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A new quasi-steady method for the determination of the apparent gas permeability of porous materi-
als is presented in this paper along with the corresponding interpretative physical model derived from 
the unsteady flow equations. This method is mainly dedicated to the measurement of very low perme-
ability of thin porous media, although thicker but more permeable samples may also be analyzed. The 
method relies on quasi-steady flow resulting from a (quasi) constant pressure maintained at the inlet 
face of the sample. Gas flow-rate, as low as 3 × 10−10 m3/s, is determined from the record of pressure 
increase in a reservoir connected to the outlet face of the sample. An estimate of the characteristic 
time, tc, to reach quasi-steady flow after imposing a constant pressure at the inlet is derived. It is 
validated by direct numerical simulations of the complete unsteady flow, clearly defining the required 
experimental duration for the method to apply. Experimental results obtained on rather permeable 
and thick rock samples are reported showing an excellent agreement of the measured permeability 
with that determined independently on the same sample whereas the experimental value of tc is also 
in very good agreement with the predicted one. The method is further employed on a composite ma-
terial sheet allowing the identification of an apparent gas permeability of about 10−23 m2. 

I. INTRODUCTION

Accurate gas-permeability determination of porous mate-
rials having permeabilities lower than 1 mD (∼10−15 m2) re-
mains a tricky task. Above this typical value, a classical mea-
surement technique on a homogeneous 1D sample consists in
performing a stationary Darcy experiment.1, 2 This can be car-
ried out using an experimental device as the one schematically
represented in Figure 1.

From the measurement of the inlet volumetric flow-rate
Q0, pressure drop �P, and inlet pressure P0 under steady flow
conditions, gas permeability k can be deduced from the fol-
lowing relationship:3

μeQ0 P0

S �P
= k Pm . (1)

To arrive at this result, the gas is supposed to be ideal
while the flow is assumed to be isothermal and slow enough
for inertial effects to be negligible. Moreover, compressibil-
ity effects are assumed to be significant at the sample scale
only, not at the pore scale. An alternative method, that makes
use of a variable charge, was proposed to measure concrete
permeability,4 neglecting, however, Klinkenberg effects (see
below for this physical mechanism). Results obtained with
the method were successfully compared with a technique de-
veloped earlier. This method however neglects air compress-
ibility and makes use of a water column in a capillary as
a pressure gauge. The meniscus, above which a low pres-
sure is imposed to perform the measurement, might be sub-
jected to evaporation that was not taken into account in the
description.5

a)Author to whom correspondence should be addressed. Electronic mail:
didier.lasseux@ensam.eu. Tel.: +33 556 845 403. Fax: +33 556 845 436.

While dealing with materials having low permeabil-
ity, Klinkenberg effects may be significant.6 They are the
macroscopic signature of gas molecules collisions at pore
walls which effects become non negligible compared to gas
molecules/molecules collisions.7 Their impact can be esti-
mated with the Knudsen number K n = λ/ l, λ being the mean
free-path of gas molecules at the pressure and temperature un-
der consideration and l, a characteristic size at the pore scale.
Typically, Klinkenberg effects are significant when Kn is in
the range 0.01 to 1. In this range, they can be taken into ac-
count using a classical slip flow description at the pore-scale
while at the macroscopic scale, they are characterized by a
Klinkenberg coefficient b having the unit of pressure. When
Kn is extremely small, i.e., when the Klinkenberg coefficient b
of the gas and porous material under concern is much smaller
than Pm, k in Eq. (1) can be identified as the intrinsic perme-
ability kl. However, when Klinkenberg effects are significant,
k must be understood as the apparent gas permeability at Pm.
The intrinsic permeability kl and Klinkenberg coefficient b
may then be determined from several experiments performed
under stationary conditions but at different values of Pm using
the analogue of Eq. (1),8–11 namely,

μeQ0 P0

S �P
= kl(Pm + b). (2)

From a practical point of view, when the above described
steady-state method is used on weakly permeable materials
(typically for k < 10−18 m2 for example), difficulties appear to
measure the gas flow rate with enough accuracy. In fact, since
this flow rate can be extremely small, less than few cm3 per
hour, conventional gas flowmeters are inappropriate and more
sophisticated methods, that are more difficult to implement,
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FIG. 1. Experimental set-up used to perform steady-state gas permeability
measurement. B.P.R. is a back pressure regulator allowing to impose an outlet
pressure.

must be envisaged. Time necessary to reach stationary flow,
that can become extremely long due to its dependence on the
inverse of the permeability as detailed below, has not been
determined so far. An accurate estimate of this characteristic
time is provided in this work.

The objective of the present work is to develop an alter-
native quasi-steady state method that is simple to implement,
making use of an adequate flow-rate measurement technique.
The corresponding interpretative model to determine gas per-
meability, derived from the complete unsteady flow model,
is provided. An equivalent mass diffusivity is used yielding
an accurate estimate of the characteristic time necessary to
achieve quasi-steady flow in the proposed experimental pro-
cedure. This estimate is validated numerically from the so-
lution of the complete unsteady flow model. As will be de-
tailed below, the method is particularly well adapted, but not
restricted, to thin and weakly permeable porous materials. Fi-
nally the method is illustrated with experimental results ob-
tained on a thin composite material on the one hand and more
permeable but much thicker rock samples on the other hand
and on which both the intrinsic permeability and character-
istic time of the quasi-steady regime are validated. The main
advantages of the method are (i) the simplicity of the exper-
imental device that can be carefully pre-designed by making
use of the time limits and volume/pressure constraints that are
detailed in this work; (ii) the simplicity of the interpretation
of the measurement to derive the permeability (and eventually
the Klinkenberg coefficient when the experiment is repeated
at different pressure levels, just as with a pure steady-state
experiment); (iii) the possible real-time control of the exper-
iment by making use of the time limits and volume/pressure
constraints required for the method to apply.

