

Tactile perception of auditory roughness

Corentin Bernard, Richard Kronland-Martinet, Madeline Fery, Sølvi Ystad,

Etienne Thoret

► To cite this version:

Corentin Bernard, Richard Kronland-Martinet, Madeline Fery, Sølvi Ystad, Etienne Thoret. Tactile perception of auditory roughness. 2022. hal-03829829v1

HAL Id: hal-03829829 https://hal.science/hal-03829829v1

Preprint submitted on 1 Nov 2022 (v1), last revised 3 Jan 2023 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

Tactile perception of auditory roughness

Corentin Bernard^{1,a}, Richard Kronland-Martinet¹, Madeline Fery¹, Sølvi Ystad¹ and Etienne Thoret^{1,a,c}

¹ Aix-Marseille University, CNRS, UMR7061 PRISM, Marseille, 13009, France <u>bernard@prism.cnrs.fr; kronland@prism.cnrs.fr; medeline.fery@etu.univ-amu.fr</u>; <u>ystad@prism.cnrs.fr; thoret@prism.cnrs.fr</u>

1	Auditory roughness resulting of fast temporal beatings is often studied by summing
2	two pure tones with close frequencies. Interestingly, the tactile counterpart of
3	auditory roughness can be provided through touch with vibrotactile actuators.
4	However, whether auditory roughness could also be perceived through touch, and
5	whether they exhibit similar characteristics is unclear. Here, auditory roughness
6	perception and its tactile counterpart were evaluated using similar two pure tones
7	stimuli. Results revealed similar roughness curves in both modalities suggesting
8	similar sensory processing. This study attests of the relevance of such a paradigm for
9	investing auditory and tactile roughness in a multisensory fashion.
10	
11	Keywords: Roughness, Beating, Audio-tactile

^a Author to whom correspondence should be addressed.

^b Also at: Institute of Language Communication and the Brain, UMR7020 LIS, CNRS

13 1. Introduction

14	Auditory roughness is a fundamental acoustical attribute due to very fast
15	fluctuations of sounds that conveys emotions (Arnal et al., 2015), drives musical
16	consonance (Helmholtz, 1885; Plomb & Levelt, 1965), and shapes orchestral timbres
17	(Pressnitzer & McAdams, 2000). It is also at the basis of the definition of critical
18	bands (Terhardt, 1974), a fundamental property of cochlear filters characterizing the
19	ability of the cochlea to separate two pure tones. Auditory roughness has therefore
20	led to a significant body of work in psychoacoustics to identify the acoustic factors
21	that modulate this auditory sensation.
22	To unveil the mechanisms underlying auditory roughness perception, studies
23	have used combinations of monochromatic tones (Miśkiewicz et al., 2006), pure
24	tones, leading to models of perceived auditory roughness (Daniel et al., 1997;
25	Vassilakis, 2001; Leman, 2000). A combination of two monochromatic tones can
26	indeed create amplitude modulations that induce a sensation of roughness depending
27	on the frequency spacing between the two tones, also defined by the frequency ratio
28	between the two frequencies. The roughness of such sounds increases until reaching
29	a maximum and then decreases as the frequency ratio between the two frequencies
30	increases, as presented in Fig. 1. Since auditory roughness is often described as
31	characterizing very fast fluctuations in sounds, such stimuli are perfect candidates to
32	investigate such a sensation.

33

Fig. 1. Typical auditory roughness perception according to the frequency ratio of a
sum of two pure tones: s(t) = sin(2πf₁t) + sin(2πf₂t) =

37 $2\sin(2\pi \frac{(f_1+f_2)}{2}t)\sin(2\pi \frac{(f_2-f_1)}{2}t)$. When the frequency ratio $\alpha = f_2/f_1$ is small, the 38 combination of tones tends to be perceived as one tone slowly modulated by the 39 other one, a sensation that is characterized as beats. When the frequency ratio 40 increases, a sensation of roughness appears. As α becomes even larger, the perceived 41 roughness decreases and the two tones are perceived separately. This theoretical 42 auditory roughness curve is defined with the parameters $b_1 = 3.5$, $b_2 = 5.75$, s =43 $\frac{0.24}{s_1f_1+s_2}$, $s_1=0.0207$ and $s_2 = 18.96$ (Vassilakis, 2001).

