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Abstract

We consider the idealized setting of gradient flow on the population risk for infinitely
wide two-layer ReLU neural networks (without bias), and study the effect of symmetries
on the learned parameters and predictors. We first describe a general class of symmetries
which, when satisfied by the target function f∗ and the input distribution, are preserved
by the dynamics. We then study more specific cases. When f∗ is odd, we show that the
dynamics of the predictor reduces to that of a (non-linearly parameterized) linear predic-
tor, and its exponential convergence can be guaranteed. When f∗ has a low-dimensional
structure, we prove that the gradient flow PDE reduces to a lower-dimensional PDE.
Furthermore, we present informal and numerical arguments that suggest that the input
neurons align with the lower-dimensional structure of the problem.

1 Introduction

The ability of neural networks to learn rich representations—or features—of their input data
is commonly observed in state-of-the art models (Zeiler and Fergus, 2014; Cammarata et al.,
2020) and often thought to be the reason behind their good practical performance (Goodfel-
low et al., 2016, Chap. 1). Yet, our theoretical understanding of how feature learning arises
from simple gradient-based training algorithms remains limited. Much progress (discussed
in Section 1.3) has been made recently to understand the power and limitations of gradient-
based learning with neural networks, showing in particular their superiority over fixed-feature
methods on some difficult tasks. However, positive results are often obtained for algorithms
that differ in substantial ways from plain (stochastic) gradient descent (e.g. the layers trained
separately, or the algorithm makes just one truly non-linear step, etc).

In this work, we take the algorithm as a given and instead adopt a descriptive approach.
Our goal is to improve our understanding of how neural networks behave in the presence of
symmetries in the data with plain gradient descent (GD) on two-layer fully-connected ReLU
neural networks. To this end, we investigate situations with strong symmetries on the data,
the target function and on the initial parameters, and study the properties of the training
dynamics and the learnt predictor in this context.

1.1 Problem setting

We denote by d the input dimension, ρ the input data distribution which we assume to be
uniform over the unit sphere Sd−1 of Rd, and by P2(Ω) the space of probability measures
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with finite second moments over a measurable space Ω. We call σ the activation function,
which we take to be ReLU, that is σ(z) = max(0, z), ℓ : R×R → R the loss function, which
we assume to be continuously differentiable w.r.t. its second argument and we denote by ∂2ℓ
this derivative.

Mean-field limit of two-layer networks. In this work, we consider the infinite-width
limit in the mean-field regime of the training dynamics of two-layer networks without inter-
cept with a ReLU activation function. Given a measure µ ∈ P2(R × Rd), we consider the
infinitely wide two-layer network parameterized by µ, defined, for any input x ∈ Rd, by

f(µ;x) =

∫
c∈R1+d

ϕ(c;x)dµ(c), (1.1)

where, for any c = (a, b) ∈ R×Rd, ϕ(c;x) = aσ
(
b⊤x

)
. Note that width-m two-layer networks

with input weights (bj)j∈[1,m] ∈ (Rd)m and output weights (aj)j∈[1,m] ∈ Rm can be recovered
by a measure µm = (1/m)

∑m
j=1 δ(maj ,bj) with m atoms.

Objective and Wasserstein gradient flow. We consider the problem of minimizing the
population loss objective for a given target function f∗ : Rd → R, that is

min
µ∈P2(R×Rd)

(
F (µ) := Ex∼ρ [ℓ (f∗(x), f(µ;x))]

)
. (1.2)

The Fréchet derivative of the objective function F at µ is given by the function F ′
µ(c) =

Ex∼ρ [∂2ℓ (f∗(x), f(µ;x))ϕ(c;x)] for any c = (a, b) ∈ R × Rd (for more details, see Ap-
pendix B.1). Starting from a given measure µ0 ∈ P2(R × Rd), we study the Wasserstein
gradient flow (GF) of the objective (1.2) which is a path (µt)t≥0 in the space of probability
measures satisfying, in the sense of distributions, the partial differential equation (PDE)
known as the continuity equation:

∂tµt = −div (vt µt) ,

vt(c) : = −∇F ′
µt(c).

(1.3)

Initialization. We make the following assumption on the initial measure µ0 ∈ P2(R ×
Rd): µ0 decomposes as µ0 = µ10 ⊗ µ20 where µ10, µ

2
0 ∈ P2(R) × P2(Rd). This follows the

standard initialization procedure at finite width. Because no direction should a priori be
favored, we assume µ20 to have spherical symmetry, i.e., it is invariant under any orthogonal
transformation, and we additionally assume that |a|= ||b|| almost surely at initialization. It
is shown in (Chizat and Bach, 2020, Lemma 26), and (Wojtowytsch, 2020, Section 2.5), that
with this assumption, µt stays supported on the set {|a|= ||b||} for any t ≥ 0. This last
assumption is of a technical nature, and, along with the regularity conditions on the loss
ℓ and the input data distribution ρ, ensures that the Wasserstein GF (1.3) is well-defined
(Wojtowytsch, 2020, Lemma 3.1, Lemma 3.9).

Relationship with finite-width GD. If µ0 = (1/m)
∑m

j=1 δ(aj(0),bj(0)) is discrete, the
Wasserstein GF (1.3) is exactly continuous-time GD on the parameters of a standard finite-
width neural network, and discretization errors (w.r.t. the number of neurons) can be pro-
vided (Mei et al., 2018; Nguyen and Pham, 2020).
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1.2 Summary of contributions

Our main object of study is the gradient flow of the population risk of infinitely wide two-
layer ReLU neural networks without intercept. Our motivation to consider this idealistic
setting—infinite data and infinite width—is that it allows, under suitable choices for ρ and
µ0, the emergence of exact symmetries which are only approximate in the non-asymptotic
setting1.

Symmetries, structure, and convergence. In this work, we are interested in the struc-
tures learned by the predictor f(µt; ·) under GF as t grows large. Specifically, we make the
following contributions:

• In Section 2, we prove that if f∗ is invariant under some orthogonal linear map T , then
f(µt; ·) inherits this invariance under GF (Theorem 2.1).

• In Section 3, we study the case when f∗ is an odd function and show that the network
converges to the best linear approximator of f∗ at an exponential rate (Theorem 3.2).
Linear predictors are optimal over the hypothesis class in that case, in particular be-
cause there is no intercept in our model.

• In Section 4, we consider the multi-index model where f∗ depends only on the orthog-
onal projection of its input onto some sub-space H of dimension dH . We prove that
the dynamics can be reduced to a PDE in dimension dH . If in addition, f∗ is the
Euclidean norm of the projection of the input, we show that the dynamics reduce to
a one-dimensional PDE (Theorem 4.3). In the latter case, we were not able to prove
theoretically the convergence of the neurons of the first layer towards H, and leave this
as an open problem but we provide numerical evidence in favor of this result.

The code to reproduce the results of the numerical experiments can be found at:
https://github.com/karl-hajjar/learning-structure.

1.3 Related work

Infinite-width dynamics. It has been shown rigourously that for infinitely wide networks
there is a clear distinction between a feature-learning regime and a kernel regime (Chizat
et al., 2019; Yang and Hu, 2021). For shallow networks, this difference stems from a differ-
ent scale (w.r.t. width) of the initialization where a large initialization leads to the Neural
Tangent Kernel (NTK) (a.k.a. the “lazy regime”) which is equivalent to a kernel method
with random features (Jacot et al., 2018) whereas a small initialization leads to the so-called
mean-field (MF) limit where features are learned from the first layer (Chizat et al., 2019;
Yang and Hu, 2021). However, it is unclear in this setting exactly what those features are
and what underlying structures are learned by the network. The aim of the present work is
to study this phenomenon from a theoretical perspective for infinitely wide networks and to
understand the relationship between the ability of networks to learn specific structures and
the symmetries of a given task.

A flurry of works study the dynamics of infinitely wide two-layer neural networks. (Chizat
and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Wojtowytsch, 2020;
Sirignano and Spiliopoulos, 2020) study the gradient flow dynamics of the MF limit and show
that they are well-defined in general settings and lead to convergence results (local or global
depending on the assumptions). On the other hand, Jacot et al. (2018) study the dynamic of

1In contrast, our focus on GF is only for theoretical convenience and most of our results could be adapted
to the case of GD.
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the NTK parameterization in the infinite-width limit and show that it amounts to learning a
linear predictor on top of random features (fixed kernel), so that there is no feature learning.

Convergence rates. In the MF limit, convergence rates are in general difficult to obtain
in a standard setting. For instance, Chizat and Bach (2018); Wojtowytsch (2020) show the
convergence of the GF to a global optimum in a general setting but this does not allow con-
vergence rates to be provided. To illustrate the convergence of the parameterizing measure to
a global optimum in the MF limit, Ma et al. (2020) prove local convergence (see Section 7) for
one-dimensional inputs and a specific choice of target function in O(t−1) where t is the time
step. At finite-width, Daneshmand and Bach (2022) also prove convergence of the parameters
to a global optimum in O(t−1) using an algebraic idea which is specific to the ad-hoc structure
they consider (inputs in two dimensions and target functions with finite number of atoms).

In Section 3, we show convergence of the MF limit at an exponential rate when the
target function is odd. In the setting of this section, the training dynamics are degenerate
and although input neurons move, the symmetries of the problem imply that the predictor
is linear.

Low-dimensional structure. Studying how neural networks can adapt to hidden low-
dimensional structures is a way of approaching theoretically the feature-learning abilities of
neural networks. Bach (2017) studies the statistical properties of infinitely wide two-layer
networks, and shows that when the target function only depends on the projection on a
low-dimensional sub-space, these networks circumvent the curse of dimensionality with gen-
eralization bounds which only depend on the dimension of the sub-space. In a slightly
different context, Chizat and Bach (2020) show that for a binary classification task, when
there is a low-dimensional sub-space for which the projection of the data has sufficiently
large inter-class distance, only the dimension of the sub-space (and not that of the ambient
space) appears in the upper bound on the probability of misclassification. Whether or not
such a low-dimensional sub-space is actually learned by GD is not addressed in these works.

Similarly, Cloninger and Klock (2021); Damian et al. (2022) focus on learning functions
which have a hidden low-dimensional structure with neural networks. They consider a single
step of GD on the input layer weights and show that the approximation / generalization error
adapts to the structure of the problem: they provide bounds on the number of data points
/ parameters needed to achieve negligible error, which depend on the reduced dimension
and not the dimension of the ambient space. In a similar context, Mousavi-Hosseini et al.
(2022) consider (S)GD on the first layer only of a finite-width two-layer network and show
that with sufficient L2-regularization and with a standard normal distribution on the input
data the first layer weights align with the lower-dimensional sub-space when trained for long
enough. They then use this property to then provide statistical results on networks trained
with SGD.

In a setting close to ours but on a classification task with finite-data and at finite-
width, Paccolat et al. (2021) compare the feature learning regime with the NTK regime in
the presence of hidden low-dimensional structure and quantify for each regime the scaling law
of the test error w.r.t. the number of training samples, mostly focusing on the case dH = 1.

