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Abstract: In the context of digital in-line holographic microscopy, we describe an unsupervised12

methodology to estimate the aberrations of an optical microscopy system from a single hologram.13

The method is based on Inverse Problems Approach reconstructions of holograms of spherical14

objects. The forward model is based on a Lorenz-Mie model distorted by optical aberrations15

described by Zernike polynomials. This methodology is thus able to characterize most varying16

aberrations in the field of view in order to take them into account to improve the reconstruction17

of any sample. We show that this approach increases the repeatability and quantitativity of18

the reconstructions in both simulations and experimental data. We use the Cramér-Rao lower19

bounds to study the accuracy of the reconstructions. Finally, we demonstrate the efficiency of20

this aberration calibration with image reconstructions using a phase retrieval algorithm as well as21

a regularized inverse problems algorithm.22

© 2022 Optica Publishing Group under the terms of the Optica Publishing Group Publishing Agreement23

1. Introduction24

Optical microscopy can be used to extract several characteristics from a biological sample, such25

as morphological parameters, birefringence or a phase shifts introduced by an unstained sample.26

For quantitative measurement of these properties, an accurate optical model is required [1].27

Accounting for the characteristics of the optical system is an essential component of reconstruction28

algorithms in optical microscopy. For example, in fluorescence microscopy, accurate modeling29

of the Point Spread Function (PSF) is a way to improve the deconvolution step [2–5]. It can be30

performed using either a dedicated calibration step (by directly measuring the PSF on “point-like”31

objects [2]) or by estimating the PSF directly on an image that presents aberrations [4,6,7]). In the32

literature, estimating aberrations or PSF have been widely addressed using various microscopy33

methods (fluorescence, single-molecule localization, wide-field microscopy, holography, etc.),34

with different measurement or reconstruction approaches and models of the PSF. These models35

can be very simple (e.g. Gaussian model), more realistic, like the Gibson-Lanni model [5, 7, 8],36

or more versatile and general, like the Zernike polynomials of the pupil function [6,9,10]. In the37

two latter cases, the coherent PSF is modeled as a phase error function in the exit pupil plane of38

the objective.39

In the particular case of digital holographic microscopy, the issues of aberrations estimation40

and correction have been widely studied for off-axis configuration (e.g. [11–14]). However, it41

concerns essentially the wavefront mismatch between the object and the reference beams, which42

creates distortions of the interference fringes, thus inducing errors in the reconstruction.43

In-line digital holographic microscopy requires a simpler setup involving a single beam. It44
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simply consists in recording the intensity pattern diffracted by a sample. It is less bulky and45

less sensitive to vibrations than off-axis holographic setups [15,16]. Image processing makes46

it possible to reconstruct the optical properties of the sample including its absorption and its47

phase shift. These can be discriminant in a classification task and makes possible medical48

diagnoses [17].49

The aberrations of an in-line holographic optical system can have different causes, such50

as non standard uses of the objective, tilts or collimation errors in the illumination. These51

aberrations are dependent on the setup, its alignment and vary in the field of view. They lead to52

reconstruction errors, not only in the quantitative estimation of the modulus and the phase but also53

in the geometrical properties of the reconstructed objects. Thus, the repeatability as well as the54

reproductibility of the reconstructions is affected. However, the aberrations of the optical system55

are usually not considered in the reconstruction step. Accounting for the aberrations in the image56

formation model makes it possible to reduce the bias introduced in the reconstructions. These57

aberrations are an important issue to overcome in applications such as medical diagnoses that58

require reconstructions to be as accurate as possible to make the decision as robust as possible. To59

our knowledge, it is only recently that the influence of optical aberrations has been studied in the60

context of in-line digital holographic microscopy [1, 18, 19]. These studies underlined the need61

for a fine estimation of aberrations in order to improve the quantitativity and the repeatability62

of the phase reconstructions as well as the axial positioning, by reducing the aberration-driven63

biases.64

In the present paper, we first address the problem of estimating aberrations in the context of65

in-line digital holographic microscopy. To that end, we use calibration beads to estimate an66

aberrated forward model. Using an Inverse Problems Approach (IPA), we simultaneously fit67

Zernike coefficients and calibration beads parameters, which are parameters of the forward model,68

on data. Unlike many PSF estimation studies, our approach does not require axial stacks of69

images i.e. only one hologram is needed. Moreover, we made no assumption of an aberration-free70

PSF in the center of the field, like in Zheng’s et al. study [10]. Finally, this model of aberration is71

more general than the Gibson-Lanni model [5, 7, 18]. As a forward model, we use a Lorenz-Mie72

model of the calibration beads that has been extended to account for the aberrations of the optical73

system using Zernike polynomials [9]. To jointly estimate the calibration beads and aberration74

parameters, we choose a parametric IPA as it is known to be accurate in estimating the parameters75

of simple shape objects [20–22] and of the experimental parameters required for calibration. It76

has already been successfully applied in the context of autofocusing [23], for the estimation of77

the spectral crosstalk on a Bayer sensor [24] and to estimate the parameters of an astigmatic78

reference wave [25].79

Once Zernike coefficients estimated locally for each bead, they can be used to perform80

aberration free reconstruction of the sample. These reconstructions can be performed using81

regularized IPA algorithm [26,27] or Fienup algorithm [28,29]. To test the proposed methodology,82

we use the experimental procedure of Martin et al. in [18], i.e. the use of a water immersion83

microscope objective with a correction collar that causes aberrations when not set correctly.84

In the following section, we describe the method to estimate aberration parameters (Zernike85

coefficients) and use them to refine the PSF model of our holographic setup in order to reconstruct86

aberration-free images. In the third section, we detail the setup used to validate the proposed87

methodology. In the fourth section, to demonstrate the robustness of the approach to reconstruct88

various kinds of aberrations, we first present the estimation of both aberrations and beads89

parameters on simulated holograms and on experimental holograms. Finally, to illustrate the90

relevance of our approach on experimental data, the experimental data are reconstructed with91

phase retrieval algorithms (Fienup and regularized IPA algorithms) that take into account the92

estimated aberrations.93



2. Estimation of the aberration parameters and reconstruction94

Inverse problems are a general class of problems where unknowns are linked to measurements95

through a known image formation model (simulating the measurements is referred to as the96

