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Abstract
Given a Baumslag-Solitar group, we study its space of subgroups

from a topological and dynamical perspective. We first determine its
perfect kernel (the largest closed subset without isolated points). We
then bring to light a natural partition of the space of subgroups into
one closed subset and countably many open subsets that are invariant
under the action by conjugation. One of our main results is that the
restriction of the action to each piece is topologically transitive. This
partition is described by an arithmetically defined function, that we
call the phenotype, with values in the positive integers or infinity. We
eventually study the closure of each open piece and also the closure of
their union. We moreover identify in each phenotype a (the) maximal
compact invariant subspace.
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1 Introduction and presentation of the results
The Baumslag-Solitar group of non-zero integer parameters m and n is de-
fined by the presentation

BSpm,nq :“
@

b, t|tbmt´1
“ bn

D

. (1.1)

These one-relator two-generators groups were defined by Baumslag and Soli-
tar [BS62] to provide examples of groups with surprising properties, depend-
ing on the arithmetic properties of the parameters.
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It results from the work of Baumslag and Solitar and of Meskin [Mes72]
that the group BSpm,nq is

• residually finite if and only if |m| “ 1 or |n| “ 1 or |m| “ |n|;
• Hopfian if and only if it is residually finite or m and n have the same

set of prime divisors.
The group BSpm,nq is amenable if and only if |m| “ 1 or |n| “ 1, and in

this case, it is metabelian. All Baumslag-Solitar groups however share weak
forms of amenability: they are inner-amenable [Sta06b] and a-T-menable
[GJ03].

Over the years and despite the simplicity of their presentation, these
groups have served as a standard source of examples and counter-examples,
sometimes to published results (!). They have been considered from countless
different perspectives in group theory and beyond.

Various aspects concerning the subgroups of the BSpm,nq have been con-
sidered such as the growth functions of their number of subgroups of finite
index with various properties, or such as a description of the kind of fun-
damental group of graphs of groups that can be embedded as subgroups in
some BSpm,nq; see for instance [Gel05, Dud09, Lev15].

In this article, we consider global aspects of the space SubpBSpm,nqq of
subgroups of the BSpm,nq and of the topological dynamics generated by the
natural action by conjugation.

1.1 The perfect kernel

Let Γ be a countable group. We denote by SubpΓq the space of subgroups of
Γ. If one identifies each subgroup with its indicator function, one can view
the space SubpΓq as a closed subset of t0, 1uΓ. Thus SubpΓq is a compact,
metrizable space by giving it the restriction of the product topology. See
Section 2.2 for the generalities about SubpΓq.

By the Cantor–Bendixson theorem, SubpΓq admits a unique decomposi-
tion as a disjoint union of a perfect set, called the perfect kernel KpΓq of
Γ, and of a countable open subset. It is a challenging problem to determine
the perfect kernel of a given countable groups.

When Γ is finitely generated, the finite index subgroups are isolated in
SubpΓq. It is thus relevant to introduce the subspace Subr8spΓq consisting of
all infinite index subgroups of Γ. It is a closed subspace of SubpΓq exactly
when Γ is finitely generated (see Remark 2.3).
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Our first main result completely describes the perfect kernel of the various
Baumslag-Solitar groups. When |m| “ |n|, the subgroup generated by bm is
normal; let us denote by π the corresponding quotient homomorphism

BSpm,nq
π

Ñ BSpm,nq{ xbmy .

Theorem A (Perfect kernel of BSpm,nq, Theorem 5.3). Let m,n P Zzt0u,
1. if |m| “ 1 or |n| “ 1, then KpBSpm,nqq is empty;
2. if |m|, |n| ą 1 , then

(a) if |m| ‰ |n|, then KpBSpm,nqq “ Subr8spBSpm,nqq;
(b) if |m| “ |n|, then KpBSpm,nqq “ π´1

`

Subr8spBSpm,nq{ xbmyq
˘

.

The fact that SubpBSpm,nqq is countable when |m| “ 1 or |n| “ 1
(Item 1), i.e. for the Baumslag-Solitar groups that are metabelian, was al-
ready observed by Becker, Lubotzky, and Thom [BLT19, Corollary 8.4]. For-
tuitously or not, it turns out that KpBSpm,nqq “ Subr8spBSpm,nqq exactly
when BSpm,nq is not residually finite.

There is a general correspondence between the transitive pointed Γ-actions
and the subgroups of Γ. It sends an action α to the stabilizer of its base point.
This Γ-equivariant map is a bijection when one considers the actions up to
pointed isomorphisms (see Section 2.2). Item 2 of Theorem A has a unified
reformulation in this setting:

2’. if |m|, |n| ą 1, then KpBSpm,nqq is the space of subgroups Λ such that
the right BSpm,nq-action on ΛzBSpm,nq has infinitely many xby-orbits.

Note that this exactly means that the quotient of the Λ-action on the stan-
dard Bass-Serre tree (see Section 2.3) of BSpm,nq is infinite.

Let us now give some more context for Theorem A. By Brouwer’s char-
acterization of Cantor spaces, the space KpΓq is either empty or a Cantor
space. It is empty exactly when SubpΓq is countable. This happens for ex-
ample for groups all whose subgroups are finitely generated, also known as
Noetherian groups. For instance all finitely generated nilpotent groups and
more generally all polycyclic groups have a countable space of subgroups.

On the opposite side, for the free group with a countably infinite num-
ber of generators, no subgroup is isolated, thus KpF8q “ SubpF8q (see
[CGLM22, Proposition 2.1]).

There are some classical groups for which we know that KpΓq “ Subr8spΓq.
This is the case for the free groups Fn (for 1 ă n ă 8), see for instance
[CGLM22, Proposition 2.1]. This is also the case for the groups with infinitely
many ends, for the fundamental groups of the closed surfaces of genus ě 2,
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and for the finitely generated LERF groups with non-zero first ℓ2-Betti num-
ber (see [AG22]). Recall that a group Γ is LERF when its set of finite index
subgroups is dense in SubpΓq (see for instance [GKM16, Theorem 3.1]).

Bowen, Grigorchuk and Kravchenko established that the perfect kernel of
the lamplighter group pZ{pZqn ≀ Z “ p‘ZpZ{pZqnq ¸ Z (for a prime number
p) is exactly the space Subp‘ZpZ{pZqnq of subgroups of the normal sub-
group [BGK15, Theorem 1.1]. Skipper and Wesolek uncovered the perfect
kernel for a class of branch groups containing the Grigorchuk group and the
Gupta–Sidki 3 group [SW20].

The perfect kernel can be obtained by successively, and transfinitely, re-
moving the isolated points. The Cantor–Bendixson rank rkCBpΓq of Γ
is the first ordinal ζ for which the derived space SubpΓqpζq has no more iso-
lated points. When |m|, |n| ą 1 and |m| ‰ |n|, then Theorem A implies
that rkCBpBSpm,nqq “ 1. The determination of the Cantor-Bendixson ranks
rkCBpBSpm,nqq for the other cases is postponed to the sequel [CGLMS23].

1.2 Dynamical partition of the perfect kernel

The compact space of subgroups SubpΓq is equipped with the continuous ac-
tion of Γ by conjugation: γ ¨ Λ :“ γΛγ´1. The perfect kernel is Γ-invariant.
This action is of course not minimal in general, even when restricted to the
perfect kernel: the latter may contain normal subgroups and these subgroups
are fixed points! However, the first three named authors observed a partic-
ularly nice feature in the case of the free group Fn (for 1 ă n ă 8): the
action Fn ñ KpFnq is topologically transitive (which means that the space
admits a dense Gδ subset of points whose individual orbits are dense). These
Fn-actions are called totipotent, see [CGLM22].

To our surprise, we uncovered a dramatically different and very rich sit-
uation for the Baumslag-Solitar groups.

Theorem B. Whenever |m|, |n| ‰ 1, the perfect kernel KpBSpm,nqq admits
a countably infinite partition into BSpm,nq-invariant and topologically tran-
sitive subspaces. One of them is closed; all the other ones are open (for the
induced topology).

Theorem B follows from Proposition 5.8 and Theorem 5.14. From now
on in this introduction, we stick to the case |m| ‰ 1 and |n| ‰ 1. In order
to describe the partition in Theorem B, we introduce a new invariant: the
phenotype.
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The relation tbmb´1 “ bn imposes some arithmetic conditions between the
cardinalities of the b-orbit of a point x and the b-orbit of xt. For instance,
the b-orbit of x is infinite if and only if the b-orbit of xt is infinite.

In Definition 4.1, we introduce a function Phm,n : Zě1 Y t8u Ñ Zě1 Y

t8u called the pm,nq-phenotype, with the following property, which directly
follows from Proposition 4.6, Theorem 4.13 and Proposition 3.22:

Theorem C. Whenever |m|, |n| ‰ 1, there is a transitive BSpm,nq-action
with two b-orbits of cardinal k and ℓ respectively if and only if Phm,npkq “

Phm,npℓq.

If for instance m and n are coprime, the phenotype Phm,npkq of any
natural number k P Zě1 is obtained as k expunged of all its prime divisors
that appear in either m or n. The general form is more complicated, see
Definition 4.1 and Example 4.3, but it follows readily from Definition 4.1
that Phm,npqq “ q for every q ě 1 that is coprime with m and n. Hence, the
set of possible pm,nq-phenotypes

Qm,n :“ tPhm,npkq : k P Zě1u Y t8u.

is always infinite.
Theorem C allows us to define the phenotype of a transitive BSpm,nq-

action as the common pm,nq-phenotype of the cardinalities of its b-orbits.
Then, we define, the phenotype PhpΛq of a subgroup Λ P SubpBSpm,nqq

as the phenotype of its action on the homogeneous space ΛzBSpm,nq.
Notice that the BSpm,nq-actions on ΛzBSpm,nq and pgΛg´1qzBSpm,nq

are isomorphic (both are transitive with some point stabilizer equal to Λ), so
that they have the same phenotype. Hence, the partition

SubpBSpm,nqq “
ğ

qPQm,n

Ph´1
pqq (1.2)

is invariant under the BSpm,nq-action (recall this is the action by conjuga-
tion). Let us mention from Proposition 5.8 that

• for all finite q P Qm,n, the pieces Ph´1
pqq are open;

• the piece Ph´1
p8q is closed but not open.

It now follows from Theorem 5.14 that: the restriction of the partition (1.2)
to the perfect kernel

KpBSpm,nqq “
ğ

qPQm,n

KqpBSpm,nqq, (1.3)
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where KqpBSpm,nqq :“ KpBSpm,nqq X Ph´1
pqq, satisfies all the conclusions

of Theorem B. The pieces KqpBSpm,nqq are indeed non-empty, see Remark
5.12.

1.3 Approximations by subgroups of other phenotypes

We still stick to the case |m| ‰ 1 and |n| ‰ 1. Since the only non-open
piece in partition (1.2) is Ph´1

p8q, the subgroups of infinite phenotype are
the only ones which can be approximated in SubpBSpm,nqq by subgroups of
other (that is, finite) phenotypes.

The set of limits of subgroups of finite phenotype depends on whether
we fix the phenotype or we let it vary. About approximations by subgroups
with a constant phenotype, we have the following result (see Proposition 5.8
and Theorem 6.2).

Theorem D. Assume |m|, |n| ‰ 1 and let us fix a finite pm,nq-phenotype q.
1. If |m| “ |n|, then Ph´1

pqq is closed, hence no infinite phenotype sub-
group can be approximated by subgroups of phenotype q.

2. If |m| ‰ |n|, then an infinite phenotype subgroup Λ can be approximated
by subgroups of phenotype q if and only if Λ ď xxbyy, where xxbyy is the
normal subgroup generated by b.

It is remarkable that the set Ph´1
pqq X Ph´1

p8q is independent of q in
the previous result.

Allowing the finite phenotype to vary yields new limit points. Our result
is the following (see Proposition 6.7 and Corollary 6.11).

Theorem E. Assume |m|, |n| ‰ 1.
1. If |m| “ |n| then every infinite phenotype subgroup is a limit of finite

(and varying) phenotypes subgroups.
2. On the contrary, if |m| ‰ |n|, then the set of subgroups in Ph´1

p8q

which are limits of finite (and varying) phenotypes subgroups has empty
interior in Ph´1

p8q.

Therefore, in the case |m| “ |n|, all subgroups of infinite phenotype
are limits of subgroups of finite phenotype, but none of them is a limit of
subgroups of fixed finite phenotype.

The case |m| ‰ |n| is more complex. We do not have a nice description of
the limit set from the above theorem. We can show however that this limit set
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is strictly larger than its fixed phenotype counterpart, see Proposition 6.12
and Theorem 6.14.

1.4 Closures of orbits in finite phenotype

We still stick to the case |m| ‰ 1, |n| ‰ 1, and assume moreover |m| ‰ |n|.
The previous subsection shows that for any finite phenotype q, we have

Ph´1
pqq Ĺ Ph´1

pqq Ĺ Ph´1
pqq Y Ph´1

p8q.

Theorem B yields that Ph´1
pqq contains orbits that are unbounded (i.e.

adherent to Ph´1
p8q). In Theorem D, we described their limit points. We

now turn our attention to the bounded orbits. Quite remarkably, they form
a compact set.

Theorem F (see Theorem 5.20). Suppose |m|, |n| ‰ 1 and |m| ‰ |n|. For
every finite phenotype q, there is a positive integer s “ spq,m, nq such that
the subset

MCq :“ Ph´1
pqq X tΛ P SubpBSpm,nqq : Λ ě xxbsyyu

is compact and contains all the invariant compact subsets of Ph´1
pqq.

In particular every normal subgroup of phenotype q, and hence every
finite index subgroup, contains xxbsyy. Moreover, MCq X KqpBSpm,nqq has
empty interior in KqpBSpm,nqq (Theorem 5.20-(4)).

When gcdpm,nq “ 1, the above theorem takes an easier form: s “ q and
MCq X KpBSpm,nqq “ txxbqyyu. In particular, xxbqyy is the unique normal
subgroup of phenotype q and infinite index, see Theorem 5.20-(5). On the
other hand, if gcdpm,nq ‰ 1, then the perfect kernel contains continuum
many normal subgroups of phenotype q, see Theorem 5.24.

1.5 An example: the case of BSp2, 3q

Let us specialize our theorems to the case of BSp2, 3q. An illustrative picture
is given in Figure 1.

Since 2 ‰ 3, Theorem A tells us that KpBSp2, 3qq “ Subr8spBSp2, 3qq. In
this case the phenotype is given by the following simple formula

PhpΛq “
I

2|I|23|I|3
where I :“ rxby : Λ X xbys.
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K1

K8

K5

K7

K11

K13

xxbyy

xxb5yy

xxb7yy

xxb11yy

xxb13yy

Finite index subgroups

Infinite index subgroups

Infinite index subgroups kernel

Unique normal subgroup

with finite phenotype

with infinite phenotype

Perfect

Figure 1: The space of subgroups of BSp2, 3q

Therefore, the possible phenotypes for the subgroups of BSp2, 3q are given
by all the positive integers not divisible by 2 and 3, and infinity. Denoting
Kq “ tΛ ď BSp2, 3q : PhpΛq “ qu, the partition (1.3) becomes

KpBSp2, 3qq “ K8 \
ğ

q : gcdpq,2q“gcdpq,3q“1

Kq.

