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 ) states that every even integer e ≥ 4 can be written in the form e = p + q, where q and p are prime. In this paper, we give the complete simple proof of the Goldbach conjecture, by reducing this conjecture into an equation of three unknowns via the immediate reformulation of this conjecture coupled with simple calculus on complex numbers (see [6] and [7] for simple calculus on complex numbers), trivial computation and the reasoning by reduction to absurd using prime numbers (this proof is direct, simple, short, complete, and shows that the Goldbach conjecture seemed difficult because the parameters used to attack this problem were not appropriated for such a kind of discrete conjecture). It will immediately follow that every odd integer o ≥ 9 can be written in the form o = p + q + r, where p, q and r are prime.

Prologue. In Section.1, we introduce definitions that are not standard and we use them to give the immediate reformulation of the Goldbach conjecture. This immediate reformulation is crucial for the complete simple proof of the Goldbach conjecture. In Section.2, we prove properties linked to simple calculus on complex numbers and trivial computation; and we reduce the Goldbach conjecture into an equation of three unknowns [in Section.2, we will let one Proposition unproved and we will prove this Proposition in Section.2' (Epilogue)]. In Section.3, using the immediate reformulation of the Goldbach conjecture given in Section.1 and some properties of Section.2, we give the short complete simple proof of the Goldbach conjecture. It will immediately follow that every odd integer o ≥ 9 can be written in the form o = p + q + r, where p, q and r are prime. In Section.2' [Epilogue], we end this manuscript by proving the only Proposition we let unproved in Section.2.

1. Non-standard definitions, simple properties and the immediate reformulation of the Goldbach conjecture. Definition 1.0 We say that e is goldbach, if e is an even integer ≥ 4 and can be written in the form e = p + q, where p and q are prime [recall (see Abstract) that the Goldbach conjecture states that every even integer e ≥ 4 is goldbach].

Example 1.0.0 4 is goldbach, since 4 is an even integer ≥ 4 and 4 = 2 + 2, where 2 is prime; 6 is goldbach, since 6 is an even integer ≥ 4 and 6 = 3 + 3, where 3 is prime; 8 is goldbach, since 8 is an even integer ≥ 4 and 8 = 3 + 5, where 3 and 5 are prime; 10 is goldbach, since 10 is an even integer ≥ 4 and 10 = 3 + 7, where 3 and 7 are prime; 12 is goldbach, since 12 is an even integer ≥ 4 and 12 = 7 + 5, where 5 and 7 are prime; and 1764 is also goldbach, because 1764 is an even integer ≥ 4 and is of the form 1764 = 883 + 881, where 883 and 881 are prime.

That being so, let us define: Definition 1.1 We say that e is goldbachian, if e is an even integer ≥ 4 and if every even integer v such that 4 ≤ v ≤ e can be written in the form v = p v + q v , where p v and q v are prime; in other words, we say that e is goldbachian, if e is an even integer ≥ 4 and if every even integer v with 4 ≤ v ≤ e is goldbach [ use Definition 1.0 for the meaning of goldbach]; in other terms again, we say that e is goldbachian, if e is an even integer ≥ 4 and v is an even integer of the form 4 ≤ v ≤ e, implies that v is goldbach [use Definition 1.0 for the meaning of goldbach].

Using Definition 1.1, then we have the following six remarks.

Remark 1.1.0 12 is goldbachian . Proof. Indeed, observe (by using Example 1.0.0 of Definition 1.0) that 12 is an even integer ≥ 4, and every even integer v of the form 4 ≤ v ≤ 12 is goldbach; consequently 12 is goldbachian.2 Remark 1. 1.4 Let n be an integer ≥ 2. If 2n is goldbachian and if there exists j ∈ {1, 3, 5} such that 2n -j is prime, then 2n + 2 is goldbachian.

Proof. Indeed, let j ∈ {1, 3, 5} such that 2n -j is prime, clearly 2n + 2 = 2n -j + (j + 2), where 2n -j and j + 2 are prime Remark 1.1.5 Let n be an integer ≥ 3. If 2(n -1) is goldbachian and if there exists j ∈ {1, 3} such that 2(n -1) -j is prime, then 2n + 2 is goldbachian.

Proof. Indeed, let j ∈ {1, 3} such that 2(n -1) -j is prime, clearly 2n = 2(n -1) -j + (j + 2), where 2(n -1) -j and j + 2 are prime (1 .2 ), and 2n + 2 = 2(n -1) -j + (j + 4), where 2(n -1) -j and j + 4 are prime Note that goldbachian implies goldbach; so there is no confusion between goldbachian and goldbach. Having defined goldbach and goldbachian, then it comes: Definitions 1.2 (G(n), g n , G(n + 1) and g n+1 ). For every integer n ≥ 2, we define G(n) and g n as follows: G(n) = {g; 1 < g ≤ 2n, and g is goldbachian}, and g n = max g∈G(n) g. Using the definitions of G(n) and g n , then it becomes trivial to deduce that for every integer n ≥ 1, we clearly have G(n + 1) = {g; 1 < g ≤ 2n + 2, and g is goldbachian}, and g n+1 = max g∈G(n+1) g.

(1 .3
Using Definitions 1.2, then we have the following three remarks. Remark 1.2.0 Let n be an integer ≥ 2; then G(n) ⊆ G(n + 1). Proof. Immediate [it suffices to use the definition

of the couple (G(n), G(n + 1))].2 Remark 1.2.1 Let n be an integer ≥ 2. If g n+1 ̸ = 2n + 2, then G(n + 1) = G(n). Proof. Immediate [ it suffices to use the definition of the couple (G(n), G(n + 1)) and to observe that g n+1 ≤ 2n + 2 and gn ≤ 2n].2 Remark 1.2.2 Let n be an integer ≥ 2. If g n+1 ≤ 2n, then G(n + 1) = G(n). Proof. Immediate [ observe that g n+1 ̸ = 2n + 2 and use Remark 1.2.1].2
Using the definitions of G(n + 1) and g n+1 , then the following Proposition becomes trivial. PROPOSITION 1.3 Let n be an integer ≥ 2. We have the following seven properties. (1.3.0.) g n+1 is even and g n+1 ≤ 2n + 2.

(1.3.1.) g n+1 = 2n + 2, if and only if, 2n + 2 is goldbachian ( in other words, g n+1 ̸ = 2n + 2, if and only if, 2n + 2 is not goldbachian ).

(1.3.2.) g n ≤ g n+1 . (1.3.3.) If g n+1 < 2n + 2, then 2n + 2 is not goldbachian. (1.3.4.) If 2n + 2 ≤ e
and if e is goldbachian, then 2n + 2 is goldbachian.

(1.3.5.) (An implicit using of the Goldbach formula). If g n+1 < 2n + 2, then 2n + 2 is not goldbachian; therefore, there exists an integer e such that 1 ≤ e ≤ n and 2e+2 can not be of the form 2e+2 = p e +q e , where p e and q e are prime.

(1.3.6.) (An explicit using of the Goldbach formula). g n+1 = 2n + 2, if and only if, for every integer n ′ such that 1 ≤ n ′ ≤ n, the number 2n ′ + 2 can be written in the form 2n ′ + 2 = p n ′ + q n ′ , where p n ′ and q n ′ are prime. Proof. Properties (1.3.0) and (1. (1) For every integer n ′ ≥ 1, the number 2n ′ + 2 can be written in the form 2n ′ + 2 = p n ′ + q n ′ , where p n ′ and q n ′ are prime.

(2) The Goldbach conjecture is true [i.e. every even integer e ≥ 4 can be written in the form e = pe + qe, where pe and qe are prime].

(3) For every integer n ≥ 1, 2n + 2 is goldbachian. Theorem 1.4 is the immediate reformulation of the Goldbach conjecture; curiously, this elementary Theorem is not related to all the investigations that have been done on the Goldbach conjecture in the past. Indeed, Theorem 1.4 clearly says that: if for every integer n ≥ 1, we have g n+1 = 2n + 2, then the Goldbach conjecture immediately follows. This is what we will do, by reducing this conjecture into an equation of three unknowns and by using elementary combinatorics, simple calculus on complex numbers, trivial computation via the reasoning by reduction to absurd using prime numbers. Before, we need the following remark. (1.5.3.) (An implicit using of the Goldbach formula). If g n+1 ̸ = 2n + 2, then: n > 5 and g n+1 = g n ; therefore there exists an integer e such that 1 ≤ e ≤ n and 2e+2 can not be of the form 2e+2 = p e +q e , where p e and q e are prime. (1.5.4.) (Another implicit using of the Goldbach formula). If g n+1 ≤ 2n, then: n > 5 and g n+1 = g n ; therefore there exists an integer e such that 1 ≤ e ≤ n and 2e + 2 can not be of the form 2e + 2 = p e + q e , where p e and q e are prime. Proof. Property (1.5.0) is immediate [Indeed, it is immediate (by using the definition of g n+1 ) that g n+1 is even. It is trivial that 4 is goldbachian (use Remark 1.1.2 of Definition 1.1 ) and 4 = 2(1 + 1); so 4 ∈ G(n + 1) and therefore g n+1 ≥ 4. Clearly g n+1 ≤ 2n + 2 (use the definition of g n+1 ). Now using the previous two inequalities, then it becomes trivial to deduce that 4 ≤ g n+1 ≤ 2n + 2. Property (1.5 