“forward problem”). In this framework, reconstructions are based on minimizing the discrepancy97

between the hologram (the data) 𝒅 and an image formation model (forward model) 𝒎. In a general98

case, such phase retrieval problem is ill-posed as it has many degeneracies (more unknowns than99

data, twin image, etc.). To solve it, it is necessary to inject some a priori on the solution into the100

minimization problem by adding regularization terms and/or constraints. Another way to solve101

this degeneracies is to use a model of the measurement that depends on only a few parameters.102

The problem can be then solved using the parametric IPA framework [30]. This framework103

is well suited to calibrate the aberrations using holograms of spherical objects as the image104

formation model depends only on the parameters of the objects (position, diameter and refractive105

index) and on the aberrations that can be modeled with a complex pupil function described106

by few parameters. Once these aberrations are estimated, they can be used in a regularized107

reconstruction method to reconstruct any sample without any aberration artefacts. Figure 1108

shows a flowchart representing the two main steps, the calibration and the reconstruction, that are109

detailed here after.110

2.1. Calibration : aberration parameters estimation111

The diffraction pattern 𝒂Mie of a spherical bead is accurately modeled by the Lorenz-Mie112

model [31] which depends on the set of bead parameters 𝝑 = {𝑥, 𝑦, 𝑧, 𝑟, 𝑛}, where 𝑥, 𝑦, 𝑧113

corresponds to the 3D position, 𝑟 is the radius and 𝑛 is the refractive index. The Lorenz-Mie114

model has been successfully used to reconstruct spherical objects from holograms by fitting115

methods [20,22] or, in a more general framework, by parametric IPA [21,32,33]. In the presence116

of aberrations, the new image formation model of the diffraction pattern of the beads 𝒎P (P117

stands for Parametric) also depends on the aberration parameters 𝜶 of the optical system that can118

be included in the model by mean of a complex pupil plane as follows:119

𝒎P (𝝑,𝜶) =
���F −1

[
𝑝̃(𝜶)⊙ 𝒂̃Mie (𝝑)

] ���2 (1)

where F −1 is the inverse Fourier Transform, 𝑝̃(𝜶) is the pupil function in Fourier domain120

that depends on (𝜅𝑥 , 𝜅𝑦), the spatial frequency coordinates. For the sake of compactness,121

Fourier space coordinates and spatial coordinates are omitted in the equations when they are not122

required. 𝜶 =
{
𝛼𝑚
𝑛

}
(𝑚,𝑛) ∈Z2 is a vector of aberration parameters, that will be referred as Zernike123

coefficients in this work. 𝒂̃Mie is the Fourier Transform of 𝒂Mie, and ⊙ is the Hadamard product.124

As described in [9, 34], Zernike polynomials
{
𝒁𝑚
𝑛

}
𝑚,𝑛

provide a suitable basis to describe the125

pupil function 𝑝̃ (see Appendix A for details):126

𝑝̃(𝜅𝑥 , 𝜅𝑦 ,𝜶) = 𝑒
𝑖

[ ∑
𝑛,𝑚

𝛼𝑚
𝑛 𝒁𝑚

𝑛 (𝜅𝑥 ,𝜅𝑦 )
]

(2)

To characterize the aberration effects of the optical system, the Zernike coefficients 𝜶 have127

to be estimated. Assuming a white and Gaussian noise, the maximum likelihood estimation of128

model parameters {𝝑,𝜶} of the bead and the aberrations corresponds to a least squares fitting129

problem [20,32]:130 {
𝝑†

,𝜶†
}
= argmin

𝝑∈P,𝜶∈D
∥𝒅 − 𝒎P (𝝑,𝜶)∥2

2 (3)

where {P,D} are optimization constraints and ∥·∥2 is the 𝐿2-norm. Note, taking the weighted131

version of the 𝐿2-norm (i.e. the squared Mahalanobis distance) makes it possible to consider132

non-stationary and correlated noise into account [32, 35, 36].133



To numerically solve this optimization problem (equation 3), only the first 15 Zernike
coefficients are estimated in the following. As a phase piston has no effect on the image formation
model (intensity image formation model), 𝛼0

0 is set to 0. As varying Zernike coefficients 𝛼−1
1 and

𝛼1
1 simply amounts to shift parameters 𝑥 and 𝑦, these Zernike coefficients are also set to 0. In

these conditions, seventeen parameters are studied:

𝑥, 𝑦, 𝑧, 𝑟, 𝑛, 𝛼−2
2 , 𝛼0

2, 𝛼
2
2, 𝛼

−3
3 , 𝛼−1

3 , 𝛼1
3, 𝛼

3
3, 𝛼

−4
4 , 𝛼−2

4 , 𝛼0
4, 𝛼

2
4, 𝛼

4
4 .

A study of the correlations between the estimated parameters is presented in Appendix B.134

It shows some high correlations in the correlation matrix. All the parameters {𝝑,𝜶} should135

therefore be estimated simultaneously. An iterative detection/local optimization scheme [21] is136

used to guarantee the rapid and accurate reconstruction of a set of objects. Since the beads are137

monodispersed, a narrow parameter research domain P can be chosen depending on the size and138

refractive index of the beads used experimentally.139

Since the aberration can differ depending on the location of the beads in the field of view, the140

aberration parameters have to be estimated for several different bead locations.141

Data
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Fig. 1. Flowchart representing the two main steps of the proposed method: calibration
and reconstruction.