II. PHYSICAL MODEL AND THE NEW QUASI-STEADY
METHOD

The basic idea of the technique developed in this work is
inspired from non-stationary gas permeability measurement
methods often referred to as “Pulse-Decay” or “Draw-Down”
experiments and their variants.12–21 In these methods, the in-
let face of the sample is connected to a reservoir of volume
V0 while the outlet face is connected to a reservoir of volume
V1 which is finite for the Pulse-Decay or infinite (i.e., corre-
sponds to the atmosphere) for the Draw-Down. A mass of gas
is confined in the upstream reservoir at a larger pressure than
the initial one in both the sample and downstream reservoir.
At t = 0, the upstream reservoir is opened at the inlet edge of
the sample letting the pressure pulse relax through the sam-
ple. From the record of the time evolution of the pressure in

the upstream reservoir – or the pressure difference between
the upstream and downstream reservoirs – the permeability
and Klinkenberg coefficient can be identified by making use
of the physical model detailed below.

A. Physical model

If we assume a homogeneous non-deformable sample
and a 1D isothermal gas flow along the sample axis x at a very
low Reynolds number – this is the case in practise – so that no
significant inertial (or Forchheimer) effects are present,10, 22

the mass and momentum conservation equations are

ε
∂ρ(x, t)

∂t
+ ∂(ρ(x, t)u(x, t))

∂x
= 0, (3)

u(x, t) = − k

μ

∂p(x, t)

∂x
= −kl(1 + b/p(x, t))

μ

∂p(x, t)

∂x
.

(4)

In addition, if gas is considered as ideal (p(x, t)
= ρ(x, t) RT

M ), which is a valid approximation for gases like
N2 or He at experimental operating pressures of the order of
ten bars, these two equations can be combined using the re-
lationship between the apparent and intrinsic permeabilities k
= kl(1 + b/p(x, t)) yielding

∂2(p(x, t) + b)2

∂x2
= ε μ

kl(p(x, t) + b)

∂(p(x, t) + b)2

∂t
,

(5)

or equivalently

∂2(p(x, t) + b)2

∂x2
= ε μ

k p(x, t)

∂(p(x, t) + b)2

∂t
. (6)

When a completely unsteady experiment is considered,
the upstream boundary condition (at x = 0) is such that the
mass flow rate through the inlet face of the sample is exactly
that out of the upstream tank. The mass flow rate through the
inlet face is −S p0(t)M

R T
kl (1+b/p0(t))

μ

∂p(x,t)
∂x |x=0, with p0(t) = p(x

= 0, t), p0(t) being also the pressure in the upstream tank out
of which the mass flow rate is − V0 M

R T
dp0(t)

dt . Matching the two
leads to

dp0(t)

dt
= S

μV0
kl(p0(t) + b)

∂p(x, t)

∂x
at x = 0. (7)

Following the same lines, the downstream boundary con-
dition is given by

dp1(t)

dt
= − S

μV1
kl (p1(t) + b)

∂p(x, t)

∂x
at x = e, (8)

where p1(t) is the pressure at x = e at t, i.e., in the downstream
tank. The associated initial conditions are

p(x, 0) = P1 for 0 < x ≤ e, (9)

p(0, 0) = P0, (10)

in which P1 = p1(t = 0) and P0 = p0(t = 0).
This model is a general one for 1D gas flow. Indeed, for

a classical steady-state experiment, the stationary version of
Eq. (5) can be integrated twice making use of the two bound-



ary conditions p(x = 0) = P0 and p(x = e) = P1 yielding

p(x) =
(

(P1 + b)2 − (P0 + b)2

e
x + (P0 + b)2

)1/2

− b.

(11)

When this solution is introduced back in Darcy’s law
(Eq. (4)), the volume flow rate Q0 at the entrance x = 0 is
readily obtained as

Q0 = u (0) S = −kl

μ

(P1 + b)2 − (P0 + b)2

2 e P0
S, (12)

which, when re-arranged, gives the result in Eq. (2).
In the case of a completely unsteady experiment, the

model given by Eqs. (6)–(10) can be used in an inverse proce-
dure in order to estimate kl and b. This is achieved by min-
imizing the residual between the measured signal p0(t) (or
p0(t) − p1(t)) and the corresponding one computed from the
model as illustrated in Lasseux et al.23 The method avoids
major difficulties of the steady-state technique pointed out in
the introduction, although the underlying physical model in-
volves the porosity, ε, of the material. Because the simultane-
ous identification of the porosity with kl and b in the inverse
procedure is extremely difficult due to the poor sensitivity of
the pressure decay signal to ε, this parameter must be known a
priori and provided as an input for inversion. Moreover, it was
shown in an earlier analysis that the input value of ε must be
very accurate for a reliable estimate of kl and b.20 While deal-
ing with weakly permeable materials having also frequently
small porosity, the accurate determination of this parameter,
which requires a separate dedicated experiment, is a difficult
task. It must also be noted that the inverse process can be cum-
bersome so that the overall procedure makes a simpler method
desirable. This is achieved with the method described below
which takes advantage of both the steady and unsteady state
techniques.