(n), ν(n), ϵ(n) ) ∈ C 3 tackles (1, 3ig -1 n+1 ) around 6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i, if there exists (x, y, k) ∈ C 2 × R such that x+3iyg -1 n+1 +k(6g n+1 -19-ig n+1 +11ig 2 n+1 -18i)+ϕ(n) = 0 where x+y-ν(n) = 0 and x-y-ϵ(n) = 0.
We will see that the definition of tackle introduced above helps to reduce the Goldbach conjecture into an equation of three unknowns. Before, let us define: Definitions 2.3 (Fundamental). Let n be an integer ≥ 1 and let g n+1 [ use Definitions 1.2]; now consider (ϕ n , ν n , ϵ n ), where

ϕ n = 4 j=1 ϕ n.j (2 .0 )
and where

ϕ n.1 = 126301ig -3 n+1 + 2273418ig -4 n+1 -23837g n+1 -357566g -1 n+1 + 2010800g -2 n+1 + 2399719g -4 n+1 -757806g -3 n+1 1331 (2 .1 ), ϕ n.2 = ((2n + 1) 2 -1 -g 2 n+1 -2g n+1 )(16g -3 n+1 + 50g -2 n+1 + 11ig -3 n+1 -13i + 5ig n+1 ) + (g n+1 -2n) 2 (8g n+1 -8i -16) (2 .2 ), ϕ n.3 = ((2n + 1) 2 -1 -g 2 n+1 + 2g n+1 )(34ig -2 n+1 -70ig -3 n+1 -11i + 5 + 6ig n+1 ) + 289080 1331 (2 .3 ), and 
ϕ n.4 = ((2n + 1) 2 -1 -g 2 n+1 + 7g n+1 )(11ig n+1 + 7 -50g -1 n+1 + 23ig -3 n+1 -54g -3 n+1 ) - 1003112i 1331 (2 .4 ); ν n = ( ig n+1 -4in -4i + 1 ) 2 -1 + g 2 n+1 (2 .5 ),
and

ϵ n = 4( (2n + 1) 2 -1 -g 2 n+1 + g n+1 ) + ( ig n+1 -2in + 1 )( 4ig n+1 + 4 -8i ) (2 .6 ).
It is immediate that for every integer n ≥ 1, ( ϕ n , ν n , ϵ n ) is well defined and gets sense. Now using the notion of tackle [ use Definition 2.2 ], then the following Theorem immediately implies the Goldbach conjecture.

THEOREM.G Let n be an integer ≥ 1 and let g n+1 [use Definitions 1.2]; look at ( ϕ n , ν n , ϵ n ) introduced in Definitions 2.3. Then at least one of the following three properties is satisfied by n.

(A 1 ). 2n is goldbachian and there exists j ∈ {1, 3} such that 2n -j is prime.

(A 2 ). Every even integer e such that 4 ≤ e ≤ 2n + 4 can be written in the form e = p e + q e , where p e and q e are prime.

(A 3 ). ( ϕ n , ν n , ϵ n ) tackles (1, 3ig -1 n+1 ) around 6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i [use Definition 2.2 ].
We will simply prove Theorem.G in Section.3 by reasoning by reduction to absurd via prime numbers. But before, let us remark.

Remark 2.4 (fundamental) . Let n be an integer ≥ 1 and let g n+1 [ use Definitions

1.2]; now look at ( ϕ n , ν n , ϵ n ) introduced in Definitions 2.3. If g n+1 = 2n + 2, then ( ϕ n , ν n , ϵ n ) tackles (1, 3ig -1 n+1 ) around 6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i [ use Definition 2.2 for the meaning of tackle ].
Proof. Indeed, observing (via the hypotheses) that g n+1 = 2n + 2 and using the preceding equality, we easily deduce that

g n+1 -2n = 2; ig n+1 -4in -4i + 1 = 1 -ig n+1 ; 2n + 1 = g n+1 -1; and ig n+1 -2in + 1 = 2i + 1 (2 .7 ).
Now look at ( ϕn, νn, ϵn ) introduced in Definitions 2.3 and let (ϕ n.2 , ϕ n.3 , ϕ n.4 ) explicited in Definitions 2.3. Clearly

ϕ n.2 = -4g n+1 (16g -3 n+1 + 50g -2 n+1 + 11ig -3 n+1 -13i + 5ig n+1 ) + 8g n+1 -8i -16 (2 .8 ) [ use (2.
2) of Definitions 2.3 and the third equality of (2.7) (observe [via the third equality of (2.7)] that (g n+1 -1) 2 = g 2 n+1 -2g n+1 + 1); and the first equality of (2.7) (observe [via the first equality of (2.7)] that

(g n+1 -2n) 2 = 1)
], and

ϕ n.3 = 289080 1331 (2 .9 ) [ use (2.
3) of Definitions 2.3 and the third equality of (2.7) (observe [via the third equality of (2.7)] that (g n+1 -1) 2 = g 2 n+1 -2g n+1 + 1)], and

ϕ n.4 = 5g n+1 (11ig n+1 + 7 -50g -1 n+1 + 23ig -3 n+1 -54g -3 n+1 ) - 1003112i 1331 (2 .10 ) [ use (2.4) of Definitions 2.
3 and the third equality of (2.7) (observe [via the third equality of (2.7)] that (g n+1 -1) 2 = g 2 n+1 -2g n+1 + 1)]. That being said let (νn, ϵn) explicited in Definitions 2.3; clearly

νn = ( 1 -ig n+1 ) 2 -1 + g 2 n+1 (2 .11 )
[ use (2 .5 ) of Definitions 2.3 and the second equality of (2.7) ] and clearly

ϵn = 4( (g n+1 -1) 2 -1 -g 2 n+1 + g n+1 ) + ( 2i + 1 )( 4ig n+1 + 4 -8i ) (2 .12 )
[ use (2.6) of Definitions 2.3 and the last two equalities of (2.7) ]. That being so, let (x, y, k) such that

x = 10 -6g n+1 + ig n+1 ; y = -10 + 6g n+1 -3ig n+1 ; and k = - 35 11 - 618g -1 n+1 121 + 7494g -2 n+1 121 + 126301g -4 n+1 1331 (2 .13 ),
and let ( ϕn, νn, ϵn, x, y, k ) where (x, y, k) is explicited in (2.13) and where ( ϕn, νn, ϵn) is introduced in Definitions 2.3. Now consider ( νn, ϵn, x, y ); using (2.11) and ( 2.12 ) and the first two equalities of (2.13) , we easily check [by elementary computation and the fact that

i 2 = -1] that x + y -νn = 0 and x -y -ϵn = 0 (2 .14 ).
That being so, look again at ( ϕn, νn, ϵn, x, y, k ) and let ( ϕn, x, y, k ); using the three equalities of (2.13), it becomes very easy to check (by elementary computation and the fact that i 2 = -1) that 

x + 3iyg -1 n+1 + k(6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i) + ϕn = 0; k ∈ R
∈ R; so (x, y, k) ∈ C 2 × R] ). Remark 2.4 follows.2
Remark 2.4 says that if g n+1 = 2n + 2 [i.e. if every even integer e such that 4 ≤ e ≤ 2n + 2 can be written in the form e = p e + q e (where p e and q e are prime)] , then (

ϕ n , ν n , ϵ n ) tackles (1, 3ig -1 n+1 ) around 6g n+1 -19 -ig n+1 + 11ig 2
n+1 -18i. We will use Remark 2.4 in Section.3 to prove the Theorem which implies the Goldbach conjecture.

Remark 2.5 (fundamental). Reduction of the Goldbach conjecture into an equation of three unknowns .

Let n be an integer ≥ 1 and let g n+1 [ use Definitions 1.2]; now look at

( ϕ n , ν n , ϵ n ) introduced in Definitions 2.3. If g n+1 = 2n, then ( ϕ n , ν n , ϵ n ) does not tackle (1, 3ig -1 n+1 ) around 6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i ( use Definition 2.
2 for the meaning of tackle ).