2.2. Reconstruction: including aberration model142

Once the aberrations are modeled, they are taken into account to better reconstruct the modulus143

and the phase of the objects of interest. These samples are modeled by a 2D transmittance plane144

𝑡 (𝑥, 𝑦). In that case, the image model will be referred as non-parametric. For an infinite aperture145

and aberration free imaging system, this model is the squared modulus of the convolution between146



the Rayleigh-Sommerfeld propagation kernel 𝒉RS
𝑧

and the transmittance plane 𝒕 where:147

ℎRS
𝑧
(𝑥, 𝑦) = 𝑧

𝑖𝜆

exp
(
𝑖 2𝜋
𝜆

√︁
𝑥2 + 𝑦2 + 𝑧2

)
𝑥2 + 𝑦2 + 𝑧2 (4)

and 𝜆 is the wavelength of the illumination [37]. In order to account for aberrations in the148

image formation model, an aberrated PSF model should be used. Assuming a shift invariance of149

the pupil function with 𝑧, the Optical Transfer Function (OTF), which is equal to the Fourier150

Transform of the complex-valued PSF 𝒉
𝑧
, can be expressed as follows:151

𝒉̃
𝑧
(𝜶) = 𝑝̃(𝜶)⊙ 𝒉̃RS

𝑧
(5)

where 𝒉̃
RS
𝑧

is also called the angular spectrum.152

In addition, the beads estimated depth provides reliable estimation of the propagation distance 𝑧†153

[23]. Thus, the aberration corrected non-parametric model 𝒎NP can be expressed as:154

𝒎NP ( 𝒕,𝜶) =
��𝒉

𝑧
(𝜶) ∗ 𝒕

��2 (6)

Unlike the parametric case (section 2.1), minimizing the discrepancy between data and model155

is not sufficient to solve this ill-posed problem. A priori information about the sample must be156

added in the form of constraints on the optimization space S and in the form of a regularization157

term RNP [27, 38, 39]:158

𝒕† = argmin
𝒕∈S

∥𝒅 − 𝒎NP ( 𝒕,𝜶)∥2
2 + 𝜇RNP ( 𝒕) (7)

where 𝜇 is an hyperparameter.159

This reconstruction is called a regularized reconstruction. The knowledge of the propagation160

distance 𝑧 is crucial because the image formation model depends on it. This distance is161

chosen according to the parameters of the beads previoulsy estimated with the parametric IPA162

reconstructions [23].163

In the following, the regularization term is a hyperbolic total variation term [40]. The164

hyperparameter is chosen empirically. The optimization domain is restricted to the unitary disk165

corresponding to a non-emissive object hypothesis. A FISTA algorithm is used to perform this166

minimization [41].167

3. Experimental study168

3.1. Principle169

High quality microscope objectives are supposed to be diffraction limited as long as they are used170

in the standard conditions for which they have been optimized (coverslip thickness, refractive171

indices of the immersion medium, the sample medium and the coverslip and position of the172

sample relative to the coverslip) [8, 42]. Yet, in some applications, these golden rules may be173

broken (wrong coverslip thickness, for instance). In inset A of Fig. 2, the refraction of the beam174

in the coverslip is shown before entering the objective. This illustrates the origin of the possible175

wavefront errors that may occur between the paraxial rays and the high angle rays when the176

standard conditions of use are not met. This wavefront error has been described by several177

authors [8, 42] in on-axis situations, but it may vary with the position in the field of view. Finally,178

even when the rules are strictly applied, residual aberrations may still exist, especially out of the179

optical axis, and may differ from one objective to another. To experimentally study the influence180

of such aberrations, we used a water immersion objective with a coverslip correction collar. Thus,181

for a given coverslip thickness, a wrong correction collar setting will give rise to aberrations.182

This idea was recently proposed by Martin et al. [18].183
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Fig. 2. Experimental setup. F: monomode fiber coupled laser source, CO: collection
optics, P: 200𝜇m-pinhole, M: mirror, L: lens, Sa: sample that can be precisely moved in
XYZ-directions, z: defocus distance of the sample from the focus plane, FP: objective
focal plane, MO: microscope objective, BFP: objective back focal plane, TL: tube lens,
Se: sensor. Inset A: zoom on the sample and the objective showing the refraction
of the rays occurring through the coverslip. SM: sample medium, C: coverslip, IM:
immersion medium. Inset B: Picture of the setup showing the imaging system and the
precision piezo-stage (ZS) and the XY-translation stage (XYS).

3.2. Setup184

Our home-made experimental setup [19] is presented in Fig. 2. The setting of a spatially coherent185

illumination may be difficult in a microscopy setup as it is very sensitive to any stray reflections186

or dust particles and leads to complex, sometime unstable speckle patterns. In this setup, the187

coherent illumination is set by illuminating a 200𝜇𝑚-pinhole (P) and a lens (L) set in a 2 𝑓188

configuration. Thus, an airy pattern illuminates the sample, with a large enough central peak189

to illuminate the whole field of view, but without inserting too much stray light in the imaging190

system. This leads to moderate vignetting which is corrected by dividing the holograms by a191

background intensity image.192

In the present study, the sample was composed of 1𝜇-diameter polystyrene beads diluted in193

glycerol. The use of transparent beads is interesting here, because we aim at reconstructing194

phase objects. The diameter of the beads is chosen to mimic biological objects such as bacteria.195

Usually, sub-resolution objects are used for PSF calibrations. However, in our context, with196

sub-resolution beads, the contrast of holograms would be too low and Rayleigh-Sommerfeld197

based models would fail to reconstruct correctly the beads [43].198

As polystyrene beads float in glycerol and thanks to its high viscosity, the beads were located199

just below the coverslip and did not move during the exposure of one hologram (typically, few200

milliseconds). According to the Gibson-Lanni model of the aberrations [8] induced by wrong201

coverslip thicknesses and/or refractive indices, the fact that the sample medium was glycerol202

instead of water should not induce additional aberrations as the beads were just below the203

coverslip (i.e. 𝑡𝑠 = 0 with the Gibson-Lanni notations). A coherent illumination with a laser at204



637.6nm was used. The illumination power was sufficient to keep exposure times as short as 5ms205

with our Thorlabs-S805MU1 camera. The sensor pixel size was 5.5𝜇𝑚. With 22.6mm diagonal,206

the sensor covers an important part of the field of view of the image (the objective field number207

is 26.5mm). The microscope objective was a water immersion microscope objective (Olympus208

PlanSApo, 60×, 1.2NA) with a coverslip correction collar. The tube lens was a 200mm-focal209

length apochromatic TTL200MP from Thorlabs that was used in a telecentric configuration. The210

measured magnification was 66.5, and not 60, as the tube lens has a greater focal length than the211