In a similar setting to that of (Bach, 2017), Abbe et al. (2022) study how GF for infinitely
wide two-layer networks can learn specific classes of functions which have a hidden low-
dimensional structure when the inputs are Rademacher variables. This strong symmetry
assumption ensures that the learned predictor shares the same low-dimensional structure at
any time step (from the t = 0) and this allows them to characterize precisely what classes of
target functions can or cannot be learned by GF in this setting. In contrast, we are interested
in how infinitely wide networks learn those low-dimensional structures during training, and
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in the role of symmetries in enabling such a behaviour after initialization.

Learning representations. An existing line of work (Yehudai and Shamir, 2019; Allen-
Zhu et al., 2019; Abbe et al., 2021; Damian et al., 2022; Ba et al., 2022) studies in depth
the representations learned by neural networks trained with (S)GD at finite-width from a
different perspective focusing on the advantages of feature-learning in terms of performance
comparatively to using random features. In contrast, our aim is to describe the representa-
tions themselves in relationship with the symmetries of the problem.

Symmetries. We stress that the line of work around symmetries of neural networks dealing
with finding network architectures for which the output is invariant (w.r.t. to its input or
parameters) by some group of transformations (see Bloem-Reddy and Teh, 2020; Ganev and
Walters, 2021; G luch and Urbanke, 2021, and references therein) is entirely different from
what we are concerned with in the present work. In contrast, the setting of (Mei et al.,
2018) is much closer to ours as they study how the invariances of the target function / input
data can lead to simplifications in the dynamics of infinitely wide two-layer networks in the
mean-field regime which allows them to prove global convergence results.

1.4 Notations

We denote by M+(Ω) the space of non-negative measures over a measurable space Ω. For
any measure µ and measurable map T , T#µ denotes the pushforward measure of µ by T . We
denote by O(p) and idRp respectively the orthogonal group and the identity map of Rp for
any p ∈ N. Finally, ⟨·, ·⟩ is the Euclidean inner product and || · || the corresponding norm.

2 Invariance under orthogonal symmetries

In this section, we demonstrate that if the target function f∗ is invariant under some or-
thogonal transformation T , since the input data distribution is also invariant under T , then
f(µt; ·) is invariant under T as well for any t ≥ 0. This invariance property of the dynam-
ics w.r.t. orthogonal symmetries is possible with an infinite number of neurons but is only
approximate at finite-width. It is noteworthy that the results of this section hold for any
activation function σ and input data distribution ρ which has the same symmetries as f∗,
provided that the Wasserstein GF (1.3) is unique. We start with a couple of definitions:

Definition 2.1 (Function invariance). Let T be a map from Rd to Rd, and f : Rd → R. Then,
f is said to be invariant (resp. anti-invariant) under T if for any x ∈ Rd, f(T (x)) = f(x)
(resp. f(T (x)) = −f(x)).

Definition 2.2 (Measure invariance). Let Ω ⊂ Rd, T be a measurable map from Ω to Ω, and
µ be a measure on Ω. Then, µ is said to be invariant under T if T#µ = µ, or equivalently, if
for any measurable φ : Ω → R,

∫
φ(x)dµ(x) =

∫
φ(T (x))dµ(x).

We are now ready to state the two main results of this section.

Proposition 2.1 (Learning invariance). Let T ∈ O(d), and assume that f∗ is invariant
under T . Then, for any t ≥ 0, the Wasserstein GF µt of Equation (1.3) is invariant under
T̃ : (a, b) ∈ R × Rd 7→ (a, T (b)), and the corresponding predictor f(µt; ·) is invariant under
T .

Proposition 2.2 (Learning anti-invariance). Under the same assumptions as in Proposi-
tion 2.1 except now we assume f∗ is anti-invariant under T , and assuming further that
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∂2ℓ(−y,−ŷ) = −∂2ℓ(y, ŷ) for any y, ŷ ∈ R, and that µ10 is symmetric around 0 (i.e., in-
variant under : a ∈ R 7→ −a), we then have that for any t ≥ 0, the Wasserstein GF µt in
Equation (1.3) is invariant under T̃ : (a, b) ∈ R × Rd 7→ (−a, T (b)), and the corresponding
predictor f(µt; ·) is anti-invariant under T .

Remark. The results above also hold for networks with intercepts at both layers. The
conditions of Proposition 2.2 are satisfied by both the squared loss and the logistic loss
(a.k.a. the cross-entropy loss).

Essentially, those results show that training with GF preserves the orthogonal symmetries
of the problem: the invariance of the target function under an orthogonal transformation
leads to the same invariance for µt and f(µt; ·). The proof, presented in Appendix C, relies
crucially on the fact that T is an orthogonal map which combines well with the structure of
ϕ(c;x) involving an inner product. The idea is essentially that the orthogonality of T allows
us to relate the gradient of ϕ (and consequently of F ′

µt) w.r.t. c at (T (c);x) to the same
gradient at (c;T−1(x)) and then to use the invariance of f∗ and ρ to conclude.

In the following sections we discuss the particular cases where functions are (anti-)invariant
under −idRd (i.e., even or odd functions) or some sub-group of O(d).

3 Exponential convergence for odd target functions

We consider here an odd target, function, i.e., for any x ∈ Rd, f∗(−x) = −f∗(x), and we
make the following assumptions:

Assumption 1 (Squared loss function). The loss function ℓ is the squared loss, i.e., ℓ(y, ŷ) =
1
2(y − ŷ)2, and thus satisfies the condition of Proposition 2.2.

Linearity of odd predictors. Proposition 2.2 ensures that the predictor f(µt; ·) associ-
ated with the Wasserstein GF of Equation (1.3) is also odd at any time t ≥ 0, and we can
thus write, for any x, f(µt;x) = 1

2 (f(µt;x) − f(µt;−x)), which yields

f(µt;x) =
1

2

(∫
a,b
a
[
σ(b⊤x) − σ(−b⊤x)

]
dµt(a, b)

)
=

1

2

∫
a,b
a
(
b⊤x

)
dµt(a, b),

where the last equality stems from the fact that for ReLU, σ(x)−σ(−x) = x. Put differently,
the predictor is linear: it is the same as replacing σ by 1

2 idRd , and f(µt;x) = w(t)⊤x, where

w(t) : =
1

2

∫
a,b
a bdµt(a, b) ∈ Rd. (3.1)

This degeneracy is not surprising as in fact, a linear predictor is the best one can hope for
in this setting. Indeed, consider the following lemma:

Lemma 3.1 (Optimality of odd predictors). Let f be a predictor in the hypothesis class F :={
: x 7→

∫
aσ(b⊤x)dµ(a, b);µ ∈ P2(R × Rd)

)
}. Then, denoting fodd(x) := 1

2(f(x) − f(−x))
(resp. feven := 1

2(f(x) + f(−x))) the odd (resp. even) part of f , one has:

(i) fodd ∈ F ,

(ii) L(f) := Ex∼ρ
[
(f∗(x) − f(x))2

]
≥ Ex∼ρ

[
(f∗(x) − fodd(x))2

]
=: L(fodd),

(iii) equality holds if and only if f is odd ρ-almost surely.
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Proof. The result readily follows from the decomposition f = fodd + feven which leads to

L(f) = L(fodd) + Ex∼ρ
[
(feven(x))2

]
︸ ︷︷ ︸

≥0

− 2Ex∼ρ [(f∗(x) − fodd(x)) feven(x)]︸ ︷︷ ︸
0 by symmetry

.

We then get that L(f) ≥ L(fodd) with equality if and only if Ex∼ρ
[
(feven(x))2

]
= 0, i.e.,

feven(x) = 0 for ρ-almost every x. Finally, if µ ∈ P2(Rd+1), then ν := 1
2(µ+S#µ) ∈ P2(Rd+1),

where S : (a, b) ∈ Rd+1 7→ (−a,−b), and f(ν; ·) = fodd(µ; ·), which shows fodd(µ; ·) ∈ F .

Since, as shown above, any odd predictor turns out to be linear because of the symmetries
of ReLU, in this context, the best one can expect is thus to learn the best linear predictor.

Exponential convergence for linear networks. We are thus reduced to studying the
dynamics of linear networks (which in our case are infinitely wide), which is an interesting
object of study its own right (Ji and Telgarsky 2018 show a result similar to our result below
in the finite-width case). In this case, the Wasserstein GF (1.3) (with ReLU replaced by
1
2 idRd) is defined for more general input distributions P ∈ P2(Rd) (e.g., empirical measures)
and target functions f∗. The objective in this context is thus to learn:

w⋆ ∈ argmin
w∈Rd

(
Q(w) :=

1

2
Ex∼P

[
(f∗(x) − ⟨w, x⟩)2

])
(3.2)

with the dynamics of linear infinitely wide two-layer networks described by the Wasserstein
GF (1.3) where the activation function σ is replaced by 1

2 idRd . Theorem 3.2 below shows
exponential convergence to a global minimum of Q as soon as the problem is strongly convex.
Note that although in this case both ϕ(·; ·) (see Equation (1.1)) and the predictor in the
objective Q are linear w.r.t. the input, only the predictor in Q is linear in the parameters
(ordinary least squares).

Theorem 3.2. Assume that the smallest eigenvalue λmin of Ex∼P[xx⊤] is positive. Let
(µt)t≥0 be the Wasserstein GF associated to (1.3) with activation function 1

2 idRd instead of
σ = ReLU, and call w(t) = 1

2

∫
abdµt(a, b) ∈ Rd. Then, there exits η > 0 and t0 > 0 such

that, for any t ≥ t0,(
Q(w(t)) −Q(w⋆)

)
≤ e−2ηλmin(t−t0)

(
Q(w(t0)) −Q(w⋆)

)
.

Figure 1: GD path for two co-
ordinates: two-layer linear net-
work vs pure linear model.

Remark. Note that as soon as P has spherical symme-
try, the problem becomes strongly convex by Lemma A.3.
Note that although F (µt) = Q(w(t)), (w(t))t≥0 is not a
gradient flow for the (strongly) convex objective Q (which
would immediately guarantee exponential convergence to
the global minimum).

The proof, provided in Appendix D, proceeds in two steps:
first it is shown that w′(t) = −H(t)∇Q(w(t)) for some
positive definite matrix H(t) whose smallest eigenvalue
is always lower-bounded by a positive quantity, then we
prove that this leads to exponential convergence. Figure 1
illustrates that the dynamics of GF on F remain non-linear
in that they do not reduce to GF on Q (although the paths
are close). The dashed curves are the trajectories of w(t)
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(see Theorem 3.2) for 10 random initializations, which corresponds to GD on F , whereas the
blue curve is the trajectory of GD on Q. P = 1

n

∑n
i=1 δxi is the empirical distribution over

n = 100 samples, with xi ∼ U([−1, 1]d) and yi = f∗(xi) drawn i.i.d. from N (y∗, 2) where
y∗ ∼ N (0, 1); the learning rate is 10−2.

4 Learning the low-dimensional structure of the problem

Consider a linear sub-space H of dimension dH < d (potentially much smaller than the
ambient dimension), and assume f∗ has the following structure: f∗(x) = fH(pH(x)) where
pH is the orthogonal projection onto H (which we also write xH for simplicity, and we reserve
sub-scripts for denoting entries of vectors) and fH : H → R is a given function.

