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Optimal Control of the Lotka-Volterra Equations with Applications

In this article, the Lotka-Volterra model is analyzed to reduce the infection of a complex microbiote. The problem is set as an optimal control problem, where controls are associated to antibiotic or probiotic agents, or transplantations and bactericides. Candidates as minimizers are selected using the Maximum Principle and the closed loop optimal solution is discussed. In particular a 2d-model is constructed with four parameters to compute the optimal synthesis using homotopies on the parameters. It is extended to the 3d-case to provide a geometric frame to direct and indirect numerical schemes.

Introduction and 2d-geometric analysis

The Lotka-Volterra equations is a model to study biological species interactions and comes from a generalization of the prey-predator model, see [START_REF] Volterra | Leçons sur la théorie mathématique de la lutte pour la vie[END_REF]. In this memoir the problem is already set in the control frame since the model aims to explain the evolution of two fishing species in relation with diminution of the fishing activity during the first World War.

The system is written as the 2d-dynamics:

dN 1 dt = N 1 (λ 1 + µ 1 N 2 ), dN 2 dt = N 2 (λ 2 + µ 2 N 1 ) (1.1) 
where N 1 , N 2 are the two species, N 1 , N 2 ≥ 0 and λ 1 , λ 2 , µ 1 , µ 2 are real parameters. In the prey predator model λ 1 > 0, λ 2 < 0, µ 1 < 0, µ 2 > 0.

The system is conservative and can be integrated using the first integral:

µ 2 N 1 + λ 2 ln N 1 -(µ 1 N 2 + λ 1 ln N 2 ) = constant.
In the prey predator model, the evolution of each species in the quadrant N 1 , N 2 > 0 is periodic and there exist a single persistent equilibrium: Ω = (K 1 , K 2 ). Moreover K 1 , K 2 represents the averaged population of each species on a period T

⟨N i ⟩ = 1 T T 0 N i (t)dt = K i , i = 1, 2.
The effect of the fishing activity is to replace:

λ 1 → λ 1 -αλ, λ 2 → λ 2 -βλ,
where α, β are the modes of destruction of each species and λ(t) is the control intensity.

Constant controls lead to shift the persistent equilibrium and hence to shift the averaged populations.

More generally the model leads to consider two vector fields (X, Y ) defined by (1.1) with different parameters and to introduce the control system: dx(t) dt = u(t)X(x(t)) + (1 -u(t))Y (x(t)),

x = (N 1 , N 2 ) and u ∈ [0, 1].

The Lotka-Volterra equations can more generally described the interaction of n-species x = (x 1 , . . . , x n ) ⊺ , x i ≥ 0, and is given by the dynamics:

dx dt = (x)(Ax + r), (1.2) 
where x is the diagonal matrix with entries (x 1 , . . . , x n ), A = (a ij ) is the matrix of interaction coefficients and r = (r 1 , . . . , r n ) ⊺ is the vector of individual growth of the species. Recently based on the model of [START_REF] Stein | Ecological modelling from time-series inference: insight into dynamics and stability of intestinal microbiota[END_REF] of the intestinal microbiote with n = 11 species, Jones et al. [START_REF] Jones | Navigation of outcome in a generalized Lotka-Volterra model of the microbiome[END_REF] analyzed the problem of reducing C. difficile infection (a pathogenic agent) using either antibiotic or fecal transplantation. Denoting by X(x) = (x)(Ax + r) the n-dimensional dynamics (n = 11) with parameters given in [START_REF] Stein | Ecological modelling from time-series inference: insight into dynamics and stability of intestinal microbiota[END_REF], the control system writes as:

dx(t) dt = X(x(t)) + u(t)Y (x(t)) + k i=1 λ i δ(t -t i )Y ′ (x)), (1.3) 
where Y (x) = (x)ϵ, ϵ = (ε 1 , . . . , ε n ) is the sensitivity vector to the antibiotic of the species and u(t) is a piecewise constant mapping. The second control action is associated to jumps x(t i ) → x(t i ) + λv in the state, and Y ′ (x) = v, corresponding to ratio of each species in the transplantation.

Denoting by x 1 the C. difficile population, the optimal control problem can be set as a Mayer problem: min x 1 (t f ) where t f is the number of days of the treatment or in a dual form: reach in minimum time t f a specific level d of infection that is:

x 1 (t f ) = d.
The optimal control problem can be posed in the general frame of mixing permanent controls associated to antibiotic treatment or sampled-data controls associated to transplantations.

In both case the optimal control problem can be analyzed with an indirect scheme based on the Maximum Principle [START_REF] Pontryagin | The mathematical theory of optimal processes[END_REF] in the permanent case or an adaptation in the sampled-data control case, or by a direct numerical optimization scheme.

In this article, the starting point is to analyze the effect of an antibiotic or probiotic treatment restricting to a control system of the form:

dx(t) dt = X(x(t)) + u(t)Y (x(t)),
with x(t) ∈ R n , the set of admissible controls U being the set of measurable mappings valued in ] -1, +1[ (for convenience we assume u = -1 being associated to no treatment, u = +1 to maximum dosing regimen). We consider the problem of steering x(0) = x 0 to a terminal manifold N of codimension one, e.g.: x 1 = d, in minimum time. We mainly focus our study the the 2dcase.

