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Optimal Control of the Lotka-Volterra Equations with Applications

Bernard Bonnard1 and Jérémy Rouot2

Abstract— In this article, the Lotka–Volterra model is an-
alyzed to reduce the infection of a complex microbiote. The
problem is set as an optimal control problem, where controls are
associated to antibiotic or probiotic agents, or transplantations
and bactericides. Candidates as minimizers are selected using
the Maximum Principle and the closed loop optimal solution
is discussed. In particular a 2d–model is constructed with four
parameters to compute the optimal synthesis using homotopies
on the parameters.

Index Terms— Lotka–Volterra equations, Optimal control,
Maximum Principle, Regular synthesis, Population dynamics

I. INTRODUCTION

The Lotka-Volterra equations is a model to study biolog-
ical species interactions and comes from a generalization of
the prey predator model, see [12]. In this memoir the problem
is already set in the control frame since the model aims to
explain the evolution of two fishing species in relation with
diminution of the fishing activity during the first World War.

The system is written as the 2d-dynamics:

dN1

dt
= N1(λ1 + µ1N2),

dN2

dt
= N2(λ2 + µ2N1) (1)

where N1, N2 are the two species, N1, N2 ≥ 0 and
λ1, λ2, µ1, µ2 are real parameters. In the prey predator model
λ1 > 0, λ2 < 0, µ1 < 0, µ2 > 0.

The system is conservative and can be integrated using the
first integral:

µ2N1 + λ2lnN1 − (µ1N2 + λ1lnN2) = constant.

In the prey predator model, the evolution of each species
in the quadrant N1, N2 > 0 is periodic and there exist
a single persistent equilibrium: Ω = (K1,K2). Moreover
K1,K2 represents the averaged population of each species
on a period T

〈Ni〉 =
1

T

∫ T

0

Ni(t)dt = Ki, i = 1, 2.

The effect of the fishing activity is to replace:

λ1 → λ1 − αλ, λ2 → λ2 − βλ,

where α, β are the modes of destruction of each species and
λ(t) is the control intensity.
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Constant controls lead to shift the persistent equilibrium
and hence to shift the averaged populations.

More generally the model leads to consider two vector
fields (X,Y ) defined by (1) with different parameters and to
introduce the control system:

dx(t)

dt
= u(t)X(x(t)) + (1− u(t))Y (x(t)),

x = (N1, N2) and u ∈ [0, 1].
The Lotka–Volterra equations can more generally de-

scribed the interaction of n-species x = (x1, . . . , xn)ᵀ,
xi ≥ 0, and is given by the dynamics:

dx

dt
= (diagx)(Ax+ r), (2)

where diagx is the diagonal matrix with entries (x1, . . . , xn),
A = (aij) is the matrix of interaction coefficients and
r = (r1, . . . , rn)ᵀ is the vector of individual growth of the
species. Recently based on the model of [11] of the intestinal
microbiote with n = 11 species, Jones et al. [6] analyzed
the problem of reducing C. difficile infection (a pathogenic
agent) using either antibiotic or fecal transplantation.

Denoting by X(x) = (diagx)(Ax+ r) the n-dimensional
dynamics (n = 11) with parameters given in [11], the control
system writes as:

dx(t)

dt
= X(x(t)) + u(t)Y (x(t)) +

k∑
i=1

λiδ(t− ti)Y ′(x)), (3)

where Y (x) = (diagx)ε, ε = (ε1, . . . , εn) is the sensitivity
vector to the antibiotic of the species and u(t) is a piecewise
constant mapping. The second control action is associated to
jumps x(ti) → x(ti) + λv in the state, and Y ′(x) = v,
corresponding to ratio of each species in the transplantation.

Denoting by x1 the C. difficile population, the optimal
control problem can be set as a Mayer problem: minx1(tf )
where tf is the number of days of the treatment or in a
dual form: reach in minimum time tf a specific level d of
infection that is: x1(tf ) = d.

The optimal control problem can be posed in the general
frame of mixing permanent controls associated to antibiotic
treatment or sampled-data controls associated to transplanta-
tions.

In both case the optimal control problem can be analyzed
with an indirect scheme based on the Maximum Principle [9]
in the permanent case or an adaptation in the sampled-data
control case, or by a direct numerical optimization scheme.

