Dog behaviours in veterinary consultations: Part I. Effect of the owner's presence or absence
 \author{ C Girault, Nathalie Priymenko, M Helsly, C Duranton, F Gaunet

}

To cite this version:

C Girault, Nathalie Priymenko, M Helsly, C Duranton, F Gaunet. Dog behaviours in veterinary consultations: Part I. Effect of the owner's presence or absence. the Veterinary journal, 2022. hal03829678

HAL Id: hal-03829678

https://hal.science/hal-03829678

Submitted on 25 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Original Article

Dog behaviours in veterinary consultations: Part I. Effect of the owner's presence or absence.

C. Girault ${ }^{\text {a* }}$, N. Priymenko ${ }^{\text {b }}$, M. Helsly ${ }^{\text {a }}$, C. Duranton ${ }^{\text {c,d }}$, F. Gaunet ${ }^{\text {d }}$
${ }^{\text {a }}$ Ecole Nationale Vétérinaire de Toulouse, ENVT, 23 chemin des Capelles, BP 87614, 31076 Toulouse Cedex, France
${ }^{\mathrm{b}}$ TOXALIM, Université de Toulouse, INRA, ENVT, 23 chemin des Capelles, BP 87614, 31076 Toulouse cedex, France
${ }^{\text {c }}$ AVA Association, Cuy-Saint-Fiacre, France
${ }^{\mathrm{d}}$ Laboratoire de Psychologie Cognitive, AMU, CNRS, Fédération 3C Aix-Marseille Université, UMR 7290, Marseille, France

[^0]
Abstract

Veterinary practices can be stressful places for dogs. Decreasing stress during veterinary consultations is therefore a major concern, since animal welfare matters both for owners and veterinarians. Stress can be expressed through behaviour modifications; monitoring dogs’ behaviour is thus one way to assess stress levels. We also know that the owner can affect dog behaviour in different ways. The aim of this study was therefore to assess the effect of the presence of owners on the behaviour of their dogs in veterinary consultations. We studied 25 dogs-owner dyads at two standardised veterinary consultations, conducted at intervals of five to seven weeks; the owner was present for the first consultation and absent for the second ($\mathrm{O} / \mathrm{NoO}$ group, $\mathrm{n}=12$), or vice versa ($\mathrm{NoO} / \mathrm{O}$ group, $\mathrm{n}=13$). A consultation consisted in three phases: exploration, examination, greeting. Dog behaviours were compared between the two conditions using a video recording.

Despite some limitations (e.g. no male owners, the exclusion of aggressive dogs, a limited sample size, minimally invasive veterinary examinations, restricted owner-dog interactions), our results showed that the presence or absence of the owner had no significant effect on the stress-related behaviour of the dog or the veterinarian's ability to handle the animal during the examination phase $(P>0.05)$. Nevertheless, the behaviour of the dogs towards people was affected before, during, and after the veterinary examination: in the presence of their owner, dogs were more willing to enter the consultation room ($P>0.05$); they appeared more relaxed during the exploration phase ($P>0.05$); and they seemed less eager to leave the room after the examination $(P>0.1)$. During the examination, dogs looked in direction of their owner in both condition (respectively owner present and behind the door; $P>0.05$). These results suggest that allowing the owner to stay in the room during veterinary consultations is a better option for dogs' welfare.

Keywords: Dog Behaviour; Owner Presence; Owner Absence; Stress; Veterinary Consultation.

Introduction

Improving animal welfare during veterinary consultations is a key concern of veterinarians, researchers and owners alike. Dogs frequently experience stress in these situations (Lind, 2017; Edwards, 2019) which can be assessed by monitoring behaviour (Beerda et al., 1997; Maximino et al., 2010; Koolhaas et al., 2011), for example, when entering the veterinary practice (Stanford, 1981; Mariti et al., 2017), during time spent in the waiting room (Mariti et al., 2015; Csoltova et al., 2017; Mariti et al., 2017), and during the examination itself (Döring et al., 2009; Mariti et al., 2017). In a study by Döring et al. (2009), 80% of dogs showed stress-related behaviours on the examination table: 56.3% panted, 61.5% shivered, and 71.9% displayed avoidance behaviour. Glardon et al. (2010) found that around 25% of dogs could not be handled during the examination. Studies also report physiological signs of stress, such as increased plasma cortisol levels, pulse rates, and blood pressure (Kallet et al., 1997; Vonderen et al., 1998).

Chronic stress can cause impaired welfare which has negative effects on health, leading to reduced immune system performance (Herbert and Cohen, 1993; Stowell et al., 2001; Gimsa et al., 2018), increased tumours (Riley, 1975; Dai et al., 2020), and premature aging (Epel et al., 2004). Acute stress, as expected in veterinary consultations, can lead to dysregulation of the stress system if it is extremely intense or recurrent (Chrapusta et al., 1997; De Kloet et al., 2005; Vaessen et al., 2015). Stress also modifies the behaviour of dogs and may increase aggression. When faced with a threatening situation, dogs tend to react in three different ways: freeze; fight; and/or flight (Bracha, 2004). Aggression is dangerous for veterinarians and owners: in Australia in 2006, 48% of veterinarians declared that they had been bitten by a dog at work between one and five times in the previous 12 months (Fritschi et al., 2006).

The ways in which dogs tend to react depend on their temperament (Goodloe and Borchelt, 1998; Serpell and Hsu, 2001; Svartberg, 2002; Bray et al., 2017); coping style (Koolhaas et al., 1999; Horváth et al., 2007; Diverio et al., 2017); genetics (Wilsson and Sundgren, 1997; Saetre et al., 2006; Meyer et al., 2012; Arvelius et al., 2014; Persson et al., 2015); and previous experiences (Seligman et al., 1979; Döring et al., 2009; Douglas et al., 2012). According to Döring et al. (2009), even one past aversive experience increases stressrelated behaviour in dogs, thus modifying their behaviour at future visits to the veterinarian.

Many factors can be stressful for dogs in a veterinary practice (Edwards, 2019): transportation between home and the practice (Beerda et al., 1997); the novelty of the place (Beerda et al., 1997); the "white coat effect" (Kallet et al., 1997; Belew et al., 1999); the presence of new people and animals (Scotney, 2010); and unusual sounds and bustle (Beerda et al., 1997; Wells et al., 2002). Even smells such as those released by stressed people and animals can be stressful for dogs (Graham et al., 2005; Siniscalchi et al., 2011; Siniscalchi et al., 2016). In addition, dogs can be fearful when entering a veterinary practice due to previous experiences (Döring et al., 2009; Ziv, 2017). Veterinarians may also use gestures or postures that are stressful for dogs (Mariti et al., 2017; Edwards, 2019), such as bending over them (Vas et al., 2005; Győri et al., 2010; McGreevy et al., 2012); touching them (Payne et al., 2015); placing them on the examination table (Döring et al., 2009); restraining them by force (Beerda et al., 1997); holding their collar or closing their mouth (Kuhne et al., 2014); looking at them directly in the eyes (Győri et al., 2010); or bringing their face close to the dog's head (Rezac et al., 2015). As a result, veterinary practices may be fearful places for dogs.

Other stressful factors originate from the owner (Lind, 2017). Studies focused on dogowner attachment have shown that dogs can behave differently depending on whether their owner is present or absent (Topál et al., 1998). In particular, when dogs are left in a novel place without a familiar caregiver, they show higher activity (Tuber et al., 1996); higher glucocorticoid levels (Tuber et al., 1996; Palestrini et al., 2005); higher heart rate levels (Palestrini et al., 2005); and higher anxiety (Prato-Previde et al., 2003; Palestrini et al., 2005; Parthasrathy and Crowell-Davis, 2006), even if an unknown person is present (Parthasrathy and Crowell-Davis, 2006). Miklosi et al. (2003) showed that dogs looked at their owner when facing an unsolvable task, and Kerepesi et al. (2015) demonstrated that dogs moved closer to their owner but not towards other individuals, even familiar ones, in situations provoking anxiety or fear. Other studies have shown that dogs react in the same way as their owner when confronted with a strange object (Merola et al., 2012) or an unknown person (Duranton et al., 2016).