Olympus standard (180mm).212

3.3. Experimental protocol213

Five cases of aberration were tested in this experiment with the correction collar at different214

settings (0.13, 0.15, 0.17, 0.19 and 0.21mm). The coverslip thickness was measured to be215

0.170mm with a digital indicator (with a resolution of ±1𝜇𝑚). Thus, the 0.17mm setting of216

the correction collar is assumed to be the aberration free situation. A single bead was tracked217

through the whole field of view in regular steps in the X and Y directions. A total of 35 images218

(7× 5) were acquired in order to regularly cover the whole field of view (273× 204𝜇𝑚). For each219

XY-position in the field, an axial stack was recorded with defocus positions ranging from −10𝜇𝑚220

to +20𝜇𝑚 from the focus position with a step size of 0.5𝜇𝑚. This stack is used for the illustration221

of Fig. 3, but only one axial position will be reconstructed in the next section. It should be noted222

that the sample is the only moving part, which is important for recording a background image by223

calculating the median value of the 35 XY-shifted images recorded at focus.224

A view of a typical hologram is shown in the top part of Fig. 3. XZ-views of the stack along225

the vertical axis of the bead are represented at the bottom of Fig. 3. As shown in the figure, a226

change in the focus position is observed as a function of the setting of the correction collar, as227

well as modifications in the XY-profiles. The radial symmetry of the PSF is not always valid, as228

can be seen, for example, for the 0.13mm setting of the correction collar (green). This asymmetry229

is due to aberration effects that may break the radial symmetry of the holograms (e.g. coma,230

astigmatism, etc.). All aberrations may originate from the objective, but also from the tube lens231

or from misalignment of the illumination or the imaging parts. Moreover, aberrations can also232

originate from inhomogeneities of the slide and the coverslip.233

Wavelength 637.6nm

Magnification 66.5

Pixel pitch 83nm

Total field of view 273×204𝜇m

Beads diameter* (1.0±0.06)𝜇m

Beads refractive index* 1.587 (polystyrene)

Refractive index of immersion medium 1.47 (glycerol)

Coverslip thickness (0.170±0.001)mm

Typical defocus 12𝜇m

Table 1. Experimental parameters (*from manufacturer, ThermoFisher Scientific, Inc.)

4. Results234

In this section, we first apply the proposed method to simulated holograms to demonstrate235

the robustness of our approach for several kind of aberrations, especially in cases of difficult236
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Fig. 3. Example of a mosaic of holograms (top) of 1𝜇m-diameter polystyrene beads in
glycerol for an approximate defocus of 12𝜇m under 5 different settings of the correction
collar (from left to right: 0.13 (green), 0.15 (yellow), 0.17 (red), 0.19 (blue) and
0.21mm (magenta)). XZ-views of the hologram stacks for the different correction collar
settings (bottom).

optimizations, i.e with highly correlated Zernike coefficients. We then apply it to experimental237

holograms of beads. We compare our results with state-of-the-art parametric reconstruction238

algorithms in both simulated and experimental cases and finally evaluate and discuss the effects239

of aberration on regularized reconstructions.240

4.1. Reconstructions on simulated data241

A mosaic of 7 × 5 in-line holograms was simulated with aberrations varying in the field of view242

(see Fig. 4). Each hologram is a 512×512 pixels sub-image simulated with the experimental243

parameters described in Table 1 and with the aberrated Lorenz-Mie model (see equation 1). The244

defocus is set to 12𝜇m. This distance was chosen to improve the accuracy of the estimation of the245

Zernike coefficients, as indicated by CRLB analysis of this parameter (see Appendix B Fig. 11).246

To simulate a varying PSF in the field of view, the aberrated pupil function was considered247

to depend on the position of the bead in the field of view. This pupil function corresponds to a248

linear combination of oblique astigmatism (𝒁−2
2 ), vertical coma (𝒁−1

3 ), horizontal coma (𝒁1
3),249

spherical aberration (𝒁0
4) and oblique secondary astigmatism (𝒁−2

4 ) (see Appendix A). This250

linear combination is weighted by the corresponding Zernike coefficients 𝜶 (see Section 2.1).251

We arbitrarily chose to set a linear behavior along 𝑦 for 𝛼−2
2 and 𝛼1

3 , a linear behavior along 𝑥 for252

𝛼−1
3 and 𝛼−2

4 , and we set 𝛼0
4 constant in the field of view. This set of coefficients was chosen to253

demonstrate the performance of the proposed method in difficult cases, i.e. we chose Zernike254

coefficients that were highly correlated in the corrected model (see Appendix B, Table 6).255

Finally, a white Gaussian noise 𝜖 was added to the simulated holograms, which led to a256



Signal-to-Noise Ratio (SNR) of 4 in the holograms (SNR = Δ𝒎
2𝜎𝜖

, where Δ𝒎 is the peak-to-peak257

amplitude of the model).258
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Fig. 4. Top: 35 holograms simulated with variable Zernike coefficients depending
on the position in the field of view. Bottom: magnifications of 3 holograms from
different areas (first line), estimated model accounting for aberrations (C)(second line),
residuals i.e. difference between the first line and the second one (third line).