By Theorem B, the action on each Kq is topologically transitive. Note that
all finite index subgroups have finite phenotype. The set K8 is closed and
colored in black in Figure 1; the subsets Kq are open and colored in gray
in the figure. Finally the finite index subgroups are denoted by the dotted
lines. Note that there are infinitely many finite index subgroups and they
accumulate on the sets Kq.

Note that for every finite q, the set KqXK8 is non-empty and independent
of q; indeed by Theorem D this is the set of subgroups of infinite phenotype
contained in xxbyy. This set is illustrated as the black central disk in the

9



figure. As one can guess in the figure, Yq finiteKq is strictly bigger than this
set, and yet not the entirety of K8, as prescribed by Theorem E.

We finally apply Theorem F. Since gcdp2, 3q “ 1, for every finite pheno-
type q the largest compact invariant subset of Kq consists only of one point:
the unique normal subgroup xxbqyy contained in Kq, pictured with a star in
the figure.

Remark. Figure 1 is actually quite general: as soon as |m| ‰ |n|, we have
the exact same picture except that the possible phenotypes are different, and
the stars turn into bigger compact maximal invariant subsets. Moreover, the
phenotype is given by a more complicated formula.

1.6 Some ideas on the techniques of proofs

Topology questions lead us to look at the trace of transitive actions on some
parts of their Schreier graph and most statements consist in assembling such
parts from different actions (to form new actions): this leads us to the notion
of pre-action, as considered in [FMMS20], where to facilitate the verification
of the group relation, we impose that b is defined everywhere, i.e. on the
whole domain of the pre-action (see Section 3.1). These pre-actions are
more malleable but the algebraic conditions underlying them still make them
difficult to manipulate.

We then move on to purely combinatorial objects associated with actions
and pre-actions: the pm,nq-graphs (Section 3.3). These are oriented graphs
which carry labels on the vertices and on the edges and which satisfy simple
arithmetic conditions linking valences and labels (Definition 3.12, equalities
(3.13) and inequalities (3.14)). They generalize the Bass-Serre graphs of pre-
actions used in [FMMS20] by adding their labels which record the size of the
orbits of b, bm or bn according to the graph element considered. Notice that
in [FMMS20] the b-orbits were assumed to be infinite.

All the vertex labels of a connected pm,nq-graph have the same pm,nq-
phenotype (Proposition 4.6) which is thus defined to be the phenotype of the
graph (Definition 4.8).

We have some gluing results between two pm,nq-graphs. The phenotype
is a complete invariant of gluing, more precisely: consider two connected
pm,nq-graphs that are non-saturated (at least one of the inequalities (3.14)
is strict); then they can appear as subgraphs of the same pm,nq-graph if and
only if they have the same phenotype (Theorem 4.13). This relies on the
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Welding Lemma 4.16 and the Connecting Theorem 4.17.
We then have statements that allow us to upgrade pm,nq-graphs to pre-

actions. These upgrades are not univocal, however if an pm,nq-graph G2

contains the pm,nq-graph G1 of a pre-action α1, then the upgraded pre-action
α2 can be chosen to extend α1 (Proposition 3.23).

We will thus use several times the following construction scheme: consid-
ering two actions, we restrict them to their traces on large but proper parts
of their domain. We degrade the resulting pre-actions to pm,nq-graphs and
glue them together. We saturate the resulting pm,nq-graph and upgrade it
into an action which "contains" the traces of the original actions.
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2 Preliminaries and notations
In this text, we denote by Zě0 :“ t0, 1, 2, . . .u the set of non-negative integers
and by Zě1 :“ t1, 2, 3, . . .u the set of positive integers. Given two integers
k, l P Zzt0u, we denote by gcdpk, lq P Zě1 the greatest common divisor of k
and l. We use the convention that gcdpk,8q “ k and 8

k
“ k8 “ 8.

Let P be the set of prime numbers. Given an integer k P Zzt0u and a
prime p P P , we denote by |k|p the p-adic valuation of k, that is |k|p is the
largest positive integer such that p|k|p divides k.

2.1 Graphs and Schreier graphs

All our graphs are defined as in [Ser80]. That is, a graph G is a couple
pV pGq, EpGqq where V pGq is the vertex set and EpGq is the edge set, en-
dowed with:

• two maps s, t : EpGq Ñ V pGq called source and target respectively;
• a fixed-point-free involution EpGq Ñ EpGq, e ÞÑ ē;
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such that spēq “ tpeq and tpēq “ speq.
An orientation of the graph G is a partition EpGq “ E`pGq \ E´pGq

whose pieces are exchanged by the involution e ÞÑ ē. Edges in E`pGq are
called positive edges and edges in E´pGq are negative.

Remark 2.1. In order to define an oriented graph G, it is enough to define
the set of vertices V pGq, the set of positive edges E`pGq, and the restrictions
of the source and target maps s, t to E`pGq. Indeed, we can define E´pGq to
be a copy of E`pGq and the involution e ÞÑ ē to be the natural identification
of E`pGq with E´pGq. We extend the source and target map by setting
spēq :“ tpeq and tpēq :“ speq.

The degree a vertex v in a graph G, is the cardinal

degpvq :“ |te P EpGq : speq “ vu| “ |te P EpGq : tpeq “ vu|.

If G is oriented, we say that an edge e is:
• a v-outgoing edge if it is positive and speq “ v;
• a v-incoming edge if it is positive and tpeq “ v.

The outgoing degree degoutpvq of v is the number of v-outgoing edges while
its incoming degree deginpvq is the number of v-incoming edges. We clearly
have degoutpvq ` deginpvq “ degpvq.

A subgraph G 1 of a graph G is a graph such that V pG 1q Ď V pGq, EpG 1q Ď

EpGq and the structural maps of G 1 are restrictions of those of G.
Still following [Ser80], we call circuit a subgraph isomorphic to a circular

graph (of length l ě 1) and loop a circuit of length 1. We also call loop an
edge such that speq “ tpeq. A path in a graph G is a finite sequence of edges
pe1, . . . , enq, such that for all 1 ď k ď n ´ 1, tpekq “ spek`1q. Similarly, an
infinite path is a sequence of edges pekqkě1 such that tpekq “ spek`1q for all
k ě 1. Finally a (possibly infinite) path is called simple when the induced
sequence of vertices is injective.

The ball Bpv,Rq of radius R centered at a vertex v in a graph G is the
subgraph induced by the set of vertices of G at distance ď R from v in the
path metric.

Schreier graphs Let Γ be a group and let S be a generating set of Γ.
Consider a (right) action α : X ð Γ. The Schreier graph of α relatively to
S is the oriented graph Schpαq “ Schpα, Sq defined by

V pSchpαqq :“ X and E`
pSchpαqq :“ tpx, sq : x P X, s P Su
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where spx, sq “ x and tpx, sq “ xs, together with the following labeling: the
edge px, sq is labeled s and its opposite px, sq is labeled by s´1.

Given a subgroup Λ ď Γ, we denote by SchpΛ, Sq the Schreier graph of
the natural action ΛzΓ ð Γ.

The Cayley graph of Γ relatively to S is the Schreier graph Schpα, Sq

of the action α : Γ ð Γ by (right) translations. This graph is denoted by
CaypΓ, Sq and clearly CaypΓ, Sq “ Schptidu, Sq. The Γ-action by left trans-
lations extends to the standard left action of Γ on CaypΓ, Sq by graph au-
tomorphisms 1. In particular ΛzCaypΓ, Sq “ SchpΛ, Sq.

Let φ : X Ñ Y be a Γ-equivariant map from α : X ð Γ to β : Y ð Γ
and let S be a generating set of Γ. The map φ extends to a graph morphism
from Schpα, Sq to Schpβ, Sq which respects the labelings. In particular,
given subgroups Λ1 ď Λ2 ď Γ, the equivariant map Λ1zΓ Ñ Λ2zΓ defines a
surjective morphism SchpΛ1, Sq Ñ SchpΛ2, Sq.

2.2 Space of subgroups

Let Γ be a countable group. We identify its set of subsets with t0, 1uΓ and
we endow it with the product topology, thus turning it into a Polish compact
space. The space of subgroups of Γ is the closed, hence compact Polish,
subspace

SubpΓq :“ tΛ P t0, 1u
Γ : Λ is a subgroupu,

which is also totally disconnected. The clopen subsets

VpI, Oq :“ tΛ P SubpΓq : I Ď Λ and Λ X O “ Hu

of SubpΓq where I, O run over finite subsets of Γ, form a basis of the topology.
Note that a sequence pΛnqně0 of subgroups converges to Λ if and only if for
all γ P Γ,

pγ P Λq ðñ pγ P Λi for i large enoughq .

By the Cantor-Bendixson Theorem [Can1884, Ben1883] (see e.g. [Kec95,
Thm. 6.4]), there is a unique decomposition

SubpΓq “ CpΓq \ KpΓq

where CpΓq is a countable open subset and KpΓq is a closed perfect2 sub-
space called the perfect kernel of Γ. The set KpΓq is the largest subset

1This is why Schreier graphs were defined with respect to right actions.
2A topological space is called perfect if it has no isolated points.
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K Ď SubpΓq without isolated points for the induced topology. In fact, KpΓq

is exactly the set of condensation points, that is, the points whose neigh-
borhoods in SubpΓq are all uncountable.

Remark 2.2. By a theorem of Brouwer, the space KpΓq is either empty or
a Cantor space, see [Kec95, Thm. 7.4].

Remark 2.3. The subset Subr8s of infinite index subgroups of Γ is closed in
Γ if and only if Γ is finitely generated. Indeed if Γ is finitely generated, then
its finite index subgroups are isolated. If Γ is not finitely generated, then all
its finite index subgroups are not finitely generated. Such a subgroup is a
limit of finitely generated subgroups, thus of infinite index.

The group Γ acts (on the right) by conjugation via Λ ¨ γ :“ γ´1Λγ on the
space of its subgroups SubpΓq. This action is continuous and the Cantor-
Bendixson decomposition SubpΓq “ CpΓq \ KpΓq is Γ-invariant.

By the Baire category theorem, any countable closed subset of SubpΓq

contains an isolated point, so SubpΓq has trivial perfect kernel if and only if
it is countable. The following well-known proposition is useful for showing
the latter property.

Proposition 2.4. Let Γ be a countable group, let N be a normal subgroup of
Γ such that Γ{N is Noetherian (all its subgroups are finitely generated), and
assume that SubpNq is countable. Then SubpΓq is countable.

Proof. Let Λ ď Γ and denote by π : Γ Ñ Γ{N the quotient map. Since
Γ{N is Noetherian, we have πpΛq “ xSy for some finite set S. Fix a finite
set S 1 Ď Λ such that πpS 1q “ S. Then we can recover Λ from S 1 and its
intersection with N as

Λ “ xS 1
Y pΛ X Nqy .

In other words, the map pS 1, N 1q ÞÑ xS 1 Y N 1y surjects Pf pΓq ˆ SubpNq onto
SubpΓq, where Pf pΓq is the set of finite subsets of Γ, which is countable.
Since SubpNq is countable as well we conclude that SubpΓq is countable.

Corollary 2.5. If |m| “ 1 or |n| “ 1 then SubpBSpm,nqq is countable.

Sketch of proof. We sketch the proof contained in [BLT19, Cor. 8.4]. By
symmetry we may as well assume m “ 1. Then BSpm,nq is isomorphic to
the semi-direct product Zr1{ns ¸ Z where Z acts by multiplication by n. As
explained in the proof of [BLT19, Cor. 8.4], SubpZr1{nsq is countable, so the
result follows from the previous proposition.
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Space of pointed actions Let us now interpret the topological space
SubpΓq in terms of pointed transitive group actions and their pointed Schreier
graphs. To any pointed transitive group action pα, vq, where α : V ð Γ and
v P V , we associate the stabilizer Stabαpvq P SubpΓq, and we notice that
Stabα1pv1q “ Stabα2pv2q if and only if pα1, v1q and pα2, v2q are isomorphic as
pointed transitive actions.

Notation 2.6. We denote by rα, vs the isomorphism class of any pointed
transitive action pα, vq.

We therefore have a canonical bijection rα, vs ÞÑ Stabαpvq between the
collection of isomorphism classes of pointed transitive actions and SubpΓq.
Its inverse is given by Λ ÞÑ rΛzΓ ð Γ,Λs. Through this bijection, the action
by conjugation of Γ on SubpΓq becomes rα, vs ¨ γ “ rα, vαpγqs, i.e., it moves
the basepoint.

Via the above identification, we obtain a topology on the set of isomor-
phism classes of pointed actions rα, vs.

It is clear that two pointed actions are isomorphic if and only if their
Schreier graphs are isomorphic as pointed labeled graphs. Given two pointed
labeled oriented graphs pG, vq, pH, wq and a positive integer R, we write
pG, vq »R pH, wq to mean that the R-balls around v in G and around w
in H are isomorphic as pointed oriented labeled graphs. It is an exercise to
check that if Γ is generated by a finite set S, then the sets of the form

N prα, vs, Rq :“
␣

rα1, v1
s : pSchpα, Sq, vq »R pSchpα1, Sq, v1

q
(

, (2.7)

constitute a basis of clopen neighborhoods of rα, vs.

2.3 Bass-Serre theory

Associated with the standard HNN-presentation of

BSpm,nq “
@

b, t|tbmt´1
“ bn

D

,

we have the BSpm,nq-action on its Bass-Serre tree T . Recall that T is the
oriented tree with V pT q “ BSpm,nq{ xby, E`pT q “ BSpm,nq{ xbny,

spγ xbnyq “ γ xby , and tpγ xbnyq “ γt xby

and given a subgroup Λ ď BSpm,nq, the quotient ΛzT has the structure of
a graph of groups whose fundamental group is Λ, see [Ser80].
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Remark 2.8. Let Λ ď BSpm,nq be a subgroup. If Λ X xby “ tidu, then Λ
acts freely on T ; thus it is the fundamental group of the quotient graph ΛzT ,
hence Λ is a free group.

Let us now concentrate on a subgroup Λ ď BSpm,nq such that ΛX xby ‰

tidu. Then for the induced action Λ ñ T , each edge and vertex stabilizer is
infinite cyclic: the tree T is a GBS-tree (for Generalized Baumslag-Solitar),
in the sense of [For07, Lev07]. One can use this point of view to understand
the graph of groups description of Λ. However, taking advantage of the
transitivity of the BSpm,nq-action on the edges and the vertices, we provide
a slightly more precise description.

Proposition 2.9. Let m and n be non-zero integers. Let Λ ď BSpm,nq be a
subgroup such that ΛX xby ‰ tidu. The quotient graph of groups arising from
the action Λ ñ T is isomorphic to the graph of groups obtained by attaching
a copy of Z to every vertex and every edge of the quotient graph ΛzT , with
structural maps of positive edges

Ze ãÑ Zspeq, k ÞÑ
n

degoutpspeqq
¨ k,

Ze ãÑ Ztpeq, k ÞÑ
m

deginptpeqq
¨ k.

Proof. In this proof we set Γ :“ BSpm,nq. Let us consider the action of Λ
on the tree T . Since T is locally finite, any edge adjacent to a vertex with
infinite stabilizer has itself infinite stabilizer. It follows that all vertex and
edge Λ-stabilizers are infinite. Being subgroups of the Γ-stabilizers, they are
all isomorphic to Z.