Owners can thus potentially modify the behaviour of their dog in a veterinary consultation. This hypothesis has been observed anecdotally by veterinarians in the field. Some believe that the very presence of owners can calm down their dog, whereas others maintain that dogs are easier to handle in the absence of their owner. Only a study by Stellato et al. (2020) focused on this question, and showed positive effects of owner presence on behavioural and physiological measures of fear in dogs during veterinary consultation.

In Part I of our study, we examined the effect of owner presence or absence on the behaviours of dogs during a veterinary consultation, regardless of the owners' actions. Based on the abovementioned literature, we expected the owner's presence to decrease stress-related behaviours of dogs during the veterinary examination and hence facilitate their handling by
the veterinarian. In Part II of the study (see Helsly et al., under review), using the raw data from consultations with the owner present, we explored whether owners' actions affect dog behaviours by observing dog-owner dyads.

Materials and methods

Participants

A total of 32 dog-owner dyads were recruited. Four dogs were excluded due to the owner's withdrawal between the two appointments, another one due to aggressive behaviour and two due to protocol deviation. The final study included 25 owner-dog dyads. All participants were volunteers and were recruited via social media. The owners (all women) and dogs meeting the following criteria were selected: adult dogs between 12 months and 10 years old and unfamiliar with the researchers, measuring less than 70 cm at the withers in order to be easily lifted and examined on the table, in good general health, and nonaggressive towards humans to avoid the use of a muzzle that could modify their behaviour; owners not working as a veterinarian, assistant, or veterinary student.

Participant demographics are shown in Table 1.

Experimental procedure

The study protocol was approved by the ethical committee SSA (Science et Santé Animale) $n^{\circ} 115$ (SSA_2018_008) on 18 July 2018. The experiment took place in an examination room at the National Veterinary School of Toulouse (ENVT), France (Fig. 1). All dogs underwent two videotaped veterinary consultations at an interval of five to seven weeks (Table 1), one in the presence of their owner and the other in their absence. Prior to each consultation, all owners were told how to behave with their dogs. The veterinary consultations were all carried out by the same two researchers: two female veterinary
students, one in the role of the veterinarian (C. G.) and the other in the role of the assistant (M. H.). During the consultations, the researchers conducted the veterinary examination using as neutral a disposition as possible: the researchers stayed still and did not talk to the dogs, pet them, make eye contact with them, or punish them. The veterinary consultation was divided into three main phases: phase 1: exploration; phase 2: examination; and phase 3: greeting. We consider a "consultation" to include all events between the times when the dog entered and exited the examination room, whereas an "examination" includes only the phase where the dog was examined (see "Standardised protocol for the veterinary consultations" below). Dogs were randomly distributed into two groups using $\mathrm{AB} / \mathrm{BA}$ crossover design: in the $\mathrm{O} / \mathrm{NoO}$ group ($n=12$), the owner was present for the first veterinary consultation and absent for the second, and vice versa in the NoO/O group ($n=13$). Consultations were arranged by appointment according to the availability of owners.

Raw data collected for this study was also used in Part II (Helsly et al., under review). Part II only focuses on data collected during consultations with the owner present. Four additional dogs were included in Part II but not in Part I because the dyads did not attend the second consultation with the owner absent.

Data collection and analysis

Consultations were videotaped from when the dog entered the consultation room until the end of the greeting phase. We used two cameras (a Canon Legria HF S21 and a Panasonic HC-WX970 with a Panasonic vW-W4907H wide-viewing angle) situated in two corners of the room and facing the examination table. The recorded videos from the two cameras were synchronised and assembled into a single video (Fig. 1).

The variables we studied, described below, differed depending on the phase of the consultation. A summary of all studied variables and their availability for the three phases is described in Appendix B: Supplementary material. Dog behaviour was analysed using the Solomon Coder beta 17.03 .22 program 1 and the behavioural repertoire adapted from the literature (Beerda et al., 1998; Mills et al. 2006; Deldalle and Gaunet, 2014; Csoltova et al., 2017; see Table 2). Stress-related behaviours are described in Table 2. As the phase durations were variable, the durations of behaviours were converted into a time percentage (behaviour duration/phase duration) for all behaviours. Behavioural indices were further computed as detailed in Table 3. The Emotional State of the dog is a subjective rate assessing stress, scored by using a three-point scale defined as follows: relaxed, aroused, anxious, see definitions in Table 4. The dogs' apparent comfort in entering the room and the greeting intensity of the dogs towards their owner and of owners towards dogs were evaluated using a five-point scale defined in Table 5. The level of physical restraint was scored using a three-point scale defined as follows: low, medium, high. All definitions are given in Table 6 . The success and difficulty of the manipulations were evaluated using a scale defined in Table 7.

Standardised protocol for the veterinary consultations

Owner: present condition
Exploration phase (phase 1): The owner entered the room with her dog on a leash and sat on a chair (Fig. 2). The leash was dropped, and the dog explored the room freely for 2 minutes and 30 seconds. Neither the owner nor the researcher spontaneously interacted with the dog; the owner could nevertheless respond to the dog's requests (physical, verbal and visual interactions were allowed). The researchers asked questions similar to those asked in a standard veterinary consultation.

[^1]Examination phase (phase 2): The dog was put on the examination table by the researchers; the owner stood one metre away from the table in a designated spot, facing the dog. The veterinarian began a standardised veterinary examination following this predefined sequence: examination of eyes; ears; teeth; mouth mucosa; palpation of lymph nodes;
examination of scapular skin fold; abdominal palpation; heart and lung auscultation; measurement of rectal temperature; and paw palpation. The assistant held the dog using a standardised restraint (Fig. 3): one hand on the chest and another on the base of the tail, using the minimal necessary strength to keep the dog sitting or standing on the table. If a particular manipulation failed because the dog was not cooperative for five seconds (for example, the dog struggled, resisted, or tried to escape), the veterinarian did not repeat the manipulation and continued with the next one. During the examination phase, the owner was only allowed to talk to or look at her dog (verbal and visual interactions were allowed). If the dog showed any sign of aggression toward the researchers or behaviour endangering them (for example, growling, showing teeth, or trying to bite), the procedure was terminated, and the dog was excluded from the study.

Greeting phase (phase 3): This phase started when the dog was on the floor and the owner in the room and lasted exactly 20 second. The dog was indeed taken down from the table by the researchers, and the leash was given back to the owner. The researchers then stepped aside and filled in forms in order to allow the owner and the dog to interact freely (physical, verbal and visual interactions were allowed).

Owner: absent condition

The procedure was the same as with 'Owner: present condition', except that the owner waited outside the room during the exploration and examination phases and only entered the room for the greeting phase. During the exploration phase, the owner accompanied the dog to the open door, gave the leash to the assistant and was free to interact with the dog in order to encourage the dog to enter the room. The dog explored the room freely for 2 minutes and 30 seconds while still on the leash. During this phase, the researchers did not interact with the dog and spoke in a neutral tone. The procedure of the examination phase was the same as described in 'Owner: present condition'. During the greeting phase, the dog was taken down from the table by the researchers. Then, the assistant went outside to fetch the owner, and the leash was given back to the owner when she came back in the room without specific instructions. The end of this phase was the same as described in 'Owner: present condition' after having given the leash back to the owner.