For each simulated hologram, the reconstruction was performed using parametric IPA with259

or without aberration corrections in the model. The abbreviations C (standing for corrected),260

and UC (standing for uncorrected) will be used in the following. The optimization algorithm we261

used was the LINCOA algorithm [44]. To perform the reconstructions with the corrected model262

(C), the first step implies an exhaustive search in a 17 parameters space, which can be really263

demanding in terms of computational time. To reduce this exhaustive search, it can be fairly264

convenient to have at least a coarse knowledge of the Zernike coefficients. As our aberrations265

were quite low, we performed this step by considering no aberration, i.e. all Zernike coefficients266

were set to zero.267

Then, the optimization step was performed with the fully corrected model (eq.3), with the268

constraints on parameters described in Table 2. The optimization domains {P,D} were chosen269

quite large in order to check the robustness of the proposed method.270

Table 3 shows the bead parameters reconstructed without (UC) or with (C) taking the aberration271

into account in the model. It shows the biases introduced by geometrical aberrations. When272

using an unaberrated model (UC), the reconstructions converge either on a local optimization273

minimum or to the constraint domain bounds. Conversely, when using an aberrated model, the274

reconstructions always converge to the global minimum with low bias and a standard deviation275

close to the theoretical lower bound given by Cramér-Rao analysis.276



𝑧 𝑟 𝑛 𝛼−2
2 𝛼0

2 𝛼2
2 𝛼−3

3 𝛼−1
3

Lower bound 10 0.2 1.52 -10 -10 -10 -10 -10

Upper bound 14 0.7 1.63 10 10 10 10 10

𝛼1
3 𝛼3

3 𝛼−4
4 𝛼−2

4 𝛼0
4 𝛼2

4 𝛼4
4

Lower bound -10 -10 -10 -10 -10 -10 -10

Upper bound 10 10 10 10 10 10 10

Table 2. Optimization constraints for each estimated parameters (𝑧 and 𝑟 are in
micrometers)

𝜗𝑖 𝜗𝐺𝑇
𝑖

< 𝜗𝑖 >
𝑈𝐶 < 𝜗𝑖 >

𝐶 𝜎CRLB
𝜗𝑖

𝜎𝑈𝐶

𝜗̂𝑖

𝜎𝐶

𝜗̂𝑖

𝑧(𝜇𝑚) 12 11.048 12.001 0.002 0.579 0.004

𝑟 (𝜇𝑚) 0.5 0.267 0.500 0.001 0.030 0.001

𝑛 1.58 1.619 1.5798 0.0006 0.0311 0.0007

Table 3. Statistical results on the estimated bead parameters with aberration corrected
(C) and uncorrected (UC) models: Ground Truth (GT) parameters 𝜗𝐺𝑇

𝑖
, means of the

estimated parameters < 𝜗𝑖 >, lower bounds of their theoretical standard deviations
𝜎CRLB
𝜗𝑖

and standard deviations of their estimates 𝜎
𝜗̂𝑖

Residuals between the data and the model are very low, indicating that the model fits the data277

accurately (see the bottom line in Figure 4). On the upper part of Fig. 5 are presented the phase278

of the pupil functions that were simulated in each part of the field of view. This gives another279

view, in Fourier space, of the type of phase errors that aberrations may imply. On the lower part280

of Fig. 5 the residuals of the estimated pupil functions are presented (from the simulated ground281

truth). From these residuals, we see that our estimations of the Zernike coefficients are accurately282

describing the phase function introduced by aberrations in Fourier space.283

In the most difficult cases (upper part and lower part of the field on Fig. 5), the residuals are284

not negligible for the highest spatial frequencies, close to the cutoff frequency imposed by the285

numerical aperture of the objective (represented by a black dashed circle). Indeed, as we did286

not use a sub-resolution object, the power spectrum of the object is not filling the entire pupil.287

In the inset of Fig. 5, the typical power spectrum of the object is presented and a white dashed288

circle shows the part of the spectrum including 95% of its energy. In this white dashed circle,289

the residuals remain low. Actually, this is an unsurprising limitation of this approach: as the290

object spectrum does not cover the whole aperture of the objective, the pupil phase function can291

not be estimated precisely for the highest frequencies. However, the pupil function is correctly292

estimated for the spatial frequencies corresponding to the spectrum of the object, which ensures293

that a similar object will be correctly reconstructed. If the aberrations are important, this effect294

must be considered for the choice of the calibration objects: the size of the beads chosen for295

aberration estimation must be at least equal or smaller than the smallest detail of interest.296

4.2. Reconstructions on experimental data297

The experimental parameters are given in table 1 and were the same as those used in the simulations.298

Once again, since the accuracy of the estimated parameters is better in a specific range of defocus 𝑧299
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the estimated pupil functions from the ground truth (b). The white dashed circles
correspond to the disk in which 95% of the energy of the power spectrum of the object
(c)is contained. The black dashed circles correspond to the aperture (calculated from
the numerical aperture of the objective).



(see Appendix B), the holograms to be reconstructed were located approximately 12𝜇m from the300

focus position, as in the simulations. They were reconstructed using parametric IPA, with the301

same workflow that was described in the reconstructions of the previous subsection. Again, to302

compare the effect of aberrations on the estimation of the beads parameters, both corrected (C)303

and uncorrected (UC) models are used for the reconstructions. As illustrated in Section 3, the304

position of the focus varied with the setting of the correction collar. Parametric IPA provides an305

estimation of the defocus distance 𝑧 between the sample and the focal plane of the objective.306

Table 4 presents a list of the mean values and the standard deviations of all 35 positions in307

the field for parameters 𝑧, 𝑟 and 𝑛 and for both (UC) and (C) reconstructions. According to the308

comparison of standard deviations for each collar setting, the dispersion over the field was only309

moderately modified by the model (UC) or (C). However, the mean values changed, especially310

that of the estimated defocus 𝑧. A maximum difference of 1.68𝜇m in the estimated defocus was311

found between the two models (UC) and (C).312

Moreover, the estimated defocus highly depends on the correction collar setting, which varied313

from 8.8 to 13.9𝜇m (UC) and from 10.5 to 12.5𝜇m (C). Thus, this dispersion was reduced by314

taking the aberrations into account, indicating a correction of the bias in the evaluation of the315

defocus. Since regularized reconstruction algorithms rely on a precise knowledge of the image316

formation model (including the defocus distance), any misestimation of the axial position of the317

sample would bias the reconstructions. Finally, it must be noted that the remaining dependence318

of the estimated defocus with the correction collar setting may have a physical origin. Indeed,319

wrong settings of the correction collar may really change the focus position as it changes the320

properties of the objective.321

For the estimated radii 𝑟 and refractive indices 𝑛̂, the dispersion over the field was reduced322

when the aberrations were taken into account. The averages were also less dispersed, but to a323

lesser extent. Indeed, some biases that depend on the correction collar setting appeared to remain.324