In this context it is natural to study whether the learned function shares the same struc-
ture as f∗. As observed in Figure 2 this is not the case in finite time, but it is reasonable
however to think that the learned predictor f(µt; ·) shares the same structure as f∗ as t→ ∞,
and we give numerical evidence in this direction. On the other hand, we prove rigorously
that the structure of the problem allows to reduce the dynamics to a lower-dimensional PDE.
In this section, we consider for simplicity that µ10 is the uniform distribution over {−1,+1}
and that µ20 is the uniform distribution over Sd−1.

4.1 Symmetries and invariance

The structure of f∗ implies that it is invariant by any T ∈ O(d) which preserves H, i.e.,
such that its restrictions to H and H⊥ are T|H = idH and T|H⊥ ∈ O(d⊥), where O(d⊥) is

the orthogonal group of H⊥ whose dimension is d⊥ = d − dH . By Proposition 2.1, such
transformations also leave the predictor f(µt; ·) invariant for any t ≥ 0 since ρ is spherically
symmetric. Lemma 4.1 below then ensures that f(µt;x) depends on the projection x⊥ onto
H⊥ only through its norm, that is f(µt;x) = f̃t(x

H , ||x⊥||) for some f̃t : H × R+ → R.

Lemma 4.1 (Invariance by a sub-group of O(d)). Let f : Rd → R be invariant under any
T ∈ O(d) such that T|H = idH and T|H⊥ ∈ O(d⊥). Then, there exists some f̃ : H ×R+ → R
such that for any x ∈ Rd, f(x) = f̃(xH , ||x⊥||).

Proof. Consider f̃ : (xH , r) ∈ H × R+ 7→ f(xH + re⊥1 ) where e⊥1 is the first vector of an
orthonormal basis of H⊥, and let x ∈ Rd. If x⊥ = 0, the result is obvious. Otherwise,
consider an orthogonal linear map Tx such that Tx|H = idH and Tx sends x⊥/||x⊥|| on e⊥1 .

The invariance of f under Tx implies f(x) = f(Tx(x)) = f(xH+||x⊥||e⊥1 ) = f̃(xH , ||x⊥||).

Figure 2 shows that the dependence in ||x⊥|| cannot be removed in finite time: f(µt;uH+
re⊥1 ) does depend on the distance r ∈ R+ toH, but this dependence tends to vanish as t→ ∞.

(a) f(µt;uH + re⊥1 ) vs r (b) f(µt;uH + re⊥1 ) vs t

Figure 2: f(µt;uH + re⊥1 ) vs r and t for a random uH ∈ SdH−1 with d = 20, dH = 5.
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Dynamics over the sphere Sd−1. Using the positive 1-homogeneity of ReLU, and with
the assumptions on µ0, the dynamics on µt ∈ P2(Rd+1) can be reduced to dynamics on
the space M+(Sd−1) of non-negative measures over Sd−1: only the direction of neurons
matter and their norm only affects the total mass. From this point of view, neurons with
positive and negative output weights behave differently and have separate dynamics. Indeed,
consider the pair of measures (ν+t , ν

−
t ) ∈ M+(Sd−1)2 characterized by the property that for

any continuous test function φ : Sd−1 → R,∫
u
φ(u)dν±t (u) =

∫
±a≥0,b

|a| ||b||φ
(

b

||b||

)
dµt(a, b), (4.1)

where we have used the superscript ± to denote either or ν+t or ν−t and the right-hand side
is changed accordingly (the integration domain) depending on the sign + or −. Because
ReLU is positively 1-homogeneous, we have f(µt;x) =

∫
σ(u⊤x)d(ν+t − ν−t )(x). It is shown

in Appendix E.1.1 that ν±t satisfies, in the sense of distributions, the equation

∂tν
±
t = −div

(
±ṽtν±t

)
± 2gtν

±
t , (4.2)

where, for any u ∈ Sd−1,

gt(u) = −
∫
y
∂2ℓ
(
f∗(y), f(µt; y)

)
σ(u⊤y)dρ(y),

ṽt(u) = −
∫
y
∂2ℓ
(
f∗(y), f(µt; y)

)
σ′(u⊤y)

[
y − (u⊤y)u

]
dρ(y).

(4.3)

Equation (4.2) can be interpreted as a Wasserstein-Fisher-Rao GF (Gallouët et al., 2019) on
the sphere since ṽt(u) = proj{u}⊥(∇gt(u)).

Closed dynamics over [0, π/2] × SdH−1. The dynamics on the pair (ν+t , ν
−
t ) can be

further reduced to dynamics over [0, π/2] × SdH−1. Indeed, by positive 1-homogeneity of
f(µt; ·) we may restrict ourselves to inputs u ∈ Sd−1, and f(µt;u) depends only on uH and
||u⊥||. However, because ||uH ||2+||u⊥||2= 1, this dependence translates into a dependence
on the direction uH/||uH || of the projection onto H and the norm ||uH ||. The former is
an element of SdH−1 while the latter is given by the angle θ between u and H, that is
θ := arccos(u⊤uH/||uH ||) = arccos(||uH ||). This simplification leads to the following lemma:

Lemma 4.2. Define the measures τ+t , τ
−
t by τ±t = P#ν

±
t ∈ M+([0, π/2] × SdH−1) via P :

u ∈ Sd−1\H⊥ 7→ (arccos(||uH ||), uH/||uH ||) ∈ [0, π/2] × SdH−1. Then, the measures τ+t , τ
−
t

satisfy the equation

∂τ±t = −div
(
±Vtτ±t

)
± 2Gtτ

±
t , (4.4)

where Gt : [0, π/2] × SdH−1 → R, and Vt : [0, π/2] × SdH−1 → RdH+1 are functions depend-
ing only on (τ+t , τ

−
t ), and furthermore, f(µt; ·) can be expressed solely using τ+t , τ

−
t (exact

formulas are provided in Appendix E.1.2).

Abbe et al. (2022) show a similar result with a lower-dimensional dynamics in the context
of infinitely wide two-layer networks when the input data have i.i.d coordinates distributed
uniformly over {−1,+1} (i.e., Rademacher variables), except that they do not have the added
dimension due to the angle θ as we do thanks to their choice of input data distribution.

Lemma 4.2 above illustrates how the GF dynamics of infinitely wide two-layer networks
adapts to the lower-dimensional structure of the problem: the learned predictor and the
dynamics can described only in terms of the angle θ between the input neurons and H and
that of their projection on the unit sphere of H.

9



4.2 One dimensional reduction

Since the predictors we consider are positively homogeneous, one cannot hope to do better
than learn a positively homogeneous function. A natural choice of such a target function
to learn is the Euclidean norm. With the additional structure that the target only depends
on the projection onto H, this leads to considering f∗(x) = ||xH || which has additional
symmetries compared to the general case presented above: it is invariant by any linear map
T such that T|H ∈ O(dH) and T|H⊥ ∈ O(d⊥). By Proposition 2.1 those symmetries are shared
by µt and f(µt; ·), and we show that in this case the dynamic reduces to a one-dimensional
dynamic over the angle θ between input neurons and H.

We prove a general disintegration result for the uniform measure on the sphere in the
Appendix (see Lemma A.4) which allows, along with some spherical harmonics analysis, to
describe the reduced dynamics and characterize the objective that they optimize. This leads
to the following result:

Theorem 4.3 (1d dynamics over the angle θ). Assume that f∗(x) = ||xH ||, and define
the measures (τ+t , τ

−
t ) ∈ M+([0, π/2])2 from (ν+t , ν

−
t ) via P : u ∈ Sd−1 7→ arccos(||uH ||) ∈

[0, π/2]: τ±t = P#ν
±
t . Then, the pair (τ+t , τ

−
t ) follows the Wasserstein-Fisher-Rao GF for the

objective A(τ+, τ−) := E [ℓ (f(τ+, τ−;x), f∗(x))] over the space M+([0, π/2])×M+([0, π/2]),
where f(τ+, τ−;x) is the expression (with a slight overloading of notations) of f(µ;x) in
function of (τ+, τ−) (see Appendix E.2 for more details):

dτ±0 (θ) =
1

B
(
dH
2 ,

d⊥
2

) cos(θ)dH−1 sin(θ)d⊥−1dθ,

∂tτ
±
t = −div

(
±Vtτ±t

)
± 2Gtτ

±
t , (4.5)

where B is the Beta function, and

Gt(θ) = −
∫
y
∂2ℓ
(
f∗(y), f(µt; y)

)
σ
(

cos(θ)yH1 + sin(θ)y⊥1

)
dρ(y),

Vt(θ) = G′
t(θ).

Additionally, f(µt; ·), Gt, and Vt only depend on the pair (τ+t , τ
−
t ), and for any t ≥ 0, it

holds that F (µt) = A(τ+t , τ
−
t ).

Remark. The result should still hold for general ρ which are spherically symmetric as long
as the Wasserstein GF (1.3) is well-defined but the proof is more technical. In addition, this
result shows that even with more structure than in Lemma 4.2, the dynamics of infinitely
wide two-layer networks are still able to adapt to this setting: these dynamics, as well as the
learned predictor, can be fully characterized solely by the one-dimensional dynamics over the
angle θ between input neurons and H. This is noteworthy since this angle determines the
alignment of the neurons with H, and thus measures how much the representations learned by
the network have adapted to the structure of the problem. Furthermore, as discussed below,
this reduction with exact formulas enables efficient numerical simulation in one dimension.

Daneshmand and Bach (2022) prove the global convergence of a reduced one-dimensional
dynamics in a context similar to ours but their original problem is two-dimensional and with
a choice of activation function that leads to specific algebraic properties.

Expression of f(µt; ·). Because of the symmetries of f(µt; ·), which result from that of
f∗, f(µt;x) depends only on ||xH || and ||x⊥||. What is more, since f(µt; ·) is positively
1-homogeneous (because ReLU is) it actually holds that f(µt;x) = ||x||f̃t(φx) where φx =

10



arccos(||xH ||/||x||) is the angle between x and H, and f̃t(φ) :=
∫
θ ϕ̃(θ;φ)d(τ+t − τ−t )(θ),

ϕ̃ depending only on σ and fixed probability measures (see Appendix E.2.3 for an exact
formula).

Learning the low-dimensional structure as t → ∞. Although, as shown in Figure 2,
f(µt; ·) does not learn the low-dimensional structure in finite-time, it is reasonable to expect
that as t→ ∞, the measures τ±t put mass only on θ = 0, indicating that the only part of the
space that the predictor is concerned with for large t is the sub-space H. Since we assume
here that the target function f∗ is non-negative, the most natural limits for τ+t and τ−t are
τ+t → αδ0 with α > 0, and τ−t → 0 (in the sense that τ−t ([0, π/2]) → 0) as t → ∞, because
then the “negative” output weights do not participate in the prediction in the large t limit.

The global convergence result of Chizat and Bach (2018); Wojtowytsch (2020) still holds
but is not quantitative and moreover does not guarantee that the limit is the one described
above. We leave the proof of this result as an open problem, but we provide numerical evi-
dence supporting this conjecture. Indeed, we take advantage of the one-dimensional reduction
from Theorem 4.3, and numerically simulate the resulting dynamics by parameterizing τ±t
via weight and position (Chizat, 2022) as µm,t = (1/m)

∑m
j=1 c

±
j (t)δθ±j (t), and simulating the

corresponding dynamics for c±j (t) and θ±j (t) (see more details in Appendix F). Figures 3a

and 3b show that the mass of τ+t tends to concentrate around 0 while that of τ−t tends
to concentrate around π/2, indicating that τ+t adapts to the part of the space relevant to
learning f∗ while τ−t puts mass close to the orthogonal to that space.