In this article, due to space restriction we shall only
analyze the effect of an antibiotic or probiotic treatment



restricting to a control system of the form:

dx(t)

dt
= X(x(t)) + u(t)Y (x(t)),

with x(t) ∈ Rn, the set of admissible controls U being the set
of measurable mappings valued in ]−1,+1[ (for convenience
we assume u = −1 being associated to no treatment, u = +1
to maximum dosing regimen). We consider the problem of
steering x(0) = x0 to a terminal manifold N of codimension
one, e.g.: x1 = d, in minimum time.

Our analysis is based on a series of recent articles [2],
[8], [3] to classify the closed loop optimal solutions in a
neighborhood of the terminal manifold, using semi-normal
forms for the triple (X,Y,N), under generic assumptions.
They can be globalized in the frame of polynomic systems
using homotopies on the parameters.

Due to space restrictions the techniques will be presented
mainly restricting to the 2d-case.

II. THE MAXIMUM PRINCIPLE IN THE PERMANENT CASE
AND THE CLASSIFICATION OF THE EXTREMALS

A. Maximum Principle

Denote F (x, u) = p·(X(x)+uY (x)) and H = p·F (x, u)
the Hamiltonian lift defining the pseudo-Hamiltonian, p ∈
Rn r {0} being the adjoint vector. If (x(.), u(.)) is optimal
on [0, tf ] then there exist (z(.), u(.)), z = (x, p) such that
a.e. :

dx

dt
(t) =

∂H

∂x
(x(t), p(t), u(t)),

dp

dt
(t) = −∂H

∂p
(x(t), p(t), u(t)).

(4)

Moreover the optimal control satisfies a.e. the maximiza-
tion condition

H(z(t), u(t)) = max
|v|51

H((z(t)), v) = M(z(t)), (5)

where M((z(t)) ≥ 0 is constant.
At the final time the transversality condition is satisfied:

p(tf )⊥T ∗x(tf )N. (6)

Definition 1: An extremal (z, u) is a solution of (4)-(5)
on [0, tf ]. It is called a BC–extremal if the transversality
condition (6) is satisfied. An extremal is called regular if
a.e. u(t) = signHY (z(t)) and singular if HY (z(t)) = 0
identically. A regular extremal is called bang-bang (BB) if
the the number of switches is finite. An extremal (x, p, u) is
called strict if p(.) is unique up to a factor.

B. Small time classification of regular extremals near the
switching surface.

One needs the following see [7] for the details.
Let t→ z(t) be a regular extremal on [0, tf ] and we denote

by t → Φ(z(t)) = HY (z(t)) the switching function and let
Φε the switching function along a bang arc extremal with u =
ε = ±1 constant. We denote respectively by σ+, σ−, bang
arcs with u = ±1 and σs a singular arc, while σ1σ2 denotes a
σ1 arc followed by an σ2 (where each arc of the sequence can

be empty). We denote by Σ the switching surface HY (z) = 0
and Σ′ the subset HY (z) = {HY , HX}(z) = 0. The Lie
bracket of two vector fields Z1, Z2 being computed with
the convention [Z1, Z2](x) = ∂Z1

∂x (x)Z2(x)− ∂Z2

∂x (x)Z1(x).
If Hi(z) = p · Zi(x) the Poisson bracket is {H1, H2} =
dH1(H2) = p · [Z1, Z2](x), where H2 := (∇pH2,−∇xH2)
is the Hamiltonian vector field.

Deriving twice the switching function Φ(t) one gets:
dΦ

dt
(t) = {HY , HX}(z(t)),

d2Φ

dt2
(t) = {{HY , HX}, HX}(z(t)) + u(t){{HY , HX}, HY }(z(t)).

(7)

Let t be a switching time so that Φ(t) = 0 and assume
that at z(t) the surface Σ′ is regular.