Our analysis is based on a series of recent articles [START_REF] Bonnard | Classification générique de synthèses temps minimales avec cible de codimension un et applications[END_REF][START_REF] Launay | The generic local structure of time-optimal synthesis with a target of codimension one in dimension greater than two[END_REF][START_REF] Bonnard | Towards Geometric Time Minimal Control without Legendre Condition and with Multiple Singular Extremals for Chemical Networks[END_REF] to classify the closed loop optimal solutions in a neighborhood of the terminal manifold, using semi-normal forms for the triple (X, Y, N ), under generic assumptions. They can be globalized in the frame of polynomic systems using homotopies on the parameters.

It is completed in the 3d-case by direct and indirect numerical schemes to provide robust optimal controls taking into account the combination of various treatments and medical logistical constraints [START_REF]BOCOP: an open source toolbox for optimal control[END_REF][START_REF] Bonnard | Geometric Optimal Control of the Generalized Lotka-Volterra Model of the Intestinal Microbiome[END_REF][START_REF] Rawlings | Model Predictive Control: Theory, Computation, and Design[END_REF] using preliminary geometric analysis.

1.2

The Maximum Principle in the permanent case and the classification of the extremals

1.2.1 Maximum Principle Denote F (x, u) = p • (X(x) + uY (x)
) and H = p • F (x, u) the Hamiltonian lift defining the pseudo-Hamiltonian, p ∈ R n ∖ {0} being the adjoint vector. If (x(.), u(.)) is optimal on [0, t f ] then there exists (z(.), u(.)), z = (x, p) such that a.e. : dx

dt (t) = ∂H ∂x (x(t), p(t), u(t)), dp dt (t) = - ∂H ∂p (x(t), p(t), u(t)).
(1.4)

Moreover the optimal control satisfies a.e. the maximization condition

H(z(t), u(t)) = max |v|≦1 H((z(t)), v) = M (z(t)), (1.5) 
where M ((z(t)) ≥ 0 is constant. At the final time the transversality condition is satisfied: One needs the following see [START_REF] Kupka | Geometric theory of extremals in optimal control problems. I. The fold and Maxwell case[END_REF] for the details. Let t → z(t) be a regular extremal on [0, t f ] and we denote by t → Φ(z(t)) = H Y (z(t)) the switching function and let Φ ε the switching function along a bang arc extremal with u = ε = ±1 constant. We denote respectively by σ + , σ -, bang arcs with u = ±1 and σ s a singular arc, while σ 1 σ 2 denotes a σ 1 arc followed by an σ 2 (where each arc of the sequence can be empty). We denote by Σ the switching surface H Y (z) = 0 and Σ ′ the subset

p(t f )⊥T * x(t f ) N. (1.6) Definition 1. An extremal (z, u) is a solution of (1.4)-(1.5) on [0, t f ].
H Y (z) = {H Y , H X }(z) = 0. The Lie bracket of two vector fields Z 1 , Z 2 being computed with the convention [Z 1 , Z 2 ](x) = ∂Z1 ∂x (x)Z 2 (x) -∂Z2 ∂x (x)Z 1 (x). If H i (z) = p•Z i (x) the Poisson bracket is {H 1 , H 2 } = dH 1 (H 2 ) = p•[Z 1 , Z 2 ](x), where H 2 := (∇ p H 2 , -∇ x H 2 ) is the Hamiltonian vector field.
Deriving twice the switching function Φ(t) one gets:

dΦ dt (t) = {H Y , H X }(z(t)), d 2 Φ dt 2 (t) = {{H Y , H X }, H X }(z(t)) + u(t){{H Y , H X }, H Y }(z(t)). (1.7) 
Let t be a switching time so that Φ(t) = 0 and assume that at z(t) the surface Σ ′ is regular.

Proposition 1. Assume that the switching time t is ordinary that is: Φ(t) = 0 and dΦ dt (t) is non zero. Then near z(t) every extremal projects onto

σ + σ -if dΦ dt (t) > 0 or σ -σ + if dΦ dt (t) < 0.
Proposition 2. Assume that at the switching time t, the switching function Φ ε (t) for u = ε = ±1 is such that dΦε dt (t) = 0 and both d 2 Φε dt 2 (t) ̸ = 0 where the second order derivative is given by (1.7). Then z(t) is called a fold point and we have:

• In the parabolic case: d 2 Φ+ dt 2 (t)• d 2 Φ- dt 2 (t) > 0, each extremal near z(t) projects onto σ ± σ ± σ ± . • In the hyperbolic case: d 2 Φ+ dt 2 (t) > 0, d 2 Φ- dt 2 (t) < 0 it projects onto σ ± σ s σ ± . • In the elliptic case d 2 Φ+ dt 2 (t) < 0, d 2 Φ- dt 2 (t) > 0,
every extremal is bang-bang but the number of switches is not uniformly bounded.

Computations of the singular extremals with minimal order

The computations is standard, see [START_REF] Bonnard | The role of singular trajectories in control theory[END_REF]. Derive twice with respect to time H Y (z(t)) = 0 one gets 

H Y (z(t)) = {H Y , H X }(z(t)) = 0, {{H Y , H X }, H X }(z(t)) + u s (t){{H Y , H X }, H Y }(z(t)) = 0. ( 1 
u s (z) = - {{H Y , H X }, H X }(z) {{H Y , H X }, H Y }(z)
and plugging such u s in the pseudo-Hamiltonian defines the true Hamiltonian:

H s (z) = H X (z) + u s (z)H Y (z).
Hence we deduce:

Proposition 3. Singular extremals with minimal order {{H Y , H X }, H Y }(z) ̸ = 0 are solutions of the Hamiltonian dynamics H s (z) restricted to the invariant surface

Σ ′ : H Y (z) = {H Y , H X }(z) = 0.
Definition 2. Assume that we are in the strict case. Since the true Hamiltonian is constant then the singular trajectories projections of singular extremals of minimal order are stratified according to the following:

• Hyperbolic case: H X (z).{{H Y , H X }, H Y }(z) > 0, • Elliptic case: H X (z).{{H Y , H X }, H Y }(z) < 0,
• Abnormal or exceptional case: H X (z) = 0.