Total mass of particles at convergence. If τ−∞ = 0 and τ+∞ = αδ0 as described above,

we have f(µ∞;x) = α||x||ϕ̃(0;φx) = α Γ(dH/2)
2
√
πΓ((dH+1)/2)

||x||cos(φx) = αΓ(dH/2)
2
√
πΓ((dH+1)/2)

||xH ||. To

recover exactly f∗, it must hold that α = τ+∞([0, π/2]) = 2
√
πΓ((dH+1)/2)
Γ(dH/2)

. Defining the

normalized probability measure τ̃±t = τ±t /τ
±
t ([0, π/2]), we thus expect τ̃+t to grow close to

δ0 and τ̃−t to δπ/2. In terms of total mass, we expect that τ+t ([0, π/2]) gets closer to α while

τ−t ([0, π/2]) gets closer to 0.
The numerical behaviour depicted in Figure 3c seems to follow our intuitive description,

at least until a critical time t∗ in the numerical simulation which corresponds to the first
time t where τ+t ([0, π/2]) > α. While the total mass of τ±t (dashed lines) seems to approach
its limit rapidly before t∗ it slowly moves further away from it for t ≥ t∗. On the other hand,
while the angles only slowly change before t∗, they start converging fast towards the corre-
sponding Dirac measures after t∗. It is unclear whether this slight difference in behaviour
(around the critical time t∗) between what we intuitively expected and the numerical sim-
ulation is an artefact of the finite width and finite step size or if it actually corresponds to
some phenomenon present in the limiting model. For more details concerning the numerical
experiments, see Appendix F.

Note that there is a priori not a unique global optimum: τ+∞ and τ−∞ (if they exist)
can compensate on parts of the space [0, π/2] and lead to the same optimal predictor for
different choices of measures. Our numerical experiments suggest that the GF dynamics
select a “simple” solution where τ+∞ is concentrated on {θ = 0} and τ−∞ vanishes (puts 0
mass everywhere), which is a form of implicit bias.

5 Conclusion

We have explored the symmetries of infinitely wide two-layer ReLU networks and we have
seen that: (i) they adapt to the orthogonal symmetries of the problem, (ii) they reduce to
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(a) τ+
t distributions (b) τ−

t distributions (c) Position / mass distances

Figure 3: Angle distributions τ+t /τ
−
t and position / mass distances with m = 1024, d = 30

and dH = 5. (a) (resp. (b)) τ+t (resp. τ−t ) as a histogram for different t. (c) distances
(in log-log scales) of the mass and positions of positive (blue) / negative (orange) particles
to the intuitively expected limits: the distance in position is the Wasserstein-2 distance of
the normalized (probability) measures τ̃±t to the corresponding Dirac measures while the
distance in mass is the absolute error to the expected mass as t→ ∞.

the dynamics of a linear network in the case of an odd target function and lead to exponential
convergence, and (iii) when the target function depends only on the orthogonal projection
onto a lower-dimensional sub-space H, the dynamics can be reduced to a lower-dimensional
PDE. In particular, when f∗ is the Euclidean norm, this PDE is over a one-dimensional space
corresponding to the angle θ between the particles and H. We have presented numerical
experiment indicating that the positive particles converge to the subspace H in this case and
leave the proof of this result as an open problem. We also leave as an open question whether
the results of Section 2 extend to deeper networks.
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Appendix

A Additional notations and preliminary results

A.1 Notations for the appendix

We introduce in this section additional notation that we use throughout the Appendix.

Residual: we call Rt(y) := −∂2ℓ(f∗(y), f(µt; y)), the “residual”, which is equal to the
difference f∗(y) − f(µt; y) when ℓ is the squared loss.

Identity matrix: we denote by Ip the identity matrix in Rp×p for any p ∈ N.

Indicator functions: we denote by 1A the indicator of a set A, that is 1A(z) = 1 ⇐⇒
z ∈ A, and 1A(z) = 0 otherwise.

Total variation: for any measure ν, we denote by |ν| its total variation, which should
cause no confusion with the absolute value given the context.

Beta / Gamma function and distribution: for α, β > 0, we denote by B(α, β) the Beta
function equal to Γ(α)Γ(β)/Γ(α+β) where Γ is the Gamma function, and by Beta(α, β) the
beta law with density equal to uα−1uβ−1/B(α, β) on [0, 1].

Gaussian / spherical measures: we call ρp the standard Gaussian measure in Rp (cor-
responding to N (0, Ip)) for any p ∈ N.

Whenever τ ∈ M+(Ω) has finite and non-zero total variation, we denote by τ̃ ∈ P2(Ω)
its normalized counterpart (which is a probability measure), that is τ̃ = τ/τ(Ω) = τ/|τ |.

For any p ∈ N, we call ωp the Lebesgue (spherical) measure over the unit sphere Sp−1 of
Rp, that is the measure such that ω̃p is the uniform measure on Sp−1. We then denote by
|Sp−1| the surface area of Sp−1, that is |Sp−1|:= |ωp|= ωp(Sp−1) = 2πp/2/Γ(p/2).

Smooth functions: we denote by C(Ω) (resp. C1
c (Ω)) the set of continuous (resp. contin-

uously differentiable and compactly supported) functions from a set Ω to R.

A.2 General results on invariance for measures and functions

In this section, we list a number of lemmas related to symmetries of measures and functions
which will prove helpful in the proofs presented in the Appendix.

Lemma A.1 (Invariance under invertible maps). Let µ be a measure invariant under some
measurable and invertible map T . Then, assuming T−1 is also measurable, one has that µ is
also invariant under T−1.

Remark. A similar result holds for a function f invariant under an invertible map.

Proof. Because µ is invariant under T , we have for any measurable set A, µ(A) = µ(T−1(A)).
Since T−1 is assumed to be measurable, for any measurable set A, T (A) is also measurable
(T (A) = (T−1)−1(A)) and thus µ(T (A)) = µ(T−1(T (A)) = µ(A) which shows µ is invariant
under T−1.
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Lemma A.2 (Invariance of the density). Let ν be a measure with density p w.r.t. some
measure µ, and assume both ν and µ are σ-finite and invariant under some measurable and
invertible map T , whose inverse T−1 is also measurable. Then p is also invariant under T
µ-almost everywhere, i.e., p(T (x)) = p(x) for µ-almost every x.

Proof. For any measurable φ (w.r.t. µ, and thus w.r.t. ν as well), φ◦T−1 is also measurable,
and we have, on the one hand∫

φ ◦ T−1dν =

∫ (
φ ◦ T−1

)
pdµ =

∫
φ (p ◦ T ) dµ,

and on the other hand ∫
φ ◦ T−1dν =

∫
φdν =

∫
φpdµ,

which shows that
∫
φ (p ◦ T ) dµ =

∫
φpdµ, and thus that p◦T = p µ-almost everywhere.

Lemma A.3 (Projected variance with spherical symmetry). Let ζ be a spherically symmetric
measure on Rp (i.e., such that for any orthogonal linear map T ∈ O(p), T#ζ = ζ), with finite
second moment. Then we have the following matrix identity:∫

z
zz⊤dζ(z) = vζIp, vζ :=

∫
z
(z1)

2dζ(z) =
1

p

∫
z
||z||2dζ(z).

Proof. The (i, j)-th entry of the matrix on the left-hand-side is
∫
z zizjdζ(z), and it is readily

seen that the terms outside the diagonal are 0. Indeed, let (i, j) ∈ [1, p]2 with i ̸= j, and
consider the orthogonal map Tj : z ∈ Rp 7→ (z1, . . . , zj−1,−zj , zj+1, . . . , zp)

⊤. The spherical
symmetry of ρ implies that it is invariant under Tj , which yields

∫
z zizjdρ(z) = −

∫
z zizjdρ(z),

thereby showing that the latter is 0. To see that the diagonal terms are all equal, it suffices to
consider the orthogonal map Si which swaps the 1st and i-th coordinates of a vector z. The
invariance of ρ under Si yields

∫
z(z1)

2dρ(z) =
∫
z(zi)

2dρ(z), which concludes the proof.

A.3 A disintegration result on the unit sphere Sd−1

Consider a u ∈ Sd−1. u is determined by: (i) its angle θ := arccos(||uH ||) ∈ [0, π/2] with
H (i.e., its angle with its projection uH onto H), (ii) the direction zH = uH/||uH ||∈ SdH−1

of its projection uH onto H, and finally (iii) the direction z⊥ = u⊥/||u⊥||∈ Sd⊥−1 of its
projection u⊥ onto H⊥. Since ||uH ||2+||u⊥||2= 1, the angle θ gives both the norms of the
projections onto H and H⊥: ||uH ||= cos(θ) and ||u⊥||= sin(θ).

When z ranges over the unit sphere Sd−1, the angle θ and the directions zH , z⊥ range over
[0, π/2], SdH−1, and Sd⊥−1 respectively. We wish to understand what measures we obtain on
these three sets when z is distributed on the sphere according to the Lebesgue measure ωd.
We show below below that after the change of coordinates described above (from u ∈ Sd−1 to
(θ, zH , z⊥) ∈ [0, π/2]×SdH−1×Sd⊥−1), the corresponding measures over SdH−1 and Sd⊥−1 are
uniform measures and the measure over θ is given by a push-forward of a Beta distribution
as defined below:

Definition A.1 (Distribution γ of the angle θ). We define the measure γ on [0, π/2] with
the following density w.r.t. the Lebesgue measure on [0, π/2]:

dγ(θ) := cos(θ)dH−1 sin(θ)d⊥−1dθ.

Remark. γ is in fact simply given by (arccos ◦
√
·)#Beta(dH/2, d⊥/2). Note that the total

variation of gamma is |γ|= γ([0, π/2]) = 1
2B(dH2 ,

d⊥
2 ), and the corresponding normalized

(probability) measure is dγ̃(θ) = dγ(θ)/|γ|= 2

B(
dH
2
,
d⊥
2

)
cos(θ)dH−1 sin(θ)d⊥−1dθ.
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We now state the disintegration theorem and give its proof:

Theorem A.4 (Disintegration of the Lebesgue measure on the sphere). Let ωd denote the
Lebesgue measure on the sphere measure on the sphere of Rd, and let γ be the measure of
Definition A.1. Then, one has

ωd = Φ#(ωdH ⊗ ωd⊥ ⊗ γ)

where

Φ : [0, π/2] × SdH−1 × Sd⊥−1 → Sd−1

(θ, zH , z⊥) 7→ cos(θ)zH + sin(θ)z⊥.