Observe that since Γ acts transitively and the Γ-stabilizers are abelian, the
Γ-stabilizers are canonically pairwise isomorphic: given any vertex u P V pT q

and a P StabΓpuq, one has

gag´1
“ hah´1 for any g, h P Γ such that gu “ hu. (2.10)

Indeed since h´1g P StabΓpuq, we get that h´1gag´1h “ a.
We now focus on the quotient graph of groups arising from the action

Λ ñ T . Let us recall from [Ser80] that its vertex groups are Gv :“ StabΛpṽq

and edge groups are Ge :“ StabΛpẽq, where ṽ, ẽ are some lifts of v, e in T .
Given any e P E`pΛzT q, the structural map Ge ãÑ Gtpeq is

Ge “ StabΛpẽq ãÑ StabΛptpẽqq Ñ StabΛ

´

Ątpeq

¯

“ Gtpeq

a ÞÑ a ÞÑ gag´1
(2.11)
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where g P Λ is any element such that g ¨tpẽq “ Ątpeq and the map Ge ãÑ Gspeq

is similar. This is unambiguous by (2.10).
Let us call orientation of an infinite cyclic group the choice of one gener-

ator (over two). This provides an identification to Z. Once every stabilizer is
oriented, the inclusions Ge ãÑ Gspeq and Ge ãÑ Gtpeq become multiplications
by non-zero integers λ´

Λpeq and λ`
Λpeq, respectively. It now suffices to prove

that, for well-chosen orientations, one has

λ´
Λpeq “

n

degoutpspeqq
and λ`

Λpeq “
m

deginptpeqq
(2.12)

for every positive edge e P E`pΛzT q.
Let us first observe that the absolute value of λ˘

Λpeq does not depend on
the orientations: it is equal to rGv : Ges. In other words, if ẽ is a lift of e,
ṽ :“ spẽq “ and w̃ :“ tpẽq, we have∣∣λ´

Λpeq
∣∣ “ rStabΛpṽq : StabΛpẽqs “ |StabΛpṽq ¨ ẽ| (2.13)∣∣λ`

Λpeq
∣∣ “ rStabΛpw̃q : StabΛpẽqs “ |StabΛpw̃q ¨ ẽ| . (2.14)

Let Eoutpṽq be the set of ṽ-outgoing edges. Its cardinal is |Eoutpṽq| “

|n|. Any generator of StabΓpṽq acts as a single |n|-cycle on Eoutpṽq. Hence
Eoutpṽq splits into StabΛpṽq-orbits of equal size, that is

∣∣λ´
Λpeq

∣∣ according to
(2.13). The number of these StabΛpṽq-orbits is degoutpvq, thus |n| “

∣∣λ´
Λpeq

∣∣ ¨

degoutpvq. We obtain similarly |m| “
∣∣λ`

Λpeq
∣∣ ¨ deginpwq, using ingoing edges

and (2.14). We have established that (2.12) holds in absolute value.
Let us now turn to the signs in (2.12), for which we need explicit orien-

tations of the Λ-stabilizers. We actually start by orienting the Γ-stabilizers.
Pick the vertex ũ0 :“ xby P V pT q, then StabΓpũ0q “ xby and the edge

d̃0 :“ xbny P E`pT q has source ũ0 and target tũ0. Since the Γ-stabilizers are
canonically pairwise identified by conjugation (2.10), these choices induce
a canonical conjugation-invariant orientation x˚ of all the vertex and edge
Γ-stabilizers: xgũ0

:“ gbg´1 for StabΓpgũ0q and xgd̃0
:“ gbng´1 for StabΓpgd̃0q.

The inclusions StabΓpẽq ãÑ StabΓpspẽqq and StabΓpẽq ãÑ StabΓptpẽqq be-
come multiplications by non-zero integers that we denote by µ´

Γ pẽq and µ`
Γ pẽq.

We have µ´
Γ pẽq “ n since xẽ “ xn

spẽq
and µ`

Γ pẽq “ m since

xẽ “ gbng´1
“ gptbt´1

q
mg´1

“ xm
tpẽq.

The Λ-stabilizers have finite index in the corresponding Γ-stabilizers. We
orient them coherently with the ambient Γ-stabilizers by using positive pow-
ers. The Λ-conjugations between Λ-stabilizers remain orientation-preserving,
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therefore by (2.11) the inclusion StabΛpẽq ãÑ StabΛptpẽqq becomes the multi-
plication by λ`

Λpeq. Similarly, the inclusion StabΛpẽq ãÑ StabΛpspẽqq becomes
multiplication by λ´

Λpeq. Since the orientations are coherent, we conclude
that λ´

Λpeq has the same sign as µ´
Γ peq “ n and λ`

Λpeq has the same sign as
µ`
Γ peq “ m.

Corollary 2.15. Let m and n be non-zero integers. Let Λ ď BSpm,nq be a
subgroup such that Λ X xby ‰ tidu. The isomorphism type of Λ is completely
determined by the oriented graph ΛzT .

Proposition 2.16. Let m and n be non-zero integers and let Λ ď BSpm,nq

be a subgroup.
1. If Λ X xby ‰ tidu, then either Λ » Z is virtually a subgroup of xby or Λ

is not a free group.
2. If |m| “ 1 or |n| “ 1, then the fundamental group of the underlying

graph ΛzT has rank ď 1.

The first item of the proposition follows from standard techniques in ℓ2-
cohomology: if Λ X xby ‰ tidu, then Λ is the fundamental group of a graph
of groups whose vertex and edge groups are isomorphic to Z; all the ℓ2-Betti
numbers of such a group vanish. For the comfort of the reader we propose a
proof by hand.

Proof. We start with the first item. Recall that in a free group F , whenever
non-trivial elements g, h P F satisfy ghkg´1 “ hl with k ‰ 0 ‰ l, then there
is a P F such that g, h are both powers of a. In particular, such elements g, h
always commute.

Now, assume that Λ is free and Λ X xby ‰ tidu, say Λ X xby “ xbsy where
s ą 0. Pick any λ P Λ and set Hλ :“ xbsyXλ xbsyλ´1, which is the intersection
of Λ with the stabilizer of the geodesic rxby , λ xbys in T . Observe that Hλ

is a finite index subgroup of both xbsy and λ xbsyλ´1. Therefore, there are
k ‰ 0 ‰ l such that λbskλ´1 “ bsl. As Λ is free, λ and bs commute.

Consequently, the center of Λ contains xbsy. Thus, the rank of Λ is 1; in
other words Λ is infinite cyclic. It is now clear that xbsy has finite index in
both Λ and xby, so that Λ is virtually a subgroup of xby.

Let us turn to the second item. The fundamental group of a graph of
groups surjects onto the fundamental group of the underlying graph. The
condition in Item 2 implies the amenability of BSpm,nq. It thus cannot
surject onto a non-amenable free group.

18



3 Bass-Serre graphs

3.1 Pre-actions

Let m,n P Zzt0u. Recall that BSpm,nq “ xb, t | tbm “ bnty and that our
actions are on the right. Accordingly, in a product of (partial) bijections στ ,
σ is applied first.

Definition 3.1. Given a bijection β of a set X and a partial bijection τ of
X, we say that τ is pβn, βmq-equivariant if τβm “ βnτ as partial bijections,
that is:

• dompτq is βn-invariant;
• rngpτq is βm-invariant;
• xτβm “ xβnτ for all x P dompτq.

A pre-action of BSpm,nq on a set X is a couple pβ, τq where β is a bijection
of X and τ is a pβn, βmq-equivariant partial bijection of X. The set X is
called the domain of the pre-action. Such a pre-action is saturated if
dompτq “ X “ rngpτq.

Remark 3.2. Saturated pre-actions pβ, τq correspond to actions α of BSpm,nq

on the same set X under the association β Ø αpbq and τ Ø αptq.

Definition 3.3. Given a pre-action pβ, τq of BSpm,nq, its Schreier graph
is the oriented labeled graph Schpβ, τq “ G defined by

V pGq :“ X,

"

E`pGq :“ X ˆ tbu \ dompτq ˆ ttu,
E´pGq :“ X ˆ tb´1u \ rngpτq ˆ tt´1u,

where the label of any edge is its second component and:
• for all x P X, we set

spx, bq :“ x, tpx, bq :“ xβ, and px, bq :“ pxβ, b´1
q;

• for all x P dompτq, we set

spx, tq :“ x, tpx, tq :“ xτ, and px, tq :“ pxτ, t´1
q.

Notice that the orientation of any edge px, lq is determined by its label l
and that the source of px, lq is x, regardless of its orientation.

Noting that a BSpm,nq-action is transitive if and only if the associated
Schreier graph is connected, we make the following definition.

Definition 3.4. A pre-action of BSpm,nq is transitive if its Schreier graph
is connected.
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3.2 Bass-Serre graphs

We now introduce an important tool for our study. It is the labeled graph
obtained from the Schreier graph defined in Section 3.1 by “shrinking each
β-orbit to one point”. We identify together the t-edges whose initial vertices
belong to the same βn-orbit. Note that their terminal vertices automatically
belong to the same βm-orbit.

We label the vertices by the cardinality of the corresponding β-orbit and
the edges by the cardinality of the corresponding βn-orbit. This is illustrated
by Figure 2. The formal definition is as follows.

Definition 3.5. The Bass-Serre graph associated to a pre-action α “ pβ, τq

of BSpm,nq on a set X is the oriented labeled graph BSpαq defined by

V pBSpαqq :“ X{ xβy ,

"

E`pBSpαqq :“ dompτq{ xβny ,
E´pBSpαqq :“ rngpτq{ xβmy .

For every x P dom τ , we set

spx xβn
yq :“ x xβy , tpx xβn

yq :“ xτ xβy , and x xβny :“ xτ xβm
y “ x xβn

y τ.

We define the label map L : V pBSpαqq \ EpBSpαqq Ñ Zě1 Y t8u by

Lpx xβyq :“ |x xβy| , Lpx xβn
yq :“ |x xβn

y| , Lpy xβm
yq :“ |y xβm

y| .

Remark 3.6. For any x P dompτq, the pβn, βmq-equivariant partial bijection
τ induces a bijection from xxβny to xτxβmy. Thus both the target and the
opposite maps of BSpαq are well-defined and the label of each edge is equal
to the label of its opposite.

Remark 3.7. We view the sets E`pBSpαqq and E´pBSpαqq as disjoint sets,
even though we might have that dompτq{ xβny X rngpτq{ xβmy ‰ H. Note
that the source of an edge x

@

βk
D

P E˘pBSpαqq is x xβy regardless of its
orientation.

Remark 3.8. The groups BSpm,nq and BSpn,mq are isomorphic via b ÞÑ b
and t ÞÑ t´1. For every pre-action pβ, τq of BSpm,nq, the couple pβ, τ´1q is
a pre-action of BSpn,mq. At the level of Bass-Serre graphs, BSpβ, τq and
BSpβ, τ´1q coincide, except that the orientation is reversed.

Remark 3.9. In the case of a transitive BSpm,nq-action, the graph under-
lying our Bass-Serre graph is the quotient of the Bass-Serre tree T by the
stabilizer of any point of X, as will be explained Section 3.6.
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We now clarify what we meant by “shrinking each β-orbit to a point”, by
noting that we have the following simplicial map from the Schreier graph to
the Bass-Serre graph of any pre-action.
Definition 3.10. The projection associated to a pre-action α “ pβ, τq is
the application πα given by

V pSchpαqq Ñ V pBSpαqq, x ÞÑ x xβy

E`
t pSchpαqq Ñ E`

pBSpαqq, px, tq ÞÑ x xβn
y

E´
t pSchpαqq Ñ E´

pBSpαqq, px, t´1
q ÞÑ x xβm

y

EbpSchpαqq Ñ V pBSpαqq, px, b˘1
q ÞÑ x xβy

where E˘
t pSchpαqq is the subset of edges in Schpαq whose label is t or t´1

respectively and Eb is the subset of edges whose label is b or b´1.
This projection is illustrated in Figure 2. Given any subgraph G Ď Schpαq

or path p in Schpαq we obtain a subgraph παpGq Ď BSpαq or a path παppq

in BSpαq.

8 4 6

4

92

2 2

3

34

πα

Figure 2: The projection from the Schreier graph onto the Bass-Serre graph
of some non-saturated transitive BSp2, 3q-pre-action. The dotted circles rep-
resent the β-orbits in the Schreier graph.

Note that for every vertex v “ x xβy,∣∣x @βk
D
∣∣ “

|x xβy|
gcdp|x xβy| , kq

,
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thus the following facts hold:
• all the v-outgoing edges e have the same label, which is:

Lpeq “
Lpvq

gcdpLpvq, nq
,

• all the v-incoming edges e1 have the same label, which is:

Lpe1
q “

Lpvq

gcdpLpvq,mq
.

We also have the following relations between labels and degrees:
• The outgoing degree degoutpvq is equal to the number of βn-orbits con-

tained in x xβy X dompτq. Recall that dompτq is βn-invariant. Since
x xβy contains exactly gcdpLpvq, nq orbits under βn, we get

degoutpvq ď gcdpLpvq, nq,

with equality if and only if x xβy Ď dompτq.
• Similarly, the incoming degree deginpvq is equal to the number of βm-

orbits contained in x xβy X rngpτq, so

deginpvq ď gcdpLpvq,mq,

with equality if and only if x xβy Ď rngpτq.

Remark 3.11. As a consequence of the last two items, the pre-action is an
action if and only if, for every vertex v,

degoutpvq “ gcdpLpvq, nq and deginpvq “ gcdpLpvq,mq.

3.3 pm,nq-graphs

We now introduce an axiomatization of the Bass-Serre graphs we obtain from
pre-actions. Recall that by convention gcdp8, kq “ |k| for all k ‰ 0.

Definition 3.12. An pm,nq-graph is an oriented labeled graph G “ pV,Eq

with label map L : V \ E Ñ Zě1 Y t8u such that:
• for every positive edge e P E`, then

Lpspeqq

gcdpLpspeqq, nq
“ Lpeq “

Lptpeqq

gcdpLptpeqq,mq
; (3.13)
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• for every negative edge e P E´, Lpeq “ Lpēq;
• for every vertex v P V , we have

degoutpvq ď gcdpLpvq, nq and deginpvq ď gcdpLpvq,mq. (3.14)

Example 3.15. The Bass-Serre graph of any pre-action of BSpm,nq is an
pm,nq-graph. The converse will be shown in Proposition 3.22.

Remark 3.16. Observe that an edge label is uniquely determined by the
label of any of its vertices. The edge labels are thus redundant and are just
calculation tools.

Example 3.17. Let us see how labels interact for m “ 2 and n “ 3. If e is
an edge in a p2, 3q-graph, then once we fix the label of one of the extremities,
the other one can be chosen according to the Table 1, using Formula 3.13
for Lpeq. The reader is invited to consult the webpage [WebTool] to see the
kinds of local constraints which occur in general.

If gcdpLpspeqq, 2q “ 1
Lptpeqq P tLpeq, 2Lpequ

If gcdpLpspeqq, 2q “ 2
Lptpeqq “ 2Lpeq

If gcdpLptpeqq, 3q “ 1
Lpspeqq P tLpeq, 3Lpequ

If gcdpLptpeqq, 3q “ 3
Lpspeqq “ 3Lpeq

Table 1: How the label of the extremities impact each other

In Figure 3, we give an illustrative example.

Remark 3.18. As in Remark 3.8, every pm,nq-graph can be turned into
an pn,mq-graph by flipping the orientations of its edges. Note that this
operation does not affect the labels.