1.2.4 Construction of the optimal synhesis in a neighborhood of N Take a point x 0 which can be identified to 0. Assume that at such point the surface N is regular. We denote by N ⊥ the Hamiltonian lift: {z = (x, p); x ∈ N, p = n(x)} where n is the normal to N at x.We shall assume that the cone of limit directions {X ± Y } is strict and one can suppose it is contained in an half-space, so that n can be chosen assuming n

(x) • X(x) > 0. If n(x) • Y (x) ̸ = 0,then every extremal near N is determined by the transversality condition: u = +1 if n • Y > 0 and u = -1 otherwise. Switches can occur only near points such that Y is tangent to N , that is n • Y (x) = 0.
The regular synthesis [START_REF] Brunovský | Existence of regular synthesis for general control problems[END_REF] amounts to compute in a neighborhood U of x 0 , in the domain n • X(x) < 0 the following strata:

• The switching locus W restricting to ordinary switches with strata W + , W - corresponding respectively to σ -σ + or σ + σ -, and associated to optimal policies only.

• The set Σ s filled by optimal BC-singular arcs.

• The cut locus C defined as follows. Every optimal arc σ(t) is integrated backwards in time, that is σ(t) is defined on [t f , 0] so that t f < 0 and σ(0) ∈ N . The cut locus is the closure of the set of points z(t c ), t f < t c < 0 so that z(t) is not optimal beyond the time t c . It contains the separating locus formed by the set of points where there exits two distinct minimizers reaching N .

The contribution of the series of papers [START_REF] Bonnard | Classification générique de synthèses temps minimales avec cible de codimension un et applications[END_REF][START_REF] Launay | The generic local structure of time-optimal synthesis with a target of codimension one in dimension greater than two[END_REF][START_REF] Bonnard | Towards Geometric Time Minimal Control without Legendre Condition and with Multiple Singular Extremals for Chemical Networks[END_REF] describes the time minimal syntheses for all cases of codimension ≤ 2 in the jet spaces of the triples (X, Y, N ) at x 0 = 0. We shall present the main application, restricting to the 2d-case for the controlled Lotka-Volterra model, to describe geometrically the main features of the time minimal syntheses.

1.3 The geometric determination of the time minimal syntheses for the Lotka-Volterra model -2d-case

1.3.

Determination of the collinearity locus in relation with forced permanent equilibria

Plugging u = ±1 leads to forced equilibria with constant dosing regimen associated to no treatment with u = -1 and maximal dosing regimen with u = +1. Hence in the n-dimensional case we introduce the collinearity locus as the one-dimensional variety defines as projection on the state space of the set:

{(x e , λ) ∈ R n+1 ; λ = -u e , X(x e ) = λY (x e )}.
The constant control u e is such that (x e , u e ) is a forced equilibrium and it has to be feasible that is |u e | ≤ 1.

Following Volterra [START_REF] Volterra | Leçons sur la théorie mathématique de la lutte pour la vie[END_REF] one can choose for each dynamics (x)(Ax + r) dimensionless coordinates so that up to translation the dynamics takes the form -(x + 1)A * x, where the persistent equilibrium is identified to 0 and the spectrum of the linearized dynamics is given by -σ(A * ) with σ(A * ) = {λ 1 , . . . , λ n } where each λ i denotes an eigenvalue, with generalized eigenspace E λi .

In the 2d-case the computation of the collinearity locus is simple and is the determinantal set

C = det(X(x), Y (x)) = 0.
Straightforward computations define a segment L 1 when restricting to the persistent quadrant:

x 1 , x 2 > 0. Furthermore a subsegment L ′ 1 is defined due to the control restriction |u e | ≤ 1.
Each point of this segment determines a forced equilibrium with a corresponding spectra.

Example 1. Consider the conservative case described by (1.1) with parameters (λ 1 , λ 2 , µ 1 , µ 2 ) and Ω = (K 1 , K 2 ) be the persistent equilibrium. The dynamics can be set in normalized coordinates introducing n i = Ni Ki and n i → n i -1 so that it takes the form: -(x + 1)A * x. Choosing Ω in the quadrant N i > 0 imposes constraints: λ 1 µ 1 > 0 and λ 2 µ 2 < 0. One can choose the ratio λ = λ 2 /µ 2 as an homotopy parameter and consider the one-dimensional dynamics λ → (x)(A(λ)x + r(λ)) where λ can be restricted to a segment.

