs, BSpβ, τ q and BSpβ, τ ´1q coincide, except that the orientation is reversed. Remark 3.9. In the case of a transitive BSpm, nq-action, the graph underlying our Bass-Serre graph is the quotient of the Bass-Serre tree T by the stabilizer of any point of X, as will be explained Section 3.6.

We now clarify what we meant by "shrinking each β-orbit to a point", by noting that we have the following simplicial map from the Schreier graph to the Bass-Serre graph of any pre-action.

Definition 3.10. The projection associated to a pre-action α " pβ, τ q is the application π α given by This projection is illustrated in Figure 2. Given any subgraph G Ď Schpαq or path p in Schpαq we obtain a subgraph π α pGq Ď BSpαq or a path π α ppq in BSpαq. Note that for every vertex v " x xβy,

V pSchpαqq Ñ V pBSpαqq, x Þ Ñ x xβy E t pSchpαqq Ñ E `pBSpαqq, px, tq Þ Ñ x xβ n y E t pSchpαqq Ñ E ´pBSpαqq, px, t ´1q Þ Ñ x xβ m y E b pSchpαqq Ñ V pBSpαqq, px, b ˘1q Þ Ñ x
x @ β k D " |x xβy| gcdp|x xβy| , kq ,
thus the following facts hold: • all the v-outgoing edges e have the same label, which is:

Lpeq " Lpvq gcdpLpvq, nq ,
• all the v-incoming edges e 1 have the same label, which is:

Lpe 1 q " Lpvq gcdpLpvq, mq .
We also have the following relations between labels and degrees:

• The outgoing degree deg out pvq is equal to the number of β n -orbits contained in x xβy X dompτ q. Recall that dompτ q is β n -invariant. Since 

x

pm, nq-graphs

We now introduce an axiomatization of the Bass-Serre graphs we obtain from pre-actions. Recall that by convention gcdp8, kq " |k| for all k ‰ 0.

Definition 3.12. An pm, nq-graph is an oriented labeled graph G " pV, Eq with label map L : In Figure 3, we give an illustrative example.

V \ E Ñ Z ě1 Y
Remark 3.18. As in Remark 3.8, every pm, nq-graph can be turned into an pn, mq-graph by flipping the orientations of its edges. Note that this operation does not affect the labels.

Remark 3.19. In a connected pm, nq-graph, the labels are, either all finite, or all 8 by Equation (3.13). This will be made more precise in Proposition 4.6. Observe that any oriented graph G satisfying deg in pvq ď m and deg out pvq ď n for every v P V pGq becomes an pm, nq-graph if we set all the labels to be infinite. However one cannot always put finite labels, see Lemma 3.33. The pm, nq-graph G is saturated if all its vertices are saturated.

Example 3.21. The Bass-Serre graph of a pre-action of BSpm, nq is saturated if and only if the pre-action is an action.

Realizing pm, nq-graphs as Bass-Serre graphs

Proposition 3.22. Every pm, nq-graph G is the Bass-Serre graph of at least one pre-action of BSpm, nq. Any such pre-action is an action if and only if G is saturated.

The above proposition is a consequence of the following stronger statement where by definition, a sub-pm, nq-graph of an pm, nq-graph G is a subgraph G 1 labeled by the restriction of the label map of G.

Proposition 3.23 (Extension of pre-actions from pm, nq-graphs). Let G 1 be the Bass-Serre graph of a pre-action α 1 and let G 2 be an pm, nq-graph that contains G 1 as a sub-pm, nq-graph. Then G 2 is the Bass-Serre graph of a pre-action α 2 that extends α 1 .

Proof. We start with a pre-action pβ 1 , τ 1 q on X 1 which yields the Bass-Serre graph G 1 . Let W :" V pG 2 qzV pG 1 q and X 2 :" X 1 \ Ů vPW X v where each X v is a set of cardinality |X v | " Lpvq. We extend β 1 to a permutation β 2 of X 2 by making it act as a cycle of length Lpvq on X v . By Zorn's lemma, it suffices to extend τ 1 when G 1 only lacks one positive G 2 -edge. So suppose E `pG 1 q \ teu " E `pG 2 q. Then by Inequation (3.14) from Definition 3.12,

deg G 1 out pspeqq ă deg G 2 out pspeqq ď gcdpLpspeqq, nq
and similarly

deg G 1 in ptpeqq ă deg G 2 in ptpeqq ď gcdpLptpeqq, mq.
We can thus find a β n -orbit y xβ n y contained in the β-orbit speq xβy but disjoint from dompτ 1 q and a β m -orbit z xβ m y contained in the β-orbit tpeq xβy but disjoint from rngpτ 1 q. Since these two orbits y xβ n y and z xβ m y share the same cardinal Lpeq, we can define τ 2 as an extension of τ 1 which is also pβ n , β m q-equivariant when restricted to y xβ n y by letting yβ kn τ 2 " zβ km for all k P Z.

By construction τ 2 is the desired extension.

The pre-action α 2 arising in Proposition 3.23 is definitively not unique in general. In a forthcoming work, we will characterize which pm, nq-graphs arise as Bass-Serre graphs of continuum many non-isomorphic actions. In particular we will show that the pm, nq-graphs whose underlying graph have non-finitely generated fundamental group are of this kind. Such pm, nqgraphs always exist as soon as |m| ě 2 and |n| ě 2. Here we give a simple example of a graph associated to continuum many non-isomorphic actions for n " m " 2.

Example 3.24. Let G be the p2, 2q-graph whose underlying graph is such that V pGq " Z and for every z P V pGq there are exactly two z-outgoing edges, one to z and the other to z `1. That is, G is a line where every vertex has an extra loop. We set the labels of G to be all infinite.

Set X :" V pGq ˆZ -Z ˆZ. For every function f : Z Ñ Z such that @w ă 0, f pwq " 0 and f p0q ‰ 0, we define an action α f as follows: for all 8 8 8 8

Figure 4: The (2,2)-graph G pk, lq P X pk, lqα f pbq :"pk, l `1q; pk, lqα f ptq :"

# pk `1, lq if l is odd; pk, l `f pkqq if l is even.
It is easy to check that all α f are actions of BSp2, 2q whose Bass-Serre graph is G, that α f and α g are non-conjugate for f ‰ g, and that there are continuum many such actions.

Additional properties of pm, nq-graphs

In this section, we collect some basic consequences of the definition of for all k ě 1. The first result follows.

For the second one, let pe k q kě1 be an infinite path consisting of negative edges. By exchanging the roles in Equation (3.29), we have that if |Lpspe k qq| p ą |m| p then |Lpspe k`1 qq| p ă |Lpspe k qq| p . So there must be k 0 P N such that |Lpspe k 0 qq| p ď |m| p . We then have |Lpspe k 0 `1qq| p ď |n| p ă |m| p so by induction |Lpspe k qq| p ă |m| p for all k ě k 0 , which finishes the proof.

Remark 3.32. It follows from Equation (3.31) that any infinite path pe k q kě1 consisting of positive edges with Lpspe 1 qq ‰ 8 and |Lpspe 1 qq| p ą |n| p has to be a simple path.

Lemma 3.33. If |m| ą |n| and G is an pm, nq-graph with a vertex of finite label, then there is a vertex v P V pGq such that deg in pvq ă |m|.

Proof. Assume by contradiction that deg in pvq " |m| for all v P V pGq. Then we can build inductively an infinite path pe k q kPN consisting of negative edges with Lpspe 0 qq finite. By the previous lemma this path goes through some vertex v 0 that |Lpv 0 q| p ă |m| p . Then deg in pv 0 q " gcdpLpv 0 q, mq ă |m|, a contradiction.

Bass-Serre graphs and Bass-Serre theory

Take m, n P Zzt0u. Set Γ :" BSpm, nq " xb, t|tb m t ´1 " b n y and put S :" tb, tu. Denote by T the associated Bass-Serre tree and remark that it is the underlying oriented graph of the Bass-Serre graph of the transitive and free action: T " BSpΓ ð Γq.

Besides the Schreier graph, we can associate to each subgroup Λ ď Γ two decorated graphs:

• the Bass-Serre graph of the action ΛzΓ ð Γ;

• the quotient graph of groups ΛzT of the action Λ ñ T . Let us observe that the underlying oriented graphs of the two above decorated graphs are the same. Indeed they are obtained as quotients of commuting actions as one can see in the following diagram where by ð V xby we mean that xby acts only on the set of vertices, where the Ö arrows are graph morphisms obtained by quotienting by left Λ-actions, and where the dashed OE arrows are projections as in Definition 3.10: 

Λ ñ CaypΓ, Sq ð V xby ΛzCaypΓ, Sq ð V xby Λ ñ BSpΓ ð Γq SchpΛ, Sq ð V xby Λ ñ T BSpΛzΓ ð Γq » ΛzT Next,

Phenotype

In this section, we introduce a central invariant to understand transitive BSpm, nq-(pre)-actions: the phenotype (see Definition 4.9). We first define the pm, nq-phenotype of a natural number. We then prove that given a transitive pre-action pτ, βq, all cardinalities of β-orbits have the same phenotype.

Phenotypes of pm, nq-graphs

If v is a vertex of an pm, nq-graph, we use the shorter expression "phenotype of the vertex v" to mean "phenotype of the label of the vertex v". The key feature of the notion of phenotype is the following statement.

Proposition 4.6. The vertices of a connected pm, nq-graph all have the same pm, nq-phenotype.