Interobserver agreement

Three assessors participated in the video analysis. The two researchers coded all the behaviours in all the videos: half of the behaviours were coded by one researcher and the other half by the second researcher. To assess the reproducibility of the behavioural analysis, a third assessor who was unaware of the study hypotheses and aims coded 30% of the behaviours in a random subset of 30% of the videos. Considering that a concordance, and not only a correlation, was needed to assess the interobserver reproducibility, Lin's concordance correlation test was used (Lawrence et al., 1989; Barnhart et al., 2002; Barnhart et al., 2007). Interobserver agreement between the two assessors was determined by calculating ρC values and rated according to Landis and Koch (1977) ($\rho C=0-0.2$: slight agreement, $\rho C=0.21$ 0.4: fair agreement, $\rho C=0.41-0.60$: moderate agreement, $\rho C=0.61-0.8$: substantial agreement, $\rho C>0.81$: excellent agreement). Lin's concordance correlation coefficients were
excellent ($\rho C>0.98$) for whining, tail between the legs, and moving and gazing at the owner, and substantial for contact with the assistant $(\rho C=0.71)$ and sniffing ($\rho C=0.69$). Physical restraint was evaluated by the assistant, the success and difficulty of the manipulations were assessed by the veterinarian, and the other scores were rated by the three assessors.

Statistical analysis

The exploration, examination, and greeting phases were analysed separately.
Comparisons were carried out for each behaviour or behavioural index with the owner absent or present conditions. A paired Student's t test was performed for the $\mathrm{O} / \mathrm{NoO}$ and $\mathrm{NoO} / \mathrm{O}$ groups using R software ${ }^{2}$.

Results

On average, the exploration phase lasted 155.43 ± 9.54 seconds and the examination phase 142.53 ± 16.4 seconds. The greeting phase, standardised in the study, lasted 20 seconds. The sample is described in Appendix A: Supplementary material.

Exploration phase (phase 1)

Entering the room
Dogs appeared to enter the room more readily when the owner was present rather than absent, and the difference was significant ($P<0.05$; see Table 8 , Video 1).

Emotional state

Dogs had a significantly lower score for emotional state during the exploration phase when the owner was present rather than absent $(P<0.05$; see Table 8 , Video 2$)$.

[^2]
Examination phase (phase 2)

Stress-related behaviour
No differences were observed regarding the stress-related behaviours or Total Stress (defined in Table 3) during the examination phase in the presence or absence of the owners ($P>0.05$).

Behaviour towards the veterinarian and assistant
The dogs' contact with the veterinarian and/or assistant lasted significantly longer during the examination phase if the owner was present rather than absent ($P<0.05$; Table 9).

Behaviour (gaze) towards the owner and/or door
During the examination phase, dogs looked straight ahead toward the assigned place of the owner significantly more if the owner was present rather than absent. ($P<0.05$; Table 9, Video 3). Furthermore, dogs looked at the door significantly less when their owner was present rather than absent ($P<0.05$; Video 3).

Dogs' handling
No difference was observed regarding the restraint and the success and difficulty scores of manipulations in the presence or absence of the owners ($P>0.05$).

Greeting phase (phase 3)

Intensity of greeting
When the dog and owner were reunited after the examination phase, dogs greeted their owners for a significantly shorter period of time ($P<0.05$) and showed a lower reunion score
($P<0.05$) if the owner was present rather than absent during the examination phase (Video 4). Nevertheless, the scores of owner behaviour towards their dog were similar regardless of whether the owner was present or not in the previous phase ($P>0.05$).

Door-directed gaze

Finally, dogs gazed at the door slightly less often when the owner was present rather than absent ($P<0.1$; Table 10, Video 5).

Discussion

This experiment aimed at investigating whether the presence or absence of a dog's owner influences dogs' behaviours in veterinary consultations. Overall results suggest that allowing the owner to stay in the room during veterinary consultations is a better option for dogs' welfare: During the exploration phase, in the presence of their owner, dogs were more willing to enter the consultation room and appeared more relaxed. During the examination phase, dogs looked in direction of their owner in both condition: when their owner was present (standing in front of the dog), dogs looked straight ahead more often and at the door less often than in the absence of their owner. When the owner was absent (she had left the room through the door), the dogs looked at the door more often and less straight ahead than in the presence of the owner. Physical contacts engaged by dogs with the researchers lasted longer when their owners were present rather than absent. Our results also indicate that the presence or absence of the owner had no significant effect on the stress-related behaviour of the dog or the veterinarian's ability to handle the animal during the examination phase. Finally, during the greeting phase, our results showed that the dogs exhibited less greeting behaviour and tended to look at the door less often if the owner had never left the room than if the owner had been absent.

Only a study by Stellato et al. (2020) focused on the effect of the presence or absence of the owner on dog behaviour in veterinary practices, comparing two standardized veterinary consultation with owner present or absent. They showed that dogs had a lower rate of vocalisation, higher rate of yawning and lower mean axillary temperature in the presence of the owner. Thus, they encouraged owner to remain with their dog during routine veterinary examination. Note that we did not find such a difference for vocalisation and yawning, but we did find significant differences for other parameters. A study by Csoltova et al. (2017) focused on the active or passive support of the owner during veterinary examinations. The authors compared behavioural and physiological measures of dogs during a veterinary examination in two conditions: the active presence of the owner (talking and petting), and the passive presence of the owner (sitting quietly next to the examination table). They found heart rate and internal temperature variations showing a beneficial effect of dog-owner interaction on the dogs' well-being but no significant behavioural changes. As mentioned in the introduction, owners can have various effects on the behaviour of their dog. Studies have shown that dogs adjust their behaviour to their owner's overall emotional body posture (Vas et al., 2005; Custance and Meyer 2012), to the owner's behaviours (Millot, 1994; Merola et al., 2012; Horn et al., 2012; Duranton and Gaunet, 2015); and to the owner's facial expressions (Deputte and Doll, 2011). Other studies detailed in Part II have shown that physical contact does not have the same effect on dog behaviour as talking (Helsly et al., under review). The effect of the presence of the owner is thus hard to accurately predict, as it can depend on the owner's behaviour and mood.

In the present study, several elements can explain the absence of any significant differences in stress-related behaviours during the examination phase. First, physical contact
between the owners and dogs was not allowed during the examination phase to control parameters not being studied. Yet the Csoltova study showed a beneficial effect of contact during veterinary examinations, and other studies detailed in Part II have shown that talking and physical contact do not have the same effect (Helsly et al., under review). Another element in our study involved the subjective evaluation of stress (emotional state). This evaluation showed higher levels of stress during the exploration phase (phase 1) when the owner was absent than when the owner was present. In contrast, during the examination phase (phase 2), no difference was found in the subjective evaluation by the judges (emotional state) or the video analyses (stress-related behaviours). A study by Firnkes et al. (2017) demonstrated that some stress-related behaviours ("licking of lips" and "looking away") decrease even though the stressor intensity increases. We thus postulate that the dogs reached a high threshold of stress in the 'Owner: absent condition' that prevented them from displaying additional stress-related behaviours. Potentially, too many stressors may hide the display of stress-related behaviour at some point. Alternatively, the absence of any difference may show that dogs are not actually more stressed when the owner is absent during a veterinary examination. In the examination phase, dogs engaged in more physical contact with the researchers when their owner was present than when their owner was absent. This engagement with researchers suggests that in an interventionist situation, if we had imposed physical contact on the dogs to keep them on the table, the presence of the owner would act as a social reference for the dog towards the veterinarian and assistant. That is, the presence of the owner could help dogs to handle this difficulty. Even if no significant differences were shown in terms of stress-related behaviours during examination phase, other results suggest that the owner does play a role. For instance, dogs looked in the direction of their owner both in the absence and in the presence of the owner. This also highlights the importance of the owner's presence to help dogs to deal with the situation (e.g. social referencing in Merola et
al., 2012; Duranton et al., 2016; Salamon et al., 2020; and also Part II (Helsly et al., under review, for additional information). Furthermore, greeting behaviours during the two reunion conditions differed. Once dogs were placed back on the floor and the leash was given back to the owner, dogs showed more greetings when the owner came back than when the owner had never left the room. This is in accordance with studies showing that greeting behaviour is more marked when dogs spend a stressful time without their owner (Konok et al., 2011; Rehn and Keeling, 2011). Dogs tended to look at the door more often during the greeting phase when the owner had come back than when the owner had never left. Dogs are known to look at a desirable object (Gaunet, 2008; Gaunet, 2010; Gaunet and Deputte, 2011), and thus they may have been more motivated to leave the room when their owner was absent, since the time they spent in the room was more stressful, in accordance with the emotional state evaluation during the exploration phase. Finally, the presence of the owner had no detrimental effect but some beneficial effects on dogs. Dogs were neither more stressed nor more difficult to handle during examination phase and appeared less stressed during the exploration phase. In conclusion, the presence of owners appears to be more beneficial than their absence during veterinary examinations.