Proof. Indeed, observing (via the hypotheses) that g n+1 = 2n and using the preceding equality, we easily deduce that 

g n+1 -2n = 0; ig n+1 -4in -4i + 1 = 1 -4i -ig n+1 ; 2n + 1 = g n+1 + 1; and ig n+1 -2in + 1 = 1 (2 .
ϕ n.4 = 9g n+1 (11ig n+1 + 7 -50g -1 n+1 + 23ig -3 n+1 -54g -3 n+1 ) - 1003112i 
i 2 = -1] that x + y -νn = 0 and x -y -ϵn = 0 (2 .23 ).
That being said, we have this Fact. Fact.0.

there exists not k ∈ R such that x + 3iyg -1 n+1 + k(6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i) + ϕn = 0.
Otherwise [ we reason by reduction to absurd]

Let k ∈ R such that x + 3iyg -1 n+1 + k(6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i) + ϕn = 0 (2 .24 ).
It is immediate to see that (2.24) says that 

x + 3iyg -1 n+1 + ϕn = -k(6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i); k ∈ R
= k n.1 = k n.2 (2 .26 ),
where

k n.1 = -23837g n+1 -357566g -1 n+1 + 2010800g -2 n+1 + 2399719g -4 n+1 -757806g -3 n+1 + 289080 1331(19 -6g n+1 ) + 85g n+1 -447 -486g -3 n+1 19 -6g n+1 (2 .27 ),
and ] .So assuming that

k n.2 = 2273418g -4 n+1 + 126301g -3 n+1 -1003112 1331(g n+1 -11g 2 n+1 + 18) + 123g 2 n+1 + 106g -1 n+1 -38 -43g n+1 -73g -2 n+1 g n+1 -11g
there exists k ∈ R such that x + 3iyg -1 n+1 + k(6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i) + ϕn = 0
gives rise to a serious contradiction; therefore

there exists not k ∈ R such that x + 3iyg -1 n+1 + k(6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i) + ϕn = 0.
Fact.0. follows. Clearly ( ϕn, νn, ϵn ) does not tackle (1, 3ig Remark 2.5 reduces the Goldbach conjecture into a simple equation of three unknowns and is the heart of the Goldbach conjecture. Indeed Remark 2.5 clearly says that, if g n+1 = 2n [i.e. if 2n + 2 can not be written in the form 2n + 2 = p n + q n (where p n and q n are prime) and if every even integer e such that 4 ≤ e ≤ 2n can be written in the form e = p e + q e (where p e and q e are prime)] , then we will have a simple equation of three unknowns which implies that ( ϕ n , ν n , ϵ n ) does not tackle (1, 3ig -1 n+1 ) around 6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i. It is also clear that Remark 2.5 says that, for the first n such that 2n + 2 can not be written in the form 2n + 2 = p n + q n (where p n and q n are prime), then we will have a simple equation of three unknowns which implies that ( ϕ n , ν n , ϵ n ) does not tackle (1, 3ig -1 n+1 ) around 6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i. We will use Remark 2.5 in Section.3 to immediately deduce the Goldbach conjecture. That being said, the following remark is only an immediate reformulation of Remark 2.5.

Remark 2.5 ′ (fundamental). Let n be an integer ≥ 1 and let g n+1 [ use Definitions 1.2]; now look at ( ϕ n , ν n , ϵ n ) introduced in Definitions 2.3. If 2n + 2 can not be written in the form 2n + 2 = p n + q n [where p n and q n are prime] and if every even integer e such that 4 ≤ e ≤ 2n can be written in the form e = p e + q e [where p e and q e are prime] , then

( ϕ n , ν n , ϵ n ) does not tackle (1, 3ig -1 n+1 ) around 6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i ( use Definition 2.

for the meaning of tackle ).

Proof. Indeed observing (via the hypotheses) that 2n + 2 can not be written in the form 2n + 2 = pn + qn [where pn and qn are prime] and every even integer e such that 4 ≤ e ≤ 2n can be written in the form e = pe + qe [where pe and qe are prime]; then using the previous and the definition of g n+1 , we immediately deduce that g n+1 = 2n. So ( ϕn, νn, ϵn ) does not tackle (1, 3ig (2.6.0). g n+1 = g n ; therefore there exists an integer e such that 1 ≤ e ≤ n and 2e + 2 can not be of the form 2e + 2 = p e + q e , where p e and q e are prime.

(2.6.1). (

ϕ n-1 -ϕ n , ν n-1 -ν n , ϵ n-1 -ϵ n ) tackles (1, 3ig -1 n+1
) around 6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i. We will use Proposition 2.6 in Section.3 to prove the Theorem which implies the Goldbach Conjecture. Proposition 2.6 is not very difficult to prove and we will prove Proposition 2.6 in Section.2' (Epilogue). Now we are ready to give the short complete proof the Goldbach conjecture.

3. The short complete proof of the Goldbach conjecture.

In this Section, using the elementary reformulation of the Goldbach conjecture proved in Section.1 and simple properties of Section.2, we give the short complete simple proof of the Goldbach conjecture. Moreover, it will follow that every odd integer o ≥ 9 can be written in the form o = p + q + r, where p, q and r are prime. In this section, the definition of goldbachian [use Definition 1.1], the definition of g n+1 [use Definitions 1.2], the definition of tackle [use Definition 2.2] and the definition of (ϕ n , ν n , ϵ n ) introduced in Definitions 2.3, are fundamental and crucial. Now the following Theorem immediately implies the Goldbach conjecture and the fact that every odd integer o ≥ 9 can be written in the form o = p + q + r, where p, q and r are prime. THEOREM 3.1 Let n be an integer ≥ 1 and let g n+1 [use Definitions 1.2]; look at ( ϕ n , ν n , ϵ n ) introduced in Definitions 2.3. Then at least one of the following three properties is satisfied by n. (A 1 ). 2n is goldbachian and there exists j ∈ {1, 3} such that 2n -j is prime. (A 2 ). Every even integer e such that 4 ≤ e ≤ 2n + 4 can be written in the form e = p e + q e [where pe and qe are prime].

(A 3 ). ( ϕ n , ν n , ϵ n ) tackles (1, 3ig -1 n+1 ) around 6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i [ use Definition 2.

for the meaning of tackle ].

It is immediate that Theorem 3.1 is exactly Theorem.G stated after Definitions 2.3. We are going to prove simply Theorem 3.1. But before doing so, let us remark. Otherwise,

g n+1 > 2n (3 .3 );
remarking that g n+1 and 2n are even [g n+1 is even (use the definition of g n+1 ) and 2n is trivially even], then inequality (3.3) immediately implies that g n+1 ≥ 2n + 2. It is trivial [by the definition of g n+1 ] that g n+1 ≤ 2n + 2. Now using the previous two inequalities, then it becomes trivial to deduce that g n+1 = 2n + 2; so Theorem 3.1 is satisfied [ use the preceding equality and property (3.2.1) of Remark 3.2], and we have a contradiction, since in particular n is a counter-example to Theorem 3.1. So g n+1 ≤ 2n and Observation.3.1.iv follows. Observation.3.1.v (An explicit using of the Goldbach formula). Look at n[recall n is a minimum counterexample to Theorem 3.1]; then g n+1 = g n and there exists an integer e such that 1 ≤ e ≤ n and 2e + 2 can not be written in the form 2e + 2 = p e + q e , where p e and q e are prime . Indeed, observing [by Observation.3.1.iv] that g n+1 ≤ 2n and noticing [by Observation.3.1.iii] that n > 5, then using the previous two inequalities, it becomes trivial to deduce that all the hypotheses of Proposition 2.6 are satisfied, therefore, all the conclusions of Proposition 2.6 are satisfied; in particular property (2.6.0) of Proposition 2.6 is satisfied; consequently g n+1 = g n and therefore there exists an integer e such that 1 ≤ e ≤ n and 2e + 2 can not be written in the form 2e + 2 = p e + q e , where p e and q e are prime. Observation.3.1.v follows.

Observation.3.1.vi. Let (ϕ n , ν n , ϵ n ) [ use Definitions 2.3], and via (ϕ n , ν n , ϵ n ), consider (ϕ n-1 , ν n-1 , ϵ n-1 )
[ this consideration gets sense, since n > 5 (use Observation.3.1.iii), and so n -

1 > 4 > 1]. Then ( ϕ n-1 -ϕ n , ν n-1 -ν n , ϵ n-1 -ϵ n ) tackles (1, 3ig -1 n+1 ) around 6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i
. Indeed, observing [by Observation.3.1.iv] that g n+1 ≤ 2n and noticing [by Observation.3.1.iii] that n > 5, then using the previous two inequalities, it becomes trivial to deduce that all the hypotheses of Proposition 2.6 are satisfied, therefore, all the conclusions of Proposition 2.6 are satisfied; in particular property (2.6.1) of Proposition 2.6 is satisfied; consequently ( T hen property (A 2 ) of T heorem 3.1 is not satisf ied by n -1.

ϕ n-1 -ϕ n , ν n-1 -ν n , ϵ n-1 -ϵ n ) tackles (1, 3ig -1 n+1 ) around 6g n+1 -19 -ig n+1 + 11ig
Otherwise [ (we reason by reduction to absurd).