Remark 3.19. In a connected pm,nq-graph, the labels are, either all finite,
or all 8 by Equation (3.13). This will be made more precise in Proposi-
tion 4.6. Observe that any oriented graph G satisfying deginpvq ď m and
degoutpvq ď n for every v P V pGq becomes an pm,nq-graph if we set all the
labels to be infinite. However one cannot always put finite labels, see Lemma
3.33.
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1

1

2
1

1

1

(a) Various choices
for the label Lptpeqq.

6

4

4

4
2

2

2

(b) No choice for
the label Lptpeqq.

Figure 3: Two examples of p2, 3q-graphs.

Definition 3.20. Let G be an pm,nq-graph. A vertex v in G is saturated
if the inequalities (3.14) are indeed equalities, i.e.

degoutpvq “ gcdpLpvq, nq and deginpvq “ gcdpLpvq,mq.

The pm,nq-graph G is saturated if all its vertices are saturated.

Example 3.21. The Bass-Serre graph of a pre-action of BSpm,nq is satu-
rated if and only if the pre-action is an action.

3.4 Realizing pm,nq-graphs as Bass-Serre graphs

Proposition 3.22. Every pm,nq-graph G is the Bass-Serre graph of at least
one pre-action of BSpm,nq. Any such pre-action is an action if and only if
G is saturated.

The above proposition is a consequence of the following stronger state-
ment where by definition, a sub-pm,nq-graph of an pm,nq-graph G is a
subgraph G 1 labeled by the restriction of the label map of G.

Proposition 3.23 (Extension of pre-actions from pm,nq-graphs). Let G1 be
the Bass-Serre graph of a pre-action α1 and let G2 be an pm,nq-graph that
contains G1 as a sub-pm,nq-graph. Then G2 is the Bass-Serre graph of a
pre-action α2 that extends α1.

Proof. We start with a pre-action pβ1, τ1q on X1 which yields the Bass-Serre
graph G1. Let W :“ V pG2qzV pG1q and X2 :“ X1 \

Ů

vPW Xv where each Xv
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is a set of cardinality |Xv| “ Lpvq. We extend β1 to a permutation β2 of X2

by making it act as a cycle of length Lpvq on Xv.
By Zorn’s lemma, it suffices to extend τ1 when G1 only lacks one positive

G2-edge. So suppose E`pG1q \ teu “ E`pG2q. Then by Inequation (3.14)
from Definition 3.12,

degG1
outpspeqq ă degG2

outpspeqq ď gcdpLpspeqq, nq

and similarly

degG1
in ptpeqq ă degG2

in ptpeqq ď gcdpLptpeqq,mq.

We can thus find a βn-orbit y xβny contained in the β-orbit speq xβy but
disjoint from dompτ1q and a βm-orbit z xβmy contained in the β-orbit tpeq xβy

but disjoint from rngpτ1q.
Since these two orbits y xβny and z xβmy share the same cardinal Lpeq, we

can define τ2 as an extension of τ1 which is also pβn, βmq-equivariant when
restricted to y xβny by letting

yβknτ2 “ zβkm for all k P Z.

By construction τ2 is the desired extension.

The pre-action α2 arising in Proposition 3.23 is definitively not unique
in general. In a forthcoming work, we will characterize which pm,nq-graphs
arise as Bass-Serre graphs of continuum many non-isomorphic actions. In
particular we will show that the pm,nq-graphs whose underlying graph have
non-finitely generated fundamental group are of this kind. Such pm,nq-
graphs always exist as soon as |m| ě 2 and |n| ě 2. Here we give a simple
example of a graph associated to continuum many non-isomorphic actions
for n “ m “ 2.

Example 3.24. Let G be the p2, 2q-graph whose underlying graph is such
that V pGq “ Z and for every z P V pGq there are exactly two z-outgoing
edges, one to z and the other to z`1. That is, G is a line where every vertex
has an extra loop. We set the labels of G to be all infinite.

Set X :“ V pGq ˆ Z – Z ˆ Z. For every function f : Z Ñ Z such that
@w ă 0, fpwq “ 0 and fp0q ‰ 0, we define an action αf as follows: for all
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8 8 8 8

Figure 4: The (2,2)-graph G

pk, lq P X

pk, lqαf pbq :“pk, l ` 1q;

pk, lqαf ptq :“

#

pk ` 1, lq if l is odd;
pk, l ` fpkqq if l is even.

It is easy to check that all αf are actions of BSp2, 2q whose Bass-Serre graph is
G, that αf and αg are non-conjugate for f ‰ g, and that there are continuum
many such actions.

3.5 Additional properties of pm,nq-graphs

In this section, we collect some basic consequences of the definition of pm,nq-
graphs. Observe that Equation (3.13) is equivalent to the fact that

maxp|Lpspeqq|p ´ |n|p , 0q “ |Lpeq|p “ maxp|Lptpeqq|p ´ |m|p , 0q (3.25)

from which we obtain the following.

Remark 3.26. Consider an oriented labeled graph G “ pV,Eq with label
map L : V \ E Ñ Zě1 satisfying Lpēq “ Lpeq for every edge e. The labeled
graph G is an pm,nq-graph if and only if the following two conditions hold:

• for every positive edge e and every prime p such that |Lpeq|p ě 1,

|Lpspeqq|p “ |Lpeq|p`|n|p and |Lptpeqq|p “ |Lpeq|p`|m|p , (3.27)

• for every positive edge e and every prime p such that |Lpeq|p “ 0,

0 ď |Lpspeqq|p ď |n|p and 0 ď |Lptpeqq|p ď |m|p . (3.28)

In particular, in an pm,nq-graph, |Lpspeqq|p ą |n|p if and only if |Lptpeqq|p ą

|m|p, and if one of these two equivalent conditions is met then

|Lptpeqq|p “ |Lpspeqq|p ` |m|p ´ |n|p . (3.29)
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Lemma 3.30. Fix a prime p such that |n|p ă |m|p and let G be an pm,nq-
graph. If pekqkě1 is any infinite path consisting of positive edges with Lpspe1qq ‰

8 and |Lpspe1qq|p ą |n|p, then

lim
kÑ`8

|Lpspekqq|p “ `8.

If pekqkě1 is any infinite path consisting of negative edges with Lpspe1qq ‰ 8,
then

lim sup
kÑ`8

|Lpspekqq|p ă |m|p .

Proof. If pekqkě1 is an infinite path consisting of positive edges such that
|Lpspe1qq|p ą |n|p, then by a straightforward induction using Equation (3.29)
we have that

|Lpspekqq|p “ |Lpspe1qq|p ` kp|m|p ´ |n|pq (3.31)

for all k ě 1. The first result follows.
For the second one, let pekqkě1 be an infinite path consisting of nega-

tive edges. By exchanging the roles in Equation (3.29), we have that if
|Lpspekqq|p ą |m|p then |Lpspek`1qq|p ă |Lpspekqq|p. So there must be k0 P N
such that |Lpspek0qq|p ď |m|p. We then have |Lpspek0`1qq|p ď |n|p ă |m|p so
by induction |Lpspekqq|p ă |m|p for all k ě k0, which finishes the proof.

Remark 3.32. It follows from Equation (3.31) that any infinite path pekqkě1

consisting of positive edges with Lpspe1qq ‰ 8 and |Lpspe1qq|p ą |n|p has to
be a simple path.

Lemma 3.33. If |m| ą |n| and G is an pm,nq-graph with a vertex of finite
label, then there is a vertex v P V pGq such that deginpvq ă |m|.

Proof. Assume by contradiction that deginpvq “ |m| for all v P V pGq. Then
we can build inductively an infinite path pekqkPN consisting of negative edges
with Lpspe0qq finite. By the previous lemma this path goes through some
vertex v0 that |Lpv0q|p ă |m|p. Then deginpv0q “ gcdpLpv0q,mq ă |m|, a
contradiction.

3.6 Bass-Serre graphs and Bass-Serre theory

Take m,n P Zzt0u. Set Γ :“ BSpm,nq “ xb, t|tbmt´1 “ bny and put S :“
tb, tu. Denote by T the associated Bass-Serre tree and remark that it is the
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underlying oriented graph of the Bass-Serre graph of the transitive and free
action: T “ BSpΓ ð Γq.

Besides the Schreier graph, we can associate to each subgroup Λ ď Γ two
decorated graphs:

• the Bass-Serre graph of the action ΛzΓ ð Γ;
• the quotient graph of groups ΛzT of the action Λ ñ T .

Let us observe that the underlying oriented graphs of the two above decorated
graphs are the same. Indeed they are obtained as quotients of commuting
actions as one can see in the following diagram where by ðV xby we mean
that xby acts only on the set of vertices, where the Ö arrows are graph
morphisms obtained by quotienting by left Λ-actions, and where the dashed
Œ arrows are projections as in Definition 3.10:

Λ ñ CaypΓ, Sq ðV xby

ΛzCaypΓ, Sq ðV xby Λ ñ BSpΓ ð Γq

SchpΛ, Sq ðV xby Λ ñ T

BSpΛzΓ ð Γq » ΛzT

Next, observe that, BSpΛzΓ ð Γq being saturated, one has deginpvq “

gcdpLpvq,mq and hence, for every edge degoutpvq “ gcdpLpvq, nq for every
vertex v in this graph. Hence, for every edge e, one has

Lpspeqq

Lpeq
“ gcdpLpspeqq, nq “ degoutpspeqq and

Lptpeqq

Lpeq
“ deginptpeqq,

so that Remark 2.8 and Proposition 2.9 can be reformulated in terms of the
labels of the Bass-Serre graph BSpΛzΓ ð Γq.

Proposition 3.34. Let m and n be non-zero integers. Let G be a saturated
connected pm,nq-graph and let Λ be a subgroup of Γ “ BSpm,nq such that
BSpΛzΓ ð Γq » G.
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1. If all labels of G are infinite, then Λ is a free group, namely isomorphic
to the fundamental group of the graph G.

2. If all labels of G are finite, then the quotient graph of groups arising
from the action Λ ñ T is isomorphic to the graph of groups obtained
by attaching a copy of Z to every vertex and every edge of G, with
structural maps of positive edges

Ze ãÑ Zspeq, k ÞÑ
n ¨ Lpeq

Lpspeqq
¨ k,

Ze ãÑ Ztpeq, k ÞÑ
m ¨ Lpeq

Lptpeqq
¨ k.

In particular, combining Proposition 3.34 and Lemma 3.33 we get a corol-
lary equivalent to Corollary 2.15.

Corollary 3.35. Let m and n be non-zero integers such that |m| ‰ |n|. Then
the isomorphism type of Λ ď BSpm,nq depends only on the graph structure
of BSpΛq.

Proof. Recall that if an pm,nq-graph is saturated and has only infinite labels,
then all vertices have ingoing degree |m| and outgoing degree |n|. Lemma
3.33 thus allows us to detect whether the Bass Serre graph of Λ contains
infinite labels by purely looking at its graph structure: it has infinite labels
if and only if all vertices have degree |n| ` |m|. The result now follows from
Proposition 3.34.

Remark 3.36. When |m| “ |n|, the statement analogue to that of Corol-
lary 3.35 fails since the central subgroup Λ “ xb2ny has the same Bass-Serre
graph as the trivial subgroup tidu.

4 Phenotype
In this section, we introduce a central invariant to understand transitive
BSpm,nq-(pre)-actions: the phenotype (see Definition 4.9). We first define
the pm,nq-phenotype of a natural number. We then prove that given a tran-
sitive pre-action pτ, βq, all cardinalities of β-orbits have the same phenotype.
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4.1 Phenotypes of natural numbers

Recall that P denotes the set of prime numbers and that given p P P and
k P Z, we denote by |k|p the p-adic valuation of k.

Definition 4.1 (Phenotype of a natural number). Let k P Zě1. We set

Pm,n :“ tp P P : |m|p “ |n|pu ,

Pm,npkq :“ tp P P : |m|p “ |n|p and |k|p ą |n|pu .

The pm,nq-phenotype of k, denoted by Phm,npkq, is the following posi-
tive integer:

Phm,npkq :“
ź

pPPm,npkq

p|k|p .

If k “ 8, we set Phm,npkq :“ 8.

Example 4.2. If m and n are coprime, then for every k P Z

Pm,n “ tp P P : p does not divide mnu

Pm,npkq “ tp P P : p divides k and p does not divide mnu .

In this case, Phm,npkq is the greater divisor of k that is coprime to mn.

Example 4.3. If m “ 22 ¨ 32 ¨ 5 and n “ 22 ¨ 3, then Pm,n “ Pzt3, 5u and

Pm,npkq “

#

tp P P : p divides kuzt2, 3, 5u if 23 does not divide k

tp P P : p divides kuzt3, 5u if 23 divides k.

For example Phm,np2 ¨ 3 ¨ 7q “ 7 and Phm,np25 ¨ 3 ¨ 7q “ 25 ¨ 7.

Remark 4.4. If k, l both have phenotype q, then so do their lcm and gcd.

The following lemma will be useful in Section 5.

Lemma 4.5. Let q “ Phm,npkq be a finite pm,nq-phenotype. Then Ph´1
m,nptquq

is finite if and only if |m| “ |n|.

Proof. Assume first |m| ‰ |n|. In this case, there is a prime number p such
that |m|p ‰ |n|p. We get Phm,nppikq “ q for all i, hence Ph´1

m,nptquq is infinite.
If |m| “ |n|, then Pm,n “ P . If k and k1 are two integers with the same

phenotype, the only primes p for which the valuations of k and k1 may differ
are those for which |k|p ď |m|p and in this case |k1|p must also be bounded
by |m|p. There are only finitely many such k1.
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4.2 Phenotypes of pm,nq-graphs

If v is a vertex of an pm,nq-graph, we use the shorter expression “phenotype
of the vertex v” to mean “phenotype of the label of the vertex v”. The key
feature of the notion of phenotype is the following statement.

Proposition 4.6. The vertices of a connected pm,nq-graph all have the same
pm,nq-phenotype.

Proof. It is enough to check that for any positive edge e from v´ to v`,
the phenotypes of v´ and v` are the same. If the phenotype of one of
them is infinite, then this is a direct consequence of Equation (3.13) from
Definition 3.12. Otherwise, remark that for every positive integer k and
every p P Pm,n,

ˇ

ˇ

ˇ

ˇ

k

gcdpk, nq

ˇ

ˇ

ˇ

ˇ

p

ą 0 ô p P Pm,npkq.

Equation (3.13) implies
ˇ

ˇ

ˇ

ˇ

Lpv´q

gcdpLpv´q, nq

ˇ

ˇ

ˇ

ˇ

p

“ |Lpeq|p “

ˇ

ˇ

ˇ

ˇ

Lpv`q

gcdpLpv`q,mq

ˇ

ˇ

ˇ

ˇ

p

and hence Pm,npLpv´qq “ Pm,npLpv`qq. If p P Pm,npLpv´qq, then Lpv´q has
higher p-valuation than m and n, so that

|Lpv´q|p ´ |n|p “

ˇ

ˇ

ˇ

ˇ

Lpv´q

gcdpLpv´q, nq

ˇ

ˇ

ˇ

ˇ

p

“

ˇ

ˇ

ˇ

ˇ

Lpv`q

gcdpLpv`q,mq

ˇ

ˇ

ˇ

ˇ

p

“ |Lpv`q|p ´ |m|p.

Since |n|p “ |m|p, we conclude that |Lpv´q|p “ |Lpv`q|p for all p P Pm,npLpv´qq “

Pm,npLpv`qq. Therefore Lpv´q and Lpv`q share the same phenotype.