Our sample size was small, the veterinary examination was minimally invasive; puppy, old dogs and dogs measuring more than 70cm were not included and aggressive dogs were excluded from our study for safety reasons. Glardon et al. (2010) estimated that 16% of dogs display aggressive behaviour during veterinary examinations. If these dogs had been included in the study, the results may have been different, since aggressive dogs are less tolerant of manipulations. Furthermore, the manipulations used in this study were standard but minimally invasive. Dogs' tolerance of manipulation would have differed if we had employed more invasive or painful procedures (Holton et al., 2001; Hansen, 2003), and the presence or
absence of the owner could have had a different effect in these cases. Owner and researcher behaviour could have differed from a real-life scenario, as owners were not allowed to touch their dogs during the examination phase, and researchers kept a neutral disposition and did not initiate interaction toward dogs or respond to their requests for attention. In addition, the dogs involved in the current study were healthy and did not need any invasive manipulation. Owners may be more stressed in a real veterinary examination and therefore have a different effect on dog behaviour than in the controlled experimental conditions. Furthermore, while it has been shown that dogs react differently to men and women, we were not able to study the gender effects of owners and researchers on the dogs' behaviours, as both the owners and researchers were all women (Hennessy et al., 1998; Wells and Hepper, 1999; Deputte and Doll, 2011). In the present study, we focused on canine behaviour, although physiological measures such as plasma or salivary cortisol, heart rate, and infrared thermography can also be used. These measures could provide additional information about the stress experienced by dogs during veterinary consultations and help highlight the differences that cannot be observed by behaviour analysis alone, such as behaviours with high interindividual variation (Firnkes et al., 2017). We thus encourage further studies to focus on neurochemical and physiological differences in conjunction with behavioural differences, to use a larger sample of dogs and to study gender effect.

Conclusions

In summary, despite some limitations (e.g. no male owners, no dog above 70 cm , no old dogs nor puppies, no aggressive dogs, 25 dogs by condition, minimally invasive examinations, restricted owner-dog interactions), the current study shows that the presence of the owner in veterinary consultations (constituted by exploration, examination and greeting phases) may help to reduce the stress-related behaviours of dogs before veterinary
examinations. During examination phase, dogs looked at their owners and appear to seek social information from owner, whereas when their owners were absent, they looked for them. Behaviours like greeting their owners and door-related behaviours suggest that even if no significant differences were shown for stress-related behaviours in terms of the absence or presence of owners, dogs were less stressed during examination phase when their owner was present. Given these results, it seems more appropriate to allow owners to attend veterinary examinations with their dog, as only positive effects were observed in terms of the dogs' behaviour and well-being, in spite of the previously mentioned limitations.

Conflict of interest statement

None of the authors has any financial or personal relationships that could inappropriately influence or bias the content of the paper.

Acknowledgements

We are grateful to Elodie Losserand who helped us during the study. We thank all the dog owners who voluntarily participated in this study. We are also grateful to Caniplex, Bagat-enQuercy, France, for providing thank-you gifts to all the volunteers. Preliminary results were presented during a confidential veterinary thesis defence at the Ecole Nationale Vétérinaire de Toulouse on 13 December 2017.

Supplementary material

Supplementary data associated with this article can be found, in the online version, at doi: ...

References

Arvelius, P., Asp, H.E., Fikse, W.F., Strandberg, E., Nilsson, K. 2014. Genetic analysis of a temperament test as a tool to select against everyday life fearfulness in Rough Collie. Journal of Animal Science 92, 4843-4855.

Barnhart, H.X., Haber, M., Song, J., 2002. Overall concordance correlation coefficient for evaluating agreement among multiple observers. Biometrics 58, 1020-1027.

Barnhart, H.X., Haber, M.J., Lin, L.I., 2007. An overview on assessing agreement with continuous measurements. Journal of Biopharmaceutical Statistics 17, 529-69.

Beerda, B., Schilder, M.B., Van Hooff, J.A., De Vries, H.W., 1997. Manifestations of chronic and acute stress in dogs. Applied Animal Behaviour Science 52, 307-319.

Beerda, B., Schilder, M.B., Van Hooff, J.A., De Vries, H.W., Mol, J.A., 1998. Behavioural, saliva cortisol and heart rate responses to different types of stimuli in dogs. Applied Animal Behaviour Science 58, 365-381.

Belew, A.M., Barlett, T., Brown, S.A., 1999. Evaluation of the white-coat effect in cats. Journal of Veterinary Internal Medicine 13, 134-142.

Bracha, H.S., 2004. Freeze, flight, fight, fright, faint: Adaptationist perspectives on the acute stress response spectrum. CNS Spectrums 9, 679-685.

Bray, E.E., Sammel, M.D., Cheney, D.L., Serpell, J.A., Seyfarth, R.M. 2017. Effects of maternal investment, temperament, and cognition on guide dog success. Proceedings of the National Academy of Sciences 114, 9128-9133.

Chrapusta, S. J., Wyatt, R. J., Masserano, J. M., 1997. Effects of single and repeated footshock on dopamine release and metabolism in the brains of Fischer rats. Journal of Neurochemistry 68, 2024-2031.

Csoltova, E., Martineau, M., Boissy, A., Gilbert, C., 2017. Behavioral and physiological reactions in dogs to a veterinary examination: Owner-dog interactions improve canine well-being. Physiology and Behavior 177, 270-281.

Custance, D., Mayer, J., 2012. Empathic-like responding by domestic dogs (Canis familiaris) to distress in humans: an exploratory study. Animal Cognition 15, 851-859.

Dai, S., Mo, Y., Wang, Y., Xiang, B., Liao, Q., Zhou, M., Zeng, Z., 2020. Chronic stress promotes cancer development. Frontiers in Oncology 10, 1492.

De Kloet, E. R., Joëls, M., Holsboer, F., 2005. Stress and the brain: from adaptation to disease. Nature Reviews Neuroscience 6, 463-475.

Deldalle, S., Gaunet, F., 2014. Effects of 2 training methods on stress-related behaviors of the dog (Canis familiaris) and on the dog-owner relationship. Journal of Veterinary Behavior: Clinical Applications and Research 9, 58-65.

Deputte, B.L., Doll, A., 2011. Do dogs understand human facial expressions? Journal of Veterinary Behavior: Clinical Applications and Research 1, 78-79.

Diverio, S., Menchetti, L., Riggio, G., Azzari, C., Iaboni, M., Zasso, R., Santoro, M.M. 2017. Dogs' coping styles and dog-handler relationships influence avalanche search team performance. Applied Animal Behaviour Science 191, 67-77.

Döring, D., Roscher, A., Scheipl, F., Küchenhoff, H., Erhard, M.H., 2009. Fear-related behaviour of dogs in veterinary practice. The Veterinary Journal 182, 38-43.

Douglas, C., Bateson, M., Walsh, C., Bédué, A., Edwards, S.A., 2012. Environmental enrichment induces optimistic cognitive biases in pigs. Applied Animal Behaviour Science 139, 65-73.

Duranton, C., Gaunet, F., 2015. Canis sensitivus: Affiliation and dogs' sensitivity to others' behavior as the basis for synchronization with humans? Journal of Veterinary Behavior: Clinical Applications and Research 10, 513-524.

Duranton, C., Bedossa, T., Gaunet, F., 2016. When facing an unfamiliar person, pet dogs present social referencing based on their owners' direction of movement alone. Animal Behaviour 113, 147-156.