Fig. 6 presents the estimated bead parameters as scatter plots. This makes it possible to325

visualize the correlations between the estimated parameters 𝑧, 𝑟 and 𝑛.326

Moreover, for each collar setting (one color for one collar setting), taking the aberrations into327

account improved the repeatability of the parameter estimation independently of the introduced328

aberrations. Indeed, the aberration corrections not only reduce the biases between the different329

collar settings (differences from one color point cloud to another) but also reduce correlations330

coefficients between parameter estimations (correlations within one color point cloud). This is331

presented quantitatively on Table 5, for both models (C) and (UC) and for the less aberrated case332

(0.17mm). According to Table 5, the decorrelation is particularly important between 𝑟 and 𝑛.333

According to the manufacturer’s specifications, the radius should be (0.5±0.03)𝜇m and the334

refractive index should be around 1.587. The estimated parameters obtained with or without335

an aberration model were within the manufacturer’s confidence interval (0.47-0.53𝜇m). It is336

important to note that the fit with the Mie model is constrained by the spherical hypothesis and337

thus may be quite robust to errors in the model, contrary to the case of regularized reconstruction338

that have more degrees of freedom, and will be more sensitive to aberrations, especially to339

non-radially symmetric ones, as it will be seen later on regularized reconstructions.340

With the 35 recorded holograms corresponding to 35 bead positions in the field of view, we341

were able to check that the Zernike coefficients vary in the field of view, following continuous342

evolutions similar to those described in another work [10]. The Figure 7, illustrates the evolution343

of the Zernike coefficients associated with oblique astigmatism, defocus, vertical coma, horizontal344

coma and spherical aberrations. These appeared to be the main components of the aberrated345

pupil function 𝑝̃. The evolution of these coefficients is continuous and, not surprisingly, increases346

with increasing errors in the correction collar setting. Vertical coma increases from the left347

to the right whereas horizontal coma increases from the top to the bottom of the field of view.348

Spherical aberration and defocus do not depend on the location in the field of view but change349



UC C UC C

Collar < 𝑧 > < 𝑧 > 𝜎𝑧 𝜎𝑧

0.13 13.913 12.579 0.802 0.817

0.15 13.049 12.542 0.483 0.440

0.17 11.706 12.046 0.548 0.546

0.19 10.496 11.556 0.510 0.484

0.21 8.838 10.525 0.442 0.495

Collar < 𝑟 > < 𝑟 > 𝜎𝑟 𝜎𝑟

0.13 0.526 0.501 0.008 0.005

0.15 0.519 0.505 0.006 0.005

0.17 0.502 0.513 0.007 0.004

0.19 0.495 0.519 0.007 0.003

0.21 0.497 0.522 0.007 0.012

Collar < 𝑛̂ > < 𝑛̂ > 𝜎𝑛 𝜎𝑛

0.13 1.5733 1.5901 0.0041 0.0029

0.15 1.5773 1.5882 0.0027 0.0024

0.17 1.5856 1.5837 0.0044 0.0022

0.19 1.5902 1.5809 0.0036 0.0023

0.21 1.5878 1.5798 0.0032 0.0046

Table 4. For the 5 correction collar settings, averages < 𝜗𝑖 > and standard deviations
𝜎
𝜗̂𝑖

of the estimated parameter 𝑧, 𝑟 and 𝑛̂ using (UC) uncorrected model and (C)
aberration corrected model . All lengths are in micrometers.

Uncorrected (UC)

𝜗𝑖 𝑧 𝑟 𝑛

𝑧 1 0.02 0.51

𝑟 0.02 1 -0.56

𝑛 0.51 -0.56 1

Corrected (C)

𝜗𝑖 𝑧 𝑟 𝑛

𝑧 1 0.03 -0.26

𝑟 0.03 1 0.01

𝑛 -0.26 0.01 1

Table 5. Correlation coefficients between the estimated parameters without aberration
correction (left) and with aberration correction (right) for a correction collar setting of
0.17mm (less aberrated case)
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Fig. 6. Scatter plots showing the biases and correlations between the estimated defocus
𝑧, radius 𝑟 and refractive index 𝑛̂ for a single bead, for the 35 positions in the field,
for the 5 settings of the coverslip correction collar and with corrected models (C)
and uncorrected models (UC). With correction of the aberrations, the bias and the
dispersion of the estimations due to aberrations are reduced.

with the correction collar setting, with almost no spherical aberration and defocus for the less350

aberrated case (0.17mm). This is quite logical as a coverslip thickness error is known to induce351

spherical aberrations [18]. On the contrary, oblique astigmatism varies in the field of view352

without depending too much on the correction collar setting.353

Figure 8 illustrates the evolution of the phase correction for the 35 positions in the field354

of view and for a correction collar of 0.17mm. For this supposedly aberration-free case, the355

setup still suffer from aberrations that change in the field of view. These phase functions show356

significant aberration effects but, as expected, lower than for the other correction collar settings357

(not represented). This indicates the necessity of taking aberrations into account for hologram358

reconstruction even when the optical system is supposed to be compensated for aberrations.359

Indeed, these aberrations may come from residual aberrations of the objective, but also from360

other sources, like thickness inhomogeneities of the slide and the coverslip, as well as alignment361

issues.362

From the numerical point of view, the detection of all 35 beads in the mosaic takes around363

30 seconds on a 3296×2472 pixels image. The local optimization step for each bead takes364

around 10 seconds when not considering aberrations while it takes 45 seconds when considering365

them. These estimations have been realized using an Intel Core i9-11950H CPU 2.60GHz with366

16GBytes of RAM.367

4.3. Reconstructions on experimental data using regularized algorithms368

The evaluation of aberration’s effects on reconstructions is performed using beads holograms.369

This allows us to compare quantitatively the reconstructed transmittance with a ground truth370

(assumed to be the transmittance of the bead whose parameters are estimated by parametric371

IPA). However, since the non-parametric model is very general (not limited to spherical objects),372

similar results will be obtained with an aspherical sample. The reconstruction is performed with373

(C) and without (UC) the previously estimated aberration pupil function 𝑝̃ and the 𝑧 parameters.374