Remark 4.7. One can prove that the edges of a connected pm,nq-graph also
all have the same pm,nq-phenotype. However, it is a coarser invariant: there
are connected graphs with different vertex phenotypes, but with the same
edge phenotype. For example, fix

m “ 22 ¨ 32 ¨ 5, n “ 22 ¨ 3

and consider the graph consisting of a single oriented edge e and its two
endpoints. If the label of its origin is Lpspeqq “ 23 ¨ 7, then

Lpeq “
Lpspeqq

gcdpLpspeqq, nq
“ 2 ¨ 7 and Phm,npLpeqq “ 7
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while Phm,npLpspeqq “ 23 ¨ 7. If instead we set the label of its origin to be
Lpspeqq “ 24 ¨ 7, then we get

Lpeq “ 22 ¨ 7 and PhpLpeqq “ 7

while Phm,npLpspeqq “ 24 ¨ 7 ‰ 23 ¨ 7. We will thus not use the phenotype of
edges.

Proposition 4.6 allows us to define the phenotypes of connected pm,nq-
graphs and transitive BSpm,nq-pre-actions.

Definition 4.8. The phenotype of a connected pm,nq-graph G is the
common phenotype of the labels of its vertices. We denote it PhpGq.

4.3 Phenotypes of BSpm,nq-actions

Recall that a pre-action is transitive if its Schreier graph is connected, which
is equivalent to its Bass-Serre graph being connected.

Definition 4.9. The phenotype of a transitive (pre)-action α of BSpm,nq

is the common phenotype of the cardinalities Phm,np|x xby|q of its xby-orbits.
We denote it Phpαq.

By definition, the phenotype of any transitive (pre)-action coincides with
the phenotype of its Bass-Serre graph.

Remark 4.10. Any BSpm,nq-action with finite Bass-Serre graph and finite
phenotype is necessarily an action on a finite set whose cardinality is the sum
of the labels of the vertices.

For infinite phenotype, we have the following.

Lemma 4.11. There exists an infinite phenotype transitive BSpm,nq-action
with finite Bass-Serre graph if and only if |m| “ |n|.

Proof. Consider an infinite phenotype BSpm,nq-action with finite Bass-Serre
graph G. Since G is saturated, all its vertices have outgoing degree |n| and
incoming degree |m|. But there must be globally as many outgoing edges as
incoming edges, so since G is finite we must have |n| “ |m|.

Conversely if |n| “ |m|, consider the bouquet of |n| circles with edges and
vertices labeled by 8, and observe that this is a connected saturated pm,nq-
graph. Proposition 3.22 provides a transitive action having this labeled bou-
quet of circles as its finite Bass-Serre graph of infinite phenotype.
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4.4 Merging pre-actions

In order to establish some of the main results of this article, we will need
“cut and paste” operations on pre-actions, for instance:

• putting two prescribed pre-actions inside a single transitive action (use-
ful for topological transitivity properties);

• modifying an action so as to add or remove a circuit in its Schreier
graph (useful to get a new action that is close but distinct from the
original one).

We now present these “cut and paste” operations. The main one is the
following and the rest of this section will be devoted to its proof. Other
useful results will appear in the course of the proof.

Theorem 4.12 (The merging machine). Assume |m| ě 2 and |n| ě 2. Let
α1 and α2 two transitive non-saturated pre-actions of BSpm,nq with the same
phenotype. There exists a transitive action α which contains copies of α1 and
α2 with disjoint domains.

Given a pre-action α “ pβ, τq and two sub-pre-actions α1, α2, let us recall
that the domain of α is the set dompβq “ rngpβq. Notice that α1 and α2 have
disjoint domains if and only if their Bass-Serre graphs BSpα1q and BSpα2q

are disjoint (that is, have no common vertex) in BSpαq.
First, taking advantage of Proposition 3.23, we reduce to the case of

pm,nq-graphs, for which the analogous result is the following.

Theorem 4.13 (The merging machine for pm,nq-graphs). Assume |m| ě 2
and |n| ě 2. Let G1 and G2 be two connected and non-saturated pm,nq-graphs
with the same phenotype. There exists a connected and saturated pm,nq-graph
G which contains disjoint copies of G1 and G2.

Remark 4.14. The hypothesis that both |m|, |n| ě 2 is necessary. If m “ 1
but |n| ‰ 1, we can consider the p1, nq-graph consisting of a single vertex
with infinite label and only one loop. This graph is not saturated but it
cannot be connected to another copy of itself. Indeed, the reader can check
that the only saturated graph containing it admits a unique circuit, namely
the loop itself.

Proof of Theorem 4.12 based on Theorem 4.13. The Bass-Serre graphs BSpα1q

and BSpα2q are connected non-saturated pm,nq-graphs with the same phe-
notype. Therefore we can apply Theorem 4.13 to obtain a connected and sat-
urated pm,nq-graph G which contains disjoint copies of BSpα1q and BSpα2q.
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Then, we apply Proposition 3.23 to the pre-action α1 \ α2, whose Bass-
Serre graph BSpα1q \ BSpα2q is contained in G, to ensure the existence of
a BSpm,nq-pre-action α which extends α1 \ α2. Thus α extends both α1

and α2 with disjoint domains. Since G is connected and saturated, α is a
transitive and saturated pre-action, i.e., it is a genuine transitive action of
BSpm,nq that satisfies the requirements of Theorem 4.12.

We now present some general results we will use in order to prove Theorem
4.13. We begin with two easy properties of phenotypes which will be useful
in the proof.

Lemma 4.15. For any k P Zě1, if q “ Phm,npkq, then Phm,npqq “ q and
gcdpq, nq “ gcdpq,mq.

Proof. We get directly from Definition 4.1 that |q|p “ |k|p if p P Pm,npkq,
and |q|p “ 0 for the other primes p. Consequently, we get Pm,npqq “ Pm,npkq

and then Phm,npqq “ Phm,npkq “ q. Finally, since every prime p dividing q
satisfies |m|p “ |n|p and |n|p ă |q|p, we obtain

gcdpq, nq “
ź

pPP: p|q

p|n|p “
ź

pPP: p|q

p|m|p “ gcdpq,mq.

In the following lemma, by welding two vertices we mean taking the
quotient graph obtained by identifying these vertices. Its proof is a direct
consequence of the definition of an pm,nq-graph, so we omit it.

Lemma 4.16 (Welding lemma). Let m,n P Zzt0u and let G be an pm,nq-
graph and v, w be two distinct vertices such that:

• L :“ Lpvq “ Lpwq;
• degoutpvq ` degoutpwq ď gcdpn, Lq;
• deginpvq ` deginpwq ď gcdpm,Lq.

Welding together v and w delivers an pm,nq-graph.

Note that in this lemma G can be finite or infinite, connected or not.
Together with the welding lemma, the following result will allow us to connect
non saturated pm,nq-graphs via the well-known technique of arc welding.

Theorem 4.17 (Connecting lemma). Assume |m| ě 2 and |n| ě 2. Let
k, ℓ P Zě1 such that Phm,npkq “ Phm,npℓq, and let εk, εℓ P t`,´u. There
exists a pm,nq-graph G which is a simple edge path pe1, . . . , ehq of length
h ě 1 such that:
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• Lpspe1qq “ k and Lptpehqq “ ℓ;
• the orientations of e1 and eh are given by e1 P EpGqεk and eh P EpGqεℓ.

Proof. Observe that every pm,nq-graph can be turned into an pn,mq-graph
by flipping the orientations of its edges. Note that this operation does not
affect the labels nor its phenotype. We thus can restrict ourselves to the case
where the orientation ε1 of the first edge in the path is asked to be positive
and no assumption is made on εh. Let us set q :“ Phm,npkq “ Phm,npℓq.

We first treat the case k “ q “ ℓ. Recall from Lemma 4.15 that
Phm,npqq “ q and that we have gcdpm, qq “ gcdpn, qq. Hence, there ex-
ists a pm,nq-graph with two vertices and a unique positive edge f1 such that
Lpspf1qq “ q “ Lptpf1qq, and Lpf1q “

q
gcdpm,qq

“
q

gcdpn,qq
. If εh is positive,

we are done. If not, consider a vertex v with label Lpvq “
q

gcdpn,qq
m. We get

gcdpm,Lpvqq “ |m|, hence gcdpm,Lpvqq ě 2. Therefore, we can equip v with
two distinct incoming positive edges f1, f2. Such edges have to be labeled by

Lpvq

gcdpm,Lpvqq
“

q
gcdpn,qq

so that we can label spf1q and spf2q by q, and pf1, f̄2q is
the path we are looking for. The theorem is thus proved for k “ ℓ “ q.

Let us now treat the case k ‰ q and ℓ “ q. Recall that Pm,npkq “

tp P P : |m|p “ |n|p and |n|p ă |k|pu and Phm,npkq “
ś

pPPm,npkq
p|k|p . Thus

any number L P Zě1 with phenotype q admits a unique decomposition as
follows:

L “ q ¨
ź

pPPzPm,npkq

|m|pď|n|p

p|L|p
ź

pPP
|m|pą|n|p

p|L|p . (4.18)

In a first step, we construct (algorithmically) a simple path consisting of
positive edges with vertices v0, v1, . . . , vr, such that v0 has label k, and such
that the decomposition of Lpvrq reduces to

Lpvrq “ q ¨
ź

pPP : |m|pą|n|p

p|Lpvrq|p , (4.19)

that is, such that |Lpvrq|p “ 0 whenever |m|p ď |n|p and p R Pm,npkq.
To do so, starting with i “ 0 and Lpv0q “ k, while Lpviq has prime

divisors p such that |m|p ď |n|p and p R Pm,npkq, we connect vi to a new
vertex vi`1 by a positive edge fi. According to Remark 3.26, we label fi by
|Lpfiq|p :“ maxp|Lpviq|p ´ |n|p , 0q and set

|Lpvi`1q|p :“

#

|Lpfiq|p ` |m|p if |Lpfiq|p ě 1

0 if |Lpfiq|p “ 0
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for every prime p. Then, we replace i by i ` 1, which terminates the “while”
loop. Notice that we exit from the loop after finitely many steps. Indeed,
given a prime p such that |m|p ď |n|p and p R Pm,npkq, we have:

• either |Lpf1q|p “ 0 in the case |m|p “ |n|p and |k|p ď |n|p, which implies
|Lpviq|p “ 0 for all i ě 1;

• or |Lpvi`1q|p “ |Lpviq|p ´ |n|p ` |m|p ă |Lpviq|p whenever |Lpviq|p ě 1
in the case |m|p ă |n|p.

When we exit the “while” loop, Remark 3.26 guarantees that we have con-
structed an pm,nq-graph, and the loop condition guarantees that the last
vertex vr satisfies |Lpvrq|p “ 0 whenever |m|p ď |n|p and p R Pm,npkq.

If we are lucky, we have Lpvrq “ q. If not, in a second step, we notice that
the same algorithm, exchanging the roles of m and n, produces a simple path
consisting of negative edges from a vertex w0 such that Lpw0q “ Lpvrq to a
vertex ws labeled by q. The decomposition (4.19) of Lpvrq ‰ q also shows
that gcdpm,Lpvrqq ě 2, so that vertices labeled Lpvrq can have two distinct
positive incoming edges. Using Lemma 4.16, we weld vr and w0 together and
get a simple path from v0 to ws.

In any subcase, we now have a path pe1, . . . , eh1q such that e1 is positive,
Lpspe1qq “ k, and Lptpeh1qq “ q. If eh1 has the orientation prescribed by εℓ,
we are done; if not, using the case k “ q “ ℓ, with the first edge having the
same orientation as eh1 , and the last one having the orientation prescribed by
εℓ, we extend our path to a simple path pe1, . . . , ehq with Lpspe1qq “ k and
Lptpehqq “ q such that e1, eh have the correct orientations. This concludes
the case ℓ “ q and k ‰ q.

The case k “ q and ℓ ‰ q is obtained by exchanging the roles of k and
l in the above argument. Therefore, let us finally treat the case k ‰ q and
ℓ ‰ q. The former cases furnish paths pf1, . . . , frq and pf 1

1, . . . , f
1
sq, that we

may assume disjoint, such that

Lpspf1qq “ k, Lptpfrqq “ q “ Lpspf 1
1qq, Lptpf 1

sqq “ ℓ,

the orientations of f1 and f 1
s are given by εk and εℓ, and the orientations

fr, f
1
1 coincide. Then, we just weld the vertices tpfrq and spf 1

1q together, and
the path pf1, . . . , fr, f

1
1, . . . , f

1
sq is as desired.

Remark 4.20. In Theorem 4.17, the assumption |m| ě 2 and |n| ě 2 is
necessary. Indeed Theorem 4.17 is false if n “ 1. If v is a vertex in a
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pm, 1q-graph with Lpvq “ 1 and e is an edge such that tpeq “ v, then

1 “ Lptpeqq “
Lptpeq

gcdpLptpeq,mq
“

Lpspeq

gcdpLpspeq, 1q
“ Lpspeqq.

Clearly any vertex with label 1 has at most one outgoing and one incoming
edge. This implies that the labels of the vertices in any directed path which
end in v must be all 1. In other words, if we have any simple edge path as
in Theorem 4.17 such that ℓ “ 1 and εℓ “ ´, then we must have that k “ 1
(and εk “ `).

Lemma 4.21 (Forest-saturation lemma). Let G be a connected pm,nq-graph.
There is a saturated and connected pm,nq-graph G 1 containing G and such
that:

• the subgraph induced in G 1 by V pGq is exactly G;
• the subgraph induced in G 1 by V pG 1qzV pGq is a forest F ;
• all vertices of F have degree ě 1 ` minp|m|, |n|q in G 1;
• each connected component of F is connected to G by a single edge of
G 1.

Definition 4.22. We call forest-saturation of G any extension G 1 satisfying
Lemma 4.21. The graph G 1 produced in this proof will be called the maximal
forest-saturation of G.

Proof of Lemma 4.21. We can assume that the connected graph G is not yet
saturated: it admits non-saturated vertices i.e., vertices v for which one of
the inequalities (3.14) degoutpvq ď gcdpLpvq, nq or deginpvq ď gcdpLpvq,mq is
strict. For every non-saturated vertex v of G we add

• pgcdpLpvq, nq ´ degoutpvqq-many new v-outgoing edges labeled Lout :“
Lpvq

gcdpn,Lpvqq
with extra target vertices labeled mLout; and

• pgcdpLpvq,mq ´ deginpvqq-many new v-incoming edges labeled Lin :“
Lpvq

gcdpm,Lpvqq
with extra source vertices labeled nLin.

We then iterate this construction. All the non-saturated vertices of the
j-th step become saturated at the pj ` 1q-th one. The increasing union G 1 of
these pm,nq-graphs is a saturated pm,nq-graph. The complement of G in it
is a forest since at each step, each new edge has a new vertex as one of its
vertices. The label of each new vertex v is an integer multiple of either m or
n. Thus the degree degoutpvq ` deginpvq “ gcdpLpvq, nq ` gcdpLpvq,mq of v
is larger than 1 ` minp|m|, |n|q as expected.
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While the labels of the new edges are prescribed by the axiomatic of
pm,nq-graphs, we made the choice of the maximal label for the new vertices
among those satisfying the equation (3.13) Lpspeqq

gcdpLpspeqq,nq
“ Lpeq “

Lptpeqq

gcdpLptpeqq,mq
.