Proof. Denoting ω̃d the uniform measure on the sphere, |Sd−1|:= 2πd/2

Γ(d/2) the surface are of
the sphere in dimension d, and ρp the standard Gaussian distribution in Rp for any p. Using
the well-known fact that ω̃d = Π#ρd with Π : x ∈ Rd\{0} 7→ x/||x||∈ Sd−1, we have, for any
measurable test function φ : Sd−1 → R,∫
φdωd = |Sd−1|

∫
φdω̃d

= |Sd−1|
∫
x
φ

(
x

||x||

)
dρd(x)

= |Sd−1|
∫
xH ,x⊥

φ

(
xH + x⊥

||xH + x⊥||

)
dρdH (xH)dρd⊥(x⊥)

= Cd

∫
φ

(
rHzH + r⊥z⊥

||rHzH + r⊥z⊥||

)
rdH−1
H e−r

2
H/2rd⊥−1

⊥ e−r
2
⊥/2drHdr⊥dωdH (zH)dωd⊥(z⊥)

= Cd

∫
zH ,z⊥

∫
rH ,r⊥

φ

rHzH + r⊥z⊥√
r2H + r2⊥

 rdH−1
H rd⊥−1

⊥ e−(r2H+r2⊥)/2drHdr⊥dωdH (zH)dωd⊥(z⊥),

with

Cd :=
|Sd−1|

(2π)dH/2(2π)d⊥/2
=

|Sd−1|
(2π)d/2

=
2πd/2

2d/2πd/2Γ(d/2)
=

1

2(d−2)/2Γ(d/2)
.

Doing the polar change of variables (rH , r⊥) ∈ R2
+ → (R, θ) ∈ R+ × [0, π/2], we get:∫

φdωd = C ′
d

∫
zH ,z⊥

∫
θ
φ (cos(θ)zH + sin(θ)z⊥) cos(θ)dH−1 sin(θ)d⊥−1dθdωdH (zH)dωd⊥(z⊥)

where

C ′
d :=Cd

∫ +∞

0
Rd−2e−R

2/2RdR

=Cd

∫ +∞

0
Rd−1e−R

2/2dR

=Cd × 2(d−2)/2Γ(d/2)

=1.

which concludes the proof.

Remark. A similar disintegration result holds for the uniform measure ω̃d on the sphere. The
corresponding measures which are then pushed-forward by the same Φ are the normalized
counterparts of the measures in the theorem above: ω̃d = Φ#(ω̃dH ⊗ ω̃d⊥ ⊗ γ̃). This readily
comes from noting that a simple calculation yields |ωd|= |ωdH | |ωd⊥ | |γ|.
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B Gradient flows on the space of probability measures

B.1 First variation of a functional over measures

Given a functional F : P2(Rp) → R, its first variation or Fréchet derivative at µ ∈ P2(Rp)
is defined as a measurable function, denoted δF

δµ (µ) : Rp → R, such that, for any ν ∈ P2(Rp)
for which µ+ tν ∈ P2(Rp) in a neighborhood (in t) of t = 0,

d

dt
F (µ+ tν)

∣∣∣
t=0

=

∫
z

δF

δµ
(µ)[z]dν(z).

See (Santambrogio, 2015, Definition 7.12), or (Santambrogio, 2017, p.29) for more details on
the first variation.

In the case of the functional defined in Equation (1.2) corresponding to the population
loss objective, using the differentiability of the loss ℓ w.r.t. its second argument, one readily
has that

F ′
µ(c) :=

δF

δµ
(µ)[c] =

∫
x
∂2ℓ(f

∗(x), f(µ;x))ϕ(c;x)dρ(x)

since

d

dt
ℓ
(
f∗(x), f(µ;x) + tf(ν;x)

)
= ∂2ℓ

(
f∗(x), f(µ;x) + tf(ν;x)

)∫
c
ϕ(c;x)dν(c).

B.2 Wasserstein gradient flows in the space P2(Rd+1)

A Wasserstein gradient flow for the objective F defined in Equation (1.2) is a path (µt)t≥0

in the space of probability measures P2(Rd+1) which satisfies the continuity equation with
a vector field vt which is equal to the opposite of the gradient of the first variation of the
functional F . This means that we have, in the sense of distributions,

∂tµt = −div

(
−∇

(
δF

δµ

)
µt

)
.

That a pair ((µt)t≥0, vt) consisting of a path in P2(Rp) and a (time-dependent) vector field
in Rp satisfies the continuity equation ∂tµt = −div(vtµt) in the sense of the distributions
simply means that for any test function φ ∈ C1

c (Rp),

∂t

∫
φdµt =

∫
v⊤t ∇φdµt,

where ∂t stands for the time derivative d
dt . Similarly, when we say that the advection-reaction

equation ∂tµt = −div (vtµt) + gtµt is satisfied for some function gt : Rp → R, we mean that
it is in the sense of distributions: for any test function φ ∈ C1

c (Rp),

∂t

∫
φdµt =

∫
(v⊤t ∇φ+ gt) dµt.

An alternative description of the Wasserstein gradient flow of the objective F is to consider
a flow X•(·) in R+ × Rd+1 such that, for any c ∈ Rd+1,

X0(c) = c

d

dt
Xt(c) = −∇

(
δF

δµ

)
(Xt(c))

and to define µt = (Xt)#µ0.
For more details on Wasserstein gradient flows in the space of probability measures

see (Santambrogio, 2015, Section 5.3), and (Santambrogio, 2017, Section 4), and for more
details on the equivalence between the continuity equation and the flow-based representation
of the solution see (Santambrogio, 2015, Theorem 4.4).
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C Proofs of the symmetry results of Section 2

There are two main ideas behind the proof. Call T̃ : (a, b) ∈ R×Rd 7→ (±a, T (b)) (depending
on whether f∗ is invariant or anti-invariant under T ) and consider the following two facts:

Structure of ϕ((a, b);x). Since T is orthogonal, so is T̃ , and the structure of ϕ((a, b);x) =
aσ(b⊤x) is such that ϕ(T̃ (a, b);x) = ±ϕ((a, b);T−1(x)) because T is orthogonal (its adjoint
is thus its inverse).

Conjugate gradients. Computing the gradient of a function whose input has been trans-
formed by T̃−1 is the same as the conjugate action of T̃ on the gradient: ∇(φ ◦ T̃−1) =
T̃ ◦ (∇φ) ◦ T̃−1 (this is due to the fact that the adjoint of T̃−1 is T̃ because T̃ is orthogonal).
Note that we similarly get ∇(φ ◦ T̃ ) = T̃−1 ◦ (∇φ) ◦ T̃ .

C.1 Preliminaries

We present here arguments that are present in both the proofs of Proposition 2.1 and 2.2.
Let T be a linear orthogonal map such that f∗(T (x)) = ±f∗(x), where the ± is because we
deal with both cases at the same time since the logic is the same. Let t ≥ 0, and define
νt := T̃−1

# µt. We aim to show that (νt)t≥0 is also a Wasserstein gradient flow for the same
objective as (µt)t≥0.

Prediction function. Let x ∈ Rd. We have, using the fact that T is orthogonal (and thus
that ⟨T (x), y⟩ =

〈
x, T−1(y)

〉
),

f(νt;x) =

∫
a,b
aσ(b⊤x)dνt(a, b)

=

∫
a,b

±aσ(T−1(b)⊤x)dµt(a, b)

= ±
∫
a,b
aσ(b⊤T (x))dµt(a, b)

= ±f(µt;T (x)).

Time derivative. Let φ ∈ C1
c (Rd). Because µt satisfies the continuity Equation (1.3) in

the sense of distributions, and using the remark above on conjugate gradients as well as the
orthogonality of T̃ , we have:

∂t

∫
φdνt = ∂t

∫
φ ◦ T̃−1dµt

=

∫ 〈
∇(φ ◦ T̃−1), vt

〉
dµt

=

∫ 〈
T̃ ◦ ∇φ ◦ T̃−1, vt

〉
dµt

=

∫ 〈
∇φ ◦ T̃−1, T̃−1 ◦ vt

〉
dµt

=

∫ 〈
∇φ, T̃−1 ◦ vt ◦ T̃

〉
dνt.
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Conjugate velocity field. The equality above actually shows that νt satisfies the conti-
nuity equation with the conjugate velocity field T̃−1 ◦ vt ◦ T̃ instead of vt. We show below
that the former is closely related to the latter (and is in fact equal to −∇F ′

νt with sufficient
assumptions on ∂2ℓ, which is the step proven in Appendices C.2 and C.3). Indeed, because
vt is a gradient: vt = −∇F ′

µt , we have using again the remark above on conjugate gradients:

T̃−1 ◦ vt ◦ T̃ = −∇
(
F ′
µt ◦ T̃

)
.

Computing the function on the right-hand-side, for any (a, b) ∈ R × Rd, we get, using the
remark above on the structure of ϕ,

F ′
µt(T̃ (a, b)) =

∫
y
∂2ℓ
(
f∗(y), f(µt; y)

)
ϕ
(
T̃ (a, b); y

)
dρ(y)

= ±
∫
y
∂2ℓ
(
f∗(y), f(µt; y)

)
ϕ
(

(a, b);T−1(y)
)

dρ(y).

ρ is invariant under T since it spherically symmetric by assumption (and thus invariant under
any orthogonal map) and we can therefore replace y by T (y) in the integral above, which
yields

F ′
µt(T̃ (a, b)) = ±

∫
y
∂2ℓ
(
f∗(T (y)), f(µt;T (y))

)
ϕ
(

(a, b); y
)

dρ(y)

= ±
∫
y
∂2ℓ
(
± f∗(y),±f(νt; y)

)
ϕ
(

(a, b); y
)

dρ(y),

and thus we get

∇
(
F ′
µt ◦ T̃

)
(a, b) = ±

∫
y
∂2ℓ
(
± f∗(y),±f(νt; y)

)
∇(a,b)ϕ

(
(a, b); y

)
dρ(y).

One can already notice that if f∗ is invariant under T (as opposed to anti-invariant), that is
if we keep the “+” in ±, we get T̃−1 ◦ vt ◦ T̃ = −∇F ′

νt .

C.2 Proof of Proposition 2.1

Proof. We first prove ν0 = µ0 and then prove that both (µt)t≥0 and (νt)t≥0 are Wasser-
stein gradient flows of the objective F defined in Equation (1.2), starting from the initial
condition µ0 at t = 0. The unicity of such a gradient flow then guarantees that µt = νt
and thus f(µt;T (x)) = f(µt;x) by the preliminaries above on the prediction function (see
Appendix C.1).

Initialization: ν0 = µ0. By definition, T̃ (a, b) = (a, T (b)). Since µ0 = µ10 ⊗ µ20 by as-
sumption, and µ20 is invariant under T since it has spherical symmetry, it is clear that µ0
is invariant under T̃ , and thus under T̃−1 by Lemma A.1, which gives ν0 = µ0 because
νt = T̃−1

# µt for any t by definition.

Time derivative. From the preliminary results above (see Appendix C.1) we have

∂tνt = −div
(
−∇F ′

νt νt
)
,

which shows that (νt)t≥0 is also a Wasserstein gradient flow of the objective F . By unicity
of the latter (starting from the initial condition µ0), it must hold that µt = νt for any t ≥ 0
which concludes the proof. é
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C.3 Proof of Proposition 2.2

The proof follows the exact same pattern as that of Proposition 2.1 (see Appendix C.2).
We now have by definition, T̃ (a, b) = (−a, T (b)) and the added symmetry assumption on µ10
ensures that ν0 = µ0 still holds in this case. As for the time derivative, the preliminaries
above (see Appendix C.1) ensure that

∇
(
F ′
µt ◦ T̃

)
(a, b) = −

∫
y
∂2ℓ
(
− f∗(y),−f(νt; y)

)
∇(a,b)ϕ

(
(a, b); y

)
dρ(y)

=

∫
y
∂2ℓ
(
f∗(y), f(νt; y)

)
∇(a,b)ϕ

(
(a, b); y

)
dρ(y),

where we have used the extra assumption that ∂2ℓ(−y,−ŷ) = −∂2ℓ(y, ŷ). This yields

∂tνt = −div
(
−∇F ′

νt νt
)

and the conclusion follows from the same logic as for Proposition 2.1.