Proof. It is enough to check that for any positive edge e from v ´to v `, the phenotypes of v ´and v `are the same. If the phenotype of one of them is infinite, then this is a direct consequence of Equation (3.13) from Definition 3.12. Otherwise, remark that for every positive integer k and every p P P m,n , ˇˇˇk gcdpk, nq ˇˇˇp ą 0 ô p P P m,n pkq. gcdpLpv `q, mq ˇˇˇp " |Lpv `q| p ´|m| p .

Since |n| p " |m| p , we conclude that |Lpv ´q| p " |Lpv `q| p for all p P P m,n pLpv ´qq " P m,n pLpv `qq. Therefore Lpv ´q and Lpv `q share the same phenotype.

Remark 4.7. One can prove that the edges of a connected pm, nq-graph also all have the same pm, nq-phenotype. However, it is a coarser invariant: there are connected graphs with different vertex phenotypes, but with the same edge phenotype. For example, fix

m " 2 2 ¨32 ¨5, n " 2 2 ¨3
and consider the graph consisting of a single oriented edge e and its two endpoints. If the label of its origin is Lpspeqq " 2 3 ¨7, then

Lpeq " Lpspeqq gcdpLpspeqq, nq " 2 ¨7 and Ph m,n pLpeqq " 7

while Ph m,n pLpspeqq " 2 3 ¨7. If instead we set the label of its origin to be Lpspeqq " 2 4 ¨7, then we get

Lpeq " 2 2 ¨7 and PhpLpeqq " 7

while Ph m,n pLpspeqq " 2 4 ¨7 ‰ 2 3 ¨7. We will thus not use the phenotype of edges.

Proposition 4.6 allows us to define the phenotypes of connected pm, nqgraphs and transitive BSpm, nq-pre-actions.

Definition 4.8. The phenotype of a connected pm, nq-graph G is the common phenotype of the labels of its vertices. We denote it PhpGq.

Phenotypes of BSpm, nq-actions

Recall that a pre-action is transitive if its Schreier graph is connected, which is equivalent to its Bass-Serre graph being connected.

Definition 4.9. The phenotype of a transitive (pre)-action α of BSpm, nq is the common phenotype of the cardinalities Ph m,n p|x xby|q of its xby-orbits. We denote it Phpαq.

By definition, the phenotype of any transitive (pre)-action coincides with the phenotype of its Bass-Serre graph.

Remark 4.10. Any BSpm, nq-action with finite Bass-Serre graph and finite phenotype is necessarily an action on a finite set whose cardinality is the sum of the labels of the vertices.

For infinite phenotype, we have the following. Lemma 4.11. There exists an infinite phenotype transitive BSpm, nq-action with finite Bass-Serre graph if and only if |m| " |n|.

Proof. Consider an infinite phenotype BSpm, nq-action with finite Bass-Serre graph G. Since G is saturated, all its vertices have outgoing degree |n| and incoming degree |m|. But there must be globally as many outgoing edges as incoming edges, so since G is finite we must have |n| " |m|.

Conversely if |n| " |m|, consider the bouquet of |n| circles with edges and vertices labeled by 8, and observe that this is a connected saturated pm, nqgraph. Proposition 3.22 provides a transitive action having this labeled bouquet of circles as its finite Bass-Serre graph of infinite phenotype.

Merging pre-actions

In order to establish some of the main results of this article, we will need "cut and paste" operations on pre-actions, for instance:

• putting two prescribed pre-actions inside a single transitive action (useful for topological transitivity properties); • modifying an action so as to add or remove a circuit in its Schreier graph (useful to get a new action that is close but distinct from the original one). We now present these "cut and paste" operations. The main one is the following and the rest of this section will be devoted to its proof. Other useful results will appear in the course of the proof.

Theorem 4.12 (The merging machine). Assume |m| ě 2 and |n| ě 2. Let α 1 and α 2 two transitive non-saturated pre-actions of BSpm, nq with the same phenotype. There exists a transitive action α which contains copies of α 1 and α 2 with disjoint domains.

Given a pre-action α " pβ, τ q and two sub-pre-actions α 1 , α 2 , let us recall that the domain of α is the set dompβq " rngpβq. Notice that α 1 and α 2 have disjoint domains if and only if their Bass-Serre graphs BSpα 1 q and BSpα 2 q are disjoint (that is, have no common vertex) in BSpαq.

First, taking advantage of Proposition 3.23, we reduce to the case of pm, nq-graphs, for which the analogous result is the following.

Theorem 4.13 (The merging machine for pm, nq-graphs). Assume |m| ě 2 and |n| ě 2. Let G 1 and G 2 be two connected and non-saturated pm, nq-graphs with the same phenotype. There exists a connected and saturated pm, nq-graph G which contains disjoint copies of G 1 and G 2 .

Remark 4.14. The hypothesis that both |m|, |n| ě 2 is necessary. If m " 1 but |n| ‰ 1, we can consider the p1, nq-graph consisting of a single vertex with infinite label and only one loop. This graph is not saturated but it cannot be connected to another copy of itself. Indeed, the reader can check that the only saturated graph containing it admits a unique circuit, namely the loop itself.

Proof of Theorem 4.12 based on Theorem 4.13. The Bass-Serre graphs BSpα 1 q and BSpα 2 q are connected non-saturated pm, nq-graphs with the same phenotype. Therefore we can apply Theorem 4.13 to obtain a connected and saturated pm, nq-graph G which contains disjoint copies of BSpα 1 q and BSpα 2 q.

Then, we apply Proposition 3.23 to the pre-action α 1 \ α 2 , whose Bass-Serre graph BSpα 1 q \ BSpα 2 q is contained in G, to ensure the existence of a BSpm, nq-pre-action α which extends α 1 \ α 2 . Thus α extends both α 1 and α 2 with disjoint domains. Since G is connected and saturated, α is a transitive and saturated pre-action, i.e., it is a genuine transitive action of BSpm, nq that satisfies the requirements of Theorem 4.12.

We now present some general results we will use in order to prove Theorem 4.13. We begin with two easy properties of phenotypes which will be useful in the proof.

Lemma 4.15. For any k P Z ě1 , if q " Ph m,n pkq, then Ph m,n pqq " q and gcdpq, nq " gcdpq, mq.

Proof. We get directly from Definition 4.1 that |q| p " |k| p if p P P m,n pkq, and |q| p " 0 for the other primes p. Consequently, we get P m,n pqq " P m,n pkq and then Ph m,n pqq " Ph m,n pkq " q. Finally, since every prime p dividing q satisfies |m| p " |n| p and |n| p ă |q| p , we obtain gcdpq, nq " In the following lemma, by welding two vertices we mean taking the quotient graph obtained by identifying these vertices. Its proof is a direct consequence of the definition of an pm, nq-graph, so we omit it.

Lemma 4.16 (Welding lemma). Let m, n P Zzt0u and let G be an pm, nqgraph and v, w be two distinct vertices such that:

• L :" Lpvq " Lpwq;

• deg out pvq `deg out pwq ď gcdpn, Lq;

• deg in pvq `deg in pwq ď gcdpm, Lq. Welding together v and w delivers an pm, nq-graph.

Note that in this lemma G can be finite or infinite, connected or not. Together with the welding lemma, the following result will allow us to connect non saturated pm, nq-graphs via the well-known technique of arc welding.

Theorem 4.17 (Connecting lemma). Assume |m| ě 2 and |n| ě 2. Let k, ℓ P Z ě1 such that Ph m,n pkq " Ph m,n pℓq, and let ε k , ε ℓ P t`, ´u. There exists a pm, nq-graph G which is a simple edge path pe 1 , . . . , e h q of length h ě 1 such that:

• Lpspe 1 qq " k and Lptpe h qq " ℓ;

• the orientations of e 1 and e h are given by e 1 P EpGq ε k and e h P EpGq ε ℓ .

Proof. Observe that every pm, nq-graph can be turned into an pn, mq-graph by flipping the orientations of its edges. Note that this operation does not affect the labels nor its phenotype. We thus can restrict ourselves to the case where the orientation ε 1 of the first edge in the path is asked to be positive and no assumption is made on ε h . Let us set q :" Ph m,n pkq " Ph m,n pℓq.

We first treat the case k " q " ℓ. Recall from Lemma 4.15 that Ph m,n pqq " q and that we have gcdpm, qq " gcdpn, qq. Hence, there exists a pm, nq-graph with two vertices and a unique positive edge f 1 such that Lpspf 1 qq " q " Lptpf 1 qq, and Lpf 1 q " q gcdpm,qq " q gcdpn,qq . If ε h is positive, we are done. If not, consider a vertex v with label Lpvq " q gcdpn,qq m. We get gcdpm, Lpvqq " |m|, hence gcdpm, Lpvqq ě 2. Therefore, we can equip v with two distinct incoming positive edges f 1 , f 2 . Such edges have to be labeled by Lpvq gcdpm,Lpvqq " q gcdpn,qq so that we can label spf 1 q and spf 2 q by q, and pf 1 , f2 q is the path we are looking for. The theorem is thus proved for k " ℓ " q.

Let us now treat the case k ‰ q and ℓ " q. Recall that P m,n pkq " tp P P : |m| p " |n| p and |n| p ă |k| p u and Ph m,n pkq " ś pPPm,npkq p |k|p . Thus any number L P Z ě1 with phenotype q admits a unique decomposition as follows:

L " q ¨ź pPPzPm,npkq

|m| p ď|n| p p |L| p ź pPP |m| p ą|n| p p |L| p . (4.18)
In a first step, we construct (algorithmically) a simple path consisting of positive edges with vertices v 0 , v 1 , . . . , v r , such that v 0 has label k, and such that the decomposition of Lpv r q reduces to Lpv r q " q ¨ź pPP :

|m| p ą|n| p p |Lpvrq| p , (4.19)
that is, such that |Lpv r q| p " 0 whenever |m| p ď |n| p and p R P m,n pkq.

