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Auditory roughness resulting of fast temporal beatings is often studied by summing 1 

two pure tones with close frequencies. Interestingly, the tactile counterpart of 2 

auditory roughness can be provided through touch with vibrotactile actuators. 3 

However, whether auditory roughness could also be perceived through touch, and 4 

whether they exhibit similar characteristics is unclear. Here, auditory roughness 5 

perception and its tactile counterpart were evaluated using similar two pure tones 6 

stimuli. Results revealed similar roughness curves in both modalities suggesting 7 

similar sensory processing. This study attests of the relevance of such a paradigm for 8 

investing auditory and tactile roughness in a multisensory fashion.  9 

 10 
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1. Introduction 13 

Auditory roughness is a fundamental acoustical attribute due to very fast 14 

fluctuations of sounds that conveys emotions (Arnal et al., 2015), drives musical 15 

consonance (Helmholtz, 1885; Plomb & Levelt, 1965), and shapes orchestral timbres 16 

(Pressnitzer & McAdams, 2000). It is also at the basis of the definition of critical 17 

bands (Terhardt, 1974), a fundamental property of cochlear filters characterizing the 18 

ability of the cochlea to separate two pure tones. Auditory roughness has therefore 19 

led to a significant body of work in psychoacoustics to identify the acoustic factors 20 

that modulate this auditory sensation. 21 

To unveil the mechanisms underlying auditory roughness perception, studies 22 

have used combinations of monochromatic tones (Miśkiewicz et al., 2006), pure 23 

tones, leading to models of perceived auditory roughness (Daniel et al., 1997; 24 

Vassilakis, 2001; Leman, 2000). A combination of two monochromatic tones can 25 

indeed create amplitude modulations that induce a sensation of roughness depending 26 

on the frequency spacing between the two tones, also defined by the frequency ratio 27 

between the two frequencies. The roughness of such sounds increases until reaching 28 

a maximum and then decreases as the frequency ratio between the two frequencies 29 

increases, as presented in Fig. 1. Since auditory roughness is often described as 30 

characterizing very fast fluctuations in sounds, such stimuli are perfect candidates to 31 

investigate such a sensation. 32 
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 33 

 34 

Fig. 1. Typical auditory roughness perception according to the frequency ratio of a 35 

sum of two pure tones: 𝑠(𝑡) = 𝑠𝑖𝑛(2𝜋𝑓!𝑡) 	+ 	𝑠𝑖𝑛(2𝜋𝑓"𝑡) =36 

2𝑠𝑖𝑛(2𝜋 ($!%$")
"

	𝑡)𝑠𝑖𝑛(2𝜋 ($"'$!)
"

	𝑡). When the frequency ratio 𝛼=f2/f1 is small, the 37 

combination of tones tends to be perceived as one tone slowly modulated by the 38 

other one, a sensation that is characterized as beats. When the frequency ratio 39 

increases, a sensation of roughness appears. As 𝛼 becomes even larger, the perceived 40 

roughness decreases and the two tones are perceived separately. This theoretical 41 

auditory roughness curve is defined with the parameters b1 = 3.5, b2 = 5.75, 𝑠 =42 

(."*
+!$!%+"

, s1=0.0207 and s2 = 18.96 (Vassilakis, 2001). 43 

On the other hand, for the tactile modality, surface roughness refers to one 44 

of the principal perceptual attributes used to describe textures explored with the 45 

finger (Tiest & Kappers, 2006). Perceived surface roughness is defined by the 46 

physical and geometrical properties of the textures, such as the height and the 47 

density of the asperities (Taylor & Lederman, 1975; Stevens & Harris, 1962). Typical 48 

stimuli for surface roughness evaluation are sandpapers with various grit sizes. 49 

Interestingly, similar observations showing that the perceived surface roughness 50 
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depends on the spatial frequency and the amplitude of the haptic signal were made 51 

on synthetic textures with new haptic touchscreen technologies (İşleyen et al., 2019; 52 

Bodas et al., 2019).  53 

In a recent review on multimodal roughness perception, Di Stefano & 54 

Spence (2022) made a clear distinction between auditory roughness and surface 55 

roughness: auditory roughness is a temporally based perceptual property, that is 56 

experienced through hearing, while surface roughness is spatiotemporal one, related 57 

to textures, that is assessed by touch (and vision). However, whether the sensation of 58 

auditory roughness as historically investigated could also be experienced through 59 

touch is still unclear. 60 

In this paper, we investigate the tactile counterpart of auditory roughness 61 

using the same two pure tones signals in both modalities. In the auditory domain, 62 

stimuli were presented through headphones while a vibrotactile actuator was used in 63 

the tactile domain. The experiment was carried out in two sessions, one with 64 

auditory stimuli and the other with tactile stimuli. The goal was to determine the 65 