D Proof of the exponential convergence for linear networks:
Theorem 3.2

Proof. The proof is divided in three steps: (i) we derive the dynamics in time of the vector
w(t) = 1

2

∫
abdµt(a, b), (ii) we show that the positive definite matrix H(t) appearing in

these dynamics has its smallest eigenvalue lower-bounded by some positive constant after
some t0 > 0, and (iii) we show that this implies the exponential convergence to the global
minimum.

Generalities on the objective Q. Expanding the square in the definition of Q (3.2), we
have

Q(w) =
1

2

[
Ex∼P[f∗(x)2] − 2β⊤w + w⊤Cw

]
,

C : = Ex∼P[xx⊤] ∈ Rd×d,
β : = Ex∼P[f∗(x)x] ∈ Rd.

If C ̸= 0, Q(w) → ∞ as ||w||→ ∞ and since Q is lower-bounded by 0, it thus admits at least
one global minimum. This minimizer w⋆ is unique as soon as Q is strongly convex, i.e., C
is definite positive, which holds in this case as we have assumed the smallest eigenvalue λmin

of C to be > 0. Note that ∇Q(w) = Cw − β =
∫
x

(
(x⊤w) − f∗(x)

)
xdP(x) ∈ Rd.

First step: dynamics of w(t). Let k ∈ {1, . . . , d}, the k-th coordinate wk(t) of w(t) is
given by wk(t) =

∫
abk dµt(a, b), and its time derivative is given by

w′
k(t) =

1

2

∫ (
∇(a,b)(abk)

)⊤
vt(a, b)dµt(a, b)

where vt is given by Equation (1.3) except we replace σ by 1
2 idRd and ρ by P in Fµt , that is

vt(a, b) =
1

2

∫
y
Rt(y)

(
b⊤y
ay

)
dP(y) ∈ R1+d.
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On the other hand, ∇(a,b)(abk) =

(
bk
aek

)
∈ R1+d where ek is the k-th element of the canonical

orthonormal basis of Rd. Note that here, Rt(y) = f∗(y) − ⟨w(t), y⟩. We thus get

w′
k(t) =

1

4

〈∫
a,b
bkbdµt(a, b),

∫
y

(
f∗(y) − (w(t)⊤y)

)
ydP(y)

〉
+

1

4

〈∫
a,b
a2ekdµt(a, b),

∫
y

(
f∗(y) − (w(t)⊤y)

)
ydP(y)

〉
.

Note that the term on the right in the inner products is in fact equal to −∇Q(w(t)), which
yields the following dynamics for the vector w(t):

w′(t) = −H(t)∇Q(w(t)),

H(t) : =
1

4

(∫
bb⊤dµt(a, b) +

∫
a2dµt(a, b)Id

)
∈ Rd×d.

Second step: lower bound on the smallest eigenvalue of H(t). At initialization, by
symmetry one has w(0) = 0, and using Lemma A.3, one has that H(0) = 1

4

(
1
d + 1

)
Id, so

that

d

dt
Q(w(t))

∣∣∣
t=0

=
〈
w′(0),∇Q(w(0))

〉
= −d+ 1

4d
||∇Q(0)||2

= −d+ 1

4d
||β||2

If β = 0, then ∇Q(0) = 0 and since w(0) = 0, w(t) starts at the global optimum and

thus stays constant equal to 0. Otherwise, if ||β||> 0, one has d
dtQ(w(t))

∣∣∣
t=0

< 0, which

ensures that there is a t0 > 0 such that Q(w(t)) < Q(w(0)) = Q(0) for any t ∈ (0, t0]. Call
ε := [Q(0) −Q(w(t0))] /2 > 0. The continuity of Q at 0 guarantees that there is a δ > 0
such that for any w ∈ Rd, if ||w||< δ, then |Q(w) −Q(0)|≤ ε.

Now assume that there exists t1 ≥ t0 such that
∫
a2dµt1(a, b) ≤ δ. Then, one has

||w(t1)|| =

∣∣∣∣∣∣∣∣12
∫
abdµt1(a, b)

∣∣∣∣∣∣∣∣
≤ 1

2

∫
|a| ||b||dµt1(a, b)

≤ 1

2

∫
a2dµt1(a, b)

≤ δ

2
< δ,

where we have used in the penultimate inequality that µt1 is supported on the set {|a|= ||b||}
because of the assumptions on the initialization µ0 (see Section 1.1). This ensures that
|Q(w(t1)) −Q(0)|≤ ε. Since : t 7→ Q(w(t)) is decreasing (Q(w(t)) = F (µt) and it is classical
that the objective is decreasing along the gradient flow path, see third step below) and
t1 ≥ t0, this means that

0 < Q(0) −Q(w(t0)) ≤ Q(0) −Q(w(t1)) ≤ ε = [Q(0) −Q(w(t0))] /2

which is a contradiction. Therefore, for any t ≥ t0,
∫
a2dµt(a, b) ≥ δ. Calling η := δ/4 > 0,

we thus have that for any t ≥ t0, the smallest eigenvalue of H(t) is larger than η because H(t)
is the sum of the positive semi-definite matrix 1

4

∫
bb⊤dµt(a, b) and of the positive definite

matrix 1
4

∫
a2dµt(a, b)Id whose smallest eigenvalue is at least η for t ≥ t0.
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Third step: exponential convergence. We have:

d

dt
Q(w(t)) = ⟨w′(t),∇Q(w(t))

= −∇Q(w(t))⊤H(t)∇Q(w(t)) ≤ 0,

which shows that because H(t) is positive definite, the objective Q is decreasing along the
path (w(t))t≥0. Since after t0 > 0, the smallest eigenvalue of H(t) is lower bounded by a
constant η > 0, we have that, for any t ≥ t0:

d

dt
Q(w(t)) ≤ −η||∇Q(w(t))||2. (D.1)

Because Q is λmin-strongly convex (as the smallest eigenvalue of C is λmin > 0), one has the
classical inequality

1

2
||∇Q(w)||2≥ λmin

(
Q(w) −Q(w⋆)

)
.

Plugging this into Equation (D.1) gives

d

dt

(
Q(w(t)) −Q(w⋆)

)
≤ −2ηλmin

(
Q(w(t)) −Q(w⋆)

)
,

which by Gronwall’s lemma in turn yields for any t ≥ t0

0 ≤ Q(w(t)) −Q(w⋆) ≤ e−2ηλmin(t−t0)
(
Q(w(t0)) −Q(w⋆)

)
,

thereby proving exponential convergence.

Exponential convergence in distance. The convergence in distance to the optimum
follows from the classical inequality for convex functions

⟨−∇Q(w(t)), w⋆ − w(t)⟩ ≤ Q(w(t)) −Q(w⋆).

Given that ∇Q(w) = Cw − β and that Cw⋆ = β because w⋆ is an optimum, which implies
∇Q(w⋆) = 0, the inequality above yields

⟨C(w⋆ − w(t)), w⋆ − w(t)⟩ ≤ Q(w(t)) −Q(w⋆),

and given that the left-hand-side is larger than λmin||w(t) − w⋆||2, we get

||w(t) − w⋆||2≤ 1

λmin

(
Q(w(t)) −Q(w⋆)

)
,

and the exponential decrease of the right-hand-side allows to conclude.

E Proofs of Section 4: f ∗ depends only on the projection on
a sub-space H

E.1 The general case

E.1.1 Closed dynamics on the sphere Sd−1

We wish to show here that the pair of measures (ν+t , ν
−
t ) defined through Equation (4.1)

satisfy Equation (4.2) and that the corresponding dynamic is closed is the sense that it can
be expressed solely using (ν+t , ν

−
t ) (without requiring to express quantities in function of µt).

Below, we use κ(z) = max(0, z). We do this do differentiate it from the activation function
σ (which is also equal to ReLU) so as avoid confusion because the κ which appears below
has nothing to do with the activation function of the network and simply comes from the
integration domain in the calculations.
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Equations of the dynamics on the sphere. Let φ ∈ C1
c (Sd−1). One has

∂t

∫
φdν±t = ∂t

∫
±a≥0,b

|a|||b||φ
(

b

||b||

)
dµt(a, b)

= ∂

∫
a,b
κ(±a)||b||φ

(
b

||b||

)
dµt(a, b)

=

∫
a,b

∇(a,b)

(
κ(±a)||b||φ

(
b

||b||

))⊤
vt(a, b)dµt(a, b)

Let us compute the components of the gradient above. We have

∇a

(
κ(±a)||b||φ

(
b

||b||

))
= ±κ′(±a)||b||φ

(
b

||b||

)
= 1{±a≥0}||b||φ

(
b

||b||

)
.

The Jacobian of the map : b ∈ Rd 7→ b/||b|| is equal to 1
||b||(Id − bb⊤/||b||2) which is a

symmetric (or self-adjoint) matrix, so that the gradient w.r.t. b is

∇b

(
κ(±a)||b||φ

(
b

||b||

))
= 1{±a≥0}|a|

[
φ

(
b

||b||

)
b

||b||
+

(
Id −

b

||b||

(
b

||b||

)⊤
)
∇φ

(
b

||b||

)]
.

On the other hand, the first component of vt(a, b) (corresponding to the gradient w.r.t. a) is

v1t (a, b) =

∫
y
Rt(y)κ(b⊤y)dρ(y) = ||b||

∫
y
Rt(y)κ

((
b

||b||

)⊤
y

)
dρ(y),

and the last d components (corresponding to the gradient w.r.t. b) are

v2t (a, b) =

∫
y
Rt(y)aκ′(b⊤y)ydρ(y) = a

∫
y
Rt(y)κ′

((
b

||b||

)⊤
y

)
ydρ(y).

When computing the inner product ∇(a,b)

(
κ(±a)||b||φ

(
b

||b||

))⊤
vt(a, b), we can re-arrange

the terms to keep one term where φ appears and the other where ∇φ appears. Using the
facts that the Jacobian computed above is symmetric, that κ(z) = κ′(z)z for any z ∈ R, and
that 1{±a≥0}a = ±1{±a≥0}|a|= ±κ(±a), we get,

∇(a,b)

(
κ(±a)||b||φ

(
b

||b||

))⊤
vt(a, b) = ± 1{±a≥0}||b|| ||b||φ

(
b

||b||

)
gt

(
b

||b||

)
+

± 1{±a≥0}|a| |a|φ
(

b

||b||

)
gt

(
b

||b||

)
+

± 1{±a≥0}|a| |a|∇φ
(

b

||b||

)⊤
ṽt

(
b

||b||

)
,

where, for u ∈ Sd−1

gt(u) :=

∫
y
Rt(y)σ(u⊤y)dρ(y),

ṽt(u) :=

∫
y
Rt(y)σ′(u⊤y)

[
y − (u⊤y)u

]
dρ(y).