Hence the terminology in Definition 4.22.

Proof of Theorem 4.13. By hypothesis, for i “ 1, 2, there is a non-saturated
vertex vi in Gi, i.e., a vertex that misses an edge with terminal vertex vi and
orientation ϵi P t`,´u. The labels of v1, v2 having identical phenotypes, the
connecting Theorem 4.17 furnishes an pm,nq-graph G0 which is a simple edge
path pe1, . . . , ehq such that Lpspe1qq “ Lpv1q and Lptpehqq “ Lpv2q, and the
orientations of e1 and eh are given by ´ϵ1 and ϵ2 respectively.

We then consider the disjoint union G1 \ G0 \ G2. We claim that we can
merge the vertices v1 and spe1q thanks to the welding Lemma 4.16. Indeed,
the choice of orientation for e1 and the form of G0 (a path of edges) are
made for the assumptions of Lemma 4.16 to hold. Then, we can merge v2
and tpehq, applying Lemma 4.16 again (this time, using the fact that the
orientation of eh is well chosen). This produces a connected pm,nq-graph G3

which contains disjoint copies of G1 and G2.
It now suffices to apply the saturation Lemma 4.21 to G3 so as to ob-

tain a connected saturated pm,nq-graph G that satisfies the requirements of
Theorem 4.13.

5 Perfect kernel and dense orbits

5.1 Perfect kernels of Baumslag-Solitar groups

In case |m| “ 1 or |n| “ 1, it follows from the proof of [BLT19, Cor. 8.4] that
SubpBSpm,nqq is countable, hence the perfect kernel KpBSpm,nqq is empty.
Our main theorem describes the perfect kernels in the remaining cases.

Theorem 5.1. Let m,n P Z such that |m| ě 2 and |n| ě 2. We have

KpBSpm,nqq “
␣

Λ P SubpBSpm,nqq : ΛzBSpm,nq{ xby is infinite
(

.

Let us temporarily give a name to the set appearing in Theorem 5.1:

L “ Lpm,nq :“
␣

Λ P SubpBSpm,nqq : ΛzBSpm,nq{ xby is infinite
(

,

and recall that Subr8spΓq denotes the space of infinite index subgroups of Γ.
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Given an action α of Γ on a space X and a point v P X, we have already
introduced the notation rα, vs for the action α pointed at v.

Remark 5.2. In terms of pointed transitive actions, Lpm,nq is the set
of pointed transitive actions with infinitely many b-orbits, whence L “
␣

rα, vs : BSpαq is infinite
(

. Moreover:
• if |m| ‰ |n|, we have Lpm,nq “ Subr8spBSpm,nqq, since every infinite

action has an infinite Bass-Serre graph by Lemma 4.11.
• if |m| “ |n|, we have Lpm,nq “ π´1

`

Subr8spBSpm,nq{ xbmyq
˘

, where
π is the homomorphism from BSpm,nq to its quotient by the normal
subgroup xbmy “ xbny

1 Ñ xbmy Ñ BSpm,nq
π

Ñ BSpm,nq{ xbmy Ñ 1.

Indeed, since xbmy has finite index in xby, we get that ΛzBSpm,nq{ xby
is finite if and only if ΛzBSpm,nq{ xbmy is finite.

Therefore, Theorem 5.1 can be rephrased in two ways, as follows.

Theorem 5.3. Let m,n P Z such that |m| ě 2 and |n| ě 2.
1. In terms of pointed transitive actions, the perfect kernel corresponds

exactly to actions whose Bass-Serre graph is infinite:

KpBSpm,nqq “
␣

rα, vs : BSpαq is infinite
(

.

2. In terms of subgroups:
• if |m| ‰ |n|, the perfect kernel is equal to the space of infinite index

subgroups:
KpBSpm,nqq “ Subr8spBSpm,nqq;

• if |m| “ |n|, we have:

KpBSpm,nqq “ π´1
`

Subr8spBSpm,nq{ xbmyq
˘

,

where π is the homomorphism from BSpm,nq to its quotient by
the normal subgroup xbmy “ xbny.

Proof of Theorem 5.1. Our aim is to prove that KpBSpm,nqq “ Lpm,nq. It
will be convenient to write one inclusion in terms of pointed transitive actions
and the other in terms of subgroups.

Let us first prove the inclusion KpBSpm,nqq Ě L. It suffices to show that
no element of L is isolated in L. Recall the definition of the topology in
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terms of pointed actions, see Section 2.2 and in particular Equation (2.7).
Let us fix a pointed transitive action pα0, vq representing an element of L
and a radius R ě 0. We will show that the basic neighborhood N prα0, vs, Rq

contains at least two distinct elements of L.
Let pβ, τq be the pre-action obtained by restricting α0 to the reunion of

the b-orbits of the vertices of the ball of radius R ` 1 centered at v in the
Schreier graph of α0. The Bass-Serre graph of pβ, τq is the projection in
BSpα0q (see Definition 3.10) of this ball, hence is finite. Since BSpα0q is
infinite, the pre-action pβ, τq is not saturated.

We now build two pm,nq-graphs G1,G2 that extend the finite non-saturated
Bass-Serre graph G of pβ, τq in two different ways. First, let G1 be a forest-
saturation of G see (Definition 4.22). Let us recall that the subgraph induced
in G1 by V pG1qzV pGq is a forest whose vertices have degree at least three in
G1.

We then construct G2 by modifying G1. Let us pick a vertex v P V pG1qzV pGq.
The subgraph induced in G1 by V pG1qztvu has at least three connected com-
ponents. Choose two connected components disjoint from G and remove
them. In the resulting pm,nq-graph G 1

1, the vertex v is the only one that is
not saturated: two edges are missing.

Theorem 4.17 gives us an pm,nq-graph which is a simple edge path P
whose extremities have the same label as v and for which the orientations
of the end edges are compatible with that of the missing edges of v. We
then apply twice the welding lemma, Lemma 4.16, so as to weld the two
extremities of P to v. We eventually define G2 to be a forest-saturation of
the graph that we obtained. Observe that G1 is not isomorphic to G2 since
the fundamental groups of their underlying graphs are free groups of distinct
ranks.

Finally, we extend pβ, τq to pre-actions α1 and α2 whose Bass-Serre graphs
are G1 and G2 respectively, thanks to Proposition 3.23. Since G1,G2 are
saturated, α1, α2 are actually actions by Example 3.21. We already remarked
that G1 is not isomorphic to G2, so the pointed transitive actions pα1, vq

and pα2, vq are not isomorphic: rα1, vs ‰ rα2, vs. Moreover, the balls of
radius R centered at the basepoints in the Schreier graphs of α0, α1, α2 all
coincide by construction with that of pβ, τq, so rα1, vs and rα2, vs are both in
N prα0, vs, Rq.

Let us now turn to the inclusion KpBSpm,nqq Ď L. Let us pick a subgroup
Λ P SubpBSpm,nqqzLpm,nq and let us prove that it is not in the perfect
kernel.
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If |m| ‰ |n|, then Λ has finite index in BSpm,nq by Remark 5.2, hence it
is isolated in SubpBSpm,nqq.

If |m| “ |n|, then πpΛq has finite index in BSpm,nq{ xbmy by Remark 5.2,
hence it is finitely generated. Therefore, the set

V :“ tΛ1
P SubpBSpm,nqq : πpΛ1

q ě πpΛqu

is a neighborhood of Λ, since it contains the basic neighborhood VpS,Hq “

tΛ1 P SubpBSpm,nqq : S Ď Λ1u where S Ď Λ is a finite set such that πpSq

generates πpΛq.
Now, for any Λ1 P V , the subgroup πpΛ1q has finite index in BSpm,mq{ xbmy.

Hence πpΛ1q is finitely generated, so that Λ1 itself is finitely generated as it
is written as an extension with cyclic kernel:

1 Ñ xbmy X Λ1
Ñ Λ1

Ñ πpΛ1
q Ñ 1.

Therefore all subgroups of V are finitely generated, which implies that V is
countable and hence Λ is not in KpBSpm,nqq.

Corollary 5.4. If |m| ě 2, |n| ě 2 and |m| ‰ |n|, then

Ph´1
p8q Ď KpBSpm,nqq;

in other words, every infinite phenotype subgroup is in the perfect kernel.

Proof. Any subgroup with infinite phenotype has infinite index and hence it
is in KpBSpm,nqq according to Theorem 5.3.

5.2 Phenotypical decomposition of the perfect kernel

Let us now turn to a description of the internal structure of KpBSpm,nqq.

Notation 5.5. Let m,n P Zzt´1, 0, 1u. We denote by Qm,n the set of all
possible pm,nq-phenotypes, that is, Qm,n :“ Phm,npZě1 Y t8uq.

Definition 5.6. The phenotype of a subgroup Λ ď BSpm,nq is the pheno-
type of the associated action defined in Definition 4.9:

PhpΛq – PhpΛzBSpm,nq ð BSpm,nqq.

This yields a function Ph : SubpBSpm,nqq Ñ Qm,n Ď Zě1 Y t8u.
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It easily follows form the definitions that if PhpΛq “ PhpΛ1q then PhpΛq “

PhpΛ X Λ1q, see Remark 4.4.

Remark 5.7. The phenotype of Λ ď BSpm,nq is the phenotype of the index
of Λ X xby in xby since this index is the cardinal of the b-orbit of the point
Λ P ΛzBSpm,nq. In other words, given Λ ď BSpm,nq, we have:

PhpΛq “ PhpΛ X xbyq “ Phm,n

`

rxby : Λ X xbys
˘

.

In particular Phpxbkyq “ Phm,npkq for k P Zě1 and the phenotype of the
trivial subgroup is infinite.

Proposition 5.8. In the partition of the space of subgroups of BSpm,nq

according to their phenotype

SubpBSpm,nqq “
ğ

qPQm,n

Ph´1
pqq,

the pieces are non-empty and satisfy:
1. For every finite q P Qm,n, the piece Ph´1

pqq is open; it is also closed if
and only if |m| “ |n|.

2. For q “ 8, the piece Ph´1
p8q is closed and not open.

In particular, the function Ph : SubpBSpm,nqq Ñ Zě1 Y t`8u is Borel.
It is continuous if and only if |m| “ |n|.

Proof. Given k P Zě1, we set

Ak :“
␣

Λ P SubpBSpm,nqq : Λ X xby “
@

bk
D(

.

Writing Ak as

Ak “ tΛ P SubpBSpm,nq : bk P Λ, bi R Λ for every 1 ď i ă ku

makes it clear that Ak is clopen for every k P Zě1. Moreover xbky P Ak, so in
particular Ak is not empty. Now, Remark 5.7 implies that for every q P Zě1

Ph´1
pqq “

ğ

kPPh´1
m,npqq

Ak. (5.9)

Hence Ph´1
pqq is open for every finite q and, by taking the complement,

Ph´1
p8q is closed.
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Take a sequence of positive integers pkiqiPN tending to 8. Observe that the
subgroups txbkiyui have finite phenotype and converge to the trivial subgroup
which has infinite phenotype. Therefore Ph´1

p8q is not open. Moreover, if
Ph´1

m,npqq is not finite, we can choose all the ki’s with phenotype q; the same
argument shows that Ph´1

pqq is not closed. Finally, the clopen decompo-
sition (5.9) shows that Ph´1

pqq is closed as soon as Ph´1
m,npqq is finite. By

Lemma 4.5, Ph´1
m,npqq is finite exactly when |m| “ |n|.

We now restrict the above partition to the perfect kernel

KpBSpm,nqq “
ğ

qPQm,n

KqpBSpm,nqq, (5.10)

where
KqpBSpm,nqq :“ KpBSpm,nqq X Ph´1

m,npqq. (5.11)

Remark 5.12. Observe that each KqpBSpm,nqq is not empty: indeed it
contains xbqy which belongs to the perfect kernel by Theorem 5.1. Moreover,
in the proof of Theorem 5.1 the pm,nq-graphs we construct have the same
phenotype, so every element of KqpBSpm,nqq is actually a non-trivial limit
of elements of KqpBSpm,nqq. We conclude that KqpBSpm,nqq is equal to the
perfect kernel of Ph´1

m,npqq.

Let us show that the action of BSpm,nq by conjugation on each term is
topologically transitive in the following sense.

Definition 5.13. An action by homeomorphisms of a group Γ on a topolog-
ical space X is called topologically transitive if for every nonempty open
sets U and V , there is a point whose Γ-orbit intersects both U and V .

Theorem 5.14. Let m,n be integers such that |m|, |n| ě 2. Then for every
phenotype q P Qm,n, the action by conjugation of BSpm,nq on the invariant
subspace KqpBSpm,nqq is topologically transitive.

Proof. We again use the definition of the topology in terms of pointed actions,
see Section 2.2 and in particular Equation (2.7). So let us fix two pointed
actions pα1, v1q and pα2, v2q in KqpBSpm,nqq, take R ą 0, and consider the
basic open sets N prα1, v1s, Rq and N prα2, v2s, Rq. We need to construct a
pointed action whose orbit meets both open sets.

As in the proof of Theorem 5.1, we let pβi, τiq, for i “ 1, 2, be the pre-
action obtained by restricting αi to the reunion of the b-orbits of the vertices
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of the balls Bpvi, R ` 1q of radius R ` 1 centered at vi in the Schreier graph
of αi. The Bass-Serre graph of pβi, τiq is finite. Since BSpαiq is infinite, the
pre-action pβi, τiq is not saturated.

Moreover pβ1, τ1q and pβ2, τ2q have the same phenotype, so we can apply
the merging machine (Theorem 4.12) to obtain an action α whose Schreier
graph contains (copies of) the balls Bpvi, R ` 1q.

Pointing α at the copy of v1 that we denote by v, we have pSchpαq, vq »R

pSchpα1q, v1q. By transitivity of α, there is γ P BSpm,nq such that vαpγq

is the copy of v2, and thus pSchpαq, vαpγqq »R pSchpα2q, v2q. In particular,
the orbit of rα, vs meets both N prα1, v1s, Rq and N prα2, v2s, Rq.

Corollary 5.15. Let m,n be integers such that |m|, |n| ě 2. Then for every
q P Qm,n, there is a dense Gδ subset of KqpBSpm,nqq consisting of subgroups
with dense conjugacy class in KqpBSpm,nqq.

Proof of Corollary 5.15. By Proposition 5.8, each KqpBSpm,nqq is Polish as
an open or a closed subset of the Polish space KpBSpm,nqq.

The corollary now follows from a well-known characterization of topolog-
ical transitivity in Polish spaces: if pUiq is a countable base of non-empty
open subsets, then the set XiPNUiΓ of points with dense orbit is a dense Gδ

by the Baire theorem.

5.3 Closed invariant subsets with a fixed finite pheno-
type

Given a finite phenotype q, we will show that there is a largest closed invariant
subset inside the (open but non closed when |m| ‰ |n|) set of subgroups of
phenotype q. The following lemma is key.

Lemma 5.16. Let |m| ‰ |n|, and let L P Zě1 satisfying:

Dp P P , |m|p ‰ |n|p and |L|p ą minp|m|p , |n|pq.

Then for any saturated pm,nq-graph which contains L as a label, the range
of the label map is unbounded.

