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Abstract—Spectrum Sensing is an important part of Cognitive
Radio (CR) process. It can be used to determine if a Primary
User (PU) (i.e. a licensed user) is emitting or not in the
communication channel. This paper presents and compares three
types of FFT-based detection algorithms for LTE-Advanced
(LTE-A) cellular network at Orthogonal Frequency Division
Multiple Access (OFDMA) level. These detectors sense the usage
of the minimum time-frequency called Resource Block (RB).
They are also low latency detectors and they only need one
particular Orthogonal Frequency Division Multiplexing (OFDM)
symbol to detect the usage of one RB. The three new detectors
are based respectively on energy, correlation, and one what
will be called eogration which combines energy and correlation.
We analyze them with the Fisher’s ratio and simulations of
hypothesis test. The computing complexity of these detectors
is also theoretically analyzed to provide guidance for future
implementations.

I. INTRODUCTION

A. Motivation

Cognitive Radio (CR) might be seen as improvement of
the efficiency of the spectrum assignment policy as described
in [1] and [2]. This will permit more accurate and adaptive
emitter by quickly changing carrier frequency, bandwidth,
power emission, and modulation used. It enables opportunistic
or negotiated spectrum access from a Secondary User (SU)
without interfering with the licensed Primary User (PU). This
paper addresses the efficiency of PU’s signal detection.

We will make use of the Orthogonal Frequency Division
Multiple Access (OFDMA), which is mainly used in Wi-Fi
(802.11ax), WiMAX, and notably by LTE-Advanced (LTE-
A) cellular radio. The LTE-A allows us to do detection and
non-interfering transmission operations: it is a long range
communication standard compared to Wi-Fi and it defines
a minimum resource for users, called the Resource Block
(RB), to make scheduling easier. The RB is a two-dimensional
combination of 12 subcarriers and 7 temporal symbols which
are assigned by pairs to a User Equipment (UE). A pair of
RBs is called subframe. This minimum resource gives us the
pace to operate, but it must be done carefully to not interfere
with control and synchronization data as specified in the LTE-
A standard. The Fig. 1 depicts an example of LTE-A RB band
where subframes can contain or not data.
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Fig. 2. Schematic diagram of the LTE-A CR network

In this study, we provide detector solutions for a LTE-A
CR network where data are send in unused RBs as showed in
Fig. 2. The detectors can be embedded in systems with limited
payload and processing resources such as Unmanned Aerial
Vehicle (UAV). After prior synchronization, these detectors
will detect the availability of each subframe of the LTE-A
band as shown in Fig. 1. They will consist of small, energy-
efficient, low-power and low-latency computing platforms.
Those communication platforms need to be autonomous from
the “host” LTE-A system, so we designed them to only use the
downlink synchronization signals from the Base Transceiver
Station (BTS). This will also limit the knowledge of the
system information of the BTS. In order to obtain low latency
system, we chose to store only one temporal symbol in
memory. We do precise filtering on RB to detect the LTE-
A signal in a subframe. We limited the sensing time duration
to one Orthogonal Frequency Division Multiplexing (OFDM)
symbol. Sensing computations have to be as fast as possible
to leave as much free symbols as possible for opportunistic
communications. The complete frequency and time model
will be shown on Section II-B.



B. Related Work

Spectrum sensing of the frequency band occupation during
CR process can be carried out with many methods. We
will first study one of the simplest solution: the energy
detector, a useful reference to compare with. It has low
computational and implementation complexities and can be
used without any knowledge of the signal’s characteristics.
Reference [3] depicts an optimal threshold setting algorithm
to minimize the error decision probability at low Signal-to-
Noise Ratio (SNR) levels for different spectrum utilizations.
Reference [4] presents an energy detector which uses a Welch
periodogram to avoid interferences between macro and femto-
cells. Reference [5] describes long and short term spectrum
sharing with some algorithms to detect a signal produced by
the PU at the same time as the SU. It analyzes a complete
LTE-A subframe and assume that the next subframe would
also be free. In those conditions, an unintended transmission
done by PU would be seen as interferences and detected by
the CR system. Reference [6] describes a spectrum sensing
algorithm that works with Welch’s energy detection and
discrete wavelet packet transform based energy detection. The
detection probability P; and the false alarm probability Py are
often too weak at low SNR but, as mentioned in [6]: a higher
Py or lower P; value can be obtained with the increase of
the number of samples N or SNR, but increasing the number
of samples leads to a slower system, which means that the
low latency constraint would not be respected.