On the other hand, for the tactile modality, surface roughness refers to one
of the principal perceptual attributes used to describe textures explored with the
finger (Tiest & Kappers, 2006). Perceived surface roughness is defined by the
physical and geometrical properties of the textures, such as the height and the
density of the asperities (Taylor & Lederman, 1975; Stevens & Harris, 1962). Typical
stimuli for surface roughness evaluation are sandpapers with various grit sizes.
Interestingly, similar observations showing that the perceived surface roughness

51 depends on the spatial frequency and the amplitude of the haptic signal were made
52 on synthetic textures with new haptic touchscreen technologies (İşleyen et al., 2019;
53 Bodas et al., 2019).

54	In a recent review on multimodal roughness perception, Di Stefano &
55	Spence (2022) made a clear distinction between auditory roughness and surface
56	roughness: auditory roughness is a temporally based perceptual property, that is
57	experienced through hearing, while surface roughness is spatiotemporal one, related
58	to textures, that is assessed by touch (and vision). However, whether the sensation of
59	auditory roughness as historically investigated could also be experienced through
60	touch is still unclear.
61	In this paper, we investigate the tactile counterpart of auditory roughness
62	using the same two pure tones signals in both modalities. In the auditory domain,
63	stimuli were presented through headphones while a vibrotactile actuator was used in
64	the tactile domain. The experiment was carried out in two sessions, one with
65	auditory stimuli and the other with tactile stimuli. The goal was to determine the
66	relationship between the roughness sensation and the frequency ratio of two
67	different pure tones to compare the roughness curves in both modalities. Showing
68	such a coherence would suggest that hearing and tactile sensory systems share similar
69	processes. This would also validate these stimuli for further investigations in a
70	multisensory context.

- 71
- 72
- 73
- 74

75 2. Methods

76 2.1 Participants

77	18 participants (8 women, M=30 years old. between 21 and 57 years old), 15
78	right-handed, voluntarily took part in the experiment. None of them reported having
79	any auditory problems or skin concerns. The participants gave their informed
80	consent before the experiment. The experiment lasted about 1 hour. The
81	experimental protocol was validated by the local ethical committee.
82	2.2 Stimuli
83	The experiment was composed of two sessions: one auditory and one tactile.
84	The same signals were used for both modalities and the stimuli were constructed by
85	combining two monochromatic tones: $s(t) = sin(2\pi f_1 t) + sin(2\pi f_2 t)$ of
86	frequencies f_1 and $f_2 = \alpha f_1$. Four frequency conditions were considered ($f_1 = 50, 100,$
87	200, 300 Hz). The experimental design did not include higher frequency conditions
88	since frequencies above 800 Hz are not perceptible by the human tactile sensory
89	system (Verrillo, 1969). The frequency ratio α ranged from 1 to 2. When $\alpha=1, f_1=f_2$
90	the tones are at unison, when $\alpha=2$, $f_1=2f_2$, the tones are separated by one octave.
91	Twelve values of <i>α</i> were chosen (1, 1.01, 1.02, 1.03, 1.05, 1.10, 1.15, 1.20, 1.25, 1.35,
92	1.50, 2.00). For each frequency condition, stimuli with different α values were
93	compared pairwise leading to 66 pairs. Overall, each subject performed 2 sessions
94	with 4 blocks of 66 pairs which led to 528 trials.

95 2.3 Apparatus

96	Sounds were presented through Sennheiser HD-650 headphones at a
97	sampling rate of 44100 Hz powered by a Pioneer A-209R audio amplifier. Tactile
98	stimuli were presented through an Actronika HapCoil-One vibrotactile actuator
99	(dimensions: $11.5 \times 12 \times 37.7$ mm3, acceleration: 8 g-pp, Frequency bandwidth: 10
100	to 1000 Hz, resonant frequency: 65 Hz). This kind of actuator has already been used
101	in the literature to render the sensation of textures with vibrations (Rocchesso et al.,
102	2016). The actuator was powered by a Pioneer A-209R audio amplifier. The subjects
103	were asked to grab the vibrotactile actuator between the thumb and the index of
104	their right hand. During the tactile experiment, participants wore noise-canceling
105	headphones to prevent them from using potential auditory cues produced by the
106	tactile device to perform the task.