Every even integer e with 4 ≤ e ≤ 2(n -1) + 4 can be written in the f orm e = pe + qe(where pe and qe are prime) 

(
) ∈ C 2 × R such that x + 3iyg -1 n+1 + k(6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i) + (ϕ n-1 -ϕn) = 0 (3 .11 ) where x + y -(ν n-1 -ν n ) = 0 and x -y -(ϵ n-1 -ϵ n ) = 0 (3 .12 ).
That being so, using Observation.3.1.ix and the definition of tackle [ use Definition 2.2 ], then we immediately deduce that

there exists (x ′ , y ′ , k ′ ) ∈ C 2 × R such that x ′ + 3iy ′ g -1 n+1 + k ′ (6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i) + ϕ n-1 = 0 (3 .13 ) where x ′ + y ′ -ν n-1 = 0 and x ′ -y ′ -ϵ n-1 = 0 (3 .14 ).
Now using equality of (3 .13 ), then we immediately deduce that equality of (3.11) clearly says that

x -x ′ + 3i(y -y ′ )g -1 n+1 + (k -k ′ )(6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i) -ϕ n = 0 (3 .15 ).
It is trivial to see that equality (3.15) clearly says that

x ′ -x + 3i(y ′ -y)g -1 n+1 + (k ′ -k)(6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i) + ϕ n = 0 (3 .16 ).
Using the two equalities of (3.14), then we immediately deduce that the two equalities of (3.12) clearly say that (x -x ′ ) + (y -y ′ ) + ν n = 0 and (x -x ′ ) -(y -y ′ ) + ϵ n = 0 (3 .17 ).

It is trivial to see that (3.17 where Theorem 3.1 and Remark.2.5 of Section.2 immediately imply the Goldbach conjecture and the fact that every odd integer o ≥ 9 can be written in the form o = p + q + r, where p, q and r are prime. THEOREM 3.4 (The using of Remark.2.5 of Section.2) For every integer n ≥ 1, we have g n+1 = 2n+2 [i.e. for every integer n ≥ 1, 2n + 2 is goldbachian ]. Proof. Otherwise, let n be a minimum counter-example; clearly we have

x ′′ + y ′′ -νn = 0, x ′′ -y ′′ -ϵn = 0 and x ′′ + 3iy ′′ g -1 n+1 + k ′′ (6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i) + ϕn = 0 (3 .20 ). Clearly ( ϕ n , ν n , ϵ n ) tackles (1, 3ig -1 n+1 ) around 6g n+1 -19 -ig n+1 + 11ig
g n+1 ̸ = 2n + 2 (3 .21 ).
Then we observe the following. Observation.3.4.1. g n+1 ≤ 2n.

Otherwise, clearly g n+1 > 2n; now observing that g n+1 and 2n are even [g n+1 is even (by the definition of g n+1 ) and 2n is trivially even ], then the previous inequality immediately implies that

g n+1 ≥ 2n + 2 (3 .21 ′ ).
Remarking that g n+1 = g n = 2n and for every j ∈ {1, 3, 5}, 2n -j is not prime.

g n+1 ≤ 2n + 2 (3 .
Indeed, look at n [recall n is a minimum counter-example ], and via n, consider n -1 [ this consideration gets sense, since n > 5 (by Observation.3.4.2), and therefore n -1 > 4 > 1 ]. Then, by the minimality of n, n -1 is not a counter-example; consequently g (n-1)+1 = 2(n-1)+2 and the previous equality clearly says that (

g n = 2n (3 .27 ).
ϕ n , ν n , ϵ n ) does not tackle (1, 3ig -1 n+1 ) around 6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i.
Indeed, observing [by Observation.3.4.3] that g n+1 = 2n and using Remark 2.5 of Section.2, then it becomes trivial to deduce that Let o be an odd integer ≥ 9; then o can be written in the form o = p + q + r, where p, q and r are prime. Proof. Clearly o -5 is an even integer ≥ 4; so o -5 can be written in the form o -5 = q + r, where q and r are prime [ use the meaning of the Goldbach conjecture and Corollary 3.5]; consequently o can be written in the form o = p + q + r, where p = 5, and q and r are prime; in particular o can be written in the form o = p + q + r, where p, q and r are prime.2 2'. Epilogue.

( ϕ n , ν n , ϵ n ) does not tackle (1, 3ig -1 n+1 ) around 6g n+1 -19 -ig n+1 + 11ig
Our article clearly shows that simple calculus on complex numbers and trivial computation coupled the reduction of the Goldbach conjecture into an equation of three unknowns and the trivial reformulation of this conjecture via the reasoning by reduction to absurd using prime numbers, help to give the short complete simple proof of the Goldbach conjecture. Now we end this article by proving the only Proposition that we let unproved in Section. (2.6.0). g n+1 = g n ; therefore there exists an integer e such that 1 ≤ e ≤ n and 2e + 2 can not be of the form 2e + 2 = p e + q e , where p e and q e are prime.

(2.6.1). ( 

ϕ n-1 -ϕ n , ν n-1 -ν n , ϵ n-1 -ϵ n ) tackles (1, 3ig -1 n+1 ) around 6g n+1 -19 -ig n+1 + 11ig
-ϕ n.1 = 0. (2.8.2) ϕ n-1.2 -ϕ n.2 = -8n(16g -3 n+1 + 50g -2 n+1 + 11ig -3 n+1 -13i + 5ig n+1 ) + 8g n+1 -8i -16. (2.8.3) ϕ n-1.3 -ϕ n.3 = -8n(34ig -2 n+1 -70ig -3 n+1 -11i + 5 + 6ig n+1 ). (2.8.4) ϕ n-1.4 -ϕ n.4 = -8n(11ig n+1 + 7 -50g -1 n+1 + 23ig -3 n+1 -54g -3 n+1 ). Proof. (2.8.1) Indeed let ϕ n-1.1 ; clearly ϕ n-1.1 = 126301ig -3 n + 2273418ig -4 n -23837gn -357566g -1 n 1331 + ϕ ′ n-1.1 (2 ′ .2 )
where 

ϕ ′ n-1.1 = 2010800g -2 n + 2399719g -4 n -757806g -3 n 1331 (2 ′ .3 ) [ use (2.1) of Definitions 2.3 for n -1 ]. So ϕ n-1.1 = 126301ig -3 n+1 + 2273418ig -4 n+1 -23837g n+1 -357566g -1 n+1 + 2010800g -2 n+1 + 2399719g
]. So ϕ n-1.2 = ((2(n-1)+1) 2 -1-g 2 n+1 -2g n+1 )(16g -3 n+1 +50g -2 n+1 +11ig -3 n+1 -13i+5ig n+1 )+ (g n+1 -2(n -1)) 2 (8g n+1 -8i-16) (2 ′ .8 ) ( use (2 ′ .6
) and (2 ′ .7 ) and notice [ by observing that g n+1 ≤ 2n and by using Remark 2.7 ] that g n+1 = gn). Clearly

ϕ n-1.2 = ((2n+1) 2 -1-g 2 n+1 -2g n+1 )(16g -3 n+1 +50g -2 n+1 +11ig -3 n+1 -13i+5ig n+1 )+ (g n+1 -2n) 2 (8g n+1 -8i-16)+ϕ ′ n-1.2 (2 ′ .9 ) where ϕ ′ n-1.2 = -8n(16g -3 n+1 + 50g -2 n+1 + 11ig -3 n+1 -13i + 5ig n+1 ) + 8g n+1 -8i -16 (2 ′ .10 )
( use the first member of (2 ′ .8 ) and observe [by elementary computation and by using the first member of (2 ′ .8 )] that

((2(n -1) + 1) 2 -1 -g 2 n+1 -2g n+1 ) = ((2n + 1) 2 -1 -g 2 n+1 -2g n+1 ) -8n;
and remark [by elementary computation and by using the second member of (2 ′ .8 ) ] that

(g n+1 -2(n -1)) 2 = (g n+1 -2n) 2 + 1
). 

n-1.3 = ((2(n -1) + 1) 2 -1 -g 2 n + 2gn)(34ig -2 n -70ig -3 n -11i + 5 + 6ign) + 289080 1331 (2 ′ .12 ) [ use (2.3) of Definitions 2.3 for n -1]. So ϕ n-1.3 = ((2(n -1) + 1) 2 -1 -g 2 n+1 + 2g n+1 )(34ig -2 n+1 -70ig -3 n+1 -11i + 5 + 6ig n+1 ) + 289080 1331 (2 ′ .13 )
( use (2 ′ .12 ) and notice [ by observing that g n+1 ≤ 2n and by using Remark 2.7 ] that g n+1 = gn). Clearly

ϕ n-1.3 = ((2n + 1) 2 -1 -g 2 n+1 + 2g n+1 )(34ig -2 n+1 -70ig -3 n+1 -11i + 5 + 6ig n+1 ) + 289080 1331 + ϕ ′ n-1.3 (2 ′ .14 ) where ϕ ′ n-1.3 = -8n(34ig -2 n+1 -70ig -3 n+1 -11i + 5 + 6ig n+1 ) (2 ′ .15 )
[ use (2 ′ .13 ) and observe (by elementary computation ) that ((2(n-1)+1) 2 -1-g 2 

n+1 +2g n+1 ) = ((2n+1) 2 -1-g 2 n+1 +2g n+1 )-8n ]. So ϕ n-1.3 = ϕ n.3 -8n(34ig -2 n+1 -70ig -3 n+1 -11i + 5 + 6ig n+1 ) ( 2 
n-1.4 = ((2(n -1) + 1) 2 -1 -g 2 n + 7gn)(11ign + 7 -50g -1 n + 23ig -3 n -54g -3 n ) - 1003112i 1331 (2 ′ .17 ) [ use (2.4) of Definitions 2.3 for n -1]. So ϕ n-1.4 = ((2(n -1) + 1) 2 -1 -g 2 n+1 + 7g n+1 )(11ig n+1 + 7 -50g -1 n+1 + 23ig -3 n+1 -54g -3 n+1 ) - 1003112i 1331 (2 ′ .18 )
( use (2 ′ .17 ) and notice [ by observing that g n+1 ≤ 2n and by using Remark 2.7 ] that g n+1 = gn). Clearly

ϕ n-1.4 = ((2n + 1) 2 -1 -g 2 n+1 + 7g n+1 )(11ig n+1 + 7 -50g -1 n+1 + 23ig -3 n+1 -54g -3 n+1 ) - 1003112i 1331 + ϕ ′ n-1.4 (2 ′ .19 ) where ϕ ′ n-1.4 = -8n(11ig n+1 + 7 -50g -1 n+1 + 23ig -3 n+1 -54g -3 n+1 ) (2 ′ .20 ) ( use (2 ′ .18
) and observe [by elementary computation and by using (2 ′ .18 )] that (2.9.1.) ν n-1 -ν n = 32n -8g n+1 + 8i + 16.