B. The new quasi-steady method

This method is inspired from the unsteady technique de-
tailed above but, instead of letting the gas pressure pulse in
the upstream reservoir relax through the sample, a constant
pressure P0 is maintained in V0. This can be achieved either
by continuously adjusting the pressure or more practically
by simply choosing V0 large enough so that, as can be eas-
ily inferred from Eq. (7), the variation δp0 of p0(t) over the
whole period of measurement remains extremely small com-
pared to P0. A criterion to satisfy this constraint is given in
Sec. II C 2. Moreover, in this new method, we require the
measurement of p1(t) to be performed at time t > tc (see
Sec. II B 2 below for the estimation of tc) so that the capacitive
term in the right-hand side of Eq. (5) or (6) becomes negligi-
ble. This actually corresponds to the time necessary to reach
steady flow when a constant pressure is applied at the inlet.
Under these circumstances, the experiment is quasi-steady,
the unsteady character remaining only through the time evolu-
tion of p1(t), as indicated by the boundary condition (8). The
increase of p1(t) is actually recorded as an indirect measure-
ment of the flow rate through the sample. A schematic repre-

FIG. 2. Experimental configuration for the quasi-steady method.

sentation of the experiment is reported in Figure 2. To keep
the method simple, the focus is on the determination of the
permeability that can be achieved in a straightforward manner
from the downstream pressure record restricted to a period tc
< t < tf, corresponding to a pressure increase δp1 that remains
small compared to P1. The development of the method is pro-
posed in the Sec. II B 1 and the associated constraint t < tf is
made clear in Sec. II C 1.

1. Determination of the permeability

For t > tc, (see Sec. II B 2 below for the estimation of tc),
the flow can be described by a quasi-steady version of the ini-
tial boundary value problem (6)–(10), in which the accumu-
lation term in Eq. (6) is removed and the upstream boundary
condition (7) is replaced by a constant pressure P0 at x = 0,
hence yielding

∂2(p(x, t) + b)2

∂x2
= 0, (13)

p (0, t) = P0, (14)

dp1(t)

dt
= −1

2

S

μV1
kl

∂(p(x, t) + b)2

∂x
at x = e. (15)

The analytical solution of this problem can be simply
written as

(p(x, t) + b)2 = −2μV1

S kl

dp1(t)

dt
x + (P0 + b)2 0 ≤ x ≤ e,

(16)

which provides an expression for the rate of pressure increase
in the downstream reservoir given by

dp1(t)

dt
= klS

2μV1e
((P0 + b)2 − (p1(t) + b)2). (17)

This form could be used in an inverse procedure to iden-
tify kl and b with the major drawback that the time deriva-
tive of the experimental record of p1(t) is required, making
the technique inefficient. A much simpler and easy-to-use
method can be derived, however, by noticing that, when p1(t)
is recorded over a time interval [tc, tf] such that the down-
stream pressure increment δp1 is extremely small compared
to P1, dp1(t)/dt remains constant. Under these circumstances,
the determination of the permeability can be made from a sim-
ple linear regression on p1(t) on the time interval [t0, t1], t0
≥ tc, t1 ≤ tf, according to

kl = 2
μV1

S

e

(P0 + b)2 − (P1 + b)2 a

= μV1

S

e

(Pm + b) (P0 − P1)
a. (18)



TABLE I. Parameters employed in the numerical simulations.

Case nos. kl (m2) b (×105 Pa) ε e (mm) P0 (×105 Pa) V1 (m3) tc (s) (Eq. (23))

1 10−16 0 0.2 50 6 3×10−3 150
2 10−18 0 0.1 10 8 3×10−4 225
3 10−19 13.1 0.05 10 9 3×10−4 276
4 10−20 0 0.05 5 10 10−4 2250
5 1.55×10−21 30 0.05 5 10 10−4 2250

Equivalently, since

k = kl (1 + b/Pm) , (19)

we have

k = 2
μV1

S

e

P2
0 − P2

1

a = μV1

S

e

Pm (P0 − P1)
a, (20)

where a is the slope of p1(t) estimated on the interval
[t0, t1]. More precise forms can be used upon averaging
Eq. (17) over the time interval on which a is estimated lead-
ing to kl = 2μV1

S
e

(P0+b)2−( p̄1+b)2 a or k = 2μV1

S
e

P2
0 − p̄2

1
a where

p̄1 = 1
t1−t0

∫ t1
t0

p1(t) dt . For simplicity, the forms given by
Eqs. (18) and (20) are kept in the sequel of the paper. Apart
from the simplicity of the signal interpretation, it shall be
noted that an evident advantage of the present method is that
the mass flow rate, V1 M

RT
dp1(t)

dt , which can be extremely small, is
measured by recording p1(t) that can be performed accurately
using rather standard pressure sensors.

As it is obvious from Eqs. (18) and (20), the method is
such that a single experiment allows to estimate k only but not
kl and b separately. To estimate both parameters, several ex-
periments, carried out at different pressures, are required as in
the case of a steady experiment. For this reason, the method is
particularly well suited to thin samples for which experiments
are shorter due to the dependence of tc on e2 as shown in
Sec. II B 2.

2. Characteristic time tc and validation

In this section, we shall first determine the characteristic
time for the quasi-steady flow hypothesis to hold and for the
solutions (18) or (20) to apply. This is achieved from scaling
arguments on the dimensionless form of the quasi diffusion
equation (6). To do so, it is convenient to start from equa-
tion (6) of the complete unsteady model and let φ(x, t) = (p(x,
t) + b)2 yielding

∂φ∗ (x∗, t∗)

∂t∗ = Dm
tc
e2

∂2φ∗ (x∗, t∗)

∂x∗2
, (21)

where Dm is a pseudo mass diffusivity that is pressure depen-
dent. In Eq. (21), all quantities with the superscript * are di-
mensionless and obtained by scaling all variables by the cor-
responding characteristic reference value (noted below with
the subscript c). In order to correctly identify the characteris-
tic time tc, associated to the propagation of the pressure sig-
nal through the sample, proper scalings on φ(x, t), p(x, t) and x
that make them O(1) must be chosen. These scalings are given
by φc = (P0 + b)2, pc = P0 and xc = e yielding Dm = k P0 p∗

ε μ
.