107 2.4 Task and procedure

108 Participants were seated in front of a computer screen in a quiet room. They 109 started randomly either with the audio or tactile session. The experiment was a 110 pairwise comparison. At each trial, two stimuli with different values of α were 111 presented successively. The stimuli lasted for 1 second and pairs were sequentially 112 presented with an inter-stimulus interval of 800 ms. For each pair of stimuli, the 113 participants were asked to determine which stimulus was the most "granular" 114 (granuleux in French). We avoided the terms "rough" and "pleasant" that are 115 commonly used in the literature since several participants had a musical background 116 which might have influenced their judgment. For each subject, the 4 blocks and the 117 stimuli within each block were presented in a randomized order and for each pair,

118 the presentation order was also randomized. Responses were collected wi	rith a
--	--------

119 keyboard and the interface was designed with Max/MSP software to provide either

120 audio or tactile stimuli. The volume and the intensity of auditory and tactile stimuli

121 were set constant during the whole experiment.

^{122 2.5} Data analysis

123	Based on the subject's responses, each stimulus was assigned a score of
124	perceived auditory roughness. This score is the ratio of the number of times subjects
125	judged the stimulus as rougher by the number of times the stimulus was presented in
126	the pairwise comparison (=11). For one subject, if a stimulus of a given α value has
127	been judged N times as more "granular" than another, its roughness score equals
128	N/11. Finally for each subject, each modality and each f_1 condition, roughness
129	curves characterizing the roughness score evolution with respect to the α value were
130	computed.
131	3. Results
132	Firstly, the results showed that the roughness curves obtained were coherent
133	with the theoretical roughness curve proposed by Vassilakis (2001) and Leman
134	(2000). This validates the present protocol for roughness score measurement
135	(correlations between the 8 mean curves, 2 modalities x 4 frequency ratio condition,

and the theoretical curves: r(9): M=0.89, range=[min=0.83, max=0.97], all

137 p<0.001), see Fig. 2.

Most importantly, the results revealed that auditory and tactile modalities
provide similar roughness curves in the 4 frequency conditions tested, see Fig. 2. We
observed a significant correlation between the tactile and auditory roughness mean

141 curves for the 4 conditions (Pearson correlations:
$$f_1 = 50$$
 Hz : r(9)=0.94, p=4.7.10⁻⁶,

142 BF10=5e⁻³;
$$f_1$$
=100 Hz: r(9)=0.97, p=2e⁻⁷, BF10=9e⁴; f_1 =200 Hz: r(9)=0.92, p=1.7e

143 ⁵, BF10=1.7e³;
$$f_1$$
=300 Hz: r(9)=0.94, p=3.9e⁻⁷, BF10=6.5e³).

144 Lastly, in order to assess potential differences between the two modalities, we

- 145 computed the differences between auditory and tactile roughness scores for each
- 146 frequency condition f_1 and α values and for each subject. This resulted in a
- 147 population of 864 samples, whose mean does not significantly differ from 0 (t-test:
- 148 $t_{863}=1e^{-15} p=1$, CI95%=[-0.0149; 0.0149]), showing that there is no significative
- 149 difference between the audio and tactile roughness curves.

Fig. 2. Audio (blue) and tactile (red) roughness curves obtained from the
experiment for the four frequency conditions. Mean across subjects is presented in
solid lines, and standard deviation is presented with the shaded zones. The black

154 dashed lines depict the theoretical auditory roughness model proposed by155 Vassilakis (2001).

156 4. Discussion

157	In this paper, auditory roughness perception induced by temporal beatings
158	was compared between the auditory and the tactile sensory systems. In one
159	experiment with two sessions, subjects had to compare the roughness of pairs of
160	sounds or tactile vibrations parametrized by the ratio between the frequencies of two
161	monochromatic components. Roughness curves were then computed for both
162	modalities and were found to be similar in the two modalities and with theoretical
163	auditory roughness model.
164	Auditory roughness curves are coherent with the model of Vassilakis (2001).
165	Interestingly, we observe the same curves in the tactile modality. In particular, the
166	position of maximal roughness perception changes according to the lower frequency
167	f_1 . It would therefore be of interest now to further investigate the multimodal process
168	of auditory roughness perception. It may indeed lead to a common process between
169	the two modalities and the critical band framework (Makous et al., 1995) could also
170	be relevant in the tactile domain. In addition, a formal comparison with the
171	modulation transfer function in the amplitude modulation domain could also be
172	done with specific experiments (Weisenberger, 1986).
173	Secondly, this study further sheds light on more fine similarities in the
174	temporal processing of vibrations through these two modalities. One major
175	difference between the two modalities is that for high α values (around 2), audition
176	discriminates the two harmonic frequencies leading to a perception of two tones,

177 whereas in touch, we perceive only one uniform complex temporal vibration

178 (Bensmaia, & Hollins, 2000).