Proposition 2: Assume that the switching time t is ordi-
nary that is: Φ(t) = 0 and dΦ

dt (t) is non zero. Then near z(t)
every extremal projects onto σ+σ− if dΦ

dt (t) > 0 or σ−σ+

if dΦ
dt (t) < 0.
Proposition 3: Assume that at the switching time t, the

switching function Φε(t) for u = ε = ±1 is such that
dΦε

dt (t) = 0 and both d2Φε

dt2 (t) 6= 0 where the second order
derivative is given by (7). Then z(t) is called a fold point
and we have:
• In the parabolic case: d2Φ+

dt2 (t) · d2Φ−
dt2 (t) > 0, each

extremal near z(t) projects onto σ±σ±σ±.
• In the hyperbolic case: d2Φ+

dt2 (t) > 0, d2Φ−
dt2 (t) < 0 it

projects onto σ±σsσ±.
• In the elliptic case d2Φ+

dt2 (t) < 0, d2Φ−
dt2 (t) > 0, every

extremal is bang-bang but the number of switches is not
uniformly bounded.

C. Computations of the singular extremals with minimal
order

The computations is standard, see [1]. Derive twice with
respect to time HY (z(t)) = 0 one gets

HY (z(t)) = {HY , HX}(z(t)) = 0,

{{HY , HX}, HX}(z(t)) + us(t){{HY , HX}, HY }(z(t)) = 0.
(8)

Assume the generalized Legendre-Clebsch condition
{{HY , HX}, HY }(z(t)) 6= 0 holds for every t then from
equation (8), us(t) = us(z(t)) is the dynamic feedback:

us(z) = −{{HY , HX}, HX}(z)
{{HY , HX}, HY }(z)

and plugging such us in the pseudo-Hamiltonian defines the
true Hamiltonian:

Hs(z) = HX(z) + us(z)HY (z).

Hence we deduce:
Proposition 4: Singular extremals with minimal order

{{HY , HX}, HY }(z) 6= 0 are solutions of the Hamilto-
nian dynamics Hs(z) restricted to the invariant surface Σ′:
HY (z) = {HY , HX}(z) = 0.

Definition 5: Assume that we are in the strict case. Since
the true Hamiltonian is constant then the singular trajecto-
ries projections of singular extremals of minimal order are
stratified according to the following:



• Hyperbolic case: HX(z).{{HY , HX}, HY }(z) > 0,
• Elliptic case: HX(z).{{HY , HX}, HY }(z) < 0,
• Abnormal or exceptional case: HX(z) = 0.

D. Construction of the optimal synhesis in a neighborhood
of N

Take a point x0 which can be identified to 0. Assume that
at such point the surface N is regular. We denote by N⊥

the Hamiltonian lift: {z = (x, p);x ∈ N, p = n(x)} where
n is the normal to N at x.We shall assume that the cone of
limit directions {X ± Y } is strict and one can suppose it is
contained in an half-space, so that n can be chosen assuming
n(x) ·X(x) > 0.

If n(x) · Y (x) 6= 0,then every extremal near N is deter-
mined by the transversality condition: u = +1 if n · Y > 0
and u = −1 otherwise. Switches can occur only near points
such that Y is tangent to N , that is n · Y (x) = 0.

The regular synthesis [5] amounts to compute in a neigh-
borhood U of x0, in the domain n ·X(x) < 0 the following
strata:
• The switching locus W restricting to ordinary switches

with strata W+,W− corresponding respectively to
σ−σ+ or σ+σ−, and associated to optimal policies only.

• The set Σs filled by optimal BC− singular arcs.
• The cut locus C defined as follows. Every optimal

arc σ(t) is integrated backwards in time, that is σ(t)
is defined on [tf , 0] so that tf < 0 and σ(0) ∈ N .
The cut locus is the closure of the set of points z(tc),
tf < tc < 0 so that z(t) is not optimal beyond the
time tc. It contains the separating locus formed by the
set of points where there exits two distinct minimizers
reaching N .

The contribution of the series of papers [2], [8], [3] describes
the time minimal syntheses for all cases of codimension ≤ 2
in the jet spaces of the triples (X,Y,N) at x0 = 0. We shall
present the main application, restricting to the 2d–case for the
controlled Lotka-Volterra model, to describe geometrically
the main features of the time minimal syntheses.