To do so, starting with i " 0 and Lpv 0 q " k, while Lpv i q has prime divisors p such that |m| p ď |n| p and p R P m,n pkq, we connect v i to a new vertex v i`1 by a positive edge f i . According to Remark 3.26, we label f i by |Lpf i q| p :" maxp|Lpv i q| p ´|n| p , 0q and set |Lpv i`1 q| p :"

# |Lpf i q| p `|m| p if |Lpf i q| p ě 1 0 if |Lpf i q| p " 0
for every prime p. Then, we replace i by i `1, which terminates the "while" loop. Notice that we exit from the loop after finitely many steps. Indeed, given a prime p such that |m| p ď |n| p and p R P m,n pkq, we have:

• either |Lpf 1 q| p " 0 in the case |m| p " |n| p and |k| p ď |n| p , which implies |Lpv i q| p " 0 for all i ě 1; • or |Lpv i`1 q| p " |Lpv i q| p ´|n| p `|m| p ă |Lpv i q| p whenever |Lpv i q| p ě 1 in the case |m| p ă |n| p . When we exit the "while" loop, Remark 3.26 guarantees that we have constructed an pm, nq-graph, and the loop condition guarantees that the last vertex v r satisfies |Lpv r q| p " 0 whenever |m| p ď |n| p and p R P m,n pkq.

If we are lucky, we have Lpv r q " q. If not, in a second step, we notice that the same algorithm, exchanging the roles of m and n, produces a simple path consisting of negative edges from a vertex w 0 such that Lpw 0 q " Lpv r q to a vertex w s labeled by q. The decomposition (4.19) of Lpv r q ‰ q also shows that gcdpm, Lpv r qq ě 2, so that vertices labeled Lpv r q can have two distinct positive incoming edges. Using Lemma 4.16, we weld v r and w 0 together and get a simple path from v 0 to w s .

In any subcase, we now have a path pe 1 , . . . , e h 1 q such that e 1 is positive, Lpspe 1 qq " k, and Lptpe h 1 qq " q. If e h 1 has the orientation prescribed by ε ℓ , we are done; if not, using the case k " q " ℓ, with the first edge having the same orientation as e h 1 , and the last one having the orientation prescribed by ε ℓ , we extend our path to a simple path pe 1 , . . . , e h q with Lpspe 1 qq " k and Lptpe h qq " q such that e 1 , e h have the correct orientations. This concludes the case ℓ " q and k ‰ q.

The case k " q and ℓ ‰ q is obtained by exchanging the roles of k and l in the above argument. Therefore, let us finally treat the case k ‰ q and ℓ ‰ q. The former cases furnish paths pf 1 , . . . , f r q and pf 1 1 , . . . , f 1 s q, that we may assume disjoint, such that Lpspf 1 qq " k, Lptpf r qq " q " Lpspf 1 1 qq, Lptpf 1 s qq " ℓ, the orientations of f 1 and f 1 s are given by ε k and ε ℓ , and the orientations f r , f 1 1 coincide. Then, we just weld the vertices tpf r q and spf 1 1 q together, and the path pf 1 , . . . , f r , f 1 1 , . . . , f 1 s q is as desired.

Remark 4.20. In Theorem 4.17, the assumption |m| ě 2 and |n| ě 2 is necessary. Indeed Theorem 4.17 is false if n " 1. If v is a vertex in a pm, 1q-graph with Lpvq " 1 and e is an edge such that tpeq " v, then 1 " Lptpeqq " Lptpeq gcdpLptpeq, mq " Lpspeq gcdpLpspeq, 1q " Lpspeqq.

Clearly any vertex with label 1 has at most one outgoing and one incoming edge. This implies that the labels of the vertices in any directed path which end in v must be all 1. In other words, if we have any simple edge path as in Theorem 4.17 such that ℓ " 1 and ε ℓ " ´, then we must have that k " 1 (and ε k " `).

Lemma 4.21 (Forest-saturation lemma). Let G be a connected pm, nq-graph.

There is a saturated and connected pm, nq-graph G 1 containing G and such that:

• the subgraph induced in G 1 by V pGq is exactly G; • the subgraph induced in G 1 by V pG 1 qzV pGq is a forest F; • all vertices of F have degree ě 1 `minp|m|, |n|q in G 1 ; • each connected component of F is connected to G by a single edge of G 1 .
Definition 4.22. We call forest-saturation of G any extension G 1 satisfying Lemma 4.21. The graph G 1 produced in this proof will be called the maximal forest-saturation of G.

Proof of Lemma 4.21. We can assume that the connected graph G is not yet saturated: it admits non-saturated vertices i.e., vertices v for which one of the inequalities (3.14) deg out pvq ď gcdpLpvq, nq or deg in pvq ď gcdpLpvq, mq is strict. For every non-saturated vertex v of G we add • pgcdpLpvq, nq ´deg out pvqq-many new v-outgoing edges labeled L out :"

Lpvq gcdpn,Lpvqq with extra target vertices labeled mL out ; and • pgcdpLpvq, mq ´deg in pvqq-many new v-incoming edges labeled L in :"

Lpvq gcdpm,Lpvqq with extra source vertices labeled nL in . We then iterate this construction. All the non-saturated vertices of the j-th step become saturated at the pj `1q-th one. The increasing union G 1 of these pm, nq-graphs is a saturated pm, nq-graph. The complement of G in it is a forest since at each step, each new edge has a new vertex as one of its vertices. The label of each new vertex v is an integer multiple of either m or n. Thus the degree deg out pvq `deg in pvq " gcdpLpvq, nq `gcdpLpvq, mq of v is larger than 1 `minp|m|, |n|q as expected.

While the labels of the new edges are prescribed by the axiomatic of pm, nq-graphs, we made the choice of the maximal label for the new vertices among those satisfying the equation (3.13) Lpspeqq gcdpLpspeqq,nq " Lpeq " Lptpeqq gcdpLptpeqq,mq . Hence the terminology in Definition 4.22.

Proof of Theorem 4.13. By hypothesis, for i " 1, 2, there is a non-saturated vertex v i in G i , i.e., a vertex that misses an edge with terminal vertex v i and orientation ϵ i P t`, ´u. The labels of v 1 , v 2 having identical phenotypes, the connecting Theorem 4.17 furnishes an pm, nq-graph G 0 which is a simple edge path pe 1 , . . . , e h q such that Lpspe 1 qq " Lpv 1 q and Lptpe h qq " Lpv 2 q, and the orientations of e 1 and e h are given by ´ϵ1 and ϵ 2 respectively.

We then consider the disjoint union G 1 \ G 0 \ G 2 . We claim that we can merge the vertices v 1 and spe 1 q thanks to the welding Lemma 4.16. Indeed, the choice of orientation for e 1 and the form of G 0 (a path of edges) are made for the assumptions of Lemma 4.16 to hold. Then, we can merge v 2 and tpe h q, applying Lemma 4.16 again (this time, using the fact that the orientation of e h is well chosen). This produces a connected pm, nq-graph G 3 which contains disjoint copies of G 1 and G 2 .

It now suffices to apply the saturation Lemma 4.21 to G 3 so as to obtain a connected saturated pm, nq-graph G that satisfies the requirements of Theorem 4.13.

Perfect kernel and dense orbits

Perfect kernels of Baumslag-Solitar groups

In case |m| " 1 or |n| " 1, it follows from the proof of [BLT19, Cor. 8.4] that SubpBSpm, nqq is countable, hence the perfect kernel KpBSpm, nqq is empty. Our main theorem describes the perfect kernels in the remaining cases.

Theorem 5.1. Let m, n P Z such that |m| ě 2 and |n| ě 2. We have

KpBSpm, nqq " ␣ Λ P SubpBSpm, nqq : ΛzBSpm, nq{ xby is infinite ( .
Let us temporarily give a name to the set appearing in Theorem 5.1:

L " Lpm, nq :" ␣ Λ P SubpBSpm, nqq : ΛzBSpm, nq{ xby is infinite ( , and recall that Sub r8s pΓq denotes the space of infinite index subgroups of Γ.

Given an action α of Γ on a space X and a point v P X, we have already introduced the notation rα, vs for the action α pointed at v. Remark 5.2. In terms of pointed transitive actions, Lpm, nq is the set of pointed transitive actions with infinitely many b-orbits, whence L " ␣ rα, vs : BSpαq is infinite Therefore, Theorem 5.1 can be rephrased in two ways, as follows.

( . Moreover: • if |m| ‰ |n|,
Theorem 5.3. Let m, n P Z such that |m| ě 2 and |n| ě 2.

1. In terms of pointed transitive actions, the perfect kernel corresponds exactly to actions whose Bass-Serre graph is infinite:

KpBSpm, nqq " ␣ rα, vs : BSpαq is infinite ( .

In terms of subgroups:

• if |m| ‰ |n|, the perfect kernel is equal to the space of infinite index subgroups: KpBSpm, nqq " Sub r8s pBSpm, nqq;

• if |m| " |n|, we have:

KpBSpm, nqq " π ´1`S ub r8s pBSpm, nq{ xb m yq ˘,
where π is the homomorphism from BSpm, nq to its quotient by the normal subgroup xb m y " xb n y.