179	It is worth noticing that the auditory roughness curves present similar shapes
180	to the surface roughness curves (Unger et al., 2010) by making analogies between
181	sound beating frequency and texture spatial frequency (i.e., the number of ridges per
182	millimeters). Firstly, for low spatial frequencies, only large undulations of the texture
183	are felt. The surface roughness then increases as the spatial frequency increases until
184	reaching a maximum. Lastly, surface roughness decreases as the ridge's density highly
185	increases until the texture becomes almost smooth. Although auditory and surface
186	roughness remain two distinct perceptual attributes, there could hereby be processed
187	with similar underlying mechanistic processes. In addition, recent evidence has
188	shown that rhythm perception is shared between audio and haptics even for textures
189	explored through active touch (Bernard et al., 2021). Our current findings suggest
190	that these results could be extended to the perception of beating and temporal
191	roughness.

192 5. Conclusion

193 This study provides results for the investigation of audio-tactile roughness 194 under a common framework. The framework classically dedicated to investigating 195 auditory roughness has here been formally validated for the tactile modality. One 196 particularly relevant perspective is the investigation of the multisensory integration of 197 these stimuli in congruent or incongruent situations. We may expect to observe 198 audio-tactile interactions and how one modality can enhance the perception of 199 roughness in the other. This has already been observed in several multisensory

200	situations (Jousmäki & Hari,	1998,	Guest et al	2002.	Yau et al.	,2009). These cas	es
-----	--------------	------------------	-------	-------------	-------	------------	-------	--------------	----

- 201 are of great relevance to understanding the fine mechanistic bases of human
- 202 perceptual systems.
- 203

204 Acknowledgments

- 205 This work was supported by an ILCB/BLRI grant ANR-16-CONV-0002
- 206 (ILCB), ANR-11-LABX-0036 (BLRI), the Excellence Initiative of Aix-Marseille
- 207 University (A*MIDEX), the Sound and Music from Interdisciplinary and
- 208 Intersectorial Perspectives (SAMI A*MIDEX) project and France Relance. The
- 209 authors would like to thank MIRA, Aflokkat and Nicolas Huloux for his thoughtful
- 210 comments on the paper.
- 211

212 References

- 213 Arnal, L. H., Flinker, A., Kleinschmidt, A., Giraud, A. L., & Poeppel, D. (2015).
- Human screams occupy a privileged niche in the communication
- **215** soundscape. *Current Biology*, 25(15), 2051-2056.
- 216 Bernard, C., Monnoyer, J., Wiertlewski, M. & Ystad, S. (2021) Perception of rhythm
- is shared between audio and haptics. *Scientific Reports*, 12(1), 1-12
- 218 Daniel, P., & Weber, R. (1997). Psychoacoustical roughness: Implementation of an
- 219 optimized model. *Acta Acustica united with Acustica*, 83(1), 113-123.

220	Di Stefano.	N	& Spence	e. C.	(2022)	. Roughness	perception: A
		,		-,	(= ~ = =)	·	p

- 221 Multisensory/crossmodal perspective. Attention, Perception, & Psychophysics, 1-
- **222** 28.
- **223** Bensmaia, S. J., & Hollins, M. (2000). Complex tactile waveform discrimination. *The*

Journal of the Acoustical Society of America, 108(3), 1236-1245.