III. THE GEOMETRIC DETERMINATION OF THE TIME
MINIMAL SYNTHESES FOR THE LOTKA-VOLTERRA

MODEL

A. Determination of the collinearity locus in relation with
forced permanent equilibria

Plugging u = ±1 leads to forced equilibria with constant
dosing regimen associated to no treatment with u = −1 and
maximal dosing regimen with u = +1.

Hence in the n-dimensional case we introduce the
collinearity locus as the one-dimensional variety defines as
projection on the state space of the set:

{(xe, λ) ∈ Rn+1;λ = −ue, X(xe) = λY (xe)}.

The constant control ue is such that (xe, ue) is a forced
equilibrium and it has to be feasible that is |ue| ≤ 1.

Following Volterra [12] one can choose for each dynamics
(diagx)(Ax + r) dimensionless coordinates so that up to
translation the dynamics takes the form −diag(x + 1)A∗x,

where the persistent equilibrium is identified to 0 and the
spectrum of the linearized dynamics is given by−σ(A∗) with
σ(A∗) = {λ1, . . . , λn} where each λi denotes an eigenvalue,
with generalized eigenspace Eλi

.
In the 2d-case the computation of the collinearity locus is

simple and is the determinantal set

C = det(X(x), Y (x)) = 0.

Straightforward computations define a segment L1 when
restricting to the persistent quadrant: x1, x2 > 0. Fur-
thermore a subsegment L′1 is defined due to the control
restriction |ue| ≤ 1.

Each point of this segment determines a forced equilibrium
with a corresponding spectra.

Example 6: Consider the conservative case described by
(1) with parameters (λ1, λ2, µ1, µ2) and Ω = (K1,K2)
be the persistent equilibrium. The dynamics can be set in
normalized coordinates introducing ni = Ni

Ki
and ni → ni−1

so that it takes the form: −diag(x + 1)A∗x. Choosing Ω
in the quadrant Ni > 0 imposes constraints: λ1µ1 > 0
and λ2µ2 < 0. One can choose the ratio λ = λ2/µ2 as
an homotopy parameter and consider the one-dimensional
dynamics λ → (diagx)(A(λ)x + r(λ)) where λ can be
restricted to a segment.

B. Determination of the singular locus

In the 2d–case, using HY (z) = {HX , HY }(z) = 0, the
singular locus is the determinantal set S defined by:

det(Y (x), [Y,X](x)) = 0.

In the persistent space they formed a line passing through
the origin.

For some parameters value, the collinear and singular loci
intersects at a single point denoted O. The main point of
this section will be to discuss the construction of the time
minimal synthesis in a neighborhood of O, illustrating the
applications of the concepts and techniques from [2], [8],
[3]. This will lead to identify four parameters to construct
the global syntheses by homotopy. The geometric schematic
picture is represented on fig.1 where we have reported
symbolically on the extremities of the collinear locus the
two cases studied by Volterra [12], illustrating clearly the
global issues.

In the 2d-case, much information about the global synthe-
sis can be deduced using the clock form one-form ω defined
outside the collinearity locus by the relations:

ω(X) = p ·X(x) = 1, ω(Y ) = p · Y (x) = 0.

Green’s theorem allows to deduces optimality status of
σ+σ− vs σ−σ+, in different domains, observing that dω
vanishes precisely on the singular locus.

Since Lie brackets have complicated values, the use of
a semi-normal form for the actions of local changes of
coordinates and feedbacks u → −u aims to simplify the
computations.

In particular, such a construction will be useful to deduce
the time minimal synthesis in a neighborhood of 0 and



O

Singular locus

Collinearity
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Terminal 
manifold

no treatment
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Fig. 1. Schematic representation of a case study: end–points of the collinear
locus and intersection of the singular and collinear locus.

identify the homotopy parameters to construct the global
synthesis.

a) Construction of the semi-normal form: First of all,
one can choose coordinates such that O = (0, 0) and Y is
identified to the vector field Y = ∂

∂x2
(this amounts mainly

to choose ln-coordinates), furthermore the singular direction
can be identified to the axis (Ox1).