Determination of the singular locus

In the 2d-case, using H Y (z) = {H X , H Y }(z) = 0, the singular locus is the determinantal set S defined by:

det(Y (x), [Y, X](x)) = 0.
In the persistent space they formed a line passing through the origin. For some parameters value, the collinear and singular loci intersects at a single point denoted O. The main point of this section will be to discuss the construction of the time minimal synthesis in a neighborhood of O, illustrating the applications of the concepts and techniques from [START_REF] Bonnard | Classification générique de synthèses temps minimales avec cible de codimension un et applications[END_REF][START_REF] Launay | The generic local structure of time-optimal synthesis with a target of codimension one in dimension greater than two[END_REF][START_REF] Bonnard | Towards Geometric Time Minimal Control without Legendre Condition and with Multiple Singular Extremals for Chemical Networks[END_REF]. This will lead to identify four parameters to construct the global syntheses by homotopy. The geometric schematic picture is represented on Fig. 1.1 where we have reported symbolically on the extremities of the collinear locus the two cases studied by Volterra [START_REF] Volterra | Leçons sur la théorie mathématique de la lutte pour la vie[END_REF], illustrating clearly the global issues.

In the 2d-case, much information about the global synthesis can be deduced using the clock form one-form ω defined outside the collinearity locus by the relations:

ω(X) = p • X(x) = 1, ω(Y ) = p • Y (x) = 0.
Green's theorem allows to deduces optimality status of σ + σ -vs σ -σ + , in different domains, observing that dω vanishes precisely on the singular locus.

Since Lie brackets have complicated values, the use of a semi-normal form for the actions of local changes of coordinates and feedbacks u → -u aims to simplify the computations.

In particular, such a construction will be useful to deduce the time minimal synthesis in a neighborhood of 0 and identify the homotopy parameters to construct the global synthesis.

Construction of the semi-normal form

First of all, one can choose coordinates such that O = (0, 0) and Y is identified to the vector field Y = ∂ ∂x2 (this amounts mainly to choose ln-coordinates), furthermore the singular direction can be identified to the axis (Ox 1 ).

Expanding X in the jet space at O = (0, 0), this leads to analyze the control system: 

dx 1 dt = -λx 1 + αx 2 2 , dx 2 dt = (u -u e ),
with

u e ∈] -1, +1[, | u |≤ 1 and α > 0.

Properties of the system

Computing Lie brackets in those coordinates shows relevant simplifications:

• X(x) = (-λx 1 + αx 2 2 ) ∂ ∂x1 -u e ∂ ∂x2 , • Y (x) = ∂ ∂x2 , • [Y, X](x) = -2αx 2 ∂ ∂x1 , • [[Y, X], Y ](x) = -2α ∂ ∂x1 .
Hence the singular line is given by: x 2 = 0 and restricting to this line one has:

X(x 1 ) = -λx 1 ∂ ∂x 1 , [[Y, X], Y ](x 1 ) = -2α ∂ ∂x 1 .
Therefore for the restriction one has:

[[Y, X], Y ](x 1 ) = 2α λ X(x 1 ).
Then we have:

• The origin is an abnormal singular arc reduced to a point and the subarc of the line x 2 = O is hyperbolic in x 1 > 0 and the subarc is elliptic if x 1 < 0. • The singular control along the line x 2 = 0 is given by: u = u e and is constant and strictly admissible if u e ∈] -1, +1[.

• The collinear set is given by the parabola:

x 1 = αx 2 2 λ . • The clock form is: ω = dx1 (-λx1+αx 2 
2 ) . Moreover for every constant control u = ε, ε = ±1, the extremal system can be integrated.

One can construct a case study taking as terminal manifold N a circle centered at O=(0, 0), with radius d intersecting the singular line at (±d, 0). The time minimal synthesis outside the disk and near the two points (±d, 0) can be directly deduced from the classification of [START_REF] Bonnard | Towards Geometric Time Minimal Control without Legendre Condition and with Multiple Singular Extremals for Chemical Networks[END_REF], thanks to the curvature of the terminal manifold in the chosen normal coordinates. It is represented on Fig. 1.2 and we have:

• Top: (-d, 0) lifts into a fold elliptic point. The singular line is time maximizing. The optimal policy is σ + σ -or σ -σ + using the clock form and we have represented the two strata of the switching locus: W = W -∪ W + and there exists a cut locus C. The three curves of the stratification are ramifying at (-d, 0). • Bottom: (d, 0) lifts into an hyperbolic fold point and the time minimal synthesis is of the form: σ -σ s or σ + σ s .

To construct the complete synthesis one must glue the two cases along the exterior of the circle and fill the interior of the disk.

To simplify the computations, we have assume that u e = 0. The synthesis is represented on Fig. 1.3.

Note that the singular line prolongated onto a cut locus terminating at (d, 0). In the non symmetric case u e ̸ = 0, the cut locus persists but is not coinciding with this segment.

In this synthesis we assume that the two points (±d, 0) lift into fold points. But clearly we can obtain more general cases unfolding the syntheses with a parameter w by taking the system

dx 1 dt = -λx 1 + wx 2 + αx 2 2 , dx 2 dt = (u -u e ),
where w is a constant. This leads to unfold the synthesis as represented on figs. 1.4-1.5. Note that the sign of w is not relevant in the pictures since one can change u into -u in the computations.

The switching locus W can be evaluated expanding the switching function, where the expansions are described in [START_REF] Bonnard | Towards Geometric Time Minimal Control without Legendre Condition and with Multiple Singular Extremals for Chemical Networks[END_REF] and are in any case of order at most 2.

Computations on the 2d-model

In this section we present direct computations on the 2d-model vs the use of the semi-normal form. To simplify the notations we note (x, y) the 2dcoordinates so that one has: Lie brackets are invariant and can computed in such coordinates which simplify the calculations since the vector field Y becomes constant.

Elliptic case

Hyperbolic case

Moreover one can impose in the class two geometric normalizations to clarify the analysis.