- 225 Bodas, P., Friesen, R. F., Nayak, A., Tan, H. Z., & Klatzky, R. (2019). Roughness
- rendering by sinusoidal friction modulation: Perceived intensity and gradient
 discrimination. In 2019 *IEEE World Haptics Conference* (WHC) (pp. 443-448).
- **228** IEEE.
- Guest, S., Catmur, C., Lloyd, D., & Spence, C. (2002). Audiotactile interactions in
 roughness perception. *Experimental Brain Research*, 146(2), 161-171.
- 231 Helmholtz, H. L. F. (1885). On the Sensations of Tone as a Physiological Basis for

the Theory of Music (2nd edition.) Trans. A. J. Ellis. New York: Dover
Publications, Inc. (1954.)

- 234 İşleyen, A., Vardar, Y., & Basdogan, C. (2019). Tactile roughness perception of
- virtual gratings by electrovibration. *IEEE Transactions on Haptics*, *13(3)*, *562- 570*.
- Jousmäki, V., & Hari, R. (1998). Parchment-skin illusion: sound-biased touch. *Current biology*, 8(6), R190-R191.
- 239 Leman, M. (2000, December). Visualization and calculation of the roughness of
- acoustical musical signals using the synchronization index model (SIM). In
- 241 Proceedings of the COST G-6 conference on digital audio effects (DAFX-00) (pp. 125-
- 242 *130*). *DAFX*, *Verona*, *Italy*.

-2+3 manufactor, -1 manufactor, -1 manufactor, -1 manufactor, -1 manufactor, -1	cous, J. C., Friedman, R. M., & Vierck, C. J. (1995). A critical band filter in tou	ouch
---	---	------

- 244 Journal of Neuroscience, 15(4), 2808-2818.
- 245 Miśkiewicz, A., Rakowski, A., & Rościszewska, T. (2006). Perceived roughness of
- 246 two simultaneous pure tones. Acta acustica united with acustica, 92(2), 331-336.
- 247 Plomp, R. and Levelt, W. J. M. (1965). Tonal consonance and critical bandwidth. The

248 Journal of the Acoustical Society of America, Vol. 38: 548-560.

- 249 Pressnitzer, D., McAdams, S., Winsberg, S., & Fineberg, J. (2000). Perception of
- 250 musical tension for nontonal orchestral timbres and its relation to
- 251 psychoacoustic roughness. Perception & psychophysics, 62(1), 66-80.
- 252 Rocchesso, D., Delle Monache, S., & Papetti, S. (2016). Multisensory texture
- 253 exploration at the tip of the pen. International Journal of Human-Computer Studies, 254 85, 47-56.
- 255 Stevens, S. S., & Harris, J. R. (1962). The scaling of subjective roughness and

256 smoothness. Journal of experimental psychology, 64(5), 489.

257 Taylor, M. M., & Lederman, S. J. (1975). Tactile roughness of grooved surfaces: A

258 model and the effect of friction. Perception & Psychophysics, 17(1), 23-36.

259 Terhardt, E. (1974). On the perception of periodic sound fluctuations (roughness). 260

Acta Acustica united with Acustica, 30(4), 201-213.

- 261 Tiest, W. M. B., & Kappers, A. M. (2006). Analysis of haptic perception of materials
- 262 by multidimensional scaling and physical measurements of roughness and 263 compressibility. Acta psychologica, 121(1), 1-20.
- 264 Unger, B., Hollis, R., & Klatzky, R. (2010). Roughness perception in virtual textures.
- 265 IEEE Transactions on Haptics, 4(2), 122-133.

266	Vassilakis,	Р.	(2001)). Auditory	roughness	estimation	of com	plex s	pectra-	-Roughness
200	, acomanic,	. .		/• 1100101 y	rouginicou	counnation	01 00111	pren o	peetra	itouginitou

- 267 degrees and dissonance ratings of harmonic intervals revisited. *The Journal of*
- 268 *the Acoustical Society of America*, 110(5), 2755-2755.
- 269 Verrillo, R. T., Fraioli, A. J., & Smith, R. L. (1969). Sensation magnitude of
- vibrotactile stimuli. Perception & Psychophysics, 6(6), 366-372.
- 271 Weisenberger, J. M. (1986). Sensitivity to amplitude-modulated vibrotactile signals.
- 272 The Journal of the Acoustical Society of America, 80(6), 1707-1715.
- 273 Yau, J. M., Olenczak, J. B., Dammann, J. F., & Bensmaia, S. J. (2009). Temporal
- frequency channels are linked across audition and touch. *Current biology*, 19(7),
- **275** 561-566.