relationship between the roughness sensation and the frequency ratio of two 66 

different pure tones to compare the roughness curves in both modalities. Showing 67 

such a coherence would suggest that hearing and tactile sensory systems share similar 68 

processes. This would also validate these stimuli for further investigations in a 69 

multisensory context. 70 

 71 

 72 

 73 

 74 
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2. Methods 75 

2.1 Participants 76 

18 participants (8 women, M=30 years old. between 21 and 57 years old), 15 77 

right-handed, voluntarily took part in the experiment. None of them reported having 78 

any auditory problems or skin concerns. The participants gave their informed 79 

consent before the experiment. The experiment lasted about 1 hour. The 80 

experimental protocol was validated by the local ethical committee. 81 

2.2 Stimuli 82 

The experiment was composed of two sessions: one auditory and one tactile. 83 

The same signals were used for both modalities and the stimuli were constructed by 84 

combining two monochromatic tones:  𝑠(𝑡) = 𝑠𝑖𝑛(2𝜋𝑓!𝑡) 	+ 	𝑠𝑖𝑛(2𝜋𝑓"𝑡)	of 85 

frequencies 𝑓! and 𝑓"=𝛼𝑓!.  Four frequency conditions were considered (f1 = 50, 100, 86 

200, 300 Hz). The experimental design did not include higher frequency conditions 87 

since frequencies above 800 Hz are not perceptible by the human tactile sensory 88 

system (Verrillo, 1969). The frequency ratio 𝛼 ranged from 1 to 2. When 𝛼=1, 𝑓!=𝑓" 89 

the tones are at unison, when 𝛼=2,  𝑓!=2𝑓" , the tones are separated by one octave. 90 

Twelve values of 𝛼 were chosen (1, 1.01, 1.02, 1.03, 1.05, 1.10, 1.15, 1.20, 1.25, 1.35, 91 

1.50, 2.00).  For each frequency condition, stimuli with different 𝛼 values were 92 

compared pairwise leading to 66 pairs. Overall, each subject performed 2 sessions 93 

with 4 blocks of 66 pairs which led to 528 trials. 94 
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2.3 Apparatus 95 

Sounds were presented through Sennheiser HD-650 headphones at a 96 

sampling rate of 44100 Hz powered by a Pioneer A-209R audio amplifier. Tactile 97 

stimuli were presented through an Actronika HapCoil-One vibrotactile actuator 98 

(dimensions: 11.5 × 12 × 37.7 mm3, acceleration: 8 g-pp, Frequency bandwidth: 10 99 

to 1000 Hz, resonant frequency: 65 Hz). This kind of actuator has already been used 100 

in the literature to render the sensation of textures with vibrations (Rocchesso et al., 101 

2016). The actuator was powered by a Pioneer A-209R audio amplifier. The subjects 102 

were asked to grab the vibrotactile actuator between the thumb and the index of 103 

their right hand. During the tactile experiment, participants wore noise-canceling 104 

headphones to prevent them from using potential auditory cues produced by the 105 

tactile device to perform the task. 106 

2.4 Task and procedure 107 

Participants were seated in front of a computer screen in a quiet room. They 108 

started randomly either with the audio or tactile session. The experiment was a 109 

pairwise comparison. At each trial, two stimuli with different values of 𝛼 were 110 

presented successively. The stimuli lasted for 1 second and pairs were sequentially 111 

presented with an inter-stimulus interval of 800 ms. For each pair of stimuli, the 112 

participants were asked to determine which stimulus was the most “granular” 113 

(granuleux in French). We avoided the terms “rough” and “pleasant” that are 114 

commonly used in the literature since several participants had a musical background 115 

which might have influenced their judgment. For each subject, the 4 blocks and the 116 

stimuli within each block were presented in a randomized order and for each pair, 117 
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the presentation order was also randomized. Responses were collected with a 118 

keyboard and the interface was designed with Max/MSP software to provide either 119 

audio or tactile stimuli. The volume and the intensity of auditory and tactile stimuli 120 

were set constant during the whole experiment. 121 

2.5 Data analysis 122 

Based on the subject’s responses, each stimulus was assigned a score of 123 

perceived auditory roughness. This score is the ratio of the number of times subjects 124 

judged the stimulus as rougher by the number of times the stimulus was presented in 125 

the pairwise comparison (=11). For one subject, if a stimulus of a given 𝛼	value has 126 

been judged N times as more “granular” than another, its roughness score equals 127 