Proof of Theorem 5.1. Our aim is to prove that KpBSpm, nqq " Lpm, nq. It will be convenient to write one inclusion in terms of pointed transitive actions and the other in terms of subgroups. Let us first prove the inclusion KpBSpm, nqq Ě L. It suffices to show that no element of L is isolated in L. Recall the definition of the topology in terms of pointed actions, see Section 2.2 and in particular Equation (2.7). Let us fix a pointed transitive action pα 0 , vq representing an element of L and a radius R ě 0. We will show that the basic neighborhood N prα 0 , vs, Rq contains at least two distinct elements of L.

Let pβ, τ q be the pre-action obtained by restricting α 0 to the reunion of the b-orbits of the vertices of the ball of radius R `1 centered at v in the Schreier graph of α 0 . The Bass-Serre graph of pβ, τ q is the projection in BSpα 0 q (see Definition 3.10) of this ball, hence is finite. Since BSpα 0 q is infinite, the pre-action pβ, τ q is not saturated.

We now build two pm, nq-graphs G 1 , G 2 that extend the finite non-saturated Bass-Serre graph G of pβ, τ q in two different ways. First, let G 1 be a forestsaturation of G see (Definition 4.22). Let us recall that the subgraph induced in G 1 by V pG 1 qzV pGq is a forest whose vertices have degree at least three in G 1 .

We then construct G 2 by modifying G 1 . Let us pick a vertex v P V pG 1 qzV pGq. The subgraph induced in G 1 by V pG 1 qztvu has at least three connected components. Choose two connected components disjoint from G and remove them. In the resulting pm, nq-graph G 1 1 , the vertex v is the only one that is not saturated: two edges are missing.

Theorem 4.17 gives us an pm, nq-graph which is a simple edge path P whose extremities have the same label as v and for which the orientations of the end edges are compatible with that of the missing edges of v. We then apply twice the welding lemma, Lemma 4.16, so as to weld the two extremities of P to v. We eventually define G 2 to be a forest-saturation of the graph that we obtained. Observe that G 1 is not isomorphic to G 2 since the fundamental groups of their underlying graphs are free groups of distinct ranks.

Finally, we extend pβ, τ q to pre-actions α 1 and α 2 whose Bass-Serre graphs are G 1 and G 2 respectively, thanks to Proposition 3.23. Since G 1 , G 2 are saturated, α 1 , α 2 are actually actions by Example 3.21. We already remarked that G 1 is not isomorphic to G 2 , so the pointed transitive actions pα 1 , vq and pα 2 , vq are not isomorphic: rα 1 , vs ‰ rα 2 , vs. Moreover, the balls of radius R centered at the basepoints in the Schreier graphs of α 0 , α 1 , α 2 all coincide by construction with that of pβ, τ q, so rα 1 , vs and rα 2 , vs are both in N prα 0 , vs, Rq.

Let us now turn to the inclusion KpBSpm, nqq Ď L. Let us pick a subgroup Λ P SubpBSpm, nqqzLpm, nq and let us prove that it is not in the perfect kernel.

If |m| ‰ |n|, then Λ has finite index in BSpm, nq by Remark 5.2, hence it is isolated in SubpBSpm, nqq.

If |m| " |n|, then πpΛq has finite index in BSpm, nq{ xb m y by Remark 5.2, hence it is finitely generated. Therefore, the set V :" tΛ 1 P SubpBSpm, nqq : πpΛ 1 q ě πpΛqu is a neighborhood of Λ, since it contains the basic neighborhood VpS, Hq " tΛ 1 P SubpBSpm, nqq : S Ď Λ 1 u where S Ď Λ is a finite set such that πpSq generates πpΛq. Now, for any Λ 1 P V, the subgroup πpΛ 1 q has finite index in BSpm, mq{ xb m y. Hence πpΛ 1 q is finitely generated, so that Λ 1 itself is finitely generated as it is written as an extension with cyclic kernel:

1 Ñ xb m y X Λ 1 Ñ Λ 1 Ñ πpΛ 1 q Ñ 1.
Therefore all subgroups of V are finitely generated, which implies that V is countable and hence Λ is not in KpBSpm, nqq. Proof. Any subgroup with infinite phenotype has infinite index and hence it is in KpBSpm, nqq according to Theorem 5.3.

Phenotypical decomposition of the perfect kernel

Let us now turn to a description of the internal structure of KpBSpm, nqq.

Notation 5.5. Let m, n P Zzt´1, 0, 1u. We denote by Q m,n the set of all possible pm, nq-phenotypes, that is, Q m,n :" Ph m,n pZ ě1 Y t8uq.

Definition 5.6. The phenotype of a subgroup Λ ď BSpm, nq is the phenotype of the associated action defined in Definition 4.9:

PhpΛq -PhpΛzBSpm, nq ð BSpm, nqq.

This yields a function

Ph : SubpBSpm, nqq Ñ Q m,n Ď Z ě1 Y t8u.
It easily follows form the definitions that if PhpΛq " PhpΛ 1 q then PhpΛq " PhpΛ X Λ 1 q, see Remark 4.4.

Remark 5.7. The phenotype of Λ ď BSpm, nq is the phenotype of the index of Λ X xby in xby since this index is the cardinal of the b-orbit of the point Λ P ΛzBSpm, nq. In other words, given Λ ď BSpm, nq, we have:

PhpΛq " PhpΛ X xbyq " Ph m,n `rxby : Λ X xbys ˘.
In particular Phpxb k yq " Ph m,n pkq for k P Z ě1 and the phenotype of the trivial subgroup is infinite.

Proposition 5.8. In the partition of the space of subgroups of BSpm, nq according to their phenotype SubpBSpm, nqq "

ğ qPQm,n
Ph ´1pqq, the pieces are non-empty and satisfy: 1. For every finite q P Q m,n , the piece Ph ´1pqq is open; it is also closed if and only if |m| " |n|. 2. For q " 8, the piece Ph ´1p8q is closed and not open.

In particular, the function Ph : SubpBSpm, nqq Ñ Z ě1 Y t`8u is Borel. It is continuous if and only if |m| " |n|.

Proof. Given k P Z ě1 , we set

A k :" ␣ Λ P SubpBSpm, nqq : Λ X xby " @ b k D( . Writing A k as A k " tΛ P SubpBSpm, nq : b k P Λ, b i R Λ for every 1 ď i ă ku
makes it clear that A k is clopen for every k P Z ě1 . Moreover xb k y P A k , so in particular A k is not empty. Now, Remark 5.7 implies that for every q P Z ě1 Ph ´1pqq "

ğ kPPh ´1 m,n pqq A k .
(5.9)

Hence Ph ´1pqq is open for every finite q and, by taking the complement, Ph ´1p8q is closed.

Take a sequence of positive integers pk i q iPN tending to 8. Observe that the subgroups txb k i yu i have finite phenotype and converge to the trivial subgroup which has infinite phenotype. Therefore Ph ´1p8q is not open. Moreover, if Ph ´1 m,n pqq is not finite, we can choose all the k i 's with phenotype q; the same argument shows that Ph ´1pqq is not closed. Finally, the clopen decomposition (5.9) shows that Ph ´1pqq is closed as soon as Ph ´1 m,n pqq is finite. By Lemma 4.5, Ph ´1 m,n pqq is finite exactly when |m| " |n|.

We now restrict the above partition to the perfect kernel KpBSpm, nqq " ğ qPQm,n K q pBSpm, nqq,

(5.10) where K q pBSpm, nqq :" KpBSpm, nqq X Ph ´1 m,n pqq.

(5.11)

Remark 5.12. Observe that each K q pBSpm, nqq is not empty: indeed it contains xb q y which belongs to the perfect kernel by Theorem 5.1. Moreover, in the proof of Theorem 5.1 the pm, nq-graphs we construct have the same phenotype, so every element of K q pBSpm, nqq is actually a non-trivial limit of elements of K q pBSpm, nqq. We conclude that K q pBSpm, nqq is equal to the perfect kernel of Ph ´1 m,n pqq.

Let us show that the action of BSpm, nq by conjugation on each term is topologically transitive in the following sense. Definition 5.13. An action by homeomorphisms of a group Γ on a topological space X is called topologically transitive if for every nonempty open sets U and V , there is a point whose Γ-orbit intersects both U and V .

Theorem 5.14. Let m, n be integers such that |m|, |n| ě 2. Then for every phenotype q P Q m,n , the action by conjugation of BSpm, nq on the invariant subspace K q pBSpm, nqq is topologically transitive.

Proof. We again use the definition of the topology in terms of pointed actions, see Section 2.2 and in particular Equation (2.7). So let us fix two pointed actions pα 1 , v 1 q and pα 2 , v 2 q in K q pBSpm, nqq, take R ą 0, and consider the basic open sets N prα 1 , v 1 s, Rq and N prα 2 , v 2 s, Rq. We need to construct a pointed action whose orbit meets both open sets.

As in the proof of Theorem 5.1, we let pβ i , τ i q, for i " 1, 2, be the preaction obtained by restricting α i to the reunion of the b-orbits of the vertices of the balls Bpv i , R `1q of radius R `1 centered at v i in the Schreier graph of α i . The Bass-Serre graph of pβ i , τ i q is finite. Since BSpα i q is infinite, the pre-action pβ i , τ i q is not saturated.

Moreover pβ 1 , τ 1 q and pβ 2 , τ 2 q have the same phenotype, so we can apply the merging machine (Theorem 4.12) to obtain an action α whose Schreier graph contains (copies of) the balls Bpv i , R `1q.