Edwards, P.T., Smith, B.P., McArthur, M.L., Hazel, S.J., 2019. Fearful fido: Investigating dog experience in the veterinary context in an effort to reduce distress. Applied Animal Behaviour Science 213, 14-25.

Epel, E.S., Blackburn, E., Lin, J., Dhabhar, F.S., Adler, N.E., Morrow, J.D., Cawthon, R.M., 2004. Accelerated telomere shortening in response to life stress. Proceedings of the National Academy of Sciences of the United States of America 101, 17312-17315.

Firnkes, A., Bartels, A., Bidoli, E., Erhard, M., 2017. Appeasement signals used by dogs during dog-human communication. Journal of Veterinary Behavior: Clinical Applications and Research 19, 35-44.

Fritschi, L., Day, L., Shirangi, A., Robertson, I., Lucas, M., Vizard, A., 2006. Injury in Australian veterinarians. Occupational Medicine 56, 199-203.

Gaunet, F., 2008. How do guide dogs of blind owners and pet dogs of sighted owners (Canis familiaris) ask their owners for food? Animal Cognition 11, 475-483.

Gaunet, F., 2010. How do guide dogs and pet dogs (Canis familiaris) ask their owners for their toy and for playing? Animal Cognition 13, 311-323.

Gaunet, F., Deputte, B. L., 2011. Functionally referential and intentional communication in the domestic dog: effects of spatial and social contexts. Animal Cognition 14, 849860.

Gimsa, U., Tuchscherer, M., Kanitz, E., 2018. Psychosocial stress and immunity - what can we learn from pig studies? Frontiers in Behavioral Neuroscience 12, 64.

Glardon, J., Hartnack, S., Horisberger, L., 2010. Analyse du comportement des chiens et des chats pendant l'examen physique en cabinet vétérinaire. Schweizer Archiv für Tierheilkunde 152, 69-75.

Godbout, M., Palestrini, C., Beauchamp, G., Frank, D., 2007. Puppy behavior at the veterinary clinic: A pilot study. Journal of Veterinary Behavior: Clinical Applications and Research 2, 126-135.

Goodloe, L.P., Borchelt, P.L., 1998. Companion dog temperament traits. Journal of Applied Animal Welfare Science 1, 303-338.

Graham, L., Wells, D L., Hepper, P.G., 2005. The influence of olfactory stimulation on the behaviour of dogs housed in a rescue shelter. Applied Animal Behaviour Science 91, 143-153.

Győri, B., Gácsi, M., Miklósi, A., 2010. Friend or foe: Context dependent sensitivity to human behaviour in dogs. Applied Animal Behaviour Science 128, 69-77.

Hansen, B.D., 2003. Assessment of pain in dogs: veterinary clinical studies. Institute for Laboratory Animal Research Journal 44, 197-205.

Helsly, M., Priymenko, N., Girault, C., Duranton, C., Gaunet, F. Dog behaviours in veterinary consultations: Part II. The relationship between the behaviours of dogs and owners. Under review.

Hennessy, M.B., Williams, M.T., Miller, D.D., Douglas, C.W., Voith, V.L., 1998. Influence of male and female petters on plasma cortisol and behaviour: can human interaction reduce the stress of dogs in a public animal shelter? Applied Animal Behaviour Science 61, 63-77.

Herbert, T.B., Cohen, S., 1993. Stress and immunity in humans: a meta-analytic review. Psychosomatic Medicine 55, 364-379.

Holton, L., Pawson, P., Nolan, A., Reid, J., Scott, E.M., 2001. Development of a behaviourbased scale to measure acute pain in dogs. The Veterinary Record 148, 525-531.

Horn, L., Virányi, Z., Miklósi, Á., Huber, L., Range, F., 2012. Domestic dogs (Canis familiaris) flexibly adjust their human-directed behavior to the actions of their human partners in a problem situation. Animal Cognition 15, 57-71.

Horváth, Z., Igyártó, B.Z., Magyar, A., Miklósi, Á. 2007. Three different coping styles in police dogs exposed to a short-term challenge. Hormones and Behavior 52, 621-630.

Kallet, A.J., Cowgill, L.D. and Kass, P.H., 1997. Comparison of blood pressure measurements obtained in dogs by use of indirect oscillometry in a veterinary clinic versus at home. Journal of the American Veterinary Medical Association 210, 651654.

Kaminski, J., Neumann, M., Bräuer, J., Call, J., Tomasello, M., 2011. Dogs, Canis familiaris, communicate with humans to request but not to inform. Animal Behaviour 82, 651658.

Kerepesi, A., Dóka, A., Miklósi, Á., 2015. Dogs and their human companions: the effect of familiarity on dog-human interactions. Behavioural Processes 110, 27-36.

Konok, V., Dóka, A., Miklósi, A., 2011. The behavior of the domestic dog (Canis familiaris) during separation from and reunion with the owner: A questionnaire and an experimental study. Applied Animal Behaviour Science 135, 300-308.

Koolhaas, J.M., Korte, S.M., De Boer, S.F., Van Der Vegt, B.J., Van Reenen, C.G., Hopster, H., De Jong I.C., Ruis M.A.W., Blokhuis, H.J., 1999. Coping styles in animals: current status in behavior and stress-physiology. Neuroscience and Biobehavioral Reviews 23, 925-935.

Koolhaas, J. M., Bartolomucci, A., Buwalda, B., de Boer, S. F., Flügge, G., Korte, S. M., Meerloa, P., Murisong, R., Olivier, B., Palanzak, P., Richter-Levine, G., Sgoifok, A., Steimerj, T., Stiedl, O., van Dijkh, G., Wöhrd, M., Fuchs, E., 2011. Stress revisited: a critical evaluation of the stress concept. Neuroscience and Biobehavioral Reviews 35, 1291-1301.

Kuhne, F., Hößler, J. C., Struwe, R., 2014. Emotions in dogs being petted by a familiar or unfamiliar person: Validating behavioural indicators of emotional states using heart rate variability. Applied Animal Behaviour Science 161, 113-120.

Landis, J.R., Koch, G.G., 1977. The measurement of observer agreement for categorical data. Biometrics, 159-174.

Lawrence, I., Lin, L.I., 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 255-268.

Lind, A.K., Hydbring-Sandberg, E., Forkman, B., Keeling, L.J., 2017. Assessing stress in dogs during a visit to the veterinary clinic: Correlations between dog behavior in standardized tests and assessments by veterinary staff and owners. Journal of Veterinary Behavior 17, 24-31.

Mariti, C., Raspanti, E., Zilocchi, M., Carlone, B., Gazzano, A., 2015. The assessment of dog welfare in the waiting room of a veterinary clinic. Animal Welfare 24, 299-305.

Mariti, C., Pierantoni, L., Sighieri, C., Gazzano, A., 2017. Guardians' perceptions of dogs' welfare and behaviors related to visiting the veterinary clinic. Journal of Applied Animal Welfare Science 20, 24-33.

Maximino, C., de Brito, T. M., da Silva Batista, A. W., Herculano, A. M., Morato, S., Gouveia Jr, A., 2010. Measuring anxiety in zebrafish: a critical review. Behavioural Brain Research 214, 157-171.

McGreevy, P.D., Starling, M., Branson, N.J., Cobb, M.L., Calnon, D., 2012. An overview of the dog-human dyad and ethograms within it. Journal of Veterinary Behavior: Clinical Applications and Research 7, 103-117.

Merola, I., Prato-Previde, E., Marshall-Pescini, S., 2012. Social referencing in dog-owner dyads? Animal Cognition 15, 175-185.

Meyer, F., Schawalder, P., Gaillard, C., Dolf, G., 2012. Estimation of genetic parameters for behavior based on results of German Shepherd Dogs in Switzerland. Applied Animal Behaviour Science 140, 53-61.