Normalizations

• One can suppose that the persistent equilibrium is Ω = (1, 1).

• One can assume that the persistent singular locus is the line: y = x. This leads respectively to:

r 1 = -(a 11 + a 12), r 2 = -(a 21 + a 22 ), (1.9) 
and

ε 1 (ε 2 a 11 -ε 1 a 21 ) = ε 2 (ε 1 a 22 -ε 2 a 12 ). (1.10)
Lie brackets are given by: [X, Y ] = (x(ε 1 a 11 x + ε 2 a 12 y), y(ε

1 a 21 x + ε 2 a 22 y)) ⊺ , [[Y, X], Y ] = (-x(ε 2 1 a 11 x + ε 2 2 a 12 y), -y(ε 2 1 a 21 x + ε 2 2 a 22 y)) ⊺ ,
the Lie bracket [[X, Y ], X] is more complex and takes in ln-coordinates the form: [[Y, X], X] = ((ε 1 a 11 e x (r 1 + a 12 e y ) + ε 2 a 12 e y (r 2 + a 21 e x ) -a 11 e x ε 2 a 12 e ya 12 e y ε 1 a 21 e x ), (ε 1 a 21 e x (r 1 + a 12 e y ) + ε 2 a 22 e y (r 2 + a 21 e x ) -a 21 e x ε 2 a 12 e ya 22 e y ε 1 a 21 e x )) ⊺ .

One introduces the following determinants:

D = det(Y, [[Y, X], Y ]), D ′ = det(Y, [[Y, X], X]), D ′′ = det(Y, X).
The generalized Legendre-Clebsch condition holds if along the singular line

y = x, D = xy[ε 2 1 x(ε 2 a 11 -ε 1 a 21 ) + ε 2 2 y(ε 2 a 12 -ε 1 a 22 )] is non zero.
This gives restricting to y = x,

D xy = xC, C = ε 2 1 (ε 2 a 11 -ε 1 a 21 ) + ε 2 2 (ε 2 a 12 -ε 1 a 22 ) ̸ = 0.
Using the normalization condition (1.10) we get the condition

(ε 1 ε 2 -ε 2 2 )(ε 1 a 22 -ε 2 a 12 ) ̸ = 0.
The singular control along the singular line y = x is given by:

u s = - D ′ |y=x D |y=x .
Computing D ′ restricted to y = x leads to introduce the coefficients:

A = ε 1 ε 2 a 11 r 1 + ε 2 2 a 12 r 2 -ε 2 1 a 21 r 1 -ε 1 ε 2 a 22 r 2 , B = ε 1 ε 2 a 11 a 12 +ε 2 2 a 12 a 21 -ε 2 2 a 11 a 12 -ε 1 ε 2 a 12 a 21 -ε 2 1 a 21 a 22 -ε 1 ε 2 a 21 a 22 + ε 1 ε 2 a 21 a 12 + ε 2 1 a 22 a 21 .
Hence the first component (projecting on the x -axis) of -u s Y restricting to the singular line y = x takes the form

- (A + Bx) C ε 1 x.
It has to vanishes at x = 1, so that B = -A. The derivative at x = 1 is

-ε1(A+2B) C = ε1A C .
Similarly at Ω = (1, 1), X has to vanishes, which corresponds to (1.9) and the derivative at x = 1 is -r 1 .

Hence the dynamics along the singular line at x = 1 is regular if

-r 1 + ε 1 A C ̸ = 0. (1.11)
Note that we can reverse the orientation on the singular line changing in the same category X into -X.

In particular one deduces the following:

Theorem 1. Under regularity conditions previously described, the singular flow along the singular line belongs to the one dimensional Lotka-Volterra form: dx dt = x(r + ax) and at the persistent equilibrium point the eigenvalue of the linearized dynamics is given by -r 1 + ε 1 A C .

Conclusion

Our study shows the main features to compute time minimal syntheses in different neighborhood of the origin and with different terminal manifolds. The main singularity is the interaction between the collinearity and the singular loci. We have introduced a semi-normal form with four homotopy parameters describing the main features of the geometric construction. Different cases can be analyzed gluing different syntheses. In particular the detailed computations of Section 1.3.3 show the role of the singular locus to extend the synthesis for large times.

1.4 From 2d-case to 3d-case and numerical simulations

The geometric frame

In this section we consider a 3d controlled Lotka-Volterra dynamics of the form

dx dt (t) = X(x(t)) + 2 i=1 u i (t)Y i (x(t)), x = (x 1 , x 2 , x 3 ) ⊺ ∈ K := R 3 + , (1.12)
where x 1 is the infected population and u

= (u 1 , u 2 ), 0 ≤ u 1 ≤ 1, 0 ≤ u 2 ≤ 1 + ε, ε > 0.
In this control system,

• X stands for the non controlled Lotka-Volterra dynamics given by X = x(Ax + r),

• Y 1 = x ϵ, ϵ is the constant sensitivity vector associated to a probiotics

ϵ = (ε 1 , ε 2 , ε 3 ) ⊺ , ε i ≥ 0, i = 1, 2, 3.
• Y 2 = x ϵ', ϵ' is the constant sensitivity vector associated to an antibiotic

ϵ ′ = (ε ′ 1 , ε ′ 2 , ε ′ 3 ) ⊺ , ε ′ i ≤ 0, i = 1, 2, 3.
Our aim is to reduce the x i -population using the following protocol:

• Prior to infection use the probiotic to reinforce the microbiote.