Expanding X in the jet space at O = (0, 0), this leads to
analyze the control system:

dx1

dt
= −λx1 + αx2

2,
dx2

dt
= (u− ue),

with ue ∈]− 1,+1[, | u |≤ 1 and α > 0.
b) Properties of the system: Computing Lie brackets in

those coordinates shows relevant simplifications:
• X(x) = (−λx1 + αx2

2) ∂
∂x1
− ue ∂

∂x2
,

• Y (x) = ∂
∂x2

,
• [Y,X](x) = −2αx2

∂
∂x1

,
• [[Y,X], Y ](x) = −2α ∂

∂x1
.

Hence the singular line is given by: x2 = 0 and restricting
to this line one has:

X(x1) = −λx1
∂

∂x1
, [[Y,X], Y ](x1) = −2α

∂

∂x1
.

Therefore for the restriction one has:

[[Y,X], Y ](x1) =
2α

λ
X(x1).

Then we have:
• The origin is an abnormal singular arc reduced to a

point and the subarc of the line x2 = O is hyperbolic
in x1 > 0 and the subarc is elliptic if x1 < 0.

• The singular control along the line x2 = 0 is given
by: u = ue and is constant and strictly admissible if
ue ∈]− 1,+1[.

• The collinear set is given by the parabola: x1 =
αx2

2

λ .
• The clock form is: ω = dx1

(−λx1+αx2
2)

.
Moreover for every constant control u = ε, ε = ±1, the
extremal system can be integrated.

One can construct a case study taking as terminal manifold
N a circle centered at O=(0, 0), with radius d intersecting the
singular line at (±d, 0). The time minimal synthesis outside
the disk and near the two points (±d, 0) can be directly
deduced from the classification of [3], thanks to the curvature
of the terminal manifold in the chosen normal coordinates.
It is represented on fig.2 and we have:

• Top: (−d, 0) lifts into a fold elliptic point. The singular
line is time maximizing. The optimal policy is σ+σ−
or σ−σ+ using the clock form and we have represented
the two strata of the switching locus: W = W− ∪W+

and there exists a cut locus C. The three curves of the
stratification are ramifying at (−d, 0).

• Bottom: (d, 0) lifts into an hyperbolic fold point and the
time minimal synthesis is of the form: σ−σs or σ+σs.

To construct the complete synthesis one must glue the two
cases along the exterior of the circle and fill the interior of
the disk.

Elliptic case

Hyperbolic case

Fig. 2. 2d–syntheses near (±d, 0) outside the disk.

To simplify the computations, we have assume that ue =
0. The synthesis is represented on fig.3.

Note that the singular line prolongated onto a cut locus
terminating at (d, 0). In the non symmetric case ue 6= 0, the
cut locus persists but is not coinciding with this segment.

In this synthesis we assume that the two points (±d, 0)
lift into fold points. But clearly we can obtain more general
cases unfolding the syntheses with a parameter w by taking
the system

dx1

dt
= −λx1 + wx2 + αx2

2,
dx2

dt
= (u− ue),



Collinearity locus

Fig. 3. Gluing hyperbolic and elliptic case with N being a circle; the symmetric case ue = 0.

w0 < 0 w0 = 0 w0 > 0

Fig. 4. Unfolding with parameter w0 in the elliptic case.

w0 < 0 w0 = 0 w0 > 0

Fig. 5. Unfolding with parameter w0 in the hyperbolic case.

where w is a constant.
This leads to unfold the synthesis as represented on figs.

4-5. Note that the sign of w is not relevant in the pictures
since one can change u into −u in the computations.

The switching locus W can be evaluated expanding the
switching function, where the expansions are described in
[3] and are in any case of order at most 2.

C. Appendix: computations on the 2d–model

In this appendix we present direct computations on the
2d-model vs the use of the semi-normal form. To simplify
the notations we note (x, y) the 2d-coordinates so that one

has:

X = (x(r1 + a11x+ a12y), y(r2 + a21x+ a22y))ᵀ,

Y = (xε1, yε2)ᵀ.

Using ln–coordinates it takes the form:

X = ((r1 + a11e
x + a12e

y), (r2 + a21e
x + a22e

y))ᵀ,

Y = (ε1, ε2)T .

Lie brackets are invariant and can computed in such
coordinates which simplify the calculations since the vector
field Y becomes constant.