The matched filter detector stated in [7] makes a cross-
correlation between an unknown signal and a known copy
of the expected one. This implies knowledge of the signal’s
parameters like modulation, code, waveform. Unfortunately,
that is impossible in LTE-A in a blind acquisition mode due
to the number of combinations of parameters and the usage
of scrambling.

The cyclostationary detector described by [8]-[10] uses
inherent periodicity to detect the presence of a signal. It
is a very reliable detector which looks for periodicity of
statistical properties in a cyclostationary signal. But this is
inapplicable to our problem because of its heavy load of
data and computing latency. Reference [11] uses a covariance
matrix and the maximum eigenvalue detector but these are
inoperable here because the first needs too much data and the
second requires high complexity calculations which are too
time expensive as we will see. Finally, the correlation detector
can be a suitable solution but not as described in [12] and [13]
because, they need several OFDM symbols which contradict
the “one symbol” treatment used in methods considered in
this paper.

Otherwise, detection of LTE-A and OFDMA signals has
been explored in many ways. Reference [14] worked on
Simultaneous Sensing and Transmission (SSR) and on tim-
ing alignment in CR. Reference [15] developed a detection
algorithm on whole frequency bandwidth which works with
or without knowledge of Cyclic Prefix (CP) length. Refer-

ence [16] is about uncertainties detection with a correlation
in order to estimates the arrival time and the carrier frequency
at the receiver. Reference [4] studied a LTE’s signal detector
working with Welch periodogram. Reference [17] proposed
a methodology to do spectrum sensing and to classify the
state of the primary system depending on the signal’s type
(control or traffic) and interfering or not with the primary
system. Reference [18] worked on an RB detector with
Maximum Likehood Estimate (MLE) techniques for low SNR
conditions but not on streaming. So far, we talked about
opportunistic systems, but there is also coordinated spectrum
sensing algorithm like [19] and [20], which are more efficient
than opportunistic systems and avoid hidden node problem or
similar issues. We cannot use this type of sensing algorithm
here because we want to develop an autonomous system
which does not require to communicate with the BTS, only
listen it for synchronization.

C. Contributions

In this paper, we consider and compare three new LTE-
A RB signal’s detectors: the energy detector, the correlator,
and one that we will call “eogration”. The correlator works
with the 2 CPs of the same symbol, so it is different from
[12], [13]. The eogration uses both energy and correlation to
perform detection. The first two detectors are very classic but
we propose here a new low latency implementation with a
Discrete Fourier Transform (DFT) that allows RB filtering.
We have to pay attention to LTE-A specifications because the
standard use some carriers and symbol to transmit control and
synchronization data. We also analyze which of those can be
useful to create an autonomous CR system according to the
constraints we fixed before.

D. Paper Organization

The rest of the paper is organized as follows. In section II,
the signal’s model is presented. Section III details theoretical
results and simulations’ detection about the three detection
methods for one symbol over the whole bandwidth. We
expose the adjustments and the simulations’ detection for
making the analyze over one RB in section IV. We do
simulations of detection with a more realistic signal generator
in section V. In section VI, we discuss the results obtained
in the previous section and then we conclude in section VIIL.

II. SIGNAL MODEL

A. Signal model and propagation

The typical OFDM modulator used by an eNodeB (a LTE-
A Base Station (BS)) in downlink communications is as
follows. First, complex data [ag,- - ,an_1] are used as an
array of frequency data. They are processed by an Inverse
Discrete Fourier Transform (IDFT) to obtain time domain
data. The end of the symbol is then copied at the beginning
to prevent intersymbol interference (ISI) produced during
propagation. This step is called CP.