A Fienup phase retrieval algorithm [28,29], as well as a regularized IPA (as presented in 2.2)375
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Fig. 7. Estimated Zernike coefficients 𝛼𝑚
𝑛 as a function of the position in the field
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are used to reconstruct the data. These reconstructions are performed using the uncorrected376

propagator 𝒉RS
𝑧

(UC) or the corrected propagator 𝒉
𝑧

(C) in the model (eq.6). Fig. 9 illustrates377

the reconstructions results for both algorithms. The estimated aberrated Mie model that fits the378

data has been back propagated at the center plane of the bead (BPMie-C) and is considered as379

the ground truth here because it is the most accurate model. Similarly, a back propagation of380

the Mie model estimated without aberration has also been computed (BPMie-UC). Because of381

the coma aberrations, the bead position (𝑥, 𝑦) is not the same for (BPMie-C) and (BPMie-UC)382

parametric inversions, as mentioned in Appendix B. For comparison purpose the beads have then383

been centered in Fig. 9.384

0.5
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C

Fig. 9. Non-parametric reconstructions using regularized IPA and Fienup algorithm
with (C) or without (UC) aberrations correction. The reconstructions are presented in
real part an imaginary part. A reconstruction is compared with the back-propagation
of the estimated Mie model without aberration estimation (BPMie-UC) and the back-
propagation of the Mie model with aberration estimation (BPMie-C). Profiles of the
real part and imaginary part at the center of the bead are presented.

When aberrations are not considered in the reconstruction model, the morphological properties385

and quantitativity of the reconstructions are compromised. Indeed, either with Fienup or386

regularized IPA, the bead does not show a circular shape. As the aberrations vary in the387

field of view, the same bead does not have the same shape for each lateral position. The388

back-propagation of the Mie model without aberration illustrates the model error when the389

aberrations are not considered, but the radial symmetry is maintained as the Mie model is based390

on a spherical model. The regularized reconstructions without aberrations do not match with391

this model indicating bias in the estimation of the bead parameters. However, with aberrations392

correction the reconstructions fit the corresponding back-propagated Mie model and have the393

expected geometrical and quantitative properties. It demonstrates that whatever the reconstruction394

algorithm, aberrations should be taken into account to restore accurately the morphological and395

quantitative properties of the sample.396



Taking into account the aberrations in regularized reconstructions has no effect on the397

computational time as the aberrated forward model has the same complexity as angular spectrum398

propagation. In the example of Figure 9, reconstructing a whole field of view (2472 × 3296)399

and considering the spatial evolution of the PSF takes less 10 minutes. These estimations have400

been realized using an Intel Core i9-11950H CPU 2.60GHz with 16GBytes of RAM. This401

computational time can be reduced using GPU.402

5. Conclusion403

In this article, we present a method to estimate the aberrations and thus reduce reconstruction404

errors, by using a more accurate image formation model, in in-line holographic microscopy. This405

method is based on the use of calibration beads. We show that the rigorous and highly constrained406

Mie model can be used to estimate bead parameters and Zernike coefficients at the same time407

with a good precision and repeatability. Moreover, this approach requires only one hologram and408

does not require any assumption on the PSF evolution in the field of view. This calibration step409

could be done sequentially, like standard calibrations or in-situ by inserting calibrated beads in410

the biological sample itself. However, this may depend on the application or on the main origin411

of the aberrations (from the optical setup or from the sample itself). Actually, adding calibration412

beads in the sample has already proven to be useful for autofocusing [23]. In this context, with413

the present method of correction of aberrations, this autofocusing would be even more accurate.414

Once the Zernike coefficients have been estimated, it is then possible to use them in a415

regularized approach framework to reconstruct any biological objects (spherical or not), as long416

as the sparsity constraint required in in-line digital holography is fullfilled. This methodology of417

aberration estimation was applied for the improvement of regularized reconstruction of holograms418

with the in-line holographic microscopy configuration. However, it is also applicable to off-axis419

holography or other coherent imaging techniques or simply used as a calibration method for420

microscopy systems.421

The method proposed here offers interesting perspectives for reconstructing more accurately422

and with more quantitativity the absorption and the phase of the objects of interest, even with423

poorly corrected or misaligned optical systems, non-standard optical configurations (various424

sample media, variable axial position of the objects below the coverslip) and more generally, for425

any non-standard microscopy configurations that may introduce aberrations.426

In this study, we estimated aberrations parameters on a discrete grid. The next step could be to427

interpolate the spatially varying PSF. This PSF can then be used in the image reconstruction step,428

but with a high computational cost. Nevertheless, fast algorithms can be used [45, 46].429

Appendix A : Zernike polynomials430

Zernike polynomials depend on two parameters: the azimuthal angle 𝜙 = arctan
(
𝜅𝑦

𝜅𝑥

)
and the

normalized radial distance 𝜌 = 𝜆
NA

√︃
𝜅2
𝑥 + 𝜅2

𝑦 and are defined as follows :

𝑍𝑚
𝑛 (𝜌, 𝜙) =


𝑅
|𝑚 |
𝑛 (𝜌) sin(𝑚𝜙) if 𝑚 > 0

𝑅
|𝑚 |
𝑛 (𝜌) cos(𝑚𝜙) otherwise

where 𝑛 ∈ N, 𝑚 ∈ Z and 𝑅𝑚
𝑛 (𝜌) is defined as :

𝑅𝑚
𝑛 (𝜌) =

𝑛−𝑚
2∑︁

𝑘=0

(−1)𝑘 (𝑛 − 𝑘)!
𝑘!

[
𝑛+𝑚

2 − 𝑘
]
!
[
𝑛−𝑚

2 − 𝑘
]
!
𝜌𝑛−2𝑘

with 𝑛 ≥ |𝑚 | and 𝑛 − |𝑚 | even.431

432



Because of the numerical aperture, the pupil function is zero out of the disk defined by 𝜌 ≤ 1.433

An illustration of the polynomials is given on Fig. 10 [47].434

Fig. 10. Illustration of the 15 first Zernike polynomials (adapted from [47]).