Finally, because µt stays on the cone {(a, b) ∈ Rd+1; |a| = ||b||} for any t (see Chizat and
Bach, 2020, Lemma 26, Wojtowytsch, 2020, Section 2.5), when integrating against µt, we
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can replace ||b|| by |a| and vice-versa. We thus get that the time derivative we initially
computed is the sum of two terms:

∂t

∫
φdν±t = 2

∫
±a≥0,b

|a|||b||φ
(

b

||b||

)
gt

(
b

||b||

)
dµt(a, b) +∫

±a≥0,b
|a|||b||∇φ

(
b

||b||

)⊤
ṽt

(
b

||b||

)
dµt(a, b)

= 2

∫
u∈Sd−1

φ (u) gt (u) dν±t (u) +∫
u∈Sd−1

∇φ (u)⊤ ṽt (u) dν±t (u),

which shows that ν±t satisfies Equation (4.2) in the sense of distributions.

Closed dynamics. We want to show that gt and ṽt can be expressed using only ν+t and
ν−t . Both these quantities depend on t only through the residual Rt, which itself only depends
on t through f(µt; ·). We thus show that the latter can be expressed using only ν+t and ν−t ,
which easily follows from writing, for any y ∈ Rd,

f(µt; y) =

∫
aσ
(
b⊤y

)
dµt(a, b)

=

∫
a||b||σ

(〈
b

||b||
, y

〉)
dµt(a, b)

=

∫
a≥0,b

|a| ||b||σ
(〈

b

||b||
, y

〉)
dµt(a, b) −

∫
a≤0,b

|a| ||b||σ
(〈

b

||b||
, y

〉)
dµt(a, b)

=

∫
u∈Sd−1

σ
(
u⊤y

)
dν+t (u) −

∫
u∈Sd−1

σ
(
u⊤y

)
dν−t (u)

E.1.2 Closed dynamics in dH + 1 dimensions

Proof. We first prove that the Equation (4.4) for τ±t holds in the sense of distributions, and
then show that the corresponding dynamics are closed because the Vt and gt appearing in
Equation (4.4) can be expressed with (τ+t , τ

−
t ) (and not only with (ν+t , ν

−
t ) for instance). We

show this by expressing f(µt; ·) only in function of the pair (τ+t , τ
−
t ).

The pair (τ+t , τ
−
t ) satisfy Equation (4.4). First, we show that gt and ṽt defined in

Equation (4.3) admit modified expressions that match the structure of the pushforward
transforming ν±t into τ±t . Indeed, since ρ is assumed to be spherically symmetric, it is
invariant by any orthogonal transformation. In particular, for a fixed u ∈ Sd−1 such that
u⊥ ̸= 0, we consider the orthogonal map T u : Rd → Rd such that T u|H = idH and T u|H⊥

sends the canonical orthonormal basis (e⊥1 , . . . , e
⊥
d⊥

) of H⊥ on (u⊥/||u⊥||, u2, . . . , ud⊥) where

(u2, . . . , ud⊥) ∈ (H⊥)d⊥−1 is an orthonormal family, orthogonal to u⊥, so that for any y⊥ ∈
H⊥ with coordinates y⊥1 , . . . , y

⊥
d⊥

in the basis (e⊥1 , . . . , e
⊥
d⊥

), T u|H⊥(y⊥) = y⊥1 u
⊥/||u⊥||+hu(y⊥)

with hu(y⊥) ⊥ u⊥.
Note that since f∗(y) = fH(yH) and f(µt; y) = f̃t(y

H , ||y⊥||), the residual Rt(y) =
f∗(y) − f(µt; y) is invariant by any orthogonal transformation which preserves H (and in
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particular by T u). We thus have

gt(u) =

∫
y
Rt(y)σ

(〈
uH , yH

〉
+ y⊥1 ||u⊥||

)
dρ =: g̃t(u

H , ||u⊥||),

ṽt(u) =

∫
y
Rt(y)σ′

(〈
uH , yH

〉
+ y⊥1 ||u⊥||

) [
yH + T u|H⊥(y⊥) −

(〈
uH , yH

〉
+ y⊥1 ||u⊥||

)
u
]

dρ.

Now consider, for any (θ, zH) ∈ [0, π/2] × SdH−1,

Gt(θ, z
H) : = g̃t(cos(θ)zH , sin(θ))

Vt(θ, z
H) : =

∫
y
Rt(y)σ′

(
cos(θ)

〈
zH , yH

〉
+ y⊥1 sin(θ)

)(y⊥1 cos(θ) − sin(θ)
〈
zH , yH

〉
yH

cos(θ) −
〈
zH , yH

〉
zH

cos(θ)

)
dρ

We show below that (τ+t , τ
−
t ) satisfy Equation (4.4) with the Gt and Vt defined above. Let

φ ∈ C1
c ([0, π/2] × SdH−1). Since τ±t is defined as a push-forward measure obtained from ν±t

we have:

∂t

∫
φ(θ, zH)dτ±t (θ, zH) = ∂t

∫
φ

(
arccos(||uH ||), uH

||uH ||

)
dν±t (u)

= ± 2

∫
φ

(
arccos(||uH ||), uH

||uH ||

)
g̃t(u

H , ||u⊥||)dν±t (u) +

±
∫

∇u

(
φ

(
arccos(||uH ||), uH

||uH ||

))⊤

ṽt(u)dν±t (u).

By definition of the pushforward, and since uH = cos(arccos(||uH ||))uH/||uH || and ||u⊥||=
sin(arccos(||uH ||)) for u ∈ Sd−1, the first integral is equal

∫
φ(θ, zH)Gt(θ, z

H)dτ±t (u). For
the second integral, let us first compute the gradient. One has

∇u

(
φ

(
arccos(||uH ||), uH

||uH ||

))
=∂θφ

(
arccos(||uH ||), uH

||uH ||

)
−1√

1 − ||uH ||2
uH

||uH ||
+

1

||uH ||

[
IdH − uH(uH)

⊤

||uH ||2

]
(∇zHφ)

(
arccos(||uH ||), uH

||uH ||

)
.

We observe that the gradient above belongs toH which implies that when computing its inner
product with ṽt(u) we can consider only the component of the latter along H. Additionally,
we note that IdH − uH(uH)⊤/||uH ||2 is actually the orthogonal projection onto {uH}⊥, so
that it yields 0 when applied to u. Using that ||u⊥||=

√
1 − ||uH ||2 for u ∈ Sd−1, we then

get:

∇u

(
φ

(
arccos(||uH ||), uH

||uH ||

))⊤

ṽt(u) = ∇φ
(

arccos(||uH ||), uH

||uH ||

)⊤

Vt

(
(arccos(||uH ||), uH

||uH ||

)
.

where ∇φ(θ, zH) =

(
∂θφ(θ, zH)
∇zHφ(θ, zH)

)
. This shows that

∂t

∫
φ(θ, zH)dτ±t (θ, zH) = ± 2

∫
φ(θ, zH)Gt(θ, z

H)dτ±t (θ, zH) +

±
∫

∇φ(θ, zH)⊤Vt(θ, z
H)dτ±t (θ, zH),

which proves that τ±t indeed satisfies Equation (4.3) in the sense of distributions.
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The dynamics are closed in the pair (τ+t , τ
−
t ). The only thing left to prove to show

that the dynamics are closed for the pair (τ+t , τ
−
t ) is that Gt and Vt can be expressed using

only the pair (τ+t , τ
−
t ). The only dependence of these quantities on t is through the residual

Rt which itself depends on t only through f(µt; ·). Let y ∈ Rd. We have already shown at
the end of the previous Section E.1.1 that by definition of ν+t and ν−t , we have

f(µt; y) =

∫
u∈Sd−1

σ
(
u⊤y

)
d
(
ν+t − ν−t

)
(u).

On the other hand, we show below that the integral of any measurable function φ : Sd−1 → R
against ν±t can be expressed as an integral against τ±t in the case where ν±t admits a density
w.r.t. the uniform measure on Sd−1 (which is the case for ν±0 ), the case of a general measure
ν±t being a simple extension via a weak convergence argument. Thus call p±t the density of
ν±t w.r.t. ω̃d. Since ν±t is invariant by any linear map T such that T|H = idH T|H⊥ ∈ O(d⊥)
(because of the symmetries on µt given by Proposition 2.1), and since this is also the case
for ω̃d because ω̃d has spherical symmetry and T is orthogonal, we have by Lemma A.2 that
p±t is invariant by any such T , which then leads to pt having the form pt(u) = p̃±t (uH , ||u⊥||)
by Lemma 4.1.

First step. We show that τ±t has the density q±t (θ, zH) = |Sd⊥−1|p̃±t (cos(θ)zH , sin(θ))
w.r.t. γ̃ ⊗ ω̃dH where the measure γ̃ is the normalized counterpart of the measure in Defini-
tion A.1. Indeed, let φ : [0, π/2] × Sd−1 → R be any measurable function w.r.t. τ±t . Using
the disintegration Lemma A.4 on ω̃d, one has that∫

φ(θ, zH)dτ±t (θ, zH) =

∫
φ

(
arccos(||uH ||), uH

||uH ||

)
dν±t (u)

=

∫
φ

(
arccos(||uH ||), uH

||uH ||

)
p̃±t (uH , ||u⊥||)dω̃d(u)

=

∫
φ
(
θ, zH

)
p̃±t (cos(θ)zH , sin(θ))dγ̃(θ)dω̃dH (zH)dω̃d⊥(z⊥)

=

∫
φ
(
θ, zH

)
p̃±t (cos(θ)zH , sin(θ))dγ̃(θ)dω̃dH (zH),

which proves the desired density for τ±t .

Second step. Consider a measurable φ : Sd−1 → R w.r.t. ν±t . One has with similar
calculations as above∫

u
φ(u)dν±t (u) =

∫
u
φ(u)p̃±t (uH , ||u⊥||)dω̃d(u)

=

∫
φ(cos(θ)zH + sin(θ)z⊥)p̃±t (cos(θ)zH , sin(θ))dγ̃(θ)dω̃dH (zH)dω̃d⊥(z⊥)

=

∫
θ,zH

(∫
z⊥
φ(cos(θ)zH + sin(θ)z⊥)dω̃d⊥(z⊥)

)
q±t (θ, zH)dγ̃(θ)dω̃dH (zH)

=

∫
θ,zH

(∫
z⊥
φ(cos(θ)zH + sin(θ)z⊥)dω̃d⊥(z⊥)

)
dτ±t (θ, zH).