Radio frame = 10 ms

0 1 e 9
Radio subframe = 1 ms
0 1 2 ‘ T 18 19
«—>
Trp = 0,5 ms
First RB Second RB

15 kHz

B

t

Control data egisterind Compute Free time
(ignored) data time to communicate
Cyclic prefix OFDM symbol
5,20r4,9 s 67 us

Fig. 3. Fourth generation (4G) radio frame model used in this paper

In the following, we assume non-dispersive channel. And,
the OFDM signal s[n] is only affected by a complex Additive
White Gaussian Noise (AWGN) w[n]. We model each sample
of the received signal z[n| as follows:

Ho : z[n] = wn] 0
Hi : xz[n] = s[n] + wn]
Data [ag, - ,an—1] are assumed independent, so s[n] is a

linear combination of independent and identically distributed
(iid) variables. With enough samples, we can use the central
limit theorem to infer that s[n] is a Gaussian process ap-
proximation with independent real and imaginary parts, as in
[16]. Nevertheless, the added CP creates a correlation between
some samples, so x[n] is not a white process and we can
benefit from it for the detection.

B. Time and frequency constraints

We use the LTE-A downlink to transmit data simulta-
neously to the cellular network without disturbing it. This
requires us to act in compliance with the LTE-A standard,
especially with control and signalization data. We need to
study the time/frequency structure of a LTE-A transmission.
The largest temporal unit is the frame of 10 ms. Each frame
is divided in subframe of 1 ms and each subframe in 2 RBs.
Each RB consists of 7 time symbols, each approximately
70ps long and 12 frequency bins. The frequency bins are
spaced by 15kHz, so 12 bins are equal to 180 kHz. This
information is summarized in Fig. 3. As a key prerequisite,
we consider that we need to be synchronized in time and in
frequency to the targeted LTE-A network. This can be done
with the help of Primary Synchronisation Signal (PSS) and

Cyclic prefix insertion

s[n] cp cp

N + Ncp

z[n]

Fig. 4. Two signals model

Secondary Synchronisation Signal (SSS). These signals are
transmitted on the 6 central RBs, two times by a radio frame
(every 5ms).

In LTE-A, physical data can be “control” or “user” data.
The first are transmitted at each subframe, i.e. every two
RBs. They can occupy a variable length of at most the first 3
symbols of a subframe. The user data are transmitted on the
remaining symbols of the subframe.

Under the constraint of real time processing, time is short
to decode subframes’ size. So, we must consider the worst
possible case: control data can occupy the first 3 symbols of
each subframe and user data uses the rest. Furthermore, the
LTE-A standard spreads the control data over the whole band
without obvious link with the corresponding user data. So,
we cannot deduce the distribution of user data based on the
control data. We only can be sure that the presence of user
data on the 4" symbol lead to a presence to the end of the
subframe: the next 10 symbols.

These properties led us to the following setup: we ignore
the first 3 symbols, we register the 4% (o detect if data are
transmitted, the detection is done during 5% and if there is
no user signal in the 4t we communicate from 6™ to 14,
This is also represented in Fig. 3.

III. PRELIMINARY STUDY: DETECTION OF ONE SYMBOL
A. Introduction

Statistical hypotheses in discrete temporal domain are de-
scribed in (1). With x[n] the signal received and then ana-
lyzed, s[n] the OFDM signal, and w[n] the complex AWGN.
Furthermore, we have the following probability densities:
w[n] ~ CN(0,02) and s[n] ~ CN(0,02).

Let N be the symbol length, Ncp the size of the CP, and
recty(n) the rectangular non-null function on [—N/2, N/2].
With these notations, we can create two signals as shown on
Fig. 4:

z[n]recty[n — N/2)

z1[n]
{xz[n] = z[n + Ncp|recty[n — N/2] 2

In hardware implementations, we consider that the entire
OFDM symbol z[n] on Fig. 4 is stored before the calculation.
This suppose that the detector is synchronized with the
eNodeB as said in II-B.
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The emitted signal s[n] is an OFDM signal modulated
with an IDFT. So, the estimators use DFT and IDFT to
do computations in frequency domain and for filtering the
symbol z[n] analyzed.

We have two hypotheses that correspond to two classes. We
have also three estimators and we want to select the best, i.e.
the one that separates as much as possible the two classes. We
need a metric for that and we choose the Fisher’s ratio [21].
[22] used it in a similar situation, and the ratio takes account
of the between-class variance and the within-class variance.
The ratio is defined as follows:

_ (MHO — HH, )2

=~ | 35 3)
T T Ty

with p9, and O'H the expected value and variance for null

hypothesis (o) and, py, and O’H the expected value and

variance for alternative hypothesis (#1).