Pointing α at the copy of v 1 that we denote by v, we have pSchpαq, vq » R pSchpα 1 q, v 1 q. By transitivity of α, there is γ P BSpm, nq such that vαpγq is the copy of v 2 , and thus pSchpαq, vαpγqq » R pSchpα 2 q, v 2 q. In particular, the orbit of rα, vs meets both N prα 1 , v 1 s, Rq and N prα 2 , v 2 s, Rq.

Corollary 5.15. Let m, n be integers such that |m|, |n| ě 2. Then for every q P Q m,n , there is a dense G δ subset of K q pBSpm, nqq consisting of subgroups with dense conjugacy class in K q pBSpm, nqq.

Proof of Corollary 5.15. By Proposition 5.8, each K q pBSpm, nqq is Polish as an open or a closed subset of the Polish space KpBSpm, nqq.

The corollary now follows from a well-known characterization of topological transitivity in Polish spaces: if pU i q is a countable base of non-empty open subsets, then the set X iPN U i Γ of points with dense orbit is a dense G δ by the Baire theorem.

Closed invariant subsets with a fixed finite phenotype

Given a finite phenotype q, we will show that there is a largest closed invariant subset inside the (open but non closed when |m| ‰ |n|) set of subgroups of phenotype q. The following lemma is key. Then for any saturated pm, nq-graph which contains L as a label, the range of the label map is unbounded.

Proof. By symmetry, we may as well assume that |n| p ă |m| p for a fixed prime p, and so |L| p ą |n| p . Let v 0 P V pGq have label L. Since our Bass-Serre graph G is saturated, every vertex has at least one outgoing edge. We can thus build inductively an infinite path pe k q kPN consisting of positive edges with spe 0 q " v 0 . The conclusion then follows directly from Lemma 3.30.

Remark 5.17. When |n| " |m|, the lemma fails because labels are bounded: if L 0 is a label then all labels in the same connected component must satisfy |L| p ď maxp|L 0 | p , |m| p , |n| p q for all prime p by Equation (3.29) and the discussion that precedes it.

Let q be a finite pm, nq-phenotype. In order to describe which saturated pm, nq-graphs have unbounded labels, we now define spq, m, nq :" q ¨ź pPP |q| p "0; |m| p "|n| p ą0 p |m|p ¨ź pPP |m| p ‰|n| p p mint|n| p ,|m| p u .

(5.18)

Remark 5.19. The definition is motivated by the fact that spq, m, nq is the largest label of phenotype q which does not satisfy the hypothesis of Lemma 5.16. As we will see in the proof of Theorem 5.20, a saturated pm, nq-graph with phenotype q has unbounded labels if and only if one of its labels does not divide spq, m, nq.

Proposition 5.8 implies that every subgroup (or pointed action) adherent to the set of subgroups of phenotype q has phenotype q or 8, and phenotype 8 can occur only when |m| ‰ |n|. We can now characterize the subgroups Λ with phenotype q whose orbit approaches subgroups with infinite phenotype.

Theorem 5.20. Let m, n be integers such that |m|, |n| ě 2 and denote by q P Q m,n zt8u a finite pm, nq-phenotype. Let s " spq, m, nq as in Equation (5.18). Then the space MC q :" Ph ´1pqq X tΛ P SubpBSpm, nqq : Λ ě xxb s yyu of subgroups of phenotype q containing the normal subgroup xxb s yy satisfies the following properties:

(1) MC q is the largest closed BSpm, nq-invariant subset of SubpBSpm, nqq contained in Ph ´1pqq; in particular, all normal subgroups of phenotype q and all finite index subgroups of phenotype q contain xxb s yy.

(2) For every Λ P Ph ´1pqqzMC q , the orbit of Λ accumulates to Ph ´1p8q;

(3) If |m| " |n|, then MC q " Ph ´1pqq. (4) If |m| ‰ |n|, then MC q XK q pBSpm, nqq has empty interior in K q pBSpm, nqq.

(5) If gcdpm, nq " 1, then s " q and MC q X KpBSpm, nqq " txxb q yyu; in particular xxb q yy is the unique normal subgroup of phenotype q of infinite index.

Let us prove Item (4). Suppose |n| ‰ |m|; let p be a prime number such that |m| p ‰ |n| p . By definition Ph m,n pspq " Ph m,n psq " q, so that xb sp y P K q pBSpm, nqqzMC q . Consider a subgroup Λ P K q pBSpm, nqq whose orbit is dense in K q pBSpm, nqq, as provided by Corollary 5.15. Since the orbit of Λ accumulates to xb sp y R MC q and MC q is invariant and closed, the latter does not contain any point of that orbit. Hence the complement K q pBSpm, nqqzMC q contains the dense orbit of Λ. We conclude that MC q X K q pBSpm, nqq has empty interior in K q pBSpm, nqq.

We finally prove Item (5). The equality s " q follows immediately from Formula (5.18) for spq, m, nq. We have the presentation BSpm, nq{ xxb q yy " @ b, t : tb m t´1 " bn , bq " 1 D .

Since gcdpq, mq " gcdpq, nq " 1, the elements bm and bn both generate x by in BSpm, nq{ xxb q yy. We thus have a natural semi-direct product decomposition BSpm, nq{ xxb q yy -Z{qZ ¸Z " @ bD ¸xt y

Consider Λ P MC q in the perfect kernel; it contains xxb q yy. It suffices to prove that the image Λ q :" Λ{ xxb q yy of Λ in @ bD ¸xt y is trivial. Since PhpΛq " q, the index rxby : ΛXxbys is a multiple of q, so we have Λ q X @ bD " tidu. Thus Λ q is mapped injectively in the quotient @ bD ¸xt y { @ bD » Z. If this image were not t0u, then Λ would have finite index in BSpm, nq, contradicting that Λ is in the perfect kernel. The group Λ q is thus trivial as wanted.

Remark 5.21. In terms of actions, MC q is the set of classes rα, vs all of whose cardinalities of b-orbits divide s and have phenotype q.

Proposition 5.22. Let m, n P Zzt0u and k (5.23)

P Z ě1 . Let G m,n,k :" BSpm, nq{ @@ b k DD " @ t, b | tb m t´1 " bn ,
In particular, rpkq is a multiple of all the r 1 s which divide k and satisfy gcdpr 1 , mq " gcdpr 1 , nq.

Proof. Set r :" rpkq. Since bm and bn are conjugate in G m,n,k , they have the same order: ordp bq gcdpordp bq, mq " ordp bm q " ordp bn q " ordp bq gcdpordp bq, nq .

Thus gcdpordp bq, mq " gcdpordp bq, nq. Moreover ordp bq divides k. So by the definition of r, the order ordp bq divides r and hence b r P xxb k yy. On the other hand b k P xb r y, so that xxb r yy " xxb k yy and G m,n,k " G m,n,r . Since gcdpr, mq " gcdpr, nq, the subgroups generated by bm and bn in the group Z{rZ " x b : br " 1y are isomorphic. We can thus consider the HNNextension of Z{rZ " x b : br " 1y with the relation tb m t´1 " bn . It admits the presentation x t, b | tb m t´1 " bn , br " 1y and it is hence isomorphic to G m,n,r .

By the Normal Form Theorem for HNN-extensions, the vertex group injects, i.e., b has order exactly r. Finally Remark 5.7 and Formula (5.23) imply that Ph m,n pkq " Ph m,n prq " Phpxxb r yyq.

Theorem 5.24. Let m, n P Zzt0u and q be a finite phenotype.

(1) If gcdpm, nq " 1, then the perfect kernel contains a unique normal subgroup of phenotype q, namely xxb q yy. (2) If gcdpm, nq ‰ 1, then the perfect kernel contains continuum many normal subgroups of phenotype q.

Proof. The case gcdpm, nq " 1 follows from Item (5) of Theorem 5.20. Therefore let us assume that gcdpm, nq ‰ 1. Consider a prime p which divides both m and n. Then either |q| p ‰ 0 and we set k :" q otherwise set k :" qp. In both cases, remark that Ph m,n pkq " q, that gcdpk, mq " gcdpk, nq and hence rpkq " k. Then Proposition 5.22 yields that b has order k in G m,n,k . Furthermore since k 0 :" gcdpk, mq " gcdpk, nq ą 1, the elements bn and bm are not generators of the subgroup @ bD : the group G m,n,k is not a semi-direct product. We claim that G m,n,k is not amenable. Indeed, we can write the group G m,n,k as the amalgamated free product Every characteristic subgroup N of F is itself normal in G m,n,k . Thus the pull-back under the quotient map BSpm, nq ↠ G m,n,k is a normal subgroup Ñ Ÿ BSpm, nq. Since the intersection of F with the finite group x by is trivial, the same holds for its characteristic subgroups: N X x by " tidu. Therefore the order of the image of b in G m,n,k {N " BSpm, nq{ Ñ is the same as in G m,n,k , namely k. In other words, Ñ X xby " xb k y. By Remark 5.7, Php Ñ q " Ph m,n prxby : Ñ X xbys " Ph m,n pkq " q.

G m,n,k " x t, c | tpcq m k 0 t´1 " pcq n k 0 , pcq k k 0 " 1y ˚c" bk 0 x b |
There are continuum many characteristic subgroups N in the finitely generated free subgroup F [START_REF] Roger | Characteristic Subgroups of Free Groups[END_REF] (see also [BGK17]). At most countably many of them lie outside the perfect kernel, so the theorem follows.

Limits of finite phenotype subgroups

In this section, we characterize the subgroups of infinite phenotype of BSpm, nq which arise as limits of finite phenotype subgroups. We will use a version of the straightforward fact that finitely generated subgroups always form a dense set in the space of subgroups. Lemma 6.1. Let m, n P Zzt0u. For every phenotype q P Q m,n , the finitely generated subgroups of phenotype q are dense in Ph ´1pqq.