• Having detected a given level of infection, reach in minimum time a forced equilibrium associated to a given level of infection. Moreover this level has to be stabilisable.

A rough classification of Lotka-Volterra dynamics

Definition 3. We restrict to the case r i > 0, i = 1, 2, 3 so that the origin O is a repeller and there exist axial equilibria e 1 = (1, 0, 0) ⊺ , e 2 = (0, 1, 0) ⊺ and e 3 = (0, 0, 1) ⊺ . The system is called totally competitive if for all 1 ≤ i, j ≤ 3, a ij < 0. Additional equilibria may exist in the cone K and are denoted respectively : interior equilibrium Ω and E jk , j < k related to extinction of species i ̸ = j, k.

One has the following result from [START_REF] Baigent | Geometry of carrying simplices of 3-species competitive Lotka-Volterra systems[END_REF].

Proposition 4. In the totally competitive case, there exists an unique Lipschitz invariant manifold Π that attracts K \{0} and every trajectory in K \{0} is asymptotic to one in Π. The manifold Π is homeomorphic to the closed unit simplex S = {x ≥ 0, x 1 + x 2 + x 3 = 1} under radial projection. Moreover the boundary of the basin of repulsion of the origin coincides with Π.

Proposition 5. The system obtained by adding a probiotic vector fields to a totally competitive system is also totally competitive. The same holds for antibiotic provided |u 2 | is small enough.

Construction of the carrying simplex

The following is crucial for numeric computation of Π. We denote by φ t , t ≥ 0 the positive semi-flow generated by the Lotka-Volterra dynamics and M t is the image by φ t of the triangle S whose vertex are the three axial equilibria. Proposition 6. In the totally competitive case the sequence of surfaces (with corners) M t converges uniformly to Π as t tends to +∞.

Remark 1. The interesting point is in a more general context to evaluate the boundary of the basin of repulsion of the origin.

Collinear set and singular dynamics

Consider the single-input dynamics

dx dt (t) = X(x(t)) + u(t)Y (x(t)), 0 ≤ u ≤ 1, (1.13) 
where Y is one of the vector field Y 1 , Y 2 associated to a probiotic or an antibiotic agent.

Collinear set

It is defined by C = {x e : ∃u e constant such that X(x e ) + u e Y (x e ) = 0} and x e is a forced equilibrium. The control u e is said feasible if 0 ≤ u e ≤ 1.

Singular dynamics

In the 3d case, the singular control can be computed as a feedback [START_REF] Bonnard | The role of singular trajectories in control theory[END_REF]. This is given by the following proposition.

Proposition 7. Consider the single-input control system (1.13) in R 3 . Introduce the following determinants :

• D = det (Y, [Y, X], [[Y, X] , Y ]), • D ′ = det (Y, [Y, X], [[Y, X] , X]), • D ′′ = det (Y, [Y, X], X).
Then the singular control with minimal order is given by the feedback:

u s (x) = - D ′ (x) D(x) ,
so that the singular dynamics is defined by :

dx dt = X s (x) = X(x) - D ′ (x) D(x) Y (x).
The sets D ′′ = 0, DD ′′ > 0 and DD ′′ < 0 are foliated respectively by exceptional, hyperbolic and elliptic arcs and are invariant for the integral curves of the vector field X s (x).

Computations

One has the following expressions of D, D ′ , D ′′ in the original coordinates : 

D(x)/x 1 x 2 x 3 = ε 2 1 x 1 a 21 +ε 1 (ε 2 (x 2 a 22 -x 1 a 11 )+ε 3 x 3 a 23 )-ε 2 (ε 2 x 2 a 12 +ε 3 x 3 a 13 ) ε 2 1 x 1 a 31 +ε 2 2 x 2 a 32 +ε 2 3 x 3 a 33 + ε 2 1 x 1 a 11 +ε 2 2 x 2 a 12 +ε 2 3 x 3 a 13 ε 2 2 x 2 a 32 +ε 3 ε 2 (x 3 a 33 -x 2 a 22 )-ε 2 3 x 3 a 23 +ε 1 x 1 (ε 2 a 31 -ε 3 a 21 ) -ε 2 1 x 1 a 21 +ε 2 2 x 2 a 22 +ε 2 3 x 3 a 23 ε 2 1 x 1 a 31 +ε 1 (ε 2 x 2 a 32 +ε 3 (x 3 a 33 -x 1 a 11 )) -ε 3 (ε 2 x 2 a 12 +ε 3 x 3 a 13 ) , D ′ (x)/x 1 x 2 x 3 = -ε 2 1 x 1 a 21 +ε 1 (ε 2 (
(x) = {Y 2 (x), Y 2 (x)}. Note that Y (x) is integrable since [Y 1 , Y 2 ]
= 0. Such computations are necessary to identify the singular dynamics, which have to be avoided because of strong accessibility problems, see [START_REF] Bonnard | Geometric Optimal Control of the Generalized Lotka-Volterra Model of the Intestinal Microbiome[END_REF].

Computational path as a medical protocol

• Classify the eight equilibria computing the spectrum of the Jacobian matrix evaluated at these points. • The objective function to minimize is x → x 1 (T ), which can be reformulated as a problem of reaching the surface x 1 (t f ) ≤ x min 1 in minimum time where x min 1 is a given threshold, representing the level from which the detection of the infection is possible.