B. Energy estimator

We present here the energy estimator we have developed.
The canonical formula of an energy estimator is the following:
SN M) = SN2 a[n] x 2% [n]. We compute here the
energy of an OFDM symbol and we do this in the frequency
domain to allow the filtering of the RB. This is made possible
by the Parseval’s identity. The OFDM'’s properties are retained
by doing the filtering with DFT and IDFT of the same length
as the OFDM modulator in the eNodeB: N samples. So,
we select for this calculus one of the two signals: x1[n]
or z3[n|, they are equivalent here because they contains the
same amount of information: a complete OFDM symbol of
N samples. This is why we have “x;[n] or z2[n]” at the left
of the Fig. 5 which describes the working principle of the
energy estimator. The statistical properties of the latter are
showed in Table I.

Englm] = IDFT { DFT {a1} x DFT {x1}"}  (4)
points - N points points
. 1 N—1 /N-1 .
Englm] =+ > <Z wl[k]€‘2”N>
n=0 k=0
N1 « ®)
(le[l]e—%ﬂ'lg}) RILES
1=0
N-1
Eng |z [K] 6)
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Fig. 6. Working principle of correlation estimator
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Fig. 7. Working principle of eogration estimator

C. Correlation estimator

We also developed a correlation estimator showed in Fig. 6.
As in III-B, it does the compute in frequency domain to allow
RB filtering (but here with 2N points and a zero padding).
The correlation classic formula is R, [7] = Zf::ol x[n +
Tly*[n] in temporal domain and R,,[f] = X[f]Y*[f] in
frequency domain. The output of the correlation estimator
is about the CP because it is the only repeated part in the
complete symbol z[n] in Fig. 4. The statistics of this estimator
are also in Table I.

Ry,e,[m] = IDFT { DFT {z,} x ,DFT {o1}} ()

2N points 2N points points
1 2N—-1 /2N-1
~ Coipkn
RIQIl[m] = ﬁ e <’;J :172[]6]6 2 2N>
2N-—1 * (®)
xﬂl]e‘QjﬁiiJTlV) 2T SR
=0
Ncp—1
Ryyey[m =N — Ncp| = o[l + N]z*[I] )
=0

D. Eogration estimator

The eogration estimator is a detector which is working in
frequency domain like the others to permit RB filtering. The
frequency product of the circularly rotated conjugated signal
x1 and the signal x5 as described in Fig. 7 gives us a result
divided in two parts: the energy over the data part and the
correlation over the CP part. The statistics of the eogration
are also in Table I.

Fog[m] = IDFT { DFT {15} x DFT {z1}"} (10)
. 1N 1 /N—1 .
Eog[m] = N > (Z xz[k]e_Qjﬂ&z)

n=0 k=0

(1)

N-1 *
(3w} o

=0
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The details of all calculations are showed in appendix A.
Only the eogration is described because it is made of an
energy and a correlation estimators.

E. Comparison of Fisher’s ratios

Table I shows the statistics of the three estimators. The
Fisher’s ratios of the three estimators are equal at one ex-
ception: the multiplier. Indeed, the multiplier is N¢p for the
correlator and N for the others. In LTE-A, Ncp =~ 0.07 x N.
So the Fisher’s ratio of the correlation is too small compare
to the Fisher’s ratios of energy and eogration. The ratios of
eogration and energy are equals because both got the same
variance and eogration’s expected value is within a constant
(—Ncpo?), the same as energy making their difference equal.
We also add that the Fisher’s ratio does not take care of
many characteristics of probability density like its skewness.
So, identical Fisher’s ratios do not necessarily imply identical
performances, but it is a good indicator for the first step of a
performances’ comparison, before detection simulations.

F. Simulations

Signal generated by an OFDM process approximates a
complex Gaussian process [16] and the noise in our model
is an AWGN. The signals s[n] and w[n] are generated
as Gaussian processes. Then, we create the CP for s[n].
According to the typical configuration for a 4G bandwidth of
3 MHz, the symbol length used is N = 256 and Ncp = 18.
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Fig. 9. Difference of performance detection between energy and eogration
estimator

We simulate two configurations Ho and H; with 10000
trials. We make an hypothesis test by setting the false alarm
rate as 5%. For this, we set the threshold as 95 % of the
value of Hq hypothesis, which let 5% of error. For Hi, we
set the noise power o2, to 1 and modify the signal power o2
accordingly to SNR value. Finally, we plot the good detection
probability IP’(’}:ll |#1) in Fig. 8 with a false alarm probability
of P(H1|Ho) = 0.05.