Miklósi, Á., Kubinyi, E., Topál, J., Gácsi, M., Virányi, Z., Csányi, V., 2003. A simple reason for a big difference: wolves do not look back at humans, but dogs do. Current Biology 13, 763-766.

Millot, J.L. 1994. Olfactory and visual cues in the interaction systems between dogs and children. Behavioural Processes 33, 177-188.

Mills, D.S., Ramos, D., Estelles, M.G., Hargrave, C., 2006. A triple blind placebo-controlled investigation into the assessment of the effect of Dog Appeasing Pheromone (DAP) on anxiety related behaviour of problem dogs in the veterinary clinic. Applied Animal Behaviour Science 98, 114-126.

Palestrini, C., Previde, E.P., Spiezio, C., Verga, M., 2005. Heart rate and behavioural responses of dogs in the Ainsworth's Strange Situation: A pilot study. Applied Animal Behaviour Science 94, 75-88.

Parthasarathy, V., Crowell-Davis, S.L. 2006. Relationship between attachment to owners and separation anxiety in pet dogs (Canis lupus familiaris). Journal of Veterinary Behavior 1, 109-120.

Pastore, C., Pirrone, F., Balzarotti, F., Faustini, M., Pierantoni, L., Albertini, M., 2011. Evaluation of physiological and behavioral stress-dependent parameters in agility dogs. Journal of Veterinary Behavior: Clinical Applications and Research 6, 188-194.

Payne, E., Boot, M., Starling, M., Henshall, C., McLean, A., Bennett, P., McGreevy, P., 2015. Evidence of horsemanship and dogmanship and their application in veterinary contexts. The Veterinary Journal 204, 247-254.

Persson, M.E., Roth, L.S.V., Johnsson, M., Wright, D., Jensen, P., 2015. Human-directed social behaviour in dogs shows significant heritability. Genes, Brain and Behavior 14, 337-344.

Prato-Previde, E., Spiezio, C., Sabatini, F., Custance, D.M. 2003. Is the dog-human relationship an attachment bond? An observational study using Ainsworth's strange situation. Behaviour 140, 225-254.

Rehn, T., Keeling, L.J., 2011. The effect of time left alone at home on dog welfare. Applied Animal Behaviour Science 129, 129-135.

Rezac, P., Rezac, K., Slama, P., 2015. Human behavior preceding dog bites to the face. The Veterinary Journal 206, 284-288.

Riley, V., 1975. Mouse mammary tumors: alteration of incidence as apparent function of stress. Science 189, 465-467.

Saetre, P., Strandberg, E., Sundgren, P.E., Pettersson, U., Jazin, E., \& Bergström, T.F., 2006. The genetic contribution to canine personality. Genes, Brain and Behavior 5, 240-248.

Scotney, R.L., 2010. Environmental enrichment in veterinary practice. The Veterinary Nurse 1, 140-149.

Seligman, M.E., Maier, S.F., Geer, J., 1979. Alleviation of learned helplessness in the dog. In Origins of Madness, Pergamon, 401-409.

Serpell, J.A., Hsu, Y., 2001. Development and validation of a novel method for evaluating behavior and temperament in guide dogs. Applied Animal Behaviour Science 72, 347364.

Siniscalchi, M., Sasso, R., Pepe, A.M., Dimatteo, S., Vallortigara, G., Quaranta, A., 2011. Sniffing with the right nostril: lateralization of response to odour stimuli by dogs. Animal Behaviour 82, 399-404.

Siniscalchi, M., d’Ingeo, S., Quaranta, A., 2016. The dog nose "KNOWS" fear: Asymmetric nostril use during sniffing at canine and human emotional stimuli. Behavioural Brain Research 304, 34-41.

Stanford, T.L., 1981. Behavior of dogs entering a veterinary clinic. Applied Animal Ethology 7, 271-279.

Stellato, A.C., Dewey, C.E., Widowski, T.M., Niel, L., 2020. Evaluation of associations between owner presence and indicators of fear in dogs during routine veterinary examinations. Journal of the American Veterinary Medical Association 257, 10311040.

Stowell, J.R., Kiecolt-Glaser, J.K., Glaser, R., 2001. Perceived stress and cellular immunity: When coping counts. Journal of Behavioral Medicine 24, 323-339.

Svartberg, K. 2002. Shyness-boldness predicts performance in working dogs. Applied Animal Behaviour Science 79, 157-174.

Topál, J., Miklósi, A., Csányi, V., Dóka, A., 1998. Attachment behavior in dogs (Canis familiaris): a new application of Ainsworth's (1969) Strange Situation Test. Journal of Comparative Psychology 112, 219-229.

Tuber, D.S., Hennessy, M.B., Sanders, S., Miller, J.A., 1996. Behavioral and glucocorticoid responses of adult domestic dogs (Canis familiaris) to companionship and social separation. Journal of Comparative Psychology 110, 103-108.

Vaessen, T., Hernaus, D., Myin-Germeys, I., van Amelsvoort, T., 2015. The dopaminergic response to acute stress in health and psychopathology: a systematic review. Neuroscience and Biobehavioral Reviews 56, 241-251.

Vas, J., Topál, J., Gácsi, M., Miklósi, A., Csányi, V., 2005. A friend or an enemy? Dogs’ reaction to an unfamiliar person showing behavioural cues of threat and friendliness at different times. Applied Animal Behaviour Science 94, 99-115.

Vonderen, I.K., Kooistra, H.S. and Rijnberk, A.D., 1998. Influence of veterinary care on the urinary corticoid: creatinine ratio in dogs. Journal of Veterinary Internal Medicine 12, 431-435.

Wells, D.L., Hepper, P.G., 1999. Male and female dogs respond differently to men and women. Applied Animal Behaviour Science 61, 341-349.

Wells, D.L., Graham, L., Hepper, P.G., 2002. The influence of auditory stimulation on the behaviour of dogs housed in a rescue shelter. Animal Welfare 11, 385-393.

Wilsson, E., Sundgren, P. E., 1997. The use of a behaviour test for selection of dogs for service and breeding. II. Heritability for tested parameters and effect of selection based on service dog characteristics. Applied Animal Behaviour Science 54, 235-241.

Ziv, G., 2017. The effects of using aversive training methods in dogs-A review. Journal of Veterinary Behavior: Clinical Applications and Research 19, 50-60.

Characteristics of owners and dogs.

Dog	Experimental	Interval between	Age	Sex	Breed	Age of
	group	visits (weeks)	(years)			owner
1	NoO/O	5	3	FN	Mixed Shepherd	$25-40$
2	NoO/O	5	1	MN	Mixed Retriever	$25-40$
3	NoO/O	6	4	FN	Cavalier King Charles	$41-60$
4	O/NoO	5	2.5	FN	Beauceron	$25-40$
5	O/NoO	7	3	FN	Schapendoes	<25
6	O/NoO	5	5	FE	Mixed Terrier	$25-40$
7	O/NoO	6	5	FN	Mixed Terrier	$>60^{\mathrm{a}}$
8	O/NoO	6	5	ME	Mixed Terrier	$>60^{\mathrm{a}}$
9	O/NoO	6	7.5	MN	Labrador	$41-60$
10	O/NoO	6	2.5	ME	Boxer	$25-40$
11	NoO/O	5	5	MN	Mixed Terrier	$25-40^{\mathrm{a}}$
12	O/NoO	5	6	MN	Mini Australian Shepherd	$25-40^{\mathrm{a}}$
13	NoO/O	7	2.5	MN	Whippet	$25-40$
14	O/NoO	5	2	ME	Boxer	$41-60$
15	NoO/O	6	2	3.5	MN	French Bulldog

22	NoO/O	7	9	FN	Australian Shepherd	$41-60^{\text {a }}$
23	O/NoO	7	3	FN	Australian Shepherd	$41-60^{\text {a }}$
24	NoO/O	6	4	FE	Groenendael	$25-40$
25	NoO/O	7	5	ME	Malinois	$41-60$

$767 \mathrm{NoO} / \mathrm{O}$, Owner was absent for the first veterinary consultation and present for the second;
$768 \mathrm{O} / \mathrm{NoO}$, Owner was present for the first veterinary consultation and absent for the second; F ,
769 Female; M, Male; N, Neutered; E, Entire. ${ }^{\text {a }}$ Owners participating with more than one dog.