We shall take into account various constraints on the system in the framework of sampled-data control :

• Infection constraints. The infected population has to be lower than a given threshold x max 1

, representing the maximum level of infection. • Logistic constraints. The therapy consists of delivering treatment on specific times intervals [t i , t i+1 ], where the duration t i+1 -t i is bigger than an interpulse t i+1 -t i ≥ I m e.g. I m = 1 day. The controls u i , i = 1, 2 are constant on each interpulse and are bounded by some constants m i .

• At final time T of the caring therapy (e.g. T = 40 days) it is required that the final point x(T ) is in a stability domain of a forced equilibrium point denoted x ef associated to an admissible control. • Additional L 2 -constraints can be added to take into account the cost or the total amount of available drug e.g. antibiotic.

Numerical simulations

The previous geometric analysis leads to design direct numerical schemes or semi-direct scheme based on NMPC method (Nonlinear Model Predictive Control) [START_REF] Rawlings | Model Predictive Control: Theory, Computation, and Design[END_REF]. We present preliminary results on the 3d Lotka Volterra system (1.12) with

X(x) = x(r-Ax), r = (1, 1, 1) ⊺ , A =   1 α β β 1 α α β 1   and in the case α+β > 2, α <
1. This implies that the carrying simplex is the plane x + y + z = 3/(1 + α + β) and the interior equilibrium exists and is an unstable focus (see Table 1.1).

Equilibria and stability

The spectrums of the Jacobians ∂X ∂x evaluated at the eight free equilbria are given in Table 1.1.

Free equilibria X(xe) = 0 Spectrum ∂X ∂x |x=xe (0, 0, 0) {1, 1, 1} (0, 0, 1), (1, 0, 0), (0, 1, 0) {-1, 1 -α, 1 -β} 1.1. Spectrum of the Jacobian matrix of X evaluated at the eight equilibria of the May and Leonard model.

( 1 α+β+1 , 1 α+β+1 , 1 α+β+1 ) -1, α+β-2-i √ 3|α-β| 2(α+β+1) , α+β-2+i √ 3|α-β| 2(α+β+1) (0, α-1 αβ-1 , β-1 αβ-1 ), ( β-1 αβ-1 , 0, α-1 αβ-1 ) (α-1)(β-1) αβ-1 , -1, -α 2 +αβ+α-β 2 +β-1 αβ-1 ( α-1 αβ-1 , β-1 αβ-1 , 0) Table

Optimization problem

To reduce the x 1 population in the biological frame, where stability of the final point x 1 (T ) is required we proceed as follows.

1. Prior to the infection, we assume that the patient is in a healthy stable state represented as a stable equilibrium point (x 20 , x 30 ) of a twodimensional Lotka-Volterra system. 2. Suppose the patient got infected by a pathogen agent at time t = 0. At time t > 0 its state is represented as a 3d vector (x 1 (t), x 2 (t), x 2 (t)) with x(0) = (x 10 , x 20 , x 30 ), x 10 ≫ x min 1 > 0. This vector is governed by a 3d Lotka-Volterra system. 3. From x(0), we accelerate the evolution of the state to the variety Π. This is formulated as a minimum time control problem 3d Lotka-Volterra system using probiotics only. 4. Finally, we reach, in minimum time using antibiotics, an healthy region N :

x 1 (T ) ≤ k x min 1 ,
where k < 1 is a scaling factor. To ensure that the final point is in a stable healthy region, the stability can be obtained by a pole placement method [START_REF] Hermes | On the Synthesis of a Stabilizing Feedback Control via Lie Algebraic Methods[END_REF].

Direct method

We illustrate our previous four steps protocol by computing a trajectory x ref (.) using the Bocop software [START_REF]BOCOP: an open source toolbox for optimal control[END_REF] with α = 0.2, β = 2.

The point (x 2 (0), x 3 (0)) = (0.1, 0.1) corresponds to a forced stable equilibrium of the 2d Lotka-Volterra system : it is a point on the collinearity set associated to the control u e = 0.75 and for suitable values of ε 1 , ε 2 and, where the eigenvalues of the Jacobian matrix

∂ ∂x (X(x) + uY (x)) |x=(x2(0),x3(0)),u=ue
have strictly negative real parts. At time t = 0, a pathogen agent is measured with x 1 (0) = 0.1 =: x min 1 . Then in Phase 1 we accelerate the evolution of the state (x 1 , x 2 , x 3 ), governed by the 3d Lotka-Volterra system

  ẋ1 (t) ẋ2 (t) ẋ3 (t)   = x     1 1 1   -   1 α β β 1 α α β 1   x(t) + u(t)   1.5 0.4 1     ,
towards the flat carrying simplex Π : x + y + z = 1/(1 + α + β) by using probiotics only.

When we are close enough to Π, Phase 2 is initiated and we minimize the time to reach the healthy region x 1 (T ) < x min 1 /2, using antibiotics only with Y (x) = x (-0.5, -1.4, -1) ⊺ . The trajectory resulting from these two phases is displayed in Fig. 1.6. 

NMPC tracking

A predictive controller model is constructed through the minimization of a cost function involving the state and control inputs over a finite time horizon, with consideration for constraints on both inputs and states. The feedback control input has a piecewise affine structure of the form u f = -K x + Λ, which can be easily deployed in microcontrollers for fast processes.

First, we start by constructing a discrete-time approximation of the biinput system (1.12) using a Tustin bilinear transformation with sampling period τ > 0. Let Plugging the feedback control in the control dynamics (1.12) yields a closed loop system, robust with respect to perturbations and uncertainties on the state x.

Numerical results.