Moreover one can impose in the class two geometric
normalizations to clarify the analysis.



a) Normalizations:
• One can suppose that the persistent equilibrium is Ω =

(1, 1).
• One can assume that the persistent singular locus is the

line: y = x.
This leads respectively to:

r1 = −(a11 + a12),r2 = −(a21 + a22), (9)

and
ε1(ε2a11 − ε1a21) = ε2(ε1a22 − ε2a12). (10)

Lie brackets are given by:

[X,Y ] = (x(ε1a11x+ ε2a12y), y(ε1a21x+ ε2a22y))ᵀ,

[[Y,X], Y ] = (−x(ε2
1a11x+ ε2

2a12y),−y(ε2
1a21x+ ε2

2a22y))ᵀ,

the Lie bracket [[X,Y ], X] is more complex and takes in
ln–coordinates the form:

[[Y,X], X] = ((ε1a11e
x(r1 + a12e

y) + ε2a12e
y(r2 +

a21e
x) − a11e

xε2a12e
y − a12e

yε1a21e
x), (ε1a21e

x(r1 +
a12e

y) + ε2a22e
y(r2 + a21e

x) − a21e
xε2a12e

y −
a22e

yε1a21e
x))ᵀ.

One introduces the following determinants:

D = det(Y, [[Y,X], Y ]),

D′ = det(Y, [[Y,X], X]), D′′ = det(Y,X).

The generalized Legendre-Clebsch condition holds if
along the singular line y = x,

D = xy[ε2
1x(ε2a11 − ε1a21) + ε2

2y(ε2a12 − ε1a22)]

is non zero.
This gives restricting to y = x,

D

xy
= xC,

C = ε2
1(ε2a11 − ε1a21) + ε2

2(ε2a12 − ε1a22) 6= 0.

Using the normalization condition (10) we get the condi-
tion

(ε1ε2 − ε2
2)(ε1a22 − ε2a12) 6= 0.

The singular control along the singular line y = x is given
by:

us = −
D′|y=x

D|y=x
.

Computing D′ restricted to y = x leads to introduce the
coefficients:
A = ε1ε2a11r1 + ε2

2a12r2 − ε2
1a21r1 − ε1ε2a22r2,

B = ε1ε2a11a12 + ε2
2a12a21 − ε2

2a11a12 − ε1ε2a12a21 −
ε2

1a21a22 − ε1ε2a21a22 + ε1ε2a21a12 + ε2
1a22a21. Hence

the first component (projecting on the x − axis) of −usY
restricting to the singular line y = x takes the form

− (A+Bx)

C
ε1x.

It has to vanishes at x = 1, so that B = −A. The
derivative at x = 1 is −ε1(A+2B)

C = ε1A
C .

Similarly at Ω = (1, 1), X has to vanishes, which
corresponds to (9) and the derivative at x = 1 is −r1.

Hence the dynamics along the singular line at x = 1 is
regular if

−r1 + ε1
A

C
6= 0. (11)

Note that we can reverse the orientation on the singular
line changing in the same category X into −X .

In particular one deduces the following:
Theorem 7: Under regularity conditions previously de-

scribed, the singular flow along the singular line belongs to
the one dimensional Lotka–Volterra form: dx

dt = x(r + ax)
and at the persistent equilibrium point the eigenvalue of the
linearized dynamics is given by −r1 + ε1

A
C .

IV. CONCLUSION

Our study shows the main features to compute time
minimal syntheses in different neighborhood of the origin
and with different terminal manifolds. The main singularity is
the interaction between the collinearity and the singular loci.
We have introduced a semi-normal form with four homotopy
parameters describing the main features of the geometric
construction. Different cases can be analyzed gluing different
syntheses. In particular the detailed computations of Section
III-C show the role of the singular locus to extend the
synthesis for large times.
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de synthèses temps minimales avec cible de codimension un et
applications. Annales de l’I.H.P. Analyse non linéaire 14 no.1 (1997),
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[10] H. SCHÄTTLER, U. LEDZEWICZ, Optimal control for mathematical
models of cancer therapies. An application of geometric methods.
Interdisciplinary Applied Mathematics, 42. Springer, New York, 2015,
496 pages.

[11] R.R. STEIN, V. BUCCI, N.C. TOUSSAINT, C.G. BUFFIE, G.
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Sceaux, 1990, 215 pages.