Since all the dimensionless variables in Eq. (21) are now O(1),

the pre-factor of the diffusive term must also be O(1) yielding

Dm ∼ k P0

ε μ
, (22)

and hence

tc ∼= ε μ e2

k P0

∼= ε μ e2

kl (1 + b/Pm) P0
. (23)

This last relationship represents an estimate of the crite-
rion for the quasi-steady hypothesis to hold. Indeed, when the
flow is observed at a time larger than tc, the unsteady term in
the left hand side of Eq. (21) becomes insignificant.

This prediction is now checked using direct numerical
simulations performed on the complete unsteady model given
by Eqs. (6)–(10). Details of the discrete procedure used to
solve the problem are provided in Appendix A.

Numerical simulations were performed with values of the
parameters reported in Table I using nitrogen (μ ∼= 1.8 × 10−5

Pa s) with P1 = 105 Pa, a very large value of V0 (V0 = 103 m3)
ensuring a constant P0 and S = 1.96 × 10−3 m2. Values of the
characteristic time tc obtained from Eq. (23) are also indicated
in this table. The Klinkenberg coefficient b was correlated to
kl according to an empirical relationship proposed in the lit-
erature, obtained for granular porous media in the range of
permeability 10−15–10−17 m2 and given by14

b = 0.189 k−0,36
l . (24)

Case 5 is such that all parameters are kept identical to
Case 4 except kl and b that were calculated to keep the term
kl (1 + b/Pm) unchanged with respect to this later case. Un-
der these conditions, the predicted value of tc from Eq. (23)
remains the same in both cases.

The evolution of p1(t) obtained from the numerical simu-
lations is reported in Figure 3, for each of the four configura-
tions under consideration while the corresponding evolutions
of dp1(t)/dt are represented in Figure 4 in which the predic-
tion of Eq. (17) in the quasi-steady regime was also reported
as open symbols.

Results clearly show the three distinct regimes character-
ized by (i) the “pore-filling” period for which the downstream
pressure remains unchanged at the very early stage of the ex-
periment; (ii) a rapid evolution of p1(t) during a fully unsteady
regime at intermediate times, up to t = tc; (iii) the quasi-steady
regime of particular interest in this work for times larger than
tc.

First, the evolution of dp1(t)/dt obtained from the nu-
merical solution of the complete unsteady model is perfectly
well predicted by the solution developed above (Eq. (17)) in
the quasi-steady regime (t > tc). Second, in this last regime

lasseux
Barrer 
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FIG. 3. (Color online) Evolutions of p1(t) in each of the five cases of Table I.
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and t ≤ tf (see Sec. II C 1 for this time constraint), p1

evolves linearly, as shown in Figure 4, validating the use of
Eqs. (18) and (20) to determine kl and k. Finally, the character-
istic time of the transient behaviour is perfectly well predicted
by Eq. (23) as shown by the vertical dashed lines materialis-
ing the estimated values of tc (see Figure 3). In particular, the
excellent prediction of tc, that remains unchanged for Cases
4 and 5, must be noted. As expected, tc only depends on the
characteristics of the sample and on the pressure levels P0

and P1. In particular it does not depend on V1 (see Table I
where several values of V1 were considered). This validation
confirms the physical relevance of the estimate for tc which
clearly highlights that the quasi-steady method developed in
this work is better suited when ε e2/kl is small in order to keep
the experimental duration small.

C. Time tf and upstream reservoir volume constraints

1. Time constraint tf

The simple method of determination of kl and k
(Eqs. (18) and (20)) developed in this work requires that the
downstream pressure increase δp1 remains small compared to
P1 over the experimental observation of p1(t). This implies
that the downstream pressure record must be restricted to the
time interval [tc, tf], corresponding to a quasi-linear evolu-
tion of p1(t). The time constraint tf is now made explicit by
noticing that dp1(t)

dt
∼= kl S

μV1e (Pm + b) (P0 − P1) for tc < t < tf
whereas dp1(t)

dt is increasing with time for t < tc. As a conse-
quence, δp1 can be overestimated by writing

δp1 <
klS

μV1e
(Pm + b) (P0 − P1) t f . (25)

The constraint δp1 � P1 can hence be safely expressed as

t f � μV1e

kl S

P1

(Pm +b) (P0−P1)
= μV1e

k S

P1

Pm (P0−P1)
= P1

a
.

(26)

As shown in Figure 4, the limit t f = 0.2μV1e
k S

P1
Pm (P0−P1)

materialized by dashed lines is a satisfactory criterion for all
the situations under investigation.

It must be noted that the estimate of tc and the constraint
tf can be used as a real-time feedback control of the exper-
iment. Indeed, k can be determined from Eq. (20) on an in-
terval [t0, t1] where p1(t) is apparently linear while carrying
out the experiment. An estimate of tc (Eq. (23)) and the con-
straint (26) can be then post-compared to t0 and t1 to check
the relevance of the permeability estimation and redefine the
time interval [t0, t1] if necessary while giving an indication
on whether the experiment can be carried on. Note also that
the expression of tc along with the constraint (26) can be em-
ployed to pre-design the experimental setup when the perme-
ability and porosity ranges to be investigated are defined.

2. Upstream volume constraint

When the experiment is performed with a fixed upstream
volume V0 to ensure a constant pressure P0, this volume

must be large enough for the simple quasi-steady method de-
veloped in this work to be effective which means that the
pressure decrease δp0 must remain small compared to P0

for t up to tf. The constraint can be made clear by estimat-
ing the corresponding mass of gas, δm, flowing out of the
upstream reservoir over tf. Over the time period tf, a frac-
tion δm1 of this mass of gas contributes to the pressure rise
in the downstream reservoir while the remaining part, δmp,
is accumulated in the pores to increment the pressure in
the sample. An overestimate of δm1 can be readily obtained
from (25) and the assumption of an ideal gas leading to δm1

< kl S
μ e (Pm + b) (P0 − P1) t f

M
RT . An overestimate of δmp may

be obtained by considering that gas accumulated in the pores
corresponds to a pressure increase from P1 to Pm yielding
δm p < (Pm − P1) ε e S M

RT so that an overestimate of the up-

stream pressure decrease δp0 = δm1+δm p

V0

RT
M can be expressed

as

δp0 <
1

V0

(
klS

μ e
(Pm + b) (P0 − P1) t f + (Pm − P1) ε e S

)
.