Proof. By symmetry, we may as well assume that |n|p ă |m|p for a fixed
prime p, and so |L|p ą |n|p. Let v0 P V pGq have label L. Since our Bass-
Serre graph G is saturated, every vertex has at least one outgoing edge. We
can thus build inductively an infinite path pekqkPN consisting of positive edges
with spe0q “ v0. The conclusion then follows directly from Lemma 3.30.
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Remark 5.17. When |n| “ |m|, the lemma fails because labels are bounded:
if L0 is a label then all labels in the same connected component must satisfy
|L|p ď maxp|L0|p , |m|p , |n|pq for all prime p by Equation (3.29) and the
discussion that precedes it.

Let q be a finite pm,nq-phenotype. In order to describe which saturated
pm,nq-graphs have unbounded labels, we now define

spq,m, nq :“ q ¨
ź

pPP
|q|p“0;

|m|p“|n|pą0

p|m|p ¨
ź

pPP
|m|p‰|n|p

pmint|n|p,|m|pu. (5.18)

Remark 5.19. The definition is motivated by the fact that spq,m, nq is the
largest label of phenotype q which does not satisfy the hypothesis of Lemma
5.16. As we will see in the proof of Theorem 5.20, a saturated pm,nq-graph
with phenotype q has unbounded labels if and only if one of its labels does
not divide spq,m, nq.

Proposition 5.8 implies that every subgroup (or pointed action) adherent
to the set of subgroups of phenotype q has phenotype q or 8, and phenotype
8 can occur only when |m| ‰ |n|. We can now characterize the subgroups Λ
with phenotype q whose orbit approaches subgroups with infinite phenotype.

Theorem 5.20. Let m,n be integers such that |m|, |n| ě 2 and denote by
q P Qm,nzt8u a finite pm,nq-phenotype. Let s “ spq,m, nq as in Equation
(5.18). Then the space

MCq :“ Ph´1
pqq X tΛ P SubpBSpm,nqq : Λ ě xxbsyyu

of subgroups of phenotype q containing the normal subgroup xxbsyy satisfies
the following properties:
(1) MCq is the largest closed BSpm,nq-invariant subset of SubpBSpm,nqq

contained in Ph´1
pqq; in particular, all normal subgroups of phenotype

q and all finite index subgroups of phenotype q contain xxbsyy.
(2) For every Λ P Ph´1

pqqzMCq, the orbit of Λ accumulates to Ph´1
p8q;

(3) If |m| “ |n|, then MCq “ Ph´1
pqq.

(4) If |m| ‰ |n|, then MCqXKqpBSpm,nqq has empty interior in KqpBSpm,nqq.
(5) If gcdpm,nq “ 1, then s “ q and MCq X KpBSpm,nqq “ txxbqyyu; in

particular xxbqyy is the unique normal subgroup of phenotype q of infinite
index.
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Proof of Theorem 5.20. Let us first show (3) and (2). Observe that a sub-
group Λ contains xxbsyy if and only if all the b-orbits of the corresponding
action ΛzBSpm,nq ð BSpm,nq have cardinality which divides s.

Let Λ P Ph´1
pqqzMCq. Its Bass-Serre graph admits a label L that does

not divide s but has phenotype q. We fix a prime p such that |L|p ą |s|p.
Let us show by contradiction that |m|p ‰ |n|p. So assume that |m|p “ |n|p.

Then |s|p ě |m|p “ |n|p: by the definition of s (5.18),
• if p divides q “ Phm,npsq, then |s|p “ |q|p ą |m|p “ |n|p;
• if p does not divide q “ Phm,npsq, then |s|p “ |m|p “ |n|p.

Thus, we have |L|p ą |m|p “ |n|p, in other words p P Pm,npLq (see Definition
4.1). Hence, we have |Phm,npLq|p “ |L|p ą |s|p ě |Phm,npsq|p. This is a
contradiction since both phenotypes are equal to q. Therefore |m|p ‰ |n|p.
In particular, |n| ‰ |m| when Ph´1

pqq ‰ MCq. This proves (3).
From Equation (5.18) again, |s|p “ minp|m|p , |n|pq, so |L|p ą minp|m|p , |n|pq.

Lemma 5.16 thus applies, and so there is a sequence of vertices in the Bass-
Serre graph of Λ whose labels tend to `8. In other words, there is a sequence
pγiqiě0 such that the index of γiΛγ´1

i X xby in xby tends to `8. By compact-
ness, we may assume that this sequence converges, and its limit ∆ cannot
contain a non-zero power of b since rxby : γiΛγ

´1
i X xbys Ñ `8. Hence ∆ has

infinite phenotype, which proves (2).
We now prove (1). We first claim that MCq is closed in SubpBSpm,nqq.

Indeed the set

Bs :“ tΛ P SubpBSpm,nqq : Λ ě xxbsyyu

is a countable intersection of basic clopen sets and hence it is closed. Then,
notice that Bs intersects only finitely many sets Ph´1

pq1q, since q1 must be
finite and divides s. Proposition 5.8 claims that Ph´1

pq1q are open, hence

MCq “ Bsz
ď

q1‰q
q1 divides s

Ph´1
pq1

q

is closed. Also note that MCq is obviously BSpm,nq-invariant. Finally Item
(2) implies that no larger BSpm,nq-invariant subset of Ph´1

pqq can be closed
in SubpBSpm,nqq. This proves that MCq is the largest closed BSpm,nq-
invariant subset of SubpBSpm,nqq contained in Ph´1

pqq. Since all normal
subgroups and all finite index subgroups have finite (hence closed) orbits,
the remaining statement in Item (1) is clear.
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Let us prove Item (4). Suppose |n| ‰ |m|; let p be a prime number
such that |m|p ‰ |n|p. By definition Phm,npspq “ Phm,npsq “ q, so that
xbspy P KqpBSpm,nqqzMCq. Consider a subgroup Λ P KqpBSpm,nqq whose
orbit is dense in KqpBSpm,nqq, as provided by Corollary 5.15. Since the
orbit of Λ accumulates to xbspy R MCq and MCq is invariant and closed,
the latter does not contain any point of that orbit. Hence the complement
KqpBSpm,nqqzMCq contains the dense orbit of Λ. We conclude that MCq X

KqpBSpm,nqq has empty interior in KqpBSpm,nqq.
We finally prove Item (5). The equality s “ q follows immediately from

Formula (5.18) for spq,m, nq. We have the presentation

BSpm,nq{ xxbqyy “
@

b̄, t̄ : t̄b̄mt̄´1
“ b̄n, b̄q “ 1

D

.

Since gcdpq,mq “ gcdpq, nq “ 1, the elements b̄m and b̄n both generate xb̄y in
BSpm,nq{ xxbqyy. We thus have a natural semi-direct product decomposition

BSpm,nq{ xxbqyy – Z{qZ ¸ Z “
@

b̄
D

¸ xt̄y

Consider Λ P MCq in the perfect kernel; it contains xxbqyy. It suffices to
prove that the image Λq :“ Λ{ xxbqyy of Λ in

@

b̄
D

¸xt̄y is trivial. Since PhpΛq “

q, the index rxby : ΛXxbys is a multiple of q, so we have Λq X
@

b̄
D

“ tidu. Thus
Λq is mapped injectively in the quotient

@

b̄
D

¸ xt̄y {
@

b̄
D

» Z. If this image
were not t0u, then Λ would have finite index in BSpm,nq, contradicting that
Λ is in the perfect kernel. The group Λq is thus trivial as wanted.

Remark 5.21. In terms of actions, MCq is the set of classes rα, vs all of
whose cardinalities of b-orbits divide s and have phenotype q.

Proposition 5.22. Let m,n P Zzt0u and k P Zě1. Let

Gm,n,k :“ BSpm,nq{
@@

bk
DD

“
@

t̄, b̄ | t̄b̄mt̄´1
“ b̄n, b̄k “ 1

D

and let

rpkq :“ maxtr1
P N : r1 divides k and gcdpr1,mq “ gcdpr1, nqu.

Then:
1. b has order rpkq in the quotient Gm,n,k; in particular xxbkyy “ xxbrpkqyy;
2. the group Gm,n,k “ Gm,n,rpkq is the HNN extension of Z{rpkqZ “ xb̄y

with respect to the relation t̄b̄mt̄´1 “ b̄n.
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3. Phm,npkq “ Phm,nprpkqq “ Phpxxbkyyq.

It is a routine computation, working prime number by prime number, to
check that

rpkq “
ź

pPP
|m|p“|n|p

p|k|p ¨
ź

pPP
|m|p‰|n|p

pminp|k|p,|m|p,|n|pq (5.23)

In particular, rpkq is a multiple of all the r1s which divide k and satisfy
gcdpr1,mq “ gcdpr1, nq.

Proof. Set r :“ rpkq. Since b̄m and b̄n are conjugate in Gm,n,k, they have the
same order:

ordpb̄q

gcdpordpb̄q,mq
“ ordpb̄mq “ ordpb̄nq “

ordpb̄q

gcdpordpb̄q, nq
.

Thus gcdpordpb̄q,mq “ gcdpordpb̄q, nq. Moreover ordpb̄q divides k. So by the
definition of r, the order ordpb̄q divides r and hence br P xxbkyy. On the other
hand bk P xbry, so that xxbryy “ xxbkyy and Gm,n,k “ Gm,n,r.

Since gcdpr,mq “ gcdpr, nq, the subgroups generated by b̃m and b̃n in the
group Z{rZ “ xb̃ : b̃r “ 1y are isomorphic. We can thus consider the HNN-
extension of Z{rZ “ xb̃ : b̃r “ 1y with the relation t̃b̃mt̃´1 “ b̃n. It admits the
presentation xt̃, b̃ | t̃b̃mt̃´1 “ b̃n, b̃r “ 1y and it is hence isomorphic to Gm,n,r.

By the Normal Form Theorem for HNN-extensions, the vertex group
injects, i.e., b̄ has order exactly r. Finally Remark 5.7 and Formula (5.23)
imply that Phm,npkq “ Phm,nprq “ Phpxxbryyq.

Theorem 5.24. Let m,n P Zzt0u and q be a finite phenotype.
(1) If gcdpm,nq “ 1, then the perfect kernel contains a unique normal

subgroup of phenotype q, namely xxbqyy.
(2) If gcdpm,nq ‰ 1, then the perfect kernel contains continuum many

normal subgroups of phenotype q.

Proof. The case gcdpm,nq “ 1 follows from Item (5) of Theorem 5.20. There-
fore let us assume that gcdpm,nq ‰ 1.

Consider a prime p which divides both m and n. Then either |q|p ‰ 0 and
we set k :“ q otherwise set k :“ qp. In both cases, remark that Phm,npkq “ q,
that gcdpk,mq “ gcdpk, nq and hence rpkq “ k. Then Proposition 5.22 yields
that b̄ has order k in Gm,n,k. Furthermore since k0 :“ gcdpk,mq “ gcdpk, nq ą

1, the elements b̄n and b̄m are not generators of the subgroup
@

b̄
D

: the group
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Gm,n,k is not a semi-direct product. We claim that Gm,n,k is not amenable.
Indeed, we can write the group Gm,n,k as the amalgamated free product

Gm,n,k “ xt̄, c̄ | t̄pc̄q
m
k0 t̄´1

“ pc̄q
n
k0 , pc̄q

k
k0 “ 1y ˚c̄“b̄k0 xb̄ | b̄ky

and one can easily check that Gm,n,k admits as a quotient the non-amenable
free product xt̃y ˚ xb̃ | b̃k0y.

Since Gm,n,k is the fundamental group of a finite graph of finite groups,
it admits a finite index normal subgroup F which is a finitely generated free
group [Ser80, Prop. 11 p. 120]. Since Gm,n,k is non-amenable, this normal
free subgroup is not amenable.

Every characteristic subgroup N of F is itself normal in Gm,n,k. Thus the
pull-back under the quotient map BSpm,nq ↠ Gm,n,k is a normal subgroup
Ñ ŸBSpm,nq. Since the intersection of F with the finite group xb̄y is trivial,
the same holds for its characteristic subgroups: N X xb̄y “ tidu. Therefore
the order of the image of b in Gm,n,k{N “ BSpm,nq{Ñ is the same as in
Gm,n,k, namely k. In other words, Ñ X xby “ xbky. By Remark 5.7,

PhpÑq “ Phm,nprxby : Ñ X xbys “ Phm,npkq “ q.

There are continuum many characteristic subgroups N in the finitely
generated free subgroup F [Bry74] (see also [BGK17]). At most countably
many of them lie outside the perfect kernel, so the theorem follows.

6 Limits of finite phenotype subgroups
In this section, we characterize the subgroups of infinite phenotype of BSpm,nq

which arise as limits of finite phenotype subgroups. We will use a version
of the straightforward fact that finitely generated subgroups always form a
dense set in the space of subgroups.

Lemma 6.1. Let m,n P Zzt0u. For every phenotype q P Qm,n, the finitely
generated subgroups of phenotype q are dense in Ph´1

pqq.

Proof. Let Λ be a non finitely generated subgroup of phenotype q. Let k P

Zě0 such that ΛX xby “
@

bk
D

. The group Λ can be written as the increasing
union of finitely generated subgroups all containing bk. They have the same
phenotype as Λ.
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6.1 Limits of subgroups with fixed finite phenotype

Recall from Proposition 5.8 that, for q finite, Ph´1
pqq is open while Ph´1

p8q

is closed, and from Theorem 5.20 (2) that the orbit of any Λ P Ph´1
pqqzMCq

accumulates to Ph´1
p8q. We now determine the set of such accumulation

points in Ph´1
p8q: this is exactly the set of subgroups contained in the

normal closure xxbyy of b but having trivial intersection with xby itself.

Theorem 6.2. Suppose |m| ‰ |n| and let q be a finite phenotype. Then

Ph´1
pqq X Ph´1

p8q “ tΛ P Ph´1
p8q : Λ ď xxbyyu.

We need two preparatory lemmas. We start with an easy consequence of
the defining relation tbm “ bnt of BSpm,nq.

Notation 6.3. Given γ P BSpm,nq, let us denote:
• by κγ the t-length of γ, namely the number of occurrences of t˘1 in the

normal form of γ;
• by Σγ the number of occurrences of t minus the number of occurrences

of t´1 in the normal form of γ, which is often called the t-height of γ.
Remark that Σγ is the image of γ in BSpm,nq{ xxbyy – Z. In particular Σγ “ 0
if and only if γ P xxbyy.

Lemma 6.4. Fix γ P BSpm,nq. Let A P Z be such that for all primes p P P
• if |m|p “ |n|p then |A|p ě |m|p;
• otherwise |A|p ě κγ |m|p and |A|p ě κγ |n|p.

Then there is B P Z, such that γbA “ bBγ, where |B| is determined by:

|B|p “ |A|p ` Σγp|n|p ´ |m|pq for all p P P .

Proof. This follows from a straightforward induction on κγ using the relation
tbm “ bnt. We leave the details to the reader.

The proof of the inclusion in Theorem 6.2 from left to right relies on the
following lemma.

Lemma 6.5. Fix γ R xxbyy and let q be a finite phenotype. There is an integer
R “ Rpq, γq such that every subgroup Λ of phenotype q containing γ must
also contain bR.
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Proof. Up to replacing γ by its inverse, let us assume Σγ ą 0. We define
M :“ maxt|m|p , |n|p : p P Pu, and then

R :“ q

¨

˚

˚

˝

ź

pPP
|m|p`|n|pą0

p

˛

‹

‹

‚

κγM

.