((2(n -1) + 1) 2 -1 -g 2 n+1 + 7g n+1 ) = ((2n + 1) 2 -1 -g 2 n+1 + 7g n+1 ) -8n ). So ϕ n-1.4 = ϕ n.4 -8n(11ig n+1 + 7 -50g -1 n+1 + 23ig -3 n+1 -54g -3 n+1 ) (2 ′ .21 ) [ use (2 ′ .
(2.9.2.) ϵ n-1 -ϵ n = -32n -8g n+1 + 8i + 16.

Proof. Indeed let ( ν n-1 , ϵ n-1 ); clearly

ν n-1 = ( ign -4i(n -1) -4i + 1 ) 2 -1 + g 2 n (2 ′ .22 )
[ use (2 .5 ) of Definitions 2.3 for n -1] and

ϵ n-1 = 4( (2(n -1) + 1) 2 -1 -g 2 n + gn ) + ( ign -2i(n -1) + 1 )( 4ign + 4 -8i ) (2 ′ .23 ) [ use (2 .6 ) of Definitions 2.3 for n -1]. So ν n-1 = ( ig n+1 -4i(n -1) -4i + 1 ) 2 -1 + g 2 n+1 (2 ′ .24 ) ( use (2 ′ .22
) and notice [ by observing that g n+1 ≤ 2n and by using Remark 2.7 ] that g n+1 = gn) and

ϵ n-1 = 4( (2(n -1) + 1) 2 -1 -g 2 n+1 + g n+1 ) + ( ig n+1 -2i(n -1) + 1 )( 4ig n+1 + 4 -8i ) (2 ′ .25 ) ( use (2 ′ .23
) and notice [ by observing that g n+1 ≤ 2n and by using Remark 2.7 ] that g n+1 = gn). That being said, we now prove easily property (2.9.1) and property (2.9.2).

(2.9.1.) Indeed observing [ by elementary computation and the fact that i 2 = -1] that ( ig n+1 -4i(n -1) -4i + 1 ) 2 -1 + g 2 n+1 = ( ig n+1 -4in -4i + 1 ) ). Property (2.9.2) follows and Remark 2.9 immediately follows. 2 [ use property (2.9.1) of Remark 2.9] , and That being so, look again at ( ϕ n-1 -ϕn, ν n-1 -νn, ϵ n-1 -ϵn, x, y, k ) and consider ( ϕ n-1 -ϕn, x, y, k ); using the three equalities of (2 ′ .42 ), then it becomes very easy to check [by elementary computation and the fact that i 2 = -1] that

x + 3iyg 

  and Definition 1.0], and consequently 2n + 2 is goldbachian [ indeed notice (via the hypotheses) that 2n is goldbachian and use (1.1) and property (1.1.3.1) of Remark 1.1.3].2

  3.1) are immediate [it suffices to use the definition of g n+1 (see Definitions 1.2)]. Property (1.3.2) is trivial [it suffices to use the definition of g n+1 via the definition of gn(see Definitions 1.2)]; and property (1.3.3) is a trivial consequence of property (1.3.1). Property (1.3.4) is an immediate consequence of Remark 1.1.1 of Definition 1.1. Property (1.3.5) is trivial [ it suffices to use property (1.3.3) and the definition of goldbachian (see Definition 1.1) ]. Property (1.3.6) is an immediate consequence of the definition of goldbachian and the definition of g n+1 [ use Definition 1.1 for goldbachian and Definitions 1.2 for g n+1 ]. 2 Now the following Theorem is the immediate reformulation of the Goldbach conjecture. THEOREM 1.4 [The immediate reformulation of the Goldbach conjecture]. The following are equivalent.

( 4 )

 4 For every integer n ≥ 1, we have g n+1 = 2n + 2. Proof. (1) ⇒ (2)] Immediate [since property (2) is only the obvious reformulation of property (1)]. (2) ⇒ (3)] Immediate [it suffices to use the meaning of the Goldbach conjecture and the definition of goldbachian]. (3) ⇒ (4)] Immediate [it suffices to use the definition of goldbachian and the definition of g n+1 ]. (4) ⇒ (1)] Immediate [ it suffices to use property (1.3.6) of Proposition 1.3]. 2

Remark 1 . 5

 15 Let n be an integer ≥ 1; consider G(n + 1) and g n+1 [use Definitions 1.2]. We have the following five properties. (1.5.0.) g n+1 is even and 4 ≤ g n+1 ≤ 2n + 2. (1.5.1.) If n ≤ 5, then g n+1 = 2n + 2. (1.5.2.) If g n+1 ̸ = 2n + 2, then: n > 5 and g n+1 = g n .

Remark 3 . 2

 32 Let n be an integer ≥ 1 and look at g n+1 (see Definitions 1.2). We have the following three trivial properties. (3.2.1.) If g n+1 = 2n + 2, then Theorem 3.1 is satisfied. (3.2.2.) If 1 ≤ n ≤ 5, then Theorem 3.1 is satisfied. (3.2.3.) [An implicit using of the Goldbach formula]. If for every integer e such that 1 ≤ e ≤ n, 2e + 2 can be written in the form 2e + 2 = p e + q e [where p e and q e are prime], then Theorem 3.1 is satisfied . Proof. Property (3.2.1) is immediate [indeed, let n be an integer ≥ 1; observing (by the hypotheses) that g n+1 = 2n+2, then (ϕn, νn, ϵn) tackles (1, 3ig

  ) clearly says that(x ′ -x) + (y ′ -y) -ν n = 0 and (x ′ -x) -(y ′ -y) -ϵ n = 0 (3 .18 ). Now observing that ( x, y, k ) ∈ C 2 × R ( use (3.11) ) and since ( x ′ , y ′ , k ′ ) ∈ C 2 × R ( use (3.13) ),then it becomes trivial to deduce that (3.16) and (3.18) clearly say that there exists (x ′′ , y ′′ , k ′′ ) ∈ C 2 × R such that x ′′ = x ′ -x and y ′′ = y ′ -y and k ′′ = k ′ -k (3 .19 )

Clearly 2n is goldbachian ( 3

 3 .28 ) [ use (3.27) and the meaning of gn given in Definitions 1.2 ]. Now notice that g n+1 = g n (3 .29 ) [ indeed observe ( by (3 .21 ) ) that g n+1 ̸ = 2n + 2 and use property (1.5.3) of Remark 1.5 ]. Clearly g n+1 = g n = 2n (3 .30 ) [use equalities (3.27) and (3.29) ]. That being said, observe that f or every j ∈ {1, 3, 5}, 2n -j is not prime (3 .31 ) [ otherwise there exists j ∈ {1, 3, 5} such that 2n -j is prime (3 .31 ′ ) and clearly 2n + 2 is goldbachian (3 .32 ) (observe (by Observation.3.4.2) that n > 5 and use (3.28) and (3 .31 ′ ) and Remark 1.1.4 of Definition 1.1). So g n+1 = 2n + 2 ( use (3.32) and the definition of g n+1 ) and the preceding equality contradicts (3 .21 ). So for every j ∈ {1, 3, 5}, 2n -j is not prime] .Observation.3.4.3 follows [use (3.30) and (3.31)]. Observation.3.4.4 [the using of Remark 2.5 of Section.2].

Remark 2 . 4 j=1( 4 j=1 ϕ n-1.j ( 2 ′

 2442 10 Let n be an integer ≥ 3 and let g n+1 [ use Definitions 1.2]. Look at ϕ n introduced in Definitions 2.3, and via ϕ n , consider ϕ n-1 [ this consideration gets sense, since n ≥ 3, and therefore n -1 > 1 ].Thenϕ n-1 -ϕ n = ϕ n-1.j -ϕ n.j ).Proof. Indeed let ϕn; clearlyϕ n-1 = .33 ) [ use (2 .0 ) of Definitions 2.3 for n -1 ].