Take the trajectory x ref (•), computed with the direct method, as a reference trajectory. The feedback control is computed with the following NMPC parameters : τ = 0.005, η = 5, κ = 0.002 and the parameters of the dynamics (1.12) are ϵ 1 = (1.5, 0.4, 1.0) ⊺ , ϵ 2 = (0.5, -1.4, -1.0) ⊺ , α = 0.2 and β = 2. Time evolution of the trajectory of the resulting closed loop system is displayed in Figure 1.6 as dashed curves showing the ability to track the reference signal. Note that we can accelerate the recovery by computing the feedback control with a predicted error of the form e(k) = x ref (k + p) -x(k) for some integer p > 1.

Conclusion

This article presents briefly a combination of geometric and numerical methods to analyze the problem of reduction of a complex microbiote by a pathogenic agent. It leads to robust optimal control schemes to quantify the effect of different medical protocols. Computation are presented for the 2dsystem and for 3d-totally competitive Lotka-Volterra models.
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 11 Fig. 1.1. Schematic representation of a case study: end-points of the collinear locus and intersection of the singular and collinear locus.
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 16 Fig. 1.6. (Continuous curves) Reference trajectory x ref computed with a direct method on a 3d totally competitive Lotka-Volterra model following the four steps protocol given in section 1.4.5. (Dashed curves) Tracking trajectory obtained via a NMPC tracking method on the reference trajectory.

  x ref (•) be a reference trajectory. Define the costJ(x, u f ) := η k=1 ∥e(k)∥ 2 2 + ∥∆u f (k)∥ 2 2 + κe(k) ⊺ ∆u f (k),whereη is the horizon, e(k) = x ref (k) -x(k) is the predicted error, ∆u f (k) = u f (k) -u f (k -1)is the incremental feedback control input and κ > 0 is a parameter.The feedback control is computed by minimizing the cost J subject to the discrete dynamic constraint obtained with the Tustin transformation and such that each control component is in [0, 1].

  It is called a BC-extremal if the transversality condition (1.6) is satisfied. An extremal is called regular if a.e. u(t) = H Y (z(t)) and singular if H Y (z(t)) = 0 identically. A regular extremal is called bang-bang (BB) if the the number of switches is finite. An extremal (x, p, u) is called strict if p(.) is unique up to a factor.

	1.2.2 Small time classification of regular extremals near the
	switching surface.

  x 1 a 11 -x 2 a 22 )-ε 3 x 3 a 23 )+ε 2 (ε 2 x 2 a 12 +ε 3 x 3 a 13 ) ε 2 x 2 x 1 a 12 a 31 -a 32 x 1 a 21 +x 3 a 23 -a 33 +r 2 -ε 1 x 1 r 1 a 31 +x 3 (a 13 -a 33 ) a 31 +x 2 a 12 a 31 -a 21 a 32 +ε 3 x 3 (-r 3 a 33 +x 1 a 31 (a 13 -a 33 )+x 2 a 32 (a 23 -a 33 ))+ ε 2 2 (-x 2 ) a 32 +ε 3 ε 2 (x 2 a 22 -x 3 a 33 )+ε 2 3 x 3 a 23 +ε 1 x 1 (ε 3 a 21 -ε 2 a 31 ) -ε 1 x 1 (r 1 a 11 +x 2 a 12 (a 11 -a 21 )+x 3 a 13 (a 11 -a 31 ))+ε 2 x 2 x 3 a 13 a 32 -a 12 x 1 (a 21 -a 11 )+x 3 a 23 +r 2 -ε 3 x 3 (a 13 (x 1 (a 31 -a 11 )+x 2 a 32 +r 3 ) -x 2 a 12 a 23 ) --ε 2 1 x 1 a 31 +ε 1 (ε 3 (x 1 a 11 -x 3 a 33 )-ε 2 x 2 a 32 )+ε 3 (ε 2 x 2 a 12 +ε 3 x 3 a 13 ) ε 1 x 1 (x 3 a 23 a 31 -a 21 (x 3 a 13 +x 2 (a 12 -a 22 )+r 1 ))+ε 2 x 2 -r 2 a 22 +x 1 a 21 (a 12 -a 22 )+x 3 a 23 (a 32 -a 22 ) +ε 3 x 3 (x 1 a 13 a 21 -a 23 (x 1 a 31 +x 2 (a 32 -a 22 )+r 3 )) , D ′′ (x)/x 1 x 2 x 3 = -ε 2 1 x 1 a 21 +ε 1 (ε 2 (x 1 a 11 -x 2 a 22 )-ε 3 x 3 a 23 )+ε 2 (ε 2 x 2 a 12 +ε 3 x 3 a 13 ) (x 1 a 31 +x 2 a 32 +x 3 a 33 +r 3 )+ -ε 2 2 x 2 a 32 +ε 3 ε 2 (x 2 a 22 -x 3 a 33 )+ε 2 3 x 3 a 23 +ε 1 x 1 ε 3 a 21 -ε 2 a 31 (x 1 a 11 +x 2 a 12 +x 3 a 13 +r 1 )+ ε 2 1 x 1 a 31 +ε 1 ε 2 x 2 a 32 +ε 3 (x 3 a 33 -x 1 a 11 ) -ε 3 (ε 2x 2 a 12 +ε 3 x 3 a 13 ) (x 1 a 21 +x 2 a 22 +x 3 a 23 +r 2 ) . Similar computations hold in the bi-input case with Y

	Remark 2.
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