Fix Λ of phenotype q. Since q is finite, we have xby X Λ “
@

bN
D

with N ą 0.
We have to show that N divides R. Notice that Phm,npNq “ q, thus N
decomposes as

N “ q ¨ pl11 ¨ ¨ ¨ plkk p
lk`1

k`1 ¨ ¨ ¨ plrr ,

where r ě 0 and l1, . . . , lr ě 1, while the pi are distinct prime numbers co-
prime with q, see Definition 4.1. Moreover, we order them so that p1, . . . , pk P

Pm,nzPm,npNq and pk`1, . . . , pr P PzPm,n.
Observe that |m|pi “ |n|pi ě |N |pi “ li ě 1 when pi P Pm,nzPm,npNq

and |m|pi ‰ |n|pi when pi P PzPm,n. Hence, |m|pi ` |n|pi ą 0 for every
i P t1, . . . , ru. Consequently, to establish that N divides R, it suffices to
prove

@i P t1, . . . , ru, li ď κγM. (6.6)

Observe that κγ ě 1 since γ R xxbyy. For i P t1, . . . , ku, Equation (6.6)
holds since pi P Pm,nzPm,npNq, thus

li ď |m|pi “ |n|pi ď M ď κγM.

Let us hence fix i P tk ` 1, . . . , ru and suppose by contradiction that
li ą κγM . Consider

N 1
“ N ˆ pp1 ¨ ¨ ¨ pkq

M
ppk`1 ¨ ¨ ¨ ppi ¨ ¨ ¨ prq

κγM

where by ppi we mean that the factor pi is removed from the product. Clearly
bN

1

P Λ and |N 1|pi “ li. Put

ε :“ signp|m|pi ´ |n|piq.

Note that pi R Pm,n, hence |m|pi ‰ |n|pi , so ε ‰ 0. Since we assumed
|N |pi “ li ě κγM , we also have |N 1|pi ě κγM . It is then clear that N 1
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satisfies the assumption of Lemma 6.4, so γεbN
1

γ´ε “ bN
2 , where

|N2|pi “ li ` Σγεp|n|p ´ |m|pq “ li ` Σγεp|n|p ´ |m|pq

“ li ´ Σγ

∣∣∣|m|pi ´ |n|pi
∣∣∣ ă li.

Clearly bN
2

P Λ, hence bN
2

P
@

bN
D

. But |N2|pi ă |N |pi , a contradiction. We
thus have established Equation (6.6), which finishes the proof.

Proof of Theorem 6.2. Set

L :“ tΛ P Ph´1
p8q : Λ ď xxbyyu.

We first show the inclusion Ph´1
pqq X Ph´1

p8q Ď L. Take ∆ P Ph´1
p8qzL

and γ P ∆z xxbyy. By Lemma 6.5, there is an R such that every subgroup Λ
of phenotype q containing γ also contains bR. Thus the clopen neighborhood
of ∆ given by

O :“ tΛ P SubpBSpm,nqq : γ P Λ, bR R Λu

does not intersect Ph´1
pqq. Thus ∆ is not in the closure of Ph´1

pqq.
We now show the reverse inclusion L Ď Ph´1

pqqXPh´1
p8q. Remark that

as in Lemma 6.1, the finitely generated elements of L are dense in L: every
element of L is an increasing union of finitely generated subgroups which have
to be in L as well. So take Λ “ xSy P L where S is finite; we will show that Λ
is limit of subgroups with phenotype q. Set κ :“ maxγPS κγ, where κγ is the
t-length of γ (see Notation 6.3). Set M :“ maxt|m|p , |n|p : p P Pu. Note that
PzPm,n is finite, since it is composed of primes p such that |m|p ` |n|p ą 0,
and that |m|p “ 0 for all but finitely many primes p. Hence, for j ě 1, we
can define the integer

Nj :“ q ¨
ź

pPPm,nzPm,npqq

p|m|p ¨
ź

pPPzPm,n

pjκM .

Observe that Phm,npNjq “ q.
Since Λ ď xxbyy, the height Σγ is zero (see Notation 6.3) for every γ P S,

whence, for every γ P S and every j, Lemma 6.4 gives γbNj “ b˘Njγ. Thus,
Λ “ xSy normalizes

@

bNj
D

. Moreover, Λ has trivial intersection with
@

bNj
D

because it has infinite phenotype. In particular for j “ 1, we have a natural
isomorphism

Φ: Λ ˙
@

bN1
D

Ñ
@

λ, bN1
D

.
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Since N1 divides Nj, we get

ΦpΛ ˙
@

bNj
D

q “
@

λ, bNj
D

.

Observe that Φ induces a homeomorphism

SubpΛ ˙
@

bN1
D

q Ñ Subp
@

λ, bN1
D

q Ď SubpBSpm,nqq,

and that the sequence of subgroups pΛ ˙
@

bNj
D

qjě1 converges to Λ ˙ teu.
Therefore we have that

@

λ, bNj
D

converges to Λ. Since Php
@

λ, bNj
D

q “ Phm,npNjq “

q, the group Λ is the limit of a sequence of elements of phenotype q as
wanted.

6.2 Limits of subgroups with finite phenotype

In Theorem 6.2, we showed that Ph´1
pqqXPh´1

p8q does not depend on the
finite phenotype q. We will now consider the closure of all subgroups with
finite phenotype and we will first analyse what happens if |m| “ |n|.

Proposition 6.7. Let m,n be integers such that |m| “ |n| ě 2. Then

Ph´1
p8q Ď

ď

q finite

Ph´1
pqq.

In other words, every subgroup with infinite phenotype is a limit of subgroups
with finite (variable) phenotypes.

Proof. Let us fix Λ P Ph´1
p8q. Note that xbny is normalized by Λ thanks to

the relation tbnt´1 “ b˘n. We now proceed as in the second part of the proof
of Theorem 6.2: the group xλ, bjny has finite phenotype, it is isomorphic to
Λ ˙ xbjny and the sequence of subgroups pxλ, bjnyqjě1 converges to Λ.

The situation is completely different in the case |m| ‰ |n|.

Proposition 6.8. Let m,n be integers such that |m| ‰ |n| and |m|, |n| ě 2.
Then

Ph´1
p8q Ę

ď

q finite

Ph´1
pqq.

In other words, there are subgroups with infinite phenotype that are not limits
of subgroups with finite (variable) phenotypes.
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Let us recall from Corollary 5.4 that Ph´1
p8q “ K8pBSpm,nqq whenever

|m| ‰ |n|. Hence, the subgroups given by the proposition lie in fact in
K8pBSpm,nqq.

In the proof of Proposition 6.8, we will need a lemma and a proposition.

Lemma 6.9. Let m,n be integers such that |m| ‰ |n| and |m|, |n| ě 2. Let
k :“ gcdpm,nq. Let Λ ď BSpm,nq be a subgroup containing the following
elements

t, btb´1, . . . , bk´1tb´pk´1q

If Λ has finite phenotype, then Λ has finite index in BSpm,nq.

Proof. Let α be the action ΛzBSpm,nq ð BSpm,nq. Since the phenotype is
finite, it is sufficient to show that the Bass-Serre graph BSpαq is finite (see
Remark 4.10).

Since Λ contains t, there is a loop in BSpαq at the vertex v :“ Λ xby.
In particular, Equation (3.13) gives Lpvq

gcdpLpvq,mq
“

Lpvq

gcdpLpvq,nq
. As Λ has finite

phenotype, Lpvq is finite, so that gcdpLpvq,mq “ gcdpLpvq, nq . Moreover, as
BSpαq is a saturated pm,nq-graph, we obtain

deginpvq “ gcdpLpvq,mq “ gcdpLpvq, nq “ degoutpvq.

This number, that we will denote d, is the greatest common divisor of m, n
and Lpvq. Hence d divides k “ gcdpm,nq.

The d outgoing edges at v are exactly Λ xbny ,Λb xbny , . . . ,Λbd´1 xbny. As
d ď k, the subgroup Λ contains t, btb´1, . . . , bd´1tb´pd´1q. Since Λbjt “

pΛbjtb´jqbj “ Λbj, the element t fixes all the points Λ,Λb, . . . ,Λbd´1 P

ΛzBSpm,nq. The terminal vertex of the edge Λbj xbny is precisely the vertex
Λbjt xby “ Λbj xby “ v (see Definition 3.5), so that all outgoing edges at v are
loops.

Since the outgoing degree at v is equal to the ingoing degree, all ingoing
edges at v are loops as well. Therefore BSpαq consists only of the vertex v
and d loops. It is thus finite as wanted.

Proposition 6.10. Let m,n be integers with |m|, |n| ě 2. Let Λ be a finitely
generated subgroup of infinite phenotype and infinite Bass-Serre graph. Then
there is a sequence of conjugates of Λ which converges to tidu. In partic-
ular, such a subgroup does not contain any non-trivial normal subgroup of
BSpm,nq.
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Proof. First recall that Λ is free. Indeed, having infinite phenotype, it acts
freely on the Bass-Serre tree T of BSpm,nq. Taking the class xby as a base
point in T , the subgroup Λ is the fundamental group of the quotient graph
ΛzT based at Λ xby. This quotient graph is equal to the Bass-Serre graph of
Λ, see Section 3.6, so it is infinite. Since moreover Λ is finitely generated, it
consists of a finite graph to which are attached finitely many infinite trees.
Moving the basepoint along one of those infinite trees toward infinity amounts
to conjugating Λ by a certain sequence of elements γi of BSpm,nq for which
we claim that γiΛγ

´1
i Ñ tidu. Indeed, each non-trivial element of γiΛγ´1

i is
represented by a long path in the tree, followed by a closed path in the finite
graph and the long path back to the new basepoint. All such elements have a
uniformly large t-length which tends to `8 with i: their t-length is bounded
below by twice the t-length of γi minus the diameter of the finite graph. In
particular, for any finite set F Ă Γztidu and large enough n, all the elements
of γiΛγ´1

i have t-length larger than all those of F ; so γiΛγ
´1
i XF “ H. This

proves that γiΛγ
´1
i Ñ tidu as wanted.

Proof of Proposition 6.8. Consider the group Λ :“
@

t, btb´1, . . . , bk´1tb´pk´1q
D

.
Observe that by Britton’s Lemma (see e.g. [LS01, Chapter IV.2]), it is a free
group freely generated by t, btb´1, . . . , bk´1tb´pk´1q. Every non-trivial element
of Λ contains at least one t˘1 in its normal form, in particular ΛXxby “ tidu:
the phenotype of Λ is infinite. We claim that

Λ R
ď

q finite

Ph´1
pqq.

Suppose that pΛiqiě0 is a sequence of subgroups of finite (variable) pheno-
types converging to Λ. For i large enough, we have t, btb´1, . . . , bk´1tb´pk´1q P

Λi, and thus the subgroup Λi has finite index by Lemma 6.9. However, re-
call that since |m| ‰ |n|, the group BSpm,nq is not residually finite [Mes72].
Therefore there is a non-trivial normal subgroup N Ĳ BSpm,nq contained
in every finite index subgroup, and we have N ď Λ since Λi Ñ Λ. This is
impossible by Proposition 6.10.

Corollary 6.11. Let m,n be integers such that |m| ‰ |n| and |m|, |n| ě 2.
Then

ď

q finite

Ph´1
pqq X Ph´1

p8q

has empty interior in Ph´1
p8q.
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Proof. Recall again that Ph´1
p8q “ K8pBSpm,nqq, see Corollary 5.4. In

this space, the subset K8pBSpm,nqqzYq finitePh´1
pqq is open and Proposi-

tion 6.8 implies that it is non-empty. By Corollary 5.15, this open subset
contains a subgroup Λ whose orbit is dense in K8pBSpm,nqq. Therefore
Yq finitePh´1

pqq has empty interior in K8pBSpm,nqq.

Proposition 6.12. Let m,n be integers such that |m|, |n| ě 2. For any finite
phenotype q0, the following inclusion is strict:

Ph´1
pq0q X Ph´1

p8q Ĺ
ď

q finite

Ph´1
pqq X Ph´1

p8q.

Observe that Proposition 6.12 is trivially true if |m| “ |n|. Indeed, Propo-
sition 6.7 implies that the right hand side is equal to Ph´1

p8q. Since Propo-
sition 5.8 yields that Ph´1

pq0q is closed, the left hand side is empty.

Proof of Proposition 6.12. For a prime p which divides neither m nor m, de-
fine Λp :“ xbp, ty. Then Λp clearly has phenotype p (and index p in BSpm,nq).
Let Λ be an accumulation point of the sequence pΛpq, then by construction Λ

has infinite phenotype, so it is in the set
Ť

q finite Ph´1
pqq X Ph´1

p8q. How-
ever, it contains t R xxbyy so it is not in Ph´1

pq0q Λ R Ph´1
pq0q by Theorem

6.2.

Corollary 6.13. Let m,n be integers such that |m|, |n| ě 2. The following
inclusion is strict:

ď

q finite

Ph´1
pqq X Ph´1

p8q Ĺ
ď

q finite

Ph´1
pqq X Ph´1

p8q.

Proof. If |m| “ |n|, then as already remarked the left hand side is empty.
If |m| ‰ |n|, recall from Theorem 6.2 that Ph´1

pq0q X Ph´1
p8q “ tΛ P

Ph´1
p8q : Λ ď xxbyyu and hence it is independent of q0.

We can also give a statement analogous to Proposition 6.12 in the perfect
kernel, which is less easy to obtain.

Theorem 6.14. Let m,n be integers such that |m|, |n| ě 2. For any finite
phenotype q0, the following inclusion is strict:

Kq0pBSpm,nqq X K8pBSpm,nqq Ĺ
ď

q finite

KqpBSpm,nqq X K8pBSpm,nqq.
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Proof. For a fixed prime p which divides neither m nor n, let us define a
pre-action pβp, τpq as follows. Consider three βp-cycles say o1, o2 and o3, of
cardinals pn, p and pm respectively. Then fix basepoints yi P oi for i “ 1, 2, 3.
Remark that o1 splits into |n| ě 2 βn

p -orbits of size p and that o3 splits into
|m| ě 2 βm

p -orbits of size p. Therefore we can define τp by setting

y1β
jn
p τp :“ y2β

jm
p , y2β

jn
p τp :“ y3β

jm
p and y1β

´1`jn
p τp :“ y3β

1`jm
p .

Clearly the phenotype of such a pre-action is p and the associated Bass-Serre
graph G0,p :“ BSpβp, τpq is a triangle. Set xp :“ y1 and note that for every p,
we have

xpτpτpβpτ
´1
p βp “ xp.

By Lemma 4.21, we can then extend G0,p to a saturated pm,nq-graph Gp,
see Figure 5, and by Proposition 3.23 we can extend the pre-action pβp, τpq

to an action αp whose Bass-Serre graph is Gp.

3 ¨ p

v1

2 ¨ p

v3

p

v2

e3

e1 e2

4 ¨ p9 ¨ p

2 ¨ p

Figure 5: A (2,3)-graph Gp, where m “ 2 and n “ 3.

Define Λp to be the stabilizer of the action αp at xp and remark that
t2bt´1b P Λp. Moreover by construction PhpΛpq “ p.

By compactness, we find an accumulation point Λ of the sequence pΛpqp.
Since PhpΛpq “ p, the subgroup Λ has infinite phenotype. Since t2bt´1b P Λp

for every p, we have that t2bt´1b P Λ. Moreover t2bt´1b R xxbyy so Λ R

Ph´1
pq0q by Theorem 6.2. Therefore the proof is completed.
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