Proof. Let Λ be a non finitely generated subgroup of phenotype q. Let k P Z ě0 such that Λ X xby " @ b k D . The group Λ can be written as the increasing union of finitely generated subgroups all containing b k . They have the same phenotype as Λ.

satisfies the assumption of Lemma 6.4, so γ ε b N 1 γ ´ε " b N 2 , where

|N 2 | p i " l i `Σγ ε p|n| p ´|m| p q " l i `Σγ εp|n| p ´|m| p q " l i ´Σγ |m| p i ´|n| p i ă l i . Clearly b N 2 P Λ, hence b N 2 P @ b N D . But |N 2 | p i ă |N | p i ,
a contradiction. We thus have established Equation (6.6), which finishes the proof.

Proof of Theorem 6.2. Set L :" tΛ P Ph ´1p8q : Λ ď xxbyyu.

We first show the inclusion Ph ´1pqq X Ph ´1p8q Ď L. Take ∆ P Ph ´1p8qzL and γ P ∆z xxbyy. By Lemma 6.5, there is an R such that every subgroup Λ of phenotype q containing γ also contains b R . Thus the clopen neighborhood of ∆ given by O :" tΛ P SubpBSpm, nqq : γ P Λ, b R R Λu does not intersect Ph ´1pqq. Thus ∆ is not in the closure of Ph ´1pqq.

We now show the reverse inclusion L Ď Ph ´1pqqXPh ´1p8q. Remark that as in Lemma 6.1, the finitely generated elements of L are dense in L: every element of L is an increasing union of finitely generated subgroups which have to be in L as well. So take Λ " xSy P L where S is finite; we will show that Λ is limit of subgroups with phenotype q. Set κ :" max γPS κ γ , where κ γ is the t-length of γ (see Notation 6.3). Set M :" maxt|m| p , |n| p : p P Pu. Note that PzP m,n is finite, since it is composed of primes p such that |m| p `|n| p ą 0, and that |m| p " 0 for all but finitely many primes p. Hence, for j ě 1, we can define the integer N j :" q ¨ź pPPm,nzPm,npqq p |m| p ¨ź pPPzPm,n p jκM .

Observe that Ph m,n pN j q " q. Since Λ ď xxbyy, the height Σ γ is zero (see Notation 6.3) for every γ P S, whence, for every γ P S and every j, Lemma 6.4 gives γb N j " b ˘Nj γ. Thus, Λ " xSy normalizes @ b N j D . Moreover, Λ has trivial intersection with @ b N j D because it has infinite phenotype. In particular for j " 1, we have a natural isomorphism Φ : Λ ˙@b N 1 D Ñ @ λ, b N 1 D .

Since N 1 divides N j , we get ΦpΛ ˙@b N j D q " @ λ, b N j D .

Observe that Φ induces a homeomorphism

SubpΛ ˙@b N 1 D q Ñ Subp @ λ, b N 1 D q Ď SubpBSpm, nqq,
and that the sequence of subgroups pΛ ˙@b N j D q jě1 converges to Λ ˙teu. Therefore we have that @ λ, b N j D converges to Λ. Since Php @ λ, b N j D q " Ph m,n pN j q " q, the group Λ is the limit of a sequence of elements of phenotype q as wanted.

Limits of subgroups with finite phenotype

In Theorem 6.2, we showed that Ph ´1pqq X Ph ´1p8q does not depend on the finite phenotype q. We will now consider the closure of all subgroups with finite phenotype and we will first analyse what happens if |m| " |n|. In other words, every subgroup with infinite phenotype is a limit of subgroups with finite (variable) phenotypes.

Proof. Let us fix Λ P Ph ´1p8q. Note that xb n y is normalized by Λ thanks to the relation tb n t ´1 " b ˘n. We now proceed as in the second part of the proof of Theorem 6.2: the group xλ, b jn y has finite phenotype, it is isomorphic to Λ ˙xb jn y and the sequence of subgroups pxλ, b jn yq jě1 converges to Λ. In other words, there are subgroups with infinite phenotype that are not limits of subgroups with finite (variable) phenotypes.

Let us recall from Corollary 5.4 that Ph ´1p8q " K 8 pBSpm, nqq whenever |m| ‰ |n|. Hence, the subgroups given by the proposition lie in fact in K 8 pBSpm, nqq.

In the proof of Proposition 6.8, we will need a lemma and a proposition.

Lemma This number, that we will denote d, is the greatest common divisor of m, n and Lpvq. Hence d divides k " gcdpm, nq.

The d outgoing edges at v are exactly Λ xb n y , Λb xb n y , . . . , Λb d´1 xb n y. As d ď k, the subgroup Λ contains t, btb ´1, . . . , b d´1 tb ´pd´1q . Since Λb j t " pΛb j tb ´j qb j " Λb j , the element t fixes all the points Λ, Λb, . . . , Λb d´1 P ΛzBSpm, nq. The terminal vertex of the edge Λb j xb n y is precisely the vertex Λb j t xby " Λb j xby " v (see Definition 3.5), so that all outgoing edges at v are loops.

Since the outgoing degree at v is equal to the ingoing degree, all ingoing edges at v are loops as well. Therefore BSpαq consists only of the vertex v and d loops. It is thus finite as wanted. Proposition 6.10. Let m, n be integers with |m|, |n| ě 2. Let Λ be a finitely generated subgroup of infinite phenotype and infinite Bass-Serre graph. Then there is a sequence of conjugates of Λ which converges to tidu. In particular, such a subgroup does not contain any non-trivial normal subgroup of BSpm, nq.

Proof. First recall that Λ is free. Indeed, having infinite phenotype, it acts freely on the Bass-Serre tree T of BSpm, nq. Taking the class xby as a base point in T , the subgroup Λ is the fundamental group of the quotient graph ΛzT based at Λ xby. This quotient graph is equal to the Bass-Serre graph of Λ, see Section 3.6, so it is infinite. Since moreover Λ is finitely generated, it consists of a finite graph to which are attached finitely many infinite trees. Moving the basepoint along one of those infinite trees toward infinity amounts to conjugating Λ by a certain sequence of elements γ i of BSpm, nq for which we claim that γ i Λγ ´1 i Ñ tidu. Indeed, each non-trivial element of γ i Λγ ´1 i is represented by a long path in the tree, followed by a closed path in the finite graph and the long path back to the new basepoint. All such elements have a uniformly large t-length which tends to `8 with i: their t-length is bounded below by twice the t-length of γ i minus the diameter of the finite graph. In particular, for any finite set F Ă Γztidu and large enough n, all the elements of γ i Λγ ´1 i have t-length larger than all those of F ; so γ i Λγ ´1 i X F " H. This proves that γ i Λγ ´1 i Ñ tidu as wanted.

Proof of Proposition 6.8. Consider the group Λ :" @ t, btb ´1, . . . , b k´1 tb ´pk´1q D . Observe that by Britton's Lemma (see e.g. [LS01, Chapter IV.2]), it is a free group freely generated by t, btb ´1, . . . , b k´1 tb ´pk´1q . Every non-trivial element of Λ contains at least one t ˘1 in its normal form, in particular Λ X xby " tidu: the phenotype of Λ is infinite. We claim that Λ R ď q finite Ph ´1pqq.

Suppose that pΛ i q iě0 is a sequence of subgroups of finite (variable) phenotypes converging to Λ. For i large enough, we have t, btb ´1, . . . , b k´1 tb ´pk´1q P Λ i , and thus the subgroup Λ i has finite index by Lemma 6.9. However, recall that since |m| ‰ |n|, the group BSpm, nq is not residually finite [START_REF] Meskin | Nonresidually finite one-relator groups[END_REF]. Therefore there is a non-trivial normal subgroup N IJ BSpm, nq contained in every finite index subgroup, and we have N ď Λ since Λ i Ñ Λ. This is impossible by Proposition 6.10. Proof. For a fixed prime p which divides neither m nor n, let us define a pre-action pβ p , τ p q as follows. Consider three β p -cycles say o 1 , o 2 and o 3 , of cardinals pn, p and pm respectively. Then fix basepoints y i P o i for i " 1, 2, 3.

Remark that o 1 splits into |n| ě 2 β n p -orbits of size p and that o 3 splits into |m| ě 2 β m p -orbits of size p. Therefore we can define τ p by setting y 1 β jn p τ p :" y 2 β jm p , y 2 β jn p τ p :" y 3 β jm p and y 1 β ´1`jn p τ p :" y 3 β 1`jm p .

Clearly the phenotype of such a pre-action is p and the associated Bass-Serre graph G 0,p :" BSpβ p , τ p q is a triangle. Set x p :" y 1 and note that for every p, we have x p τ p τ p β p τ ´1 p β p " x p . By Lemma 4.21, we can then extend G 0,p to a saturated pm, nq-graph G p , see Figure 5, and by Proposition 3.23 we can extend the pre-action pβ p , τ p q to an action α p whose Bass-Serre graph is G p . Define Λ p to be the stabilizer of the action α p at x p and remark that t 2 bt ´1b P Λ p . Moreover by construction PhpΛ p q " p.