N/11. Finally for each subject, each modality and each  𝑓! condition, roughness 128 

curves characterizing the roughness score evolution with respect to the 𝛼	value were 129 

computed. 130 

3. Results 131 

Firstly, the results showed that the roughness curves obtained were coherent 132 

with the theoretical roughness curve proposed by Vassilakis (2001) and Leman 133 

(2000). This validates the present protocol for roughness score measurement 134 

(correlations between the 8 mean curves, 2 modalities x 4 frequency ratio condition, 135 

and the theoretical curves: r(9) : M=0.89, range=[min=0.83, max=0.97] , all 136 

p<0.001), see Fig. 2. 137 

Most importantly, the results revealed that auditory and tactile modalities 138 

provide similar roughness curves in the 4 frequency conditions tested, see Fig. 2. We 139 

observed a significant correlation between the tactile and auditory roughness mean 140 
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 8 

curves for the 4 conditions (Pearson correlations: 𝑓!=50 Hz : r(9)=0.94, p=4.7.10-6, 141 

BF10=5e-3; 𝑓!=100 Hz: r(9)=0.97, p=2e-7, BF10=9e4; 𝑓!=200 Hz: r(9)=0.92, p=1.7e-142 

5, BF10=1.7e3; 𝑓!=300 Hz: r(9)=0.94, p=3.9e-7, BF10=6.5e3). 143 

Lastly, in order to assess potential differences between the two modalities, we 144 

computed the differences between auditory and tactile roughness scores for each 145 

frequency condition 𝑓! and 𝛼	values and for each subject. This resulted in a 146 

population of 864 samples, whose mean does not significantly differ from 0 (t-test: 147 

t863=1e-15 p=1, CI95%=[-0.0149; 0.0149]), showing that there is no significative 148 

difference between the audio and tactile roughness curves.  149 

 150 

Fig. 2. Audio (blue) and tactile (red) roughness curves obtained from the 151 

experiment for the four frequency conditions. Mean across subjects is presented in 152 

solid lines, and standard deviation is presented with the shaded zones. The black 153 
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dashed lines depict the theoretical auditory roughness model proposed by 154 

Vassilakis (2001). 155 

4. Discussion 156 

In this paper, auditory roughness perception induced by temporal beatings 157 

was compared between the auditory and the tactile sensory systems. In one 158 

experiment with two sessions, subjects had to compare the roughness of pairs of 159 

sounds or tactile vibrations parametrized by the ratio between the frequencies of two 160 

monochromatic components. Roughness curves were then computed for both 161 

modalities and were found to be similar in the two modalities and with theoretical 162 

auditory roughness model. 163 

Auditory roughness curves are coherent with the model of Vassilakis (2001). 164 

Interestingly, we observe the same curves in the tactile modality. In particular, the 165 

position of maximal roughness perception changes according to the lower frequency 166 

f1. It would therefore be of interest now to further investigate the multimodal process 167 

of auditory roughness perception. It may indeed lead to a common process between 168 

the two modalities and the critical band framework (Makous et al., 1995) could also 169 

be relevant in the tactile domain. In addition, a formal comparison with the 170 

modulation transfer function in the amplitude modulation domain could also be 171 

done with specific experiments (Weisenberger, 1986). 172 

Secondly, this study further sheds light on more fine similarities in the 173 

temporal processing of vibrations through these two modalities. One major 174 

difference between the two modalities is that for high 𝛼	values (around 2), audition 175 

discriminates the two harmonic frequencies leading to a perception of two tones, 176 
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whereas in touch, we perceive only one uniform complex temporal vibration 177 

(Bensmaıa, & Hollins, 2000). 178 

It is worth noticing that the auditory roughness curves present similar shapes 179 

to the surface roughness curves (Unger et al., 2010) by making analogies between 180 

sound beating frequency and texture spatial frequency (i.e., the number of ridges per 181 

millimeters). Firstly, for low spatial frequencies, only large undulations of the texture 182 

are felt. The surface roughness then increases as the spatial frequency increases until 183 

reaching a maximum. Lastly, surface roughness decreases as the ridge’s density highly 184 

increases until the texture becomes almost smooth. Although auditory and surface 185 

roughness remain two distinct perceptual attributes, there could hereby be processed 186 

with similar underlying mechanistic processes. In addition, recent evidence has 187 

shown that rhythm perception is shared between audio and haptics even for textures 188 

explored through active touch (Bernard et al., 2021). Our current findings suggest 189 

that these results could be extended to the perception of beating and temporal 190 

roughness. 191 

5. Conclusion 192 

This study provides results for the investigation of audio-tactile roughness 193 

under a common framework. The framework classically dedicated to investigating 194 

auditory roughness has here been formally validated for the tactile modality. One 195 

particularly relevant perspective is the investigation of the multisensory integration of 196 

these stimuli in congruent or incongruent situations. We may expect to observe 197 

audio-tactile interactions and how one modality can enhance the perception of 198 

roughness in the other. This has already been observed in several multisensory 199 
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situations (Jousmäki & Hari, 1998, Guest et al., 2002, Yau et al., 2009). These cases 200 

are of great relevance to understanding the fine mechanistic bases of human 201 

perceptual systems. 202 
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