G. Selection of good detectors

We saw that energy and eogration estimators got greater
Fisher’s ratio than the correlation due to the fact that they
are proportional to N and Ncp respectively with N > Ncp.
Moreover, we can see in Fig. 8 that the correlator is far less
effective than the others. So, we chose to reject the correlation
estimator. Concerning energy and eogration estimators, the
performances of eogration are slightly better for the simula-
tions than energy estimator ones and it depends on CP length,
as we can see, for one RB, in Fig. 14. The performance’s
differences between them for the whole band are shown in
Fig. 9.

IV. RB DETECTOR’S APPLICATION
A. RB filtering

We seek to detect the usage of an OFDM symbol over
one RB, i.e. 12 subcarriers among all. The frequency bins
are all independents, so we can subtract the useless ones
by setting their values to O in frequency domain. The Fast
Fourier Transform (FFT) and Inverse Fast Fourier Transform
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Fig. 10. Block diagram of the energy estimator

Fig. 11. Block diagram of the eogration estimator
Table II
TABLE OF COMPUTE COMPLEXITY FOR A RB OF 12 SUBCARRIERS
Operator name multiplier adder inverter
FFT & IFFT N/2logy N Nlogy N 0
K 12 0 12
()* 0 0 12
multiplier 12 0 0
operator
Eogration 3N/2log,(N) + 12 | 3Nlogy(N) 12
Eogration 15372 30720 12
(N =1024)
Energy Nlog,(N) + 12 2N log, (N) 12
Energy 10252 20480 12
(N =1024)

(IFFT) used to do this use a rectangular windows function
because of nature of OFDM. Indeed, the bins of the OFDM
are frequency spaced by the roots of sinc function, which
makes them orthogonal in pairs.

B. Detector architectures

We present here the two schemes of the energy and
eogration estimators in Fig. 10 and 11. The sign of the delay
is negative in the block diagram and became positive in the
mathematical model, because one describes the data recording
whereas the other process the data already registered, so we
can use the + sign and stay deterministic. We can see the
complexity gap between the estimators, the eogration needs
much more computations on two parallel processes to obtain
results.

We consider three computing units for the analysis of the
computational complexity of the two detectors: the complex
multiplier, the complex adder, and the inverter. The Table II is
about computational complexity of each block of the Fig. 10
and Fig. 11. We consider the computation load for a RB
detection (12 subcarriers) we give the results too for a typical
value N = 1024.

C. Simulations of RB detection

Simulations of detection over a RB subband in Fig. 12
show us lower detection performance. For example, the 80 %
threshold is reached at —8 dB in Fig. 8 and at 0dB in Fig. 12.
This drop is perfectly understandable because we massively
reduced the number of available data.

V. SIMULATIONS WITH A LTE-A SIGNAL GENERATOR

To confirm our detection performances, we made a signal
generator by complying with respect to a part of the 4G
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Fig. 13. Estimator comparison for a CP of 18 samples on a 15 RBs subband
with a more realistic model

standard: the frequency sampling of the generator varies
between 1.92 MHz, 3.84 MHz, 7.68 MHz, 15.36 MHz, and
30.72MHz which correspond to 6 RBs, 15 RBs, 25 RBs,
50 RBs, 75 RBs, and 100 RBs respectively (the last two are
sampled at 30.72 MHz); the FFT length changes between 128
and 2048, the guardband and the CP length are specified
in [23], and modulations used here are Quadrature Phase
Shift-Keying (QPSK), 16-Quadrature Amplitude Modulation
(QAM) and 64-QAM. Results are shown in Figure 13. They
are similar to those of the earlier section, which is an
information about the reliability of the model used and the
results.

VI. DISCUSSION

It can be seen that the detection performances of the
eogration detector may change with the length of the CP. As
shown in Fig. 14, we can see a discrepancy in performance
between the energy detector and the one with eogration at
SNR between —20dB to 5dB.