(27)

In Appendix B, a more accurate estimate – but of less
practical usefulness – of δmp (and hence of δp0) is derived.

The upstream constraint δp0/P0 � 1 ensuring quasi-
steady conditions can finally be derived from Eq. (27) by re-
quiring the following sufficient condition:

P0 − P1

P0 V0

(
klS

μ e
(Pm + b) t f + ε e S

2

)

= P0 − P1

P0 V0

(
k S

μ e
Pmt f + ε e S

2

)
� 1. (28)

Again, this last constraint can be used either a poste-
riori to check the validity of a measurement or as a de-
sign guideline for an experimental setup to be used on given
permeability-porosity intervals.

III. EXPERIMENTS

To illustrate the method described above, experimental
results obtained on two different types of materials (rocks and
composite material) are reported in this section. We focus on
the determination of the apparent permeability, k, at a given
pressure Pm, keeping in mind that kl and b could be deter-
mined from repeated identical experiments at different values
of Pm as documented elsewhere.8–11

A. Materials and method

The device used for the experiments is represented in
Figure 5 and is composed of the following parts:

• A gas cylinder (N2) is connected to the upstream reser-
voir through a pressure regulating valve VD and a
three-port valve V3. This valve enables to connect the
upstream reservoir either to the gas supply at P0 or to
the atmosphere.

• A digital manometer M1 (Keller LEO1) measures the
pressure P0 in the upstream reservoir.



FIG. 5. Schematic representation of the experimental device. The measuring cell is one of those represented in Figure 6 depending on the sample type.

• A differential pressure sensor M2 (a Hottinger Bald-
win Messtechnik 0–100 mbar for the experiment on
the composite material and a Rosemount 3051S 0–
620 mbar for experiments on rock samples) is em-
ployed to measure the pressure variation in the down-
stream reservoir. The high pressure input of the sen-
sor is connected to the downstream reservoir and to a
valve V2 enabling the connection to the atmosphere.
The low pressure input of the sensor is connected to
a small chamber drilled in the sample holder, close to
the downstream reservoir. The small chamber, that can
be connected to the atmosphere through the valve V1,
is used as a reference pressure cavity that remains at
the same temperature as the downstream chamber so
that temperature perturbation are (partially) filtered out
from the pressure signal recorded in the downstream
reservoir. Moreover, potential atmospheric pressure
fluctuations are also filtered out since the cavity re-
mains closed during measurement.

• A digital data logger (Almemo 2290-5) records si-
multaneously the differential pressure, the tempera-
ture difference with respect to the enclosure, �T1

= T1 − T0, of the tubing connecting the volume V1

to the high pressure input of the pressure sensor and
the temperature difference with respect to the enclo-
sure, �T2 = T2 − T0, of the sample holder, close to
the reference pressure cavity. Temperatures are mea-
sured with type K thermocouples. Time sampling of
the record can be varied in the range 0.1 s – 1h.

The measuring cell, materialized by the dashed area in
Figure 5, was adapted to the type of sample under considera-
tion. For the measurement on rock samples reported in Sec. III
B 1, a Hassler sleeve core holder, represented in Figure 6(a),

was used as usually employed for this type of sample.24 In
the case of the composite material sheet (see Sec. III B 2),
the measuring cell schematized in Figure 6(b) was employed.
In this last configuration, a plate of sintered porous material,
which permeability (about 10−12 m2) was much larger than
that of the composite material, was placed below the compos-
ite sheet in the downstream reservoir. This plate avoids sig-
nificant deformation of the composite material which would
result from the applied pressure in the upstream reservoir and
would bias the pressure rise record p1(t).

(a)

(b)

FIG. 6. Two measuring cells used for (a) a rock sample (Hassler sleeve core-
holder); (b) a composite material sheet.



TABLE II. Characteristics of the rock samples R1 and R2.

Sample kl (×10−17 m2) σkl (%) b (×105 Pa) σ b (%) ε e (mm) S (×10−3 m2)

R1 3.8 0.05 1.16 0.42 0.055 60.3 1.134
R2 9.8 0.01 0.82 0.10 0.127 60.2 1.138

The operating process is the following:

• the sample is positioned into the device and a confining
or clamping pressure is applied;

• the device is placed in a temperature controlled enclo-
sure (typically at 30◦C) while valves V1, V2 and V3 (as
well as V4, (see Figure 6(a) for experiments on rock
samples) are open to the atmosphere;

• valves V1 and V2 are closed when thermal equilibrium
is reached and the atmospheric pressure is measured
separately in the enclosure. Although equilibrium with
the enclosure is reached, some low frequency temper-
ature fluctuations (for instance on a day/night cycle for
a long experiment) may still persist as will be further
shown below on experiments carried out on the com-
posite material;

• the pressure P0 is set to the chosen value by adjusting
the pressure regulating valve VD;

• the valve V3 is switched to connect the gas supply to
the upstream reservoir. For experiments performed on
rock samples, the valve V4 (see Figure 6(a)) is closed.
Recording of the downstream differential pressure and
temperatures is started.

B. Experimental results

Experimental results were obtained on two different thick
and relatively permeable rock samples. An additional result
on a thin and very poorly permeable composite material sam-
ple is also reported to highlight the capability of the method
to measure extremely small permeabilities.