By compactness, we find an accumulation point Λ of the sequence pΛ p q p . Since PhpΛ p q " p, the subgroup Λ has infinite phenotype. Since t 2 bt ´1b P Λ p for every p, we have that t 2 bt ´1b P Λ. Moreover t 2 bt ´1b R xxbyy so Λ R Ph ´1pq 0 q by Theorem 6.2. Therefore the proof is completed.
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 1 Figure 1: The space of subgroups of BSp2, 3q
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V

  pBSpαqq :" X{ xβy , " E `pBSpαqq :" dompτ q{ xβ n y , E ´pBSpαqq :" rngpτ q{ xβ m y . For every x P dom τ , we set spx xβ n yq :" x xβy , tpx xβ n yq :" xτ xβy , and x xβ n y :" xτ xβ m y " x xβ n y τ. We define the label map L : V pBSpαqq \ EpBSpαqq Ñ Z ě1 Y t8u by Lpx xβyq :" |x xβy| , Lpx xβ n yq :" |x xβ n y| , Lpy xβ m yq :" |y xβ m y| .

Figure 2 :

 2 Figure 2: The projection from the Schreier graph onto the Bass-Serre graph of some non-saturated transitive BSp2, 3q-pre-action. The dotted circles represent the β-orbits in the Schreier graph.

Figure 3 :

 3 Figure 3: Two examples of p2, 3q-graphs.

  p |m| p " gcdpq, mq.

Corollary 5. 4 .

 4 If |m| ě 2, |n| ě 2 and |m| ‰ |n|, then Ph ´1p8q Ď KpBSpm, nqq;in other words, every infinite phenotype subgroup is in the perfect kernel.

Lemma 5. 16 .

 16 Let |m| ‰ |n|, and let L P Z ě1 satisfying: Dp P P, |m| p ‰ |n| p and |L| p ą minp|m| p , |n| p q.

Proposition 6. 7 .

 7 Let m, n be integers such that |m| " |n| ě 2. Then Ph ´1p8q Ď ď q finite Ph ´1pqq.

  The situation is completely different in the case |m| ‰ |n|. Proposition 6.8. Let m, n be integers such that |m| ‰ |n| and |m|, |n| ě 2. Then Ph ´1p8q Ę ď q finitePh ´1pqq.

Corollary 6. 11 .

 11 Let m, n be integers such that |m| ‰ |n| and |m|, |n| ě 2. Then ď q finitePh ´1pqq X Ph ´1p8q has empty interior in Ph ´1p8q.

Figure 5 :

 5 Figure 5: A (2,3)-graph G p , where m " 2 and n " 3.

  |m| " |n|, the subgroup generated by b m is normal; let us denote by π the corresponding quotient homomorphism BSpm, nq{ xb m y . Theorem A (Perfect kernel of BSpm, nq, Theorem 5.3). Let m, n P Zzt0u, 1. if |m| " 1 or |n| " 1, then KpBSpm, nqq is empty; 2. if |m|, |n| ą 1 , then (a) if |m| ‰ |n|, then KpBSpm, nqq " Sub r8s pBSpm, nqq;

	BSpm, nq

π Ñ (b) if |m| " |n|, then KpBSpm, nqq " π ´1`S ub r8s pBSpm, nq{ xb m yq ˘.

  xβy where E t pSchpαqq is the subset of edges in Schpαq whose label is t or t´1respectively and E b is the subset of edges whose label is b or b ´1.

Table 1 :

 1 Example 3.15. The Bass-Serre graph of any pre-action of BSpm, nq is an pm, nq-graph. The converse will be shown in Proposition 3.22.Remark 3.16. Observe that an edge label is uniquely determined by the label of any of its vertices. The edge labels are thus redundant and are just calculation tools.Example 3.17. Let us see how labels interact for m " 2 and n " 3. If e is an edge in a p2, 3q-graph, then once we fix the label of one of the extremities, the other one can be chosen according to the Table1, using Formula 3.13 for Lpeq. The reader is invited to consult the webpage[WebTool] to see the kinds of local constraints which occur in general. How the label of the extremities impact each other

	t8u such that:

• for every negative edge e P E ´, Lpeq " Lpēq; • for every vertex v P V , we have deg out pvq ď gcdpLpvq, nq and deg in pvq ď gcdpLpvq, mq.

(3.14)

  The labeled graph G is an pm, nq-graph if and only if the following two conditions hold:• for every positive edge e and every prime p such that |Lpeq| p ě 1, |Lpspeqq| p " |Lpeq| p `|n| p and |Lptpeqq| p " |Lpeq| p `|m| p , (3.27) • for every positive edge e and every prime p such that |Lpeq| p " 0, 0 ď |Lpspeqq| p ď |n| p and 0 ď |Lptpeqq| p ď |m| p . (3.28) In particular, in an pm, nq-graph, |Lpspeqq| p ą |n| p if and only if |Lptpeqq| p ą |m| p , and if one of these two equivalent conditions is met then |Lptpeqq| p " |Lpspeqq| p `|m| p ´|n| p . (3.29) Lemma 3.30. Fix a prime p such that |n| p ă |m| p and let G be an pm, nqgraph. If pe k q kě1 is any infinite path consisting of positive edges with Lpspe 1 qq ‰ 8 and |Lpspe 1 qq| p ą |n| p , then If pe k q kě1 is any infinite path consisting of negative edges with Lpspe 1 qq ‰ 8, then |Lpspe k qq| p ă |m| p . Proof. If pe k q kě1 is an infinite path consisting of positive edges such that |Lpspe 1 qq| p ą |n| p , then by a straightforward induction using Equation (3.29) we have that |Lpspe k qq| p " |Lpspe 1 qq| p `kp|m| p ´|n| p q (3.31)

	lim kÑ`8	|Lpspe k qq| p " `8.
	lim sup
	kÑ`8	

pm, nqgraphs. Observe that Equation (3.13) is equivalent to the fact that maxp|Lpspeqq| p ´|n| p , 0q " |Lpeq| p " maxp|Lptpeqq| p ´|m| p , 0q

(3.25) from which we obtain the following.

Remark 3.26. Consider an oriented labeled graph G " pV, Eq with label map L : V \ E Ñ Z ě1 satisfying Lpēq " Lpeq for every edge e.

  observe that, BSpΛzΓ ð Γq being saturated, one has deg in pvq " gcdpLpvq, mq and hence, for every edge deg out pvq " gcdpLpvq, nq for every vertex v in this graph. Hence, for every edge e, one has Let m and n be non-zero integers. Let G be a saturated connected pm, nq-graph and let Λ be a subgroup of Γ " BSpm, nq such that BSpΛzΓ ð Γq » G.1. If all labels of G are infinite, then Λ is a free group, namely isomorphic to the fundamental group of the graph G. 2. If all labels of G are finite, then the quotient graph of groups arising from the action Λ ñ T is isomorphic to the graph of groups obtained by attaching a copy of Z to every vertex and every edge of G, with structural maps of positive edges Corollary 3.35. Let m and n be non-zero integers such that |m| ‰ |n|. Then the isomorphism type of Λ ď BSpm, nq depends only on the graph structure of BSpΛq. Proof. Recall that if an pm, nq-graph is saturated and has only infinite labels, then all vertices have ingoing degree |m| and outgoing degree |n|. Lemma 3.33 thus allows us to detect whether the Bass Serre graph of Λ contains infinite labels by purely looking at its graph structure: it has infinite labels if and only if all vertices have degree |n| `|m|. The result now follows from Proposition 3.34. When |m| " |n|, the statement analogue to that of Corollary 3.35 fails since the central subgroup Λ " xb 2n y has the same Bass-Serre graph as the trivial subgroup tidu.

	Lpspeqq Lpeq so that Remark 2.8 and Proposition 2.9 can be reformulated in terms of the " gcdpLpspeqq, nq " deg out pspeqq and Lptpeqq Lpeq " deg in ptpeqq, labels of the Bass-Serre graph BSpΛzΓ ð Γq. k Þ Ñ n ¨Lpeq Lpspeqq ¨k, Z e ãÑ Z tpeq , k Þ Ñ m ¨Lpeq Lptpeqq ¨k. In particular, combining Proposition 3.34 and Lemma 3.33 we get a corol-lary equivalent to Corollary 2.15. Proposition 3.34. Z e ãÑ Z speq , Remark 3.36.

  we have Lpm, nq " Sub r8s pBSpm, nqq, since every infinite action has an infinite Bass-Serre graph by Lemma 4.11. • if |m| " |n|, we have Lpm, nq " π ´1`S ub r8s pBSpm, nq{ xb m yq ˘, where π is the homomorphism from BSpm, nq to its quotient by the normal subgroup xb m y " xb n y 1 Ñ xb m y Ñ BSpm, nq BSpm, nq{ xb m y Ñ 1. Indeed, since xb m y has finite index in xby, we get that ΛzBSpm, nq{ xby is finite if and only if ΛzBSpm, nq{ xb m y is finite.

π Ñ

  bk " 1 D and let rpkq :" maxtr 1 P N : r 1 divides k and gcdpr 1 , mq " gcdpr 1 , nqu. has order rpkq in the quotient G m,n,k ; in particular xxb k yy " xxb rpkq yy; 2. the group G m,n,k " G m,n,rpkq is the HNN extension of Z{rpkqZ " x by with respect to the relation tb m t´1 " bn .3. Ph m,n pkq " Ph m,n prpkqq " Phpxxb k yyq.

	Then: 1. b It is a routine computation, working prime number by prime number, to |m| p "|n| p |m| p ‰|n| p check that rpkq " ź pPP p |k|p ¨ź pPP p minp|k|p,|m|p,|n|pq

  bk y and one can easily check that G m,n,k admits as a quotient the non-amenable free product x ty ˚xb | bk 0 y.Since G m,n,k is the fundamental group of a finite graph of finite groups, it admits a finite index normal subgroup F which is a finitely generated free group[START_REF] Serre | Trees[END_REF] Prop. 11 p. 120]. Since G m,n,k is non-amenable, this normal free subgroup is not amenable.