These two detectors will led us to a trade-off because the
energy estimator is slightly less efficient than the eogration
estimator with a one third less complex implementation. So,
it is an advantage for an embedded system which does not
have access to a powerful computing platform.
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VII. CONCLUSION

We developed in this paper three new detectors for RB
analysis of LTE-A Downlink (DL) signal. They work respec-
tively with energy, correlation and eogration. We used the
Fisher’s ratio and detection statistics to show their usability.
We also exhibit that the eogration estimator is slightly better
than the energy estimator in Fig. 8 and Fig. 14, despite a
computational complexity which is one and half times greater
than the complexity of energy detection. This difference will
be less important in the future because the estimators do not
need costly math function and the number of computing units
is low for state of the art calculators. We can therefore assume
that the eogration estimator could be the default choice in the
future. Most of the difficulties for the implementation comes
from the real-time constraint of 30us on the detection. The
remaining of the 70 us will be used to prepare our own data
to be emitted.

APPENDIX A
DETAILED COMPUTATIONS OF THE EOGRATION

We compute here the eogration estimator described in
Fig. 7 (x1’s data are circularly rotated so, the end of the
signal goes to the beginning):

- 1 N=1/N-1 .
Eog[m] = N Z <Z xz[k]€_2jﬂx’m>
n=0 \ k=0
N . (13)
<Z x1[l]e_2]”ﬁ> XN
1=0
N-1N-1 1 V=l
= a3 5 o)
k=0 1=0 n=0
(14)

We are interested by estimating ETo\g[m = N — Nc¢p), so the
mean sum of exponentials is equal to 1 if K —] = N — N¢p
or when k — 1 = —N¢p. So, for k = [ + (N — Ncp), we

have:
N—1N-1
Eog[m = N — Ncp| = Z Z zo[k as)
k=0 (=0
6[(k = 1) = (N = Ncp)]
N-1
=3 all+ (N — Nep)lzi[l] (16)
k=0
Ncp—l
= o[l + (N = Nep)]1[l]
1=0
a7
Ncp—1
= z[l + N]z*[l] (18)
1=0
For k =1 — N¢p, we have:
- N—1N-1
Eoglm = N — Nep| = Y > xa[k];[l]
k=0 =0 (19)
0[(k—1)— (N — Ncp) + N|
N-1
= > @[l — Neplai[l] (20)
1=0
N-1
= .lig[l - NCP]JUT[Z] (21)
I=Ncp
-1
= > e (22)
I=Ncp
So, we obtain the following estimator:
o Ncp—1 N-1
Eog[m = N — Ncp] = Z x[l + N]z*[l] + Z |[1]|?
1=0 I=N
(23)

Now, we want to find the associated stat1stlcal propertles.
We begin by the energy part of the eogratlon Z e Ncp |lo[1]|%.
We have for Ho: z[n] ~ CN(0,02) and for Hy: x[n] ~
CN (0,02 + 02). We know in [24] that |z[n]|> become an
exponential law with a parameter A equal to 1/02 or 1/(0? +
02) depending on the hypothesis. So, the expected value and
the variance are:

E (S0 elnl?) = NoZ

v (Ef;& [2nl?) = N(o2)? &4
E (SN0 lanl?) = N(o? +02)

Hi Var (ano |z[n]| ) _ N(o? 4 02)? (25)

The calculations for the correlation part are quite different.
The variance formula with a complex random variables is the
following:

Var(Z) =
Var(Z) =FE

E||Z - E[Z]]] (26)
[121°] - |E[Z] 27)



and the formula of the variance for complex and independent
random variables is:

Var(XY') = Var(X) Var(Y)
+ Var(X)|E[Y]|? (28)
+ Var(Y)|E[X]|?

So we obtain the following statistics:

E (RWI) =0

Ho Var (Emm) = Ncp(02)? @)
E (f%l.ﬂl) = Ncpaf,

Ha (30)

Var (ﬁrm) = Ncp(o2 4 02)?

Finally, since the eogration is a sum of a correlation and
an energy, the statistics are:

E (Eog = (N — Ncp)os,
Ho ( /)\ )i 3D
Var (Eog) = N(o2)
E(Eo\g) = Ncpo? + (N — Nep) (o3 + 03)
Ha

(1]

(2]

(3]

(4]

[5]

(6]

(7]

Var (E/)E)\g) = N(o2+02)?
(32)
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