1. Rock samples

The quasi-steady method was tested on two rock samples
R1 and R2 which characteristics are reported in Table II.
The samples were cylindrical cores of circular cross section
and their characterization was made in the axial direction.
For comparison purposes, the intrinsic permeability, kl and
Klinkenberg coefficient, b, were pre-determined indepen-
dently from the present method using a fully unsteady
(Draw-Down) method described above (see Sec. II A) and
further detailed elsewhere.20, 21 Since the sensitivity of the
upstream pressure decay signal, p0(t), to the porosity, ε, was

poor, this parameter was measured with a classical gas pyc-
nometry (N2) experiment. The two parameters kl and b were
determined using an inverse procedure based on the physical
model (6)-(10). Accuracy of the procedure is excellent since
residuals on p0(t) (i.e., the difference between the measured
signal and the simulated one at inversion convergence) are
less than 100 Pa while the Draw-Down experiments were
carried out with N2 at P0 up to 11 × 105 Pa and 16 × 105 Pa.
Accuracy is corroborated by the relative standard deviation,
σkl and σ b, on kl and b reported in Table II.

Quasi-steady experiments were carried out with the pa-
rameters V0, V1, P0, and P1 reported in Table III where we
have also indicated the times tf at which experiments were
ended. The expected apparent permeability, k, at these values
of the pressures along with the corresponding expected char-
acteristic time tc reported in this table were estimated from
data of Table II and Eqs. (19) and (23) respectively.

Experimental results of the evolution of p1(t) are repre-
sented in Figure 7 where the transient periods are clearly ap-
pearing followed by the quasi-steady periods.

In order to check the validity of the characteristic time
estimates tc reported in Table III, the time derivative dp1(t)

dt of
the downstream pressure was determined. This was done from
a polynomial least square fit of degree 6 (sample R1) and 4
(sample R2) performed on the signal p1(t). Evolutions of dp1(t)

dt
are represented in Figure 8 in which we have also reported the
predicted values of tc as vertical dashed lines. These predic-
tions are in excellent agreement with the emergence of the lin-
ear evolution of p1(t) characteristic of the quasi-steady regime
observed experimentally, confirming the validity of the esti-
mate. Moreover, the time derivative remains constant up to
tf for both experiments, confirming that permeability may be
estimated following the quasi-steady model for t > tc.

Next, apparent permeabilities were estimated from lin-
ear fits performed on p1(t) for tc ≤ t ≤ tf. The fits are
represented in Figure 9 showing the relevance of the lin-
ear approximations over these time intervals with excellent
determination coefficients. The slopes a were found to be
4.0 Pa s−1 (sample R1) and 9.4 Pa s−1 (sample R2), which
upon using Eq. (20), yields k ∼= 5.15 × 10−17 m2 (sample R1)
and k ∼= 12.12 × 10−17 m2 (sample R2). Again these two re-
sults are in excellent agreement with predicted values reported
in Table III and validate the approach proposed in this work.

TABLE III. Experimental parameters for tests performed up to t = tf on rock samples R1 and R2. k and tc are the
expected apparent permeability at (P0 + P1)/2 and characteristic time of the transient period, both being evaluated from
data of Table II.

Sample V0 (×10−3 m3) V1 (×10−3 m3) P0 (×105 Pa) P1 (×105 Pa) k (×10−17 m2) tc (s) tf (s)

R1 1.02 2.26 5.96 1.02 5.08 120 1206
R2 1.02 2.26 6.04 1.02 12.14 116 2371



(a) (b)

FIG. 7. Downstream pressure evolutions (a) sample R1; (b) sample R2. For convenience of the representation, the signal was truncated at t = 500s.
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FIG. 8. (Color online) Evolution of the experimental downstream pressure time derivative. (a) sample R1; (b) sample R2. The characteristic times tc predicted
in Table III are materialised by the vertical dashed lines. Insets: same quantity restricted to early times (up to t ∼= 200 s).

(a) (b)

FIG. 9. Linear fits performed on the quasi-steady evolution of the downstream pressure p1(t), for tc ≤ t ≤ tf. (a) sample R1; (b) sample R2.



(a) (b)

FIG. 10. Upstream pressure evolutions (a) sample R1; (b) sample R2.

Finally, the time and volume constraints expressed by
the relationships (26) and (28) respectively may be checked
a posteriori. According to our experimental parameters, the
right hand side of the relationship (26) is roughly 2.53 × 104

s (sample R1) and 1.03×104 s (sample R2), values that are
much larger than the values of tf used to estimate k for both
samples, confirming that the time constraint is fully satisfied.
This is in agreement with observations made on Figure 8.
Similarly, the left hand side in relationship (28) is evaluated
to be approximately 1.96 × 10−2 (sample R1) and 9.01 ×
10−2 (sample R2), both values being smaller than 1 which
indicates that the experimental parameters were conveniently
chosen for the quasi-steady experiment. In Figure 10, we have
reported the evolutions of the upstream pressure for samples
R1 and R2.

As can be inferred from these figures, the relative up-
stream pressure decrease, δp0/P0, is roughly 2.0 × 10−2

(sample R1) and 3.7 × 10−2 (sample R2). It is to be compared
to the two values calculated from the left hand side of (28) and
mentioned above which should be upper bounds. This is the
case for sample R2, while, although experimental noise on
p0(t) should be considered, it is not for sample R1. However,

one must keep in mind that this upper bound is a restrictive
one and when better estimated according to the expression
provided in Appendix B, one finds 2.06 × 10−2 instead of
1.96 × 10−2 for sample R1 which better corresponds to the
expected overestimate of δp0/P0.