  6.9. Let m, n be integers such that |m| ‰ |n| and |m|, |n| ě 2. Let k :" gcdpm, nq. Let Λ ď BSpm, nq be a subgroup containing the following elements t, btb ´1, . . . , b k´1 tb ´pk´1q If Λ has finite phenotype, then Λ has finite index in BSpm, nq. Proof. Let α be the action ΛzBSpm, nq ð BSpm, nq. Since the phenotype is finite, it is sufficient to show that the Bass-Serre graph BSpαq is finite (see Remark 4.10). Since Λ contains t, there is a loop in BSpαq at the vertex v :" Λ xby. In particular, Equation (3.13) gives Lpvq gcdpLpvq,nq . As Λ has finite phenotype, Lpvq is finite, so that gcdpLpvq, mq " gcdpLpvq, nq . Moreover, as BSpαq is a saturated pm, nq-graph, we obtain deg in pvq " gcdpLpvq, mq " gcdpLpvq, nq " deg out pvq.

	Lpvq gcdpLpvq,mq "

This is why Schreier graphs were defined with respect to right actions.

A topological space is called perfect if it has no isolated points.

Phenotypes of natural numbers

Recall that P denotes the set of prime numbers and that given p P P and k P Z, we denote by |k| p the p-adic valuation of k. Definition 4.1 (Phenotype of a natural number). Let k P Z ě1 . We set P m,n

:" tp P P : |m| p " |n| p u , P m,n pkq :" tp P P : |m| p " |n| p and |k| p ą |n| p u .

The pm, nq-phenotype of k, denoted by Ph m,n pkq, is the following positive integer:

Ph m,n pkq :"

If k " 8, we set Ph m,n pkq :" 8.

Example 4.2. If m and n are coprime, then for every k P Z P m,n " tp P P : p does not divide mnu P m,n pkq " tp P P : p divides k and p does not divide mnu .

In this case, Ph m,n pkq is the greater divisor of k that is coprime to mn.

Example 4.3. If m " 2 2 ¨32 ¨5 and n " 2 2 ¨3, then P m,n " Pzt3, 5u and P m,n pkq "

#

tp P P : p divides kuzt2, 3, 5u if 2 3 does not divide k tp P P : p divides kuzt3, 5u if 2 3 divides k.

For example Ph m,n p2 ¨3 ¨7q " 7 and Ph m,n p2 5 ¨3 ¨7q " 2 5 ¨7.

Remark 4.4. If k, l both have phenotype q, then so do their lcm and gcd.

The following lemma will be useful in Section 5.

Lemma 4.5. Let q " Ph m,n pkq be a finite pm, nq-phenotype. In particular, |n| ‰ |m| when Ph ´1pqq ‰ MC q . This proves (3).

From Equation (5.18) again, |s| p " minp|m| p , |n| p q, so |L| p ą minp|m| p , |n| p q. Lemma 5.16 thus applies, and so there is a sequence of vertices in the Bass-Serre graph of Λ whose labels tend to `8. In other words, there is a sequence pγ i q iě0 such that the index of γ i Λγ ´1 i X xby in xby tends to `8. By compactness, we may assume that this sequence converges, and its limit ∆ cannot contain a non-zero power of b since rxby : γ i Λγ ´1 i X xbys Ñ `8. Hence ∆ has infinite phenotype, which proves (2).

We now prove (1). We first claim that MC q is closed in SubpBSpm, nqq. Indeed the set B s :" tΛ P SubpBSpm, nqq : Λ ě xxb s yyu is a countable intersection of basic clopen sets and hence it is closed. Then, notice that B s intersects only finitely many sets Ph ´1pq 1 q, since q 1 must be finite and divides s. Proposition 5.8 claims that Ph ´1pq 1 q are open, hence MC q " B s z ď q 1 ‰q q 1 divides s Ph ´1pq 1 q is closed. Also note that MC q is obviously BSpm, nq-invariant. Finally Item (2) implies that no larger BSpm, nq-invariant subset of Ph ´1pqq can be closed in SubpBSpm, nqq. This proves that MC q is the largest closed BSpm, nqinvariant subset of SubpBSpm, nqq contained in Ph ´1pqq. Since all normal subgroups and all finite index subgroups have finite (hence closed) orbits, the remaining statement in Item (1) is clear.

Limits of subgroups with fixed finite phenotype

Recall from Proposition 5.8 that, for q finite, Ph ´1pqq is open while Ph ´1p8q is closed, and from Theorem 5.20 (2) that the orbit of any Λ P Ph ´1pqqzMC q accumulates to Ph ´1p8q. We now determine the set of such accumulation points in Ph ´1p8q: this is exactly the set of subgroups contained in the normal closure xxbyy of b but having trivial intersection with xby itself. Theorem 6.2. Suppose |m| ‰ |n| and let q be a finite phenotype. Then Ph ´1pqq X Ph ´1p8q " tΛ P Ph ´1p8q : Λ ď xxbyyu.

We need two preparatory lemmas. We start with an easy consequence of the defining relation tb m " b n t of BSpm, nq. Notation 6.3. Given γ P BSpm, nq, let us denote:

• by κ γ the t-length of γ, namely the number of occurrences of t ˘1 in the normal form of γ; • by Σ γ the number of occurrences of t minus the number of occurrences of t ´1 in the normal form of γ, which is often called the t-height of γ. Remark that Σ γ is the image of γ in BSpm, nq{ xxbyy -Z. In particular Σ γ " 0 if and only if γ P xxbyy. Lemma 6.4. Fix γ P BSpm, nq. Let A P Z be such that for all primes p P P

• if |m| p " |n| p then |A| p ě |m| p ;

• otherwise |A| p ě κ γ |m| p and |A| p ě κ γ |n| p . Then there is B P Z, such that γb A " b B γ, where |B| is determined by: |B| p " |A| p `Σγ p|n| p ´|m| p q for all p P P.

Proof. This follows from a straightforward induction on κ γ using the relation tb m " b n t. We leave the details to the reader.

The proof of the inclusion in Theorem 6.2 from left to right relies on the following lemma. Lemma 6.5. Fix γ R xxbyy and let q be a finite phenotype. There is an integer R " Rpq, γq such that every subgroup Λ of phenotype q containing γ must also contain b R .

Proof. Up to replacing γ by its inverse, let us assume Σ γ ą 0. We define M :" maxt|m| p , |n| p : p P Pu, and then

.

Fix Λ of phenotype q. Since q is finite, we have xby X Λ " @ b N D with N ą 0. We have to show that N divides R. Notice that Ph m,n pN q " q, thus N decomposes as

k`1 ¨¨¨p lr r , where r ě 0 and l 1 , . . . , l r ě 1, while the p i are distinct prime numbers coprime with q, see Definition 4.1. Moreover, we order them so that p 1 , . . . , p k P P m,n zP m,n pN q and p k`1 , . . . , p r P PzP m,n .

Observe that |m| p i " |n| p i ě |N | p i " l i ě 1 when p i P P m,n zP m,n pN q and |m| p i ‰ |n| p i when p i P PzP m,n . Hence, |m| p i `|n| p i ą 0 for every i P t1, . . . , ru. Consequently, to establish that N divides R, it suffices to prove @i P t1, . . . , ru, l i ď κ γ M. (6.6)

Observe that κ γ ě 1 since γ R xxbyy. For i P t1, . . . , ku, Equation (6.6) holds since p i P P m,n zP m,n pN q, thus

Let us hence fix i P tk `1, . . . , ru and suppose by contradiction that l i ą κ γ M . Consider

where by p p i we mean that the factor p i is removed from the product. Proposition 6.12. Let m, n be integers such that |m|, |n| ě 2. For any finite phenotype q 0 , the following inclusion is strict:

Ph ´1pqq X Ph ´1p8q.

Observe that Proposition 6.12 is trivially true if |m| " |n|. Indeed, Proposition 6.7 implies that the right hand side is equal to Ph ´1p8q. Since Proposition 5.8 yields that Ph ´1pq 0 q is closed, the left hand side is empty.

Proof of Proposition 6.12. For a prime p which divides neither m nor m, define Λ p :" xb p , ty. Then Λ p clearly has phenotype p (and index p in BSpm, nq). Let Λ be an accumulation point of the sequence pΛ p q, then by construction Λ has infinite phenotype, so it is in the set Ť q finite Ph ´1pqq X Ph ´1p8q. However, it contains t R xxbyy so it is not in Ph ´1pq 0 q Λ R Ph ´1pq 0 q by Theorem 6.2. Corollary 6.13. Let m, n be integers such that |m|, |n| ě 2. The following inclusion is strict: ď q finite Ph ´1pqq X Ph ´1p8q Ĺ ď q finite Ph ´1pqq X Ph ´1p8q.

Proof. If |m| " |n|, then as already remarked the left hand side is empty.

If |m| ‰ |n|, recall from Theorem 6.2 that Ph ´1pq 0 q X Ph ´1p8q " tΛ P Ph ´1p8q : Λ ď xxbyyu and hence it is independent of q 0 . We can also give a statement analogous to Proposition 6.12 in the perfect kernel, which is less easy to obtain. Theorem 6.14. Let m, n be integers such that |m|, |n| ě 2. For any finite phenotype q 0 , the following inclusion is strict: K q 0 pBSpm, nqq X K 8 pBSpm, nqq Ĺ ď q finite K q pBSpm, nqq X K 8 pBSpm, nqq.