Table 2

Recorded dog behaviours during the examination and greeting phases and their definitions.

Observed behaviour	Description
Non-exclusive stress-related behaviours	
Scratching ${ }^{\text {a }}$ Sniffing ${ }^{\text {a }}$	The dog scratched itself / The dog sniffed the ground or straight
Shivering ${ }^{\text {a }}$ Shaking ${ }^{\text {a }}$	ahead / The dog trembled / The dog shook
	The dog's tail was lowered, its ears faced backwards, or its legs
Low postures ${ }^{\text {a }}$	were bent; at least two of these postures were exhibited
Mouth (exclusive behaviours)	
Yawning ${ }^{\text {a }}$ / Panting ${ }^{\text {a }}$	
Licking ${ }^{\text {a }}$	
Vocalisations (exclusive behaviours)	
Whining ${ }^{\text {a }}$ / Barking ${ }^{\text {a }}$	The dog whined / The dog barked
Gaze (exclusive behavio	

The dog gazed with its head oriented towards the owner (Gaze O),
Gaze at a person the veterinarian (Gaze V), the assistant (Gaze A), or the veterinarian and the assistant (Gaze VA)

Gaze at an object or The dog gazed with its head oriented towards the door (Gaze D) or thing straight ahead when on the table (Gaze Ad)

Avoidance (exclusive behaviours)
The dog stepped backwards away from the veterinarian or the
Avoidance assistant following one of their actions

Situation (exclusive behaviours)

Half of the dog's body (head and chest) was situated less than 50

Situation / somebody cm from the owner (Situation O) or from the veterinarian and the assistant (Situation VA) Half of the dog's body (head and chest) was situated less than 1 m

Situation / something from the door (Situation D), or the dog was not in one of the previous locations (Situation E)

Movement (exclusive behaviours)

The dog moved its four limbs with less than 1 second between the
Move movement of each limb

Contact (exclusive behaviours)

The dog intentionally touched the owner (Contact O), the
Contact veterinarian (Contact V), or the assistant (Contact A)

Tail (exclusive behaviours)

Tail wagging Tail wagged below the spine but was not between the legs

Tail between legs ${ }^{a}$ Tail was between the rear limbs

Tail low Tail was below the spine but was not wagging or between legs
Tail high Tail was above the spine, whether wagging or not

[^3]| Index (Unit) | Definition | Formula |
| :---: | :---: | :---: |
| Total Stress (\%) | Sum of percentages of time spent | Total Stress (\%) = Yawning (\%) |
| | yawning, panting, scratching, | + Panting (\%) + Shivering (\%) + |
| | adopting low posture, shivering, | Low postures (\%) + Shaking (\%) |
| | sniffing, whining, barking and | + Sniffing (\%) + Whining (\%) + |
| | licking | Barking (\%) + Licking (\%) |
| Contact V+A | Sum of percentages of time spent | Contact V+A (\%) = Contact V |
| | in contact with veterinarian (V) | $(\%)+\text { Contact A (\%) }$ |
| (\%) | and/or assistant (A) | |
| Gaze V+A (\%) | Sum of percentages of time spent | Gaze V+A (\%) = Gaze V (\%) + |
| | gazing at veterinarian (V) and/or | Gaze A (\%) + Gaze VA (\%) |
| | assistant (A) | |
| Gaze O+Ad (\%) | Sum of percentages of time spent | Gaze $\mathrm{O}+\mathrm{Ad}(\%)=$ Gaze $\mathrm{O}(\%)+$ |
| | gazing at owner (O) when present | Gaze Ad (\%) |
| | or straight ahead (Ad) when absent | |
| Behav. Tow. | | Behav. Tow. Owner (\%) = Gaze |
| | Sum of percentages of time spent |) + Contact $\mathrm{O}(\%)+$ |
| Owner (\%) | gazing at, having contact with, and | O(\%) + Contact |
| (dog behaviours | seeking proximity to the owner | Situation O (\%) |
| towards owner) | | |

Table 3

Behavioural indices calculated using several behaviours from Table 2.
\%, Time percentage (behaviour duration/phase duration); Yawning, The dog yawned;
Panting, The dog panted; Scratching, The dog scratched itself; Low posture, The dog's tail was lowered, its ears faced backwards, or its legs were bent, at least two of these postures were exhibited; Shaking, The dog shook; Sniffing, The dog sniffed the ground or straight ahead; Whining, The dog whined; Barking, The dog barked; Licking, The dog licked its mouth; Contact V, The dog intentionally touched the veterinarian; Contact A, The dog
intentionally touched the assistant; Gaze V, The dog gazed with its head oriented towards the veterinarian; Gaze A, The dog gazed with its head oriented towards the assistant; Gaze VA, The dog gazed with its head oriented towards the veterinarian and the assistant; Gaze O, The dog gazed with its head oriented towards the owner; Gaze Ad, The dog gazed with its head oriented straight ahead when on the table; Contact O , The dog intentionally touched the owner; Situation O, Half of the dog's body (head and chest) was situated less than 50 cm from the owner.

Table 4

Rated emotional states of dogs during exploration, examination, and greeting phases, their definition, and their score (from Mills et al., 2006).

Emotional state	Definition	Score
Relaxed	No or low frequency of movement, with no visual	1
evidence of tension in the body		
Aroused	Tense, with high frequency of movement, but no visual	
	evidence of anxious behaviours	2
Anxious	Tense, with licking, yawning, crying, agitation or	3

Table 5
Rated scores of dogs when entering the examination room (exploration phase) and reuniting with the owner after the veterinary examination (greeting phase), along with the name of the factor and the signification of the score.

Factor	Name of factor	Score (from 1 to 5)
Apparent comfort in	Entering Room	$1=$ Has to be drawn to enter, 5 =
entering the room		Enters voluntarily, pulls on leash
Greeting intensity by dog	Reunion / Dog	$1=$ Indifferent, $5=$ Very happy, jumps
towards owner		on the owner, requests contact
Greeting intensity by owner	Reunion / Owner	$1=$ Indifferent, $5=$ Talks to the dog,
towards dog		pets the dog a lot

Table 6

Rated levels of dog restraint performed by the assistant during the examination phase, along with their definition and score.

Restraint	Definition	Score
Low	The assistant did not need to use force to keep the dog in the	
right position. The dog was voluntarily almost immobile.	1	
Medium	The assistant needed to increase her restraint of the dog to keep it in the same position. The dog was agitated/moved frequently.	2
High	The assistant had to hold the dog firmly to keep it on the examination table or help the veterinarian perform the clinical examination. The dog tried to escape.	3

Manipulation	Definition	Score and Value	
Table	Dog was picked up and lifted onto	Failure: $0^{\text {a }}$	Difficulty (from 1 to 5)
	the examination table	Success: 1	1: Easy / 5: Hard
Eye	Eye and mucosa observation	Failure: 0	Difficulty (from 1 to 5)
		Success: 1	1: Easy / 5: Hard
Ear	Ear manipulation and observation	Failure: 0	Difficulty (from 1 to 5)
		Success: 1	1: Easy / 5: Hard
Mouth	Examination of teeth and mouth	Failure: 0	Difficulty (from 1 to 5)
	mucosa	Success: 1	1: Easy / 5: Hard
Palpation	Abdominal and lymph node	Failure: 0	Difficulty (from 1 to 5)
	palpation	Success: 1	1: Easy / 5: Hard
Skin fold	Examination of scapular skin fold	Failure: 0	Difficulty (from 1 to 5)
		Success: 1	1: Easy / 5: Hard
Auscultation	Cardiac and pulmonary	Failure: 0	Difficulty (from 1 to 5)
	auscultation	Success: 1	1: Easy / 5: Hard
Thermometer	Measuring rectal temperature	Failure: 0	Difficulty (from 1 to 5)
		Success: 1	1: Easy / 5: Hard
Paws	Manipulating paws	Failure: 0	Difficulty (from 1 to 5)
		Success: 1	1: Easy / 5: Hard

[^4]
Table 8

805 Emotional state of dogs in a veterinary practice with the presence or absence of the owner during the exploration phase. Results are expressed as the standard error of the mean.