2. Composite material sheet

An additional experiment was carried out to determine
the transverse permeability of a thin and very poorly perme-
able medium, namely a sheet of composite glass-fiber/epoxy
material. The experimental parameters were such that e = 2
mm, S ∼= 17.67 × 10−3 m2, V1 = 10−4 m3, P0

∼= 6.08 × 105

Pa, P1
∼= 1.013 × 105 Pa. Since the upstream reservoir was

directly connected to the gas cylinder through the valves Vd

and V3, V0 can be considered as infinite in this experiment so
that the constraint expressed by the relationship (28) is safely
verified.

The time record of p1(t) obtained during this experi-
ment is represented in Figure 11(a) while the evolution of the
temperatures �T1(t) and �T2(t) are reported in Figure 11(b).
As expected, the downstream pressure rise is very small (less

(a) (b)

FIG. 11. Experimental results on the composite material sheet. Evolution of (a) the downstream pressure; (b) temperature differences �T1 and �T2.



(a) (b)

FIG. 12. (Color online) (a) Time derivative of the downstream pressure for 5 ≤ t ≤ 10. (b) Least square linear fit on p1(t) for 8 ≤ t ≤ tf = 15: a ∼= 36.9 Pa h−1.

than 5 mbars over roughly 18 hours of record) suggesting that
the permeability of the material is indeed extremely small. As
can be seen in Figure 11(b), the temperatures remained rela-
tively constant for 5.5 ≤ t ≤ 15 h.

As for the data on the rock samples, a least square poly-
nomial fit of degree 6 was performed on p1(t) in the interval
of time 5 ≤ t ≤ 10 h where the transition to the quasi-steady
regime obviously occurs. The time derivative of this fit is de-
picted in Figure 12(a) indicating that tc can be reasonably
identified as tc ≈ 8 h. From this value, the slope a of p1(t)
was identified in the time interval 8 ≤ t ≤ tf = 15 h (see Fig-
ure 12(b)) where the temperature is free of significant fluctua-
tions yielding a ∼= 10−2 Pa s−1 with a very satisfactory deter-
mination coefficient. When reported in the expression (20) for
the apparent permeability determined from this quasi-steady
regime, one finds k ∼= 1.1 ×10−23 m2 which is far below
the classical values of permeability determined with conven-
tional measurement techniques. Note that the time constraint
expressed by the relationship (26) is verified for this measure-
ment. Indeed, the right hand side in (26) is evaluated to be
∼107 s (i.e., ∼2900 h), which is much larger than the value of
tf used to estimate a, validating our experimental protocol for
this material.

In the absence of data for the porosity of the material,
no prediction of tc can be performed. However, if ε is post-
evaluated from the graphically identified value of tc (tc ≈ 8
h), this yields ε ≈ 0.3%, a value that remains in the range of
porosity reported in the literature for this type of material.25, 26

IV. CONCLUSION

A method to determine the permeability of porous me-
dia, that is particularly well adapted to materials for which
the ratio εe2/k is small (ε is the porosity, e the sample thick-
ness and k the apparent permeability of the material), i.e., to
very poorly permeable porous media and/or thin samples, was
proposed in this work. The method is based on the quasi-
steady regime occurring during 1D flow when the sample is
subjected to a (quasi) constant upstream pressure. The flow
rate is indirectly measured through the pressure rise in the
downstream reservoir, which is a net advantage of the tech-
nique. Indeed, since standard sensitive pressure sensors can

be used, extremely small flow rates can be detected allowing
the determination of very small permeabilities. The physical
model to interpret the experiment was carefully derived from
the complete unsteady model of flow showing that part of this
quasi-steady regime is characterized by a linear evolution of
the downstream pressure signal. A simple interpretation of
this part of the signal can be made to determine the perme-
ability and the Klinkenberg coefficient from repeated exper-
iments at different mean pressure levels. Along with the fact
that the experimental setup for this method is simple to imple-
ment, the simple interpretation makes the method of particular
interest.

From scaling arguments, the characteristic time at which
the quasi-steady regime is observed was explicitly derived. It
was validated by numerical simulations of the complete un-
steady model in a variety of operating conditions. This char-
acteristic time defines the lower time-limit of the experimen-
tal downstream pressure signal to be considered with this
method. The constraint on the upper time-limit was also de-
termined, clearly defining the time interval of interest for the
method to apply. Moreover, when the experiment is to be car-
ried out with an upstream reservoir of finite volume, which
is of practical common use, a constraint was provided for the
method to remain valid. All these constraints can be advan-
tageously used either as a set of guidelines to design an ex-
periment and/or as a real time control tool to assert that the
experiment is carried out under appropriate conditions.

Experiments carried out on two different rock samples
were presented, demonstrating the validity of the method,
both on the characteristic time of the quasi-steady regime and
on the permeability estimates. The capability of the method
to determine very low permeabilities (down to 10−23 m2) was
illustrated by a measurement in the transverse direction of a
composite material sheet. This fast and simple method, tak-
ing advantage of both fully steady and unsteady techniques,
is a promising tool for permeability characterization of very
poorly permeable materials like samples of tight-gas or gas-
shale reservoirs, cap rocks of gas or nuclear waste storage
areas, sealing or composite materials, etc., all materials on
which permeability measurement remained a challenging task
so far and for which reliable and accurate methods are still
scarce.
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APPENDIX A: NUMERICAL SCHEME FOR THE 1D 
UNSTEADY GAS FLOW

In this Appendix, we detail the numerical procedure used 
to solve the unsteady gas flow through the medium. The ini-
tial boundary value problem given by Eqs. (6)–(10) is first 
re-written using the pseudo-potential φ(x, t) = (p(x, t) + b)2 

as

∂2φ(x, t)

∂x2
= α√

φ(x, t)

∂φ(x, t)

∂t
, (A1)