ϵ n- 1 - 1 n+1( 2 ′

 112 ϵn = -32n -8g n+1 + 8i + 16 (2 ′ .41 )[ use property (2.9.2) of Remark 2.9] . That being so, let (x, y, k) such that x = -8g n+1 + 8i + 16; y = 32n; and k = 16ng -3 n+1 -16ng -2 n+1 + 16ng -.42 ).Now let ( ϕ n-1 -ϕn, ν n-1 -νn, ϵ n-1 -ϵn, x, y, k ) where (x, y, k) is explicited in (2 ′ .42 ) and where( ϕ n-1 -ϕn, ν n-1 -νn, ϵ n-1 -ϵn)is explicited above [ use (2 ′ .35 ) for ϕ n-1 -ϕn; and (2 ′ .40 ) for ν n-1 -νn; and (2 ′ .41 ) for ϵ n-1 -ϵn]. Now consider (ν n-1 -νn, ϵ n-1 -ϵn, x, y ); using (2 ′ .40 ) and (2 ′ .41 ) and the first two equalities of (2 ′ .42 ), then we easily check [by elementary computation and the fact that i 2 = -1] thatx + y -(ν n-1 -νn) = 0 and x -y -(ϵ n-1 -ϵn) = 0 (2 ′ .43 ).

  Remark 1.1.1 If d is goldbachian and if d ′ is an even integer of the form 4 ≤ d ′ ≤ d, then d ′ is also goldbachian. Let n be an integer ≥ 2. We have the following two properties. (1.1.3.1). If 2n is goldbachian and if 2n + 2 is goldbach, then 2n + 2 is goldbachian. (1.1.3.2). If n ≥ 3 and 2(n -1) is goldbachian and 2n is goldbach and if 2n + 2 is goldbach, then 2n + 2 is goldbachian. Proof. Properties (1.1.3.1) and (1.1.3.2) are immediate [ it suffices to use the definition of goldbachian and the definition of goldbach]. Remark 1.1.3 follows.2

Proof. Immediate and is a trivial consequence of the definition of goldbachian introduced above.2 Remark 1.1.2 12 and 10 and 8 and 6 and 4 are simultaneously goldbachian. Remark 1.1.3

  In this Section, we prove properties linked to simple calculus on complex numbers and trivial computation; and we reduce the Goldbach conjecture into an equation of three unknowns [in this Section, we let one Proposition unproved and we will prove this Proposition in Section.2' (Epilogue) ]. In this Section, the definition of goldbach [use Definition 1.0 ], the definition of goldbachian [use Definition 1.1 ], the definitions of G(n + 1) and g n+1 [use Definitions 1.2 ], are crucial. Real numbers, R, complex numbers and C ). Recall that R is the set all real numbers and θ is a complex number if θ = x + iy, where x ∈ R, y ∈ R and i 2 = -1; C is the set of all complex numbers. That being said, let us define.

	2. Properties linked to simple calculus on complex numbers and trivial computation;
	the reduction of the Goldbach conjecture into an equation of three unknowns.
	Recalls 2.1 ( Definition 2.2 (Fundamental).	( tackle ). Recall ( use Recalls 2.1 ) that R is the set all real
	numbers and C is the set of all complex numbers. Clearly
	C 2 = {(x, y); x ∈ C and y ∈ C} and C 2 × R = {(x, y, k); (x, y) ∈ C 2 and k ∈ R}
	and	
		C 3 = {(x, y, z); (x, y) ∈ C 2 and z ∈ C}.
	Now let n be an integer ≥ 1 and look at g n+1 [ use Definitions 1.2]; we say that ( ϕ
	.0) folows]. Property (1.5.1) is obvious [ Indeed if n ≤ 5, then
		2n + 2 is goldbachian	(1 .2 )
	[ notice that 2n + 2 ≤ 12 and use Remark 1.1.2 of Definition 1.1] and therefore g n+1 = 2n + 2 [use (1.2) and the meaning of g n+1
	given in Definitions 1.2. Property (1.5.1) folows ]. Property (1.5.2) is also immediate. [Indeed, if g n+1 ̸ = 2n + 2, clearly n > 5 (use
	property (1.5.1)), and clearly	
		G(n + 1) = G(n)	(1 .3 )
	(observe that g n+1 ̸ = 2n + 2 and use Remark 1.2.1 of Definitions 1.2). Now using equality (1.3), then it becomes trivial to deduce
	that g n+1 = gn; property (1.5.2) follows]. Property (1.5.3) is only the trivial reformulation of property (1.5.2), via the definitions
	of g n+1 and gn (use Definitions 1.2). Property (1.5.4) is immediate [ indeed observe that g n+1 ̸ = 2n + 2 ( since g n+1 ≤ 2n) and
	use propoperty (1.5.3) ]. Remark 1.5 immediately follows. 2
	Remark 1.5 will help us in Section.2 and in Section.3 and in Section.2'[Epilogue].

  and ϕn =

	4	
	ϕ n.j	(2 .15 )
	j=1	

[ use the three equalities of (2.13) (for x and y and k); and (2.1) for ϕ n.1 ; and (2.j+6) for ϕ n.j (where 2 ≤ j ≤ 4); and (2.0) for ϕn]. Clearly ( ϕn, νn, ϵn ) tackles (1, 3ig -1 n+1 ) around 6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i ( use (2.14) and (2.15) and the notion of tackle introduced in Definition 2.2 [observe that (x, y) ∈ C 2 and k

  16 ). Now look at ( ϕn, νn, ϵn ) introduced in Definitions 2.3 and let (ϕ n.2 , ϕ n.3 , ϕ n.4 ) explicited in Definitions 2.3. Clearly [ use (2.2) of Definitions 2.3 and the third equality of (2.16) (observe [via the third equality of (2.16)] that (g n+1 + 1) 2 =

	ϕ n.2 = 0			(2 .17 )
	g 2 n+1 + 2g n+1 + 1); and the first equality of (2.16) (observe [via the first equality of (2.16)] that	(g n+1 -2n) 2	= 0) ], and
	ϕ n.3 = 4g n+1 (34ig -2 n+1 -70ig -3 n+1 -11i + 5 + 6ig n+1 ) +	289080 1331		(2 .18 )

[ use (2.3) of Definitions 2.3 and the third equality of (2.16) (observe [via the third equality of (2.16)] that (g n+1 + 1) 2 = g 2 n+1 + 2g n+1 + 1)], and

  Now let ( ϕn, νn, ϵn, x, y ) explicited above; consider ( ϕn, x, y ) and look at (2.25), using elementary computation and elementary divisibility coupled with the fact that i 2 = -1 and k ∈ R, it becomes very easy to check that (2.25) immediately implies that k

and ϕn = 4 j=1 ϕ n.j (2 .25 ) [ use (2.0) for ϕn ].

  That being so, using (2.26) and (2 .27 ) and (2 .28 ), then we immediately deduce [via elementary computation and the fact that k n.1 = k n.

		2 n+1 + 18	(2 .28 )
	2 ] that	10996722g -2 n+1 -11643588g -3 n+1 -7115526 + 7762392g -1 n+1 = 0	(2 .29 ).
	Equality (2 .29 ) is clearly impossible [ since it is trivial to see that g n+1 ≥ 4 ( use property (1.5.0) of Remark 1.5 ) and therefore
		10996722g -2 n+1 -11643588g -3 n+1 -7115526 + 7762392g -1 n+1 < 0	

[ via (2.25), use the two equalities of (2.22) (for x and y); and (2.1) for ϕ n.1 ; and (2.j+15) for ϕ n.j (where 2 ≤ j ≤ 4); and (2.0)

for ϕn].

  Now using Definitions 2.3, then we have the following Proposition. PROPOSITION 2.6. Let n be an integer ≥ 3 and let g n+1 ( use Definitions 1.2); now look at ( ϕ n , ν n , ϵ n ) introduced in Definitions 2.3, and via ( ϕ n , ν n , ϵ n ), consider ( ϕ n-1 , ν n-1 , ϵ n-1 ) ( this consideration gets sense, since n ≥ 3, and therefore n -1 > 1 ) . If g n+1 ≤ 2n, then we have the following two properties.

	-1 n+1 )
	around 6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i (use the last equality and Remark 2.5). Remark 2.5 ′ follows.2

  Remark 3.3 Suppose that Theorem 3.1 is false. Then there exists an integer n which is a minimum counter-example to Theorem 3.1. Proof. Immediate.2The previous simple remarks made, we now prove simply Theorem 3.1. Proof of Theorem 3.1. Otherwise [we reason by reduction to absurd], let n be a minimum counter-example to Theorem 3.1 [such a n exists, by using Remark 3.3]. We observe the following.Observation.3.1.i. Look at n [recall n is a minimum counter-example to Theorem 3.1]. Then (ϕ n , ν n , ϵ n ) does not tackle (1, 3ig -1 n+1 ) around 6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i .Immediate, since in particular, n is a counter-example to Theorem 3.1. Observation.3.1.ii. Look at n [recall n is a minimum counter-example to Theorem 3.1]. Then for every integer j ∈ {1, 2}, property (A j ) of Theorem 3.1 is not satisfied by n.Immediate , since in particular, n is a counter-example to Theorem 3.1. Observation.3.1.iii. Look at n [recall n is a minimum counter-example to Theorem 3.1]; then n > 5.Otherwise n ≤ 5 and clearly Theorem 3.1 is satisfied [ use the previous inequality and property (3.2.2) of Remark 3.2]; a contradiction, since in particular n is a counter-example to Theorem 3.1. Observation.3.1.iv. Look at n [recall n is a minimum counter-example to Theorem 3.1]; then g n+1 ≤ 2n.