Appendix B : Theoretical study of the aberration parameters accuracy435

In this appendix, we aim at estimating the achievable precision on each estimated parameter and to436

study the correlation between these parameters. For these purposes, Cramér-Rao Lower Bounds437

(CRLB) and the correlation matrix are computed [48] using our aberrated model 𝒎P presented in438

section 2.1 eq. (1). According to Cramér-Rao inequality, the variance of any unbiased estimator439

𝜻̂ = {𝜁𝑖}𝑖 = {𝝑,𝜶} of the unknown vector parameter 𝜻† is bounded from below by i-th diagonal440

coefficient of the inverse of the Fisher information matrix:441

Var
(
𝜁𝑖
)
≥

[
𝑰−1 (𝜻†)

]
𝑖,𝑖

= 𝜎CRLB
𝜁𝑖

2 (8)

where 𝑰(𝜻†) is the Fisher information matrix. It is linked to the curvature of the cost function in442

the parameters space:443

[𝑰(𝜻)]𝑖, 𝑗 = 𝐸

[����𝜕2DP (𝒅,𝒎P (·))
𝜕𝜁𝑖𝜕𝜁 𝑗

����
𝜻

]
(9)

In the case of white Gaussian noise of standard deviation 𝜎𝜖 , neglecting quantization effect444

and considering a centered model [49] :445

[𝑰(𝜻)]𝑖, 𝑗 =
1
𝜎2
𝜖

∑︁
𝑘

(
𝜕𝒎P (𝑥𝑘 , 𝑦𝑘 , 𝜻)

𝜕𝜁𝑖

𝜕𝒎P (𝑥𝑘 , 𝑦𝑘 , 𝜻)
𝜕𝜁 𝑗

)
(10)

These bounds are computed for a bead at the center of the field of view and for several defocus446

distances with parameters of Table 1 (𝝑 (𝑥 = 0 𝜇𝑚, 𝑦 = 0 𝜇𝑚, 𝑧, 𝑟 = 0.5 𝜇𝑚, 𝑛 = 1.58)).447



As the aberrations happen to be quite low in our case, the accuracy study has been performed448

with Zernike coefficient set to zero. Thus, the accuracy on the Zernike coefficents has been449

studied around a zero value.450

Figure 11 illustrates the evolution of the CRLB with the propagation distance 𝑧 (i.e. the lower451

bound variance of each parameter versus 𝑧 value).452

These CRLB have been computed considering 𝜎𝜖 constant and using numerical derivatives.453

For most parameters the best accuracy is obtained for defocus distances between 10 and 15 𝜇𝑚.454

In this study, the defocus distance 𝑧 = 12𝜇𝑚 was considered.455

Fig. 11. Evolution of Cramér-Rao Lower Bounds on each parameter as a function of
𝑧. The experimental parameters of the model are given in Table 1. These CRLB have
been computed for a hologram without aberrations.

The correlation matrix 𝚺 is obtained by:456

𝚺𝑖, 𝑗 (𝜻) =

[
𝑰−1 (𝜻)

]
𝑖, 𝑗

𝜎CRLB
𝜁𝑖

.𝜎CRLB
𝜁 𝑗

(11)

Table 6 shows this correlation matrix for the selected seventeen parameters. Coefficients below457

0.05 are set to zero for a better visualization.458

The correlation matrix indicates strong correlations between several parameters. Unsurprisingly,459

𝑟 and 𝑛 are highly correlated as the phase shift induced by a an object depends on the product of460

these two parameters and the phase shift has a strong effect on the propagation. It is interesting461

to notice that coma coefficients represented by 𝛼−1
3 and 𝛼1

3 are highly correlated with 𝑥 and462

𝑦. Therefore, ignoring the coma aberration could lead to lateral shifts in the reconstructions.463

Correlations between 𝛼−4
2 and 𝛼−2

2 , 𝛼0
4 and 𝛼0

2 or 𝛼2
4 and 𝛼2

2, may lead to misestimations of464

these coefficients. This is studied in section 4.1 on simulation experiments. However, it would465

be probably worse not to take them into account because that would systematically introduce466

errors in the model. Most of the other coefficients of the correlation matrix are low or null467

and the corresponding parameters can then be considered as decorrelated. Because of the high468



𝑥 𝑦 𝑧 𝑟 𝑛 𝛼−2
2 𝛼0

2 𝛼2
2 𝛼−3

3 𝛼−1
3 𝛼1

3 𝛼3
3 𝛼−4

4 𝛼−2
4 𝛼0

4 𝛼2
4 𝛼4

4

𝑥 1 0 0 0 0 0 0 0 0 -0.89 0 0 0 0 0 0 0

𝑦 0 1 0 0 0 0 0 0 0 0 -0.89 0 0 0 0 0 0

𝑧 0 0 1 0.24 -0.13 0 -0.49 0 0 0 0 0 0 0 -0.39 0 0

𝑟 0 0 0.24 1 -0.85 0 -0.13 0 0 0 0 0 0 0 0 0 0

𝑛 0 0 -0.13 -0.85 1 0 0.22 0 0 0 0 0 0 0 0.05 0 0

𝛼−2
2 0 0 0 0 0 1 0 0 0 0 0 0 0 0.72 0 0 0

𝛼0
2 0 0 -0.49 -0.13 0.22 0 1 0 0 0 0 0 0 0 0.92 0 0

𝛼2
2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0.72 0

𝛼−3
3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

𝛼−1
3 -0.89 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

𝛼1
3 0 -0.89 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

𝛼3
3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

𝛼−4
4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

𝛼−2
4 0 0 0 0 0 0.72 0 0 0 0 0 0 0 1 0 0 0

𝛼0
4 0 0 -0.39 0 -0.05 0 0.92 0 0 0 0 0 0 0 1 0 0

𝛼2
4 0 0 0 0 0 0 0 0.72 0 0 0 0 0 0 0 1 0

𝛼4
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 6. Correlation matrix of the 5 beads parameters and 12 Zernike coefficients.
High correlation or anti-correlations are represented in red, moderate correlation or
anti-correlations in yellow, low correlations or anti-correlations in green.

correlation values in the correlation matrix, all parameters must be estimated at the same time to469

prevent estimation errors.470
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