∂φ(x, t)

∂t
= β−1

(√
φ(x, t)

∂φ(x, t)

∂x

)
at x = 0, (A2)

∂φ(x, t)

∂t
= −δ−1

(√
φ(x, t)

∂φ(x, t)

∂x

)
at x = e, (A3)

φ (x, 0) = (P1 + b)2 for 0 < x ≤ e, (A4)

φ (0, 0) = (P0 + b)2 . (A5)

These equations, where we have denoted α = ε μ

kl
, β

= μ V0

kl S , and δ = μ V1

kl S , are discretized using a finite differ-
ence scheme which is second order in space and a first
order explicit Euler scheme in time. With the notation
φn

i = φ ((i − 1) �x, (n − 1) �t), this scheme is given by

φn+1
1 = �t

2 α�x + 3β

√
φn

1

φn
2 − φn

4 + 4φn
3 − 4φn

1

2�x
+ φn

1 ,

(A6)

φn+1
i = �t

α �x2

√
φn

i

(
φn

i+1 − 2φn
i + φn

i−1

)
+φn

i 2 < i < m − 1, (A7)

φn+1
m = �t

2α�x+3δ

√
φn

m

φn
m−1−φn

m−3−4φn
m + 4φn

m−2

2�x
+φn

m,

(A8)

where m is the number of space discretization nodes. Stability
of the overall algorithm is subjected to a criterion on the time
step due to the explicit character of the time scheme. This
criterion is a classical one for a diffusion-like equation and is
such that �t < mini (

ε μ �x2

2 kl (φi )1/2 ).

APPENDIX B: A MORE ACCURATE UPSTREAM
VOLUME CONSTRAINT

An alternative and more accurate expression of the con-
straint given by the relationship (28) is developed in this
Appendix.

We start from a mass balance of gas between t = 0 and t
= tf, given by

P0V0 + P1 (V1 + ε e S) = (P0 − δp0) V0 + (P1 + δp1) V1

+
∫ e

0
ε S p(x, t f )dx, (B1)

While we shall overestimate δp1 as

δp1 <
klS

μV1e
(Pm + b) (P0 − P1) t f = kS

μV1e
Pm (P0−P1) t f ,

(B2)

the expression p(x, t) can be extracted form Eqs. (16) and (17)
to give

p(x, t f )=
[

(P0+b)2−2
p1(t f )+b

P1+b

(Pm + b) (P0−P1)

e
x

]1/2

.

(B3)

Noticing that p1(tf) = P1 + δp1 while δp1

P1+b � 1,
the integral term in Eq. (B1) can be explicitly calculated
as

∫ e
0 ε S p(x, t f )dx ∼= 2

3ε e S (P0+b)3−(P1+b)3

(P0+b)2−(P1+b)2 . When inserted
back into (B1) while taking into account the upper bound of
δp1 in (B2), one obtains an overestimate of δp0 as

δp0 <
1

V0

(
kS

μ e
Pm (P0 − P1) t f

+ ε e S

(
2

3

(P0 + b)3 − (P1 + b)3

(P0 + b)2 − (P1 + b)2 − P1

))
, (B4)

and hence an alternative form to (28) developed in the paper
given by

1

P0V0

(
kS

μ e
Pm (P0 − P1) t f

+ ε e S

(
2

3

(P0 + b)3 − (P1 + b)3

(P0 + b)2 − (P1 + b)2 − P1

))
� 1. (B5)

Although this form is more accurate than (28) and can
be easily shown to be less restrictive, it is not of real practical
usefulness. Indeed, since it involves the value of b which is not
known while performing the measurement of k at a given Pm,
a real-time feedback control of the validity of the experiment
is impossible with this form.

Nomenclature

a slope of p1(t) in the linear quasi-steady regime
(Pa/s)

b Klinkenberg coefficient (Pa)
Dm pseudo mass diffusivity (Dm = k P0 p*/ε μ) (m2/s)
e sample thickness (m)
k apparent gas permeability (m2)
kl intrinsic permeability (m2)
l characteristic length at the pore scale (m)
M molar mass of gas (kg/mol)
p(x, t) pressure at x and t (Pa)



p0(t) absolute pressure in the upstream reservoir at t
(Pa)

p1(t) absolute pressure in the downstream reservoir at t
(Pa)

P0 initial absolute pressure in the upstream reservoir
(=p0(t = 0)) (Pa)

P1 initial absolute pressure in the downstream reser-
voir (=p1(t = 0)) (Pa)

Pm arithmetic mean pressure (Pm = (P0 + P1)/2)
(Pa)

Q0 volumetric flow-rate (m3 s−1)
R ideal gas constant (R = 8.314 J/mol/K)
S sample cross sectional area (m2)
t time (s)
tc characteristic time to reach the quasi-steady

regime (s)
tf final time of the experiment (s)
T temperature (K)
u(x,t) filtration velocity (m/s)
V0 volume of the upstream reservoir (m3)
V1 volume of the downstream reservoir (m3)
x coordinate along the sample axis (m)

Greek

δp0 pressure variation in the upstream reservoir over tf
(Pa)

δp1 pressure variation in the downstream reservoir
over tf (Pa)

�P pressure drop ( = P0-P1) (Pa)
�T1 temperature difference between the temperature-

controlled enclosure and the tubing connecting V1

to the pressure sensor (�T1 = T1 − T0) (K)
�T2 temperature difference between the temperature-

controlled enclosure and the sample holder, close
to the reference pressure cavity (�T2 = T2 − T0)
(K)

ε porosity
φ pseudo potential (φ = (p + b)2) (Pa2)
λ mean free-path of gas molecules (m)
μ gas dynamic viscosity (Pa s)
ρ gas density (kg/m3)

Subscripts

0 upstream condition
1 downstream condition
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