	Notice that	
	12 is goldbachian	(3 .1 ′ )
	(use Remark 1.1.0 of Definition 1.1). Using (3.1) and (3 .1 ′ ), then it becomes trivial to deduce that	
	2n + 2 ≤ 12 and 12 is goldbachian	(3 .1 ′′ ).
	Clearly	
	2n + 2 is goldbachian	(3 .2 )
	( use (3 .1 ′′ ) and Remark (1.1.1) of Definition 1.1, where we replace d ′ by 2n + 2 and d by 12 ); consequently	
	g n+1 = 2n + 2	(3 .2 ′ ),

-1 n+1 ) around 6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i (3 .0 ) ( use Remark 2.4 ). (3.0) clearly says property (A 3 ) of Theorem 3.1 is satisfied by n; therefore Theorem 3.1 is satisfied. Property (3.2.1) follows]. Property (3.2.2) is immediate [ indeed, observing (by the hypotheses) that 1 ≤ n ≤ 5, clearly 2n + 2 ≤ 12 (3 .1 ). ( use (3 .2 ) and the definition of g n+1 ). Clearly Theorem 3.1 is satisfied ( use equality (3 .2 ′ ) and property (3.2.1)]. Property (3.2.3) is trivial [ indeed, using the definition of g n+1 (use Definitions 1.2) and property (1.3.6) of Proposition 1.3, then it becomes immediate to deduce that property (3.2.3) is only the trivial reformulation of property (3.2.1)]. 2

  [ observe that n > 5 (use Observation.3.1.iii) and use (3.4) and Remark 1.1.5 of Definition 1.1). Clearly g n+1 = 2n + 2 [ use (3.5) and the meaning of g n+1 introduced in Definitions 1.2]; so Theorem 3.1 is satisfied [ use the previous equality and property (3.2.1) of Remark 3.2], and we have a contradiction, since in particular n is a counter-example to Theorem 3.1. Observation.3.1.vii follows. Observation.3.1.viii. Look at n [recall n is a minimum counter-example to Theorem 3.1] and consider n -1 [ this consideration gets sense, since n > 5 (use Observation.3.1.iii), and so n -1 > 4 > 1].

	Clearly	
	2n + 2 is goldbachian	(3 .5 )
	2 n+1 -18i. Observation.3.1.vi follows.	
	Observation.3.1.vii. Look at n [recall n is a minimum counter-example to Theorem 3.1] and consider n -1 [ this
	consideration gets sense, since n > 5 (use Observation.3.1.iii), and so n -1 > 4 > 1].	

T hen property (A 1 ) of T heorem 3.1 is not satisf ied by n -1.

Otherwise [ we reason by reduction to absurd ] 2(n -1) is goldbachian and there exists j ∈ {1, 3} such that 2(n -1) -j is prime

(3 .4 ) 

[ since property (A 1 ) of Theorem 3.1 is satisfied by n -1 ].

  ( use (3.9) and property (A 3 ) of Theorem 3.1 for n -1 ). Now observing [ by Observation.3.1.v ] that g n+1 = g Observation.3.1.x. Look at n and let (ϕ n , ν n , ϵ n ) ( use Definitions 2.3 ). Then ( ϕ n , ν n , ϵ n ) tackles (1, 3ig -1 n+1 ) around 6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i. Indeed using Observation.3.1.vi and the definition of tackle [ use Definition 2.2 ], then we immediately

	deduce that	
	there exists ( x, y, k	
	Clearly	
	property (A 3 ) of T heorem 3.1 is satisf ied by n -1	(3 .9 )
	[ use (3.8) and Observation.3.1.viii and Observation.3.1.vii ]. So	
	(ϕ n-1 , ν n-1 , ϵ n-1 ) tackles (1, 3ig -1 n ) around 6g n -19 -ig n + 11ig 2 n -18i	(3 .10 )

3 .5 ) ( since property (A 2 ) of Theorem 3.1 is satisfied by n -1 ). It is immediate that (3.5) clearly says that Every even integer e with 4 ≤ e ≤ 2n + 2 can be written in the f orm e = pe + qe(where pe and qe are prime) (3 .6 ). Now using the meaning of goldbachian introduced in Definition 1.1, then it becomes trivial to deduce that (3.6) clearly says that 2n + 2 is goldbachian (3 .7 ). Clearly g n+1 = 2n + 2 ( use (3.7) and the meaning of g n+1 introduced in Definitions 1.2 ); so Theorem 3.1 is satisfied ( use the previous equality and property (3.2.1) of Remark 3.2 ), and we have a contradiction, since in particular n is a counter-example to Theorem 3.1.]. Observation.3.1.viii follows. Observation.3.1.ix. Look at (ϕ n , ν n , ϵ n ) ( use Definitions 2.3 and recall n is a minimum counter-example to Theorem 3.1 ), and via (ϕ n , ν n , ϵ n ), consider (ϕ n-1 , ν n-1 , ϵ n-1 ) [ this consideration gets sense, since n > 5 (use Observation.3.1.iii), and so n -1 > 4 > 1].

Then

( ϕ n-1 , ν n-1 , ϵ n-1 ) tackles (1, 3ig -1 n+1 ) around 6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i.

Indeed look at n ( recall n is a minimum counter-example to Theorem 3.1 ), and via n, consider n -1 (this consideration gets sense, since n > 5 (use Observation.3.1.iii), and so n -1 > 4 > 1]; then, by the minimality of n, we immediately deduce that n -1 is not a counter-example to Theorem 3.1; so At least one of properties (A j ) of T heorem 3.1 is satisf ied by n -1; ( j ∈ {1, 2, 3} ) (3 .8 ). n and using the preceding equality, then we easily deduce that (3.10) clearly says that ( ϕ n-1 , ν n-1 , ϵ n-1 ) tackles (1, 3ig -1 n+1 ) around 6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i.

Observation.3.1.ix follows.

  2 n+1 -18i. Observation.3.4.4 follows. These simple observations made, let n and look at ( ϕ n , ν n , ϵ n ); remarking that n > 5 [use Observation.3.4.2], then using the previous, it becomes immediate to deduce that all the hypotheses of Theorem 3.1 are satisfied, therefore, the conclusion of Theorem 3.1 is satisfied; consequently At least one of properties (A j ) of T heorem 3.1 is satisf ied by n; j ∈ {1, 2, 3} (3 .33 ). Every even integer e with 4 ≤ e ≤ 2n + 4 can be written in the f orm e = pe + qe[where pe and qe are prime] (3 .35 ) [ since property (A 2 ) of Theorem 3.1 is satisfied by n ]. It is immediate that (3.35) clearly implies that Every even integer e with 4 ≤ e ≤ 2n + 2 can be written in the f orm e = pe + qe[where pe and qe are prime] (3 .36 ). [ use (3.37) and the meaning of g n+1 introduced in Definitions 1.2 ] and the preceding equality contradicts (3.21). Claim.2 follows. Claim.3. Property (A 3 ) of Theorem 3.1 is satisfied by n. Immediate [use (3.33) and Claim.1 and Claim.2 ]. Claim.3 follows. Claim.4. ( ϕ n , ν n , ϵ n ) tackles (1, 3ig -1 n+1 ) around 6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i. Immediate [use Claim.3 and the meaning of property (A 3 ) of Theorem 3.1 ]. Claim.4 follows. The previous four Claims made, then it becomes trivial to deduce that Claim.4 contradicts Observation.3.4.4. Theorem 3.4 follows.2 COROLLARY 3.5 (The Proof of the Goldbach conjecture). The Goldbach conjecture is true. Proof. Observe [by Theorem 3.4] that

	Clearly 2n + 2 is goldbachian Now using the meaning of goldbachian introduced in Definition 1.1, then it becomes trivial to deduce (3 .34 ) that (3.36) clearly says that 2n + 2 is goldbachian (3 .37 ). (3 .38 ); consequently, the Goldbach conjecture is true [use (3.38) and Theorem 1.4]. 2 Clearly g n+1 = 2n + 2 F or every integer n ≥ 1 we have g n+1 = 2n + 2 COROLLARY 3.6

That being said, we have the following four Claims. Claim.1. Property (A 1 ) of Theorem 3.1 is not satisfied by n.

Otherwise [ we reason by reduction to absurd ]

2n is goldbachian and there exists j ∈ {1, 3} such that 2n -j is prime (3 .33 ′ ) [ since property (A 1 ) of Theorem 3.1 is satisfied by n ]. [ observe that n > 5 (use Observation.3.4.2) and use (3 .33 ′ ) and Remark 1.1.4 of Definition 1.1]. Clearly g n+1 = 2n + 2 [ use (3.34) and the meaning of g n+1 introduced in Definitions 1.2] and the preceding equality contradicts (3 .21 ).