Behaviours (units)	Owner: present	Owner: absent			$1-\beta$
	condition	condition	t	P	$(\%)$
Entering room (score)	3.24 ± 0.76	2.72 ± 1.27	-2.7	0.012	100
Emotional State (score)	1.76 ± 0.63	2.22 ± 0.69	3.682	0.001	69.2

Entering room, Rated apparent comfort in entering the room (1 = Dog has to be drawn to enter, 5 = Dog enters voluntarily, pulls on leash; also see Table 5); Emotional State, Rated emotional states of dogs ($1=$ Relaxed: No or low frequency of movement, with no visual 810 evidence of tension in the body, $2=$ Aroused: Tense, with high frequency of movement, but 811 no visual evidence of anxious behaviours, $3=$ Tense, with licking, yawning, crying, agitation 812 or observable fearful posture; also see Table 4).

Table 9

Behaviour of dogs in a veterinary practice with the presence or absence of the owner during the examination phase.

Behaviours (units)		Owner: present	Owner: absent	t	P	1-3(\%)
		condition	condition			
Behaviour towards veterinarian and/or assistant						
Contact -	Duration (\%	2.33 ± 4.91	1.34 ± 3.86	-2.187	0.039	12.2
V+A	ime)					
Behaviour towards owner and/or door						
Gaze - Door	Duration (\%	12.46 ± 9.56	25.15 ± 13.52	3.813	0.0008	96.9
	time)					
Gaze O+Ad	Duration (\%	37.32 ± 19.33	21.64 ± 12.17	3.342	0.0008	93
	time)					

816 Contact V+A, Sum of percentages of time spent in contact with veterinarian (V) and/or 817 assistant (A); Gaze O+Ad, Sum of percentages of time spent gazing at owner (O) when 818 present or straight ahead (Ad) when absent; \% time, Percentage of time (behaviour 819 duration/phase duration; also see Table 3). Results are expressed as the standard error of the 820 mean. Non-significant results are not presented.

Table 10

Behaviour of dogs in a consultation room with the presence or absence of the owner during the greeting phase.

Behaviours (units)		Owner: present	Owner: absent	t	P	1-ß (\%)
Behav. Tow.	Duration (\%					83.3
	time)	129.24 ± 50.70	170.76 ± 49.70	3.455	0.002	
Reunion / Dog	Score	3.11 ± 1.29	4.24 ± 0.79	5.106	0.00003	96.2
Gaze - Door	Duration (\%	$8.12+8.95$	12.32 ± 13.50	1.818	0.081	25.4
	time)	8.12 ± 8.95	12.32 ± 13.50	1.818	0.081	

824 Behav. Tow. Owner, Behaviour Towards Owner, Sum of percentages of time spent gazing at, 825 having contact with, and seeking proximity to the owner (also see Table 3); Reunion / Dog,
826 Rated greeting intensity by dog towards owner ($1=$ indifferent, $5=$ very happy, jumps on the 827 owner, seeks contact; also see Table 5); \% time, Percentage of time (behaviour duration/phase 828 duration); Gaze - Door, Percentage of time spent gazing at the door. Results are expressed as 829 the standard error of the mean. Non-significant results are not presented.

Figure legends

Fig. 1. Image of the experimental room, with the two videos assembled in a single image.
Left: ‘Owner: absent condition'. Right: 'Owner: present condition'

Fig. 2. Layout of the experimental room. A: veterinarian's chair, B: assistant's chair, C: owner's chair, X: owner's position during the veterinary examination

Fig. 3. Image of the standardised restraint by the assistant on the examination table. One hand on the chest and another on the base of the tail, with the minimal necessary strength to keep the dog sitting or standing on the table.

Appendix A

Sex of dogs

	Number of female	Number of male	Total
Number of neutered dog	$9(36 \%)$	$8(32 \%)$	$17(68 \%)$
Number of entire dog	$3(12 \%)$	$5(2 \%)$	$8(32 \%)$
Total	$12(48 \%)$	$13(52 \%)$	$25(100 \%)$

Age of dogs

	Number of dogs
1 to 3 years	$12(48 \%)$
4 to 6 years	$10(40 \%)$
7 to 9 years	$3(12 \%)$

| 9 to 12 years $0(0 \%)$ |
| :--- | :--- |

847

Sex of owners

	Number of owners
Female	$21(100 \%)$
Male	$0(0 \%)$
Total	$21(100 \%)$

Age of owners

	Number of owners
Under 25 years	$1(5 \%)$
25 to 40 years	$10(47 \%)$
41 to 60 years	$8(38 \%)$
Over 60 years	$2(10 \%)$
TOTAL	$21(100 \%)$

851 Three owners participated with more than one dog.

Appendix B

Summary of all studied variables and their availability for the three phases.

| | Available in | Available in Available | |
| :--- | :--- | :--- | :--- | :--- |
| Variable | phase 1: | phase 2: | in phase 3: |
| | exploration | examination | greeting |
| Scratching | Recorded behaviours | | |
| | no | yes | yes |

Sniffing	no	yes	yes
Low Postures	no	yes	yes
Mouth behaviours	no	yes	yes
Vocalisations	no	yes	yes
Gaze	no	no	yes

Reunion/Owner	no	no	yes
Restraint	no	yes	no

Success of manipulation (eye, ear, mouth, palpation, skin
fold, auscultation thermometer, paws) N/A yes N/A

Difficulty of manipulation (eye, ear, mouth, palpation, skin
fold, auscultation thermometer, paws)
N/A
yes
N/A

Contact V+A, Sum of percentages of time dog spent in contact with veterinarian (V) and/or assistant (A); Gaze V+A, Sum of percentages of time dog spent gazing at veterinarian (V) and/or assistant (A); Gaze O+Ad, Sum of percentages of time spent gazing at owner (O) when present or straight ahead (Ad) when absent; Behav. Tow. Owner, Sum of percentages of time dog spent gazing at, having contact with, and seeking proximity to the owner; Emotional State, Rated emotional states of dogs $(1=$ Relaxed: No or low frequency of movement, with no visual evidence of tension in the body, $2=$ Aroused: Tense, with high frequency of movement, but no visual evidence of anxious behaviours, $3=$ Tense, with licking, yawning, crying, agitation or observable fearful posture); Entering room, Rated apparent comfort in entering the room ($1=$ Dog has to be drawn to enter, $5=\operatorname{Dog}$ enters voluntarily, pulls on leash); Reunion / Dog, Rated greeting intensity by dog towards owner ($1=$ indifferent, $5=$ very happy, jumps on the owner, seeks contact); Reunion/Owner, Rated greeting intensity by owner towards $\operatorname{dog}(1=$ Indifferent, $5=$ Talks to the dog, pets the dog a lot $)$; Restraint, Rated levels of dog restraint performed by the assistant (1=Low, $3=$ High);

Figure 1

Figure 2

Figure 3

[^0]: * Corresponding author. Tel.: +33 695100276

 E-mail address: ciska.girault@gmail.com (C. Girault).

[^1]: ${ }^{1}$ See : Solomon Coder, András Péter, https://solomoncoder.com (accessed 10 September 2020).

[^2]: ${ }^{2}$ See: The R Project for Statistical Computing. http://www.R-project.org. (accessed 24 May 2017)

[^3]: ${ }^{\text {a }}$ Stress-related behaviour

[^4]: ${ }^{\text {a }}$ Each dog received a score of 0 or 1, these scores were used to calculate the percentage of success of all 25 dogs.