Claim.1 follows. Claim.2. Property (A 2 ) of Theorem 3.1 is not satisfied by n.

Otherwise [ (we reason by reduction to absurd).

  2.PROPOSITION 2.6 Let n be an integer ≥ 3 and let g n+1 ( use Definitions 1.2); now look at ( ϕ n , ν n , ϵ n ) introduced in Definitions 2.3, and via ( ϕ n , ν n , ϵ n ), consider ( ϕ n-1 , ν n-1 , ϵ n-1 ) ( this consideration gets sense, since n ≥ 3, and therefore n -1 > 1 ) . If g n+1 ≤ 2n, then we have the following two properties.

  2 n+1 -18i. To prove Proposition 2.6, we need the following remarks. Remark 2.7 Let n be an integer ≥ 2 and let g n+1 [ use Definitions 1.2]. If g n+1 ≤ 2n, then g n+1 = g n . Proof. ′ .0 ) ]. So g n+1 = gn [use (2 ′ .1 ) and property (1.5.2) of Remark 1.5 ].Remark 2.7 follows.2 Remark 2.8 Let n be an integer ≥ 3 and let g n+1 [ use Definitions 1.2 ]. Look at ( ϕ n.1 , ϕ n.2 , ϕ n.3 , ϕ n.4 ) introduced in Definitions 2.3, and via ( ϕ n.1 , ϕ n.2 , ϕ n.3 , ϕ n.4 ), consider ( ϕ n-1.1 , ϕ n-1.2 , ϕ n-1.3 , ϕ n-1.4 ) [ this consideration gets sense, since n ≥ 3, and therefore n -1 > 1 ]. If g n+1 ≤ 2n, then we have the following four

	Indeed observing [via the hypotheses] that	
	g n+1 ≤ 2n	(2 ′ .0 )
	clearly	
	g n+1 ̸ = 2n + 2	(2 ′ .1 )
	[use (2 properties.	
	(2.8.1) ϕ n-1.1	

  ( use (2 ′ .2 ) and (2 ′ .3 ) and notice [ by observing that g n+1 ≤ 2n and by using Remark 2.7 ] that g n+1 = gn). Clearlyϕ n-1.1 = ϕ n.1 (2 ′ .5 ) [ use (2.1) of Definitions 2.3 and (2 ′ .4 ) ] and so ϕ n-1.1 -ϕ n.1 = 0 [ use (2 ′ .5 )]. Property (2.8.1) immediately follows.

	(2.8.2) Indeed let ϕ n-1.2 ; clearly				
	ϕ n-1.2 = ((2(n -1) + 1) 2 -1 -g 2 n -2gn)(16g -3 n + 50g -2 n + 11ig -3 n -13i + 5ign) + γn	(2 ′ .6 )
	where	γn =	(gn -2(n -1)) 2	(8gn -8i -16)		(2 ′ .7 )
	[ use (2.2) of Definitions 2.3 for n -1				
			1331	-4 n+1 -757806g -3 n+1	(2 ′ .4 )

  [ use (2 ′ .14 ) and (2 ′ .15 ) and (2.3) of Definitions 2.3 ] and clearly ϕ n-1.3 -ϕ n.3 = -8n(34ig -2 n+1 -70ig -3 n+1 -11i + 5 + 6ig n+1 ) [ use (2 ′ .16 ) ]. Property (2.8.3) immediately follows.

	(2.8.4) Indeed let ϕ n-1.4 ; clearly
	ϕ

′ .16 ) 

  2 -1 + g 2 n+1 + 32n -8g n+1 + 8i + 16 (2 ′ .26 ) then clearly ν n-1 = ( ig n+1 -4in -4i + 1 ) 2 -1 + g 2 n+1 + 32n -8g n+1 + 8i + 16 (2 ′ .27 ) [ use (2 ′ .24 ) and (2 ′ .26 ) ]. So ν n-1 = νn + 32n -8g n+1 + 8i + 16 (2 ′ .28 ) [ use (2 ′ .27 ) and (2.5) of Definitions 2.3 ] and clearly ν n-1 -νn = 32n -8g n+1 + 8i + 16[ use (2 ′ .28 ) ] . Property (2.9.1.) follows.(2.9.2.) Indeed observing [ by elementary computation and the fact thati 2 = -1] that 4( (2(n -1) + 1) 2 -1 -g 2 n+1 + g n+1 ) = 4( (2n + 1) 2 -1 -g 2 n+1 + g n+1 ) -32n (2 ′ .29 )and( ig n+1 -2i(n -1) + 1 )( 4ig n+1 + 4 -8i ) = ( ig n+1 -2in + 1 )( 4ig n+1 + 4 -8i ) + 2i( 4ig n+1 + 4 -8i ) (2 ′ .30 ),then clearlyϵ n-1 = 4( (2n + 1) 2 -1 -g 2 n+1 + g n+1 ) + ( ig n+1 -2in + 1 )( 4ig n+1 + 4 -8i ) -32n + 2i( 4ig n+1 + 4 -8i ) (2 ′ .31 ) [ use (2 ′ .25 ) and (2 ′ .29 ) and (2 ′ .30 ) ]. So ϵ n-1 = ϵn -32n + 2i( 4ig n+1 + 4 -8i ) (2 ′ .32 ) [ use (2 ′ .31 ) and (2 .6 ) of Definitions 2.3 ]. Clearly ϵ n-1 -ϵn = -32n -8g n+1 + 8i + 16 ( use (2 ′ .32 ) and observe [ by elementary computation and the fact that i 2 = -1] that -32n + 2i( 4ig n+1 + 4 -8i ) = -32n -8g n+1 + 8i + 16

  [ use (2 ′ .33 ) and (2 .0 ) of Definitions 2.3 ] and clearly ϕ n-1 -ϕn = [ use (2 ′ .34 ) ]. Remark 2.10 follows.2Now using the previous four Remarks, then Proposition 2.6 becomes elementary to prove.Proof of Proposition 2.6. Property (2.6.0) is immediate [observe ( via the hypotheses) that g n+1 ≤ 2n, and use property (1.5.4) of Remark 1.5]. Now to prove Proposition 2.6, it suffices to show property (2.6.1). (2.6.1). Indeed look at ( ϕ n-1 -ϕn, ν n-1 -νn, ϵ n-1 -ϵn ). Clearlyϕ n-1 -ϕn = 4 j=1 (ϕ n-1.j -ϕ n.j ) (2 ′ .35 )[ use Remark 2.10] , whereϕ n-1.1 -ϕ n.1 = 0 (2 ′ .36 )[ use property (2.8.1) of Remark 2.8] , andϕ n-1.2 -ϕ n.2 = -8n(16g -3 n+1 + 50g -2 n+1 + 11ig -3 n+1 -13i + 5ig n+1 ) + 8g n+1 -8i -16 (2 ′ .37 )[ use property (2.8.2) of Remark 2.8] , andϕ n-1.3 -ϕ n.3 = -8n(34ig -2 n+1 -70ig -3 n+1 -11i + 5 + 6ig n+1 ) (2 ′ .38 ) [ use property (2.8.3) of Remark 2.8] , and ϕ n-1.4 -ϕ n.4 = -8n(11ig n+1 + 7 -50g -1 n+1 + 23ig -3 n+1 -54g -3 n+1 ) (2 ′ .39 ) [ use property (2.8.4) of Remark 2.8] , and ν n-1 -νn = 32n -8g n+1 + 8i + 16 (2 ′ .40 )

	So			
	4	4		
	ϕ n-1 -ϕn =	ϕ n-1.j -(	ϕ n.j )	(2 ′ .34 )
	j=1	j=1		

4 j=1 (ϕ n-1.j -ϕ n.j )

  -1 n+1 + k(6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i) + ϕ n-1 -ϕn = 0; k ∈ R (2 ′ .44 ) [ use the three equalities of (2 ′ .42 ) for (x, y, k); and (2 ′ .36 ) for ϕ n-1.1 -ϕ n.1 ; and (2 ′ .37 ) for ϕ n-1.2 -ϕ n.2 ; and (2 ′ .38 ) for ϕ n-1.3 -ϕ n.3 ; and (2 ′ .39 ) for ϕ n-1.4 -ϕ n.4 ; and (2 ′ .35 ) for ϕ n-1 -ϕn]. Clearly ( ϕ n-1 -ϕn, ν n-1 -νn, ϵ n-1 -ϵn ) tackles (1, 3ig -1 n+1 ) around 6g n+1 -19 -ig n+1 + 11ig 2 n+1 -18i ( use (2 ′ .43 ) and (2 ′ .44 ) and the notion of tackle introduced in Definition 2.2 [observe that (x, y) ∈ C 2 and k ∈ R; so (x, y, k) ∈ C 2 × R] ). Property (2.6.1) folows and Proposition 2.6 immediately follows. 2
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