Applying this to f(µt; y) shows that the latter quantity can be expressed solely using (τ+t , τ
−
t ),

which proves that the dynamics is indeed closed and therefore concludes the proof when ν±t
has a density.
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Third step: extending to any measure. It is known that for any measure ν over Sd−1,
there exists a sequence of measure (νn)n∈N such that: (i) νn has a density pn w.r.t. the
uniform measure ω̃d over Sd−1, and (ii) the sequence (νn)n∈N converges weakly to ν, that is,
for any continuous (and thus automatically bounded because the unit sphere is compact) φ,∫
φdνn −−−→

n→∞

∫
φdν. Let thus ν ∈ M+(Sd−1), and consider a sequence (νn)n∈N with density

converging weakly towards ν. Let τ (resp. τn) be defined from ν (resp. νn) as τ±t is defined
from ν±t , that is for any measurable φ : [0, π/2] × SdH−1 → R,∫

φ(θ, zH)dτ(θ, zH) =

∫
φ

(
arccos(||uH ||), uH

||uH ||

)
dν(u),∫

φ(θ, zH)dτn(θ, zH) =

∫
φ

(
arccos(||uH ||), uH

||uH ||

)
dνn(u).

Let thus φ be a continuous map from Sd−1 → R (having in mind the example of : u 7→ σ(u⊤y)
for a fixed y). By the result of Step 2, since νn has a density for every n, we have that∫

φ(u)dνn(u) =

∫
θ,zH

(∫
z⊥
φ(cos(θ)zH + sin(θ)z⊥)dω̃d⊥(z⊥)

)
dτn(θ, zH), (E.1)

and taking the limit n → ∞, the left-hand-side of Equation (E.1) converges to
∫
φdν

by assumption. Now let us look at the right-hand-side of (E.1). Calling ψ(θ, zH) =∫
z⊥ φ(cos(θ)zH + sin(θ)z⊥)dω̃d⊥(z⊥) and Φ(u) =

∫
z⊥ φ(uH + ||u⊥||z⊥)dω̃d⊥(z⊥), the right-

hand-side is in fact
∫
ψdτn and, for any n ∈ N, is equal to:∫

ψdτn =

∫
u
ψ

(
arccos(||uH ||), uH

||uH ||

)
dνn(u)

=

∫
u

∫
z⊥
φ

(
||uH || uH

||uH ||
+ ||u⊥||z⊥

)
dω̃d⊥(z⊥)dνn(u)

=

∫
u

∫
z⊥
φ
(
uH + ||u⊥||z⊥

)
dω̃d⊥(z⊥)dνn(u)

=

∫
Φdνn,

and a similar result holds for τ and ν. Now, the continuity of Φ is readily obtained from that
of φ, and thus the right-hand-side in the last equality above converges to

∫
Φdν which is also

equal to
∫
ψdτ by the same calculations as above. The right-hand-side in (E.1) therefore

converges to
∫
ψdτ , and since the limits of both sides are equal, we get

∫
φdν =

∫
ψdτ ,

which is the claim of Step 2 for a general measure ν which does not necessarily admit a
density, thereby concluding the proof.

E.2 Case when f ∗ is the euclidean norm: Theorem 4.3

Here, we give the proof of Theorem 4.3 which shows that when f∗(x) = ||xH || the dynamics
can be reduced to a single variable: the angle θ ∈ [0, π/2] between particles and the subs-
space H.

We decompose the proof in three steps: first we show that the pair of measures (τ+t , τ
−
t ) ∈

M+([0, π/2]) as defined in Section 4.2 indeed follows Equation (4.5); then we show that
the dynamics are indeed closed by proving that the terms Vt and Gt appearing in the GF
depend only on (τ+t , τ

−
t ); and finally, we show that Equation (4.5) indeed corresponds to a

Wasserstein-Fisher-Rao GF on a given objective functional over M+([0, π/2])2.
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E.2.1 Proof of the GF equation

Proof. We first use the added symmetry to simplify the terms gt and ṽt which appear in the
GF with (ν+t , ν

−
t ) (see Section 4.1) and express them only with ||uH || and ||u⊥||. Then we

use the equations satisfied by (ν+t , ν
−
t ) to obtain equations for (τ+t , τ

−
t ).

Equations for (τ+t , τ
−
t ). Let φ ∈ C1

c ([0, π/2]). We have

∂t

∫
φdτ±t =∂t

∫
φ
(
arccos(||uH ||)

)
dν±t (u)

= ±
∫

∇u

(
φ
(
arccos(||uH ||)

))⊤
ṽt(u)dν±t (u)

± 2

∫
φ
(
arccos(||uH ||)

)
gt(u)dν±t (u).

One has that

∇u

(
φ
(
arccos(||uH ||)

))
= φ′ (arccos(||uH ||)

)
× −1√

1 − ||uH ||2
uH

||uH ||
,

which belongs to H. We recall here the expressions of ṽt and gt: for any u ∈ Sd−1, we have

gt(u) =

∫
y
Rt(y)σ(u⊤y)dρ(y),

ṽt(u) =

∫
y
Rt(y)σ′(u⊤y)[y − (u⊤y)u]dρ(y).

Since, f∗(x) = ||xH ||, f∗ is now invariant under any orthogonal map T preserving H and
H⊥, that is such that the restrictions T|H ∈ O(dH) and T|H⊥ ∈ O(d⊥). Proposition 2.1 then
ensures that so is f(µt, ·), which in turn implies that the residual Rt(·) = ∂2ℓ(f(µt; ·), f∗(·))
also shares that invariance property. Using a similar change of variable as in Appendix E.1.2,
and because ρ is spherically symmetric, one gets that gt can be re-written

gt(u) =

∫
y
Rt(y)σ

(
yH1 ||uH ||+y⊥1 ||u⊥||

)
dρ(y).

Calling

Gt(θ) :=

∫
y
Rt(y)σ

(
yH1 cos(θ) + y⊥1 sin(θ)

)
dρ(y),

one has gt(u) = Gt(arccos(||uH ||)) because u ∈ Sd−1, so that ||u⊥||=
√

1 − ||uH ||2. Then, by
definition of τ±t , the second integral in the time derivative above is equal to

∫
φ(θ)Gt(θ)dτ

±
t .

For the first integral appearing in that time derivative, we get

∇u

(
φ
(
arccos(||uH ||)

))⊤
ṽt(u) =

φ′ (arccos(||uH ||)
)

||u⊥|| ||uH ||

∫
y
Rt(y)σ′(u⊤y)[(u⊤y)u− y]⊤uHdρ.

Expanding the inner product inside the integral, we have

[(u⊤y)u− y]⊤uH = (⟨uH , yH⟩ + ⟨u⊥, y⊥⟩)||uH ||2−⟨uH , yH⟩
= ||uH ||2⟨u⊥, y⊥⟩ − (1 − ||uH ||2)⟨uH , yH⟩
= ||uH ||2⟨u⊥, y⊥⟩ − ||u⊥||2⟨uH , yH⟩.
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Calling

Vt(θ) :=

∫
y
Rt(y)σ′

(
yH1 cos(θ) + y⊥1 sin(θ)

)
[y⊥1 cos(θ) − yH1 sin(θ)]dρ(y) = G′(θ),

and using again the spherical symmetry of ρ, with the same change of variable in the integral
as for gt, we get that

∇u

(
φ
(
arccos(||uH ||)

))⊤
ṽt(u) = φ′ (arccos(||uH ||)

)
Vt(arccos(||uH ||)).

Finally, this combined with the previous result on the integral with gt yields

∂t

∫
φdτ±t = ±

∫
φ′(θ)Vt(θ)dτ

±
t (θ) ± 2

∫
φ(θ)Gt(θ)dτ

±
t (θ),

which leads to the desired equation

∂τ±t = −div
(
±Vtτ±t

)
± 2Gtτ

±
t .

E.2.2 Proof that the dynamics on the angle θ are closed

The proof follow closely that of Appendix E.1.2 (where we prove closed dynamics), except
here we take advantage of the added symmetry of the dynamics. As in Appendix E.1.2, we
have

f(µt; y) =

∫
u∈Sd−1

σ
(
u⊤y

)
d
(
ν+t − ν−t

)
(u),

and the only thing to prove is that this quantity can be expressed using only (τ+t , τ
−
t ). As

in Appendix E.1.2, we first prove this when ν±t has a density, which is the case for ν±0 and
should thus remain so during the dynamics.

Similarly to what occurs in Appendix E.1.2, ν±t is invariant by any orthogonal map T
which preserves H and H⊥ because µt has those symmetries given by Proposition 2.1, and
if ν±t has a density pν±t

w.r.t. ω̃d, then p±t is also invariant by any such map T , and thus

depends only on the norms ||uH || and ||u⊥|| of its input u ∈ Sd−1. But since its input is on
the sphere, those norms are determined by the angle θ = arccos(||uH ||) between the input
u and H. Calling q±t such that p±t (u) = q±t (arccos(||uH ||)), this will lead τ±t to have the
density q±t w.r.t. γ̃. Then, we show below that similarly to Appendix E.1.2, the integral of
any measurable φ : Sd−1 → R against ν±t can be expressed as an integral against τ±t . Indeed,
using the disintegration Lemma A.4,∫

φdν±t =

∫
θ∈[0,π/2]

φ(u)q±t (arccos(||uH ||))dω̃d(u)

=

∫
u
φ
(

cos(θ)zH + sin(θ)z⊥
)
q±t (θ)dω̃dH (zH)dω̃d⊥(z⊥)dγ̃(θ)

=

∫
θ∈[0,π/2]

φ̃(θ)q±t (θ)dγ̃(θ)

=

∫
θ∈[0,π/2]

φ̃(θ)dτ±t (θ)

where

φ̃(θ) :=

∫
zH ,z⊥

φ
(

cos(θ)zH + sin(θ)z⊥
)

dω̃dH (zH)dω̃d⊥(z⊥),

which concludes the proof if ν±t has a density w.r.t. the uniform measure ω̃d on the sphere
Sd−1. The general case is obtained by a weak convergence argument (of measures with
density) as in the third step of Section E.1.2.
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E.2.3 Proof of the Wasserstein-Fisher-Rao GF

Proof. Recall that γ is the measure in Definition A.1, and consider the following objective
functional over M([0, π/2])2:

A(τ+, τ−) : =

∫
φ∈[0,π/2]

ℓ
(

cos(φ), f̃(τ+, τ−;φ)
)

dγ̃(φ),

f̃(τ+, τ−;φ) : =

∫
θ∈[0,π/2]

ϕ̃ (θ;φ) d(τ+ − τ−)(θ),

ϕ̃ (θ;φ) : =

∫
r,s∈[−1,1]

σ
(
r cos(φ) cos(θ) + s sin(φ) sin(θ)

)
dγ̃dH (r)dγ̃d⊥(s)

where, for any p ∈ N, dγp(r) = (1−r2)(p−3)/2dr, and γ̃p = γp/|γp| with the normalizing factor
|γp|= B (1/2, (p− 1)/2) =

√
πΓ((p − 1)/2)/Γ(p/2) = |Sp−1|/|Sp−2|. Note that γ̃p can be

simply expressed as the law of ϵ×
√
X where ϵ ∼ U({−1,+1}) and X ∼ Beta(1/2, (p−1)/2).

Computing the first variation or Fréchet derivative of the functional A w.r.t. to its first
and second argument yields, for any θ ∈ [0, π/2],

δA

δτ±
(τ+, τ−)[θ] = ±

∫
φ
∂2ℓ
(

cos(φ), f̃(τ+, τ−;φ)
)
ϕ̃(θ;φ)dγ̃(φ).

To conclude one needs only observe that the quantity above is simply equal to Gt(θ), up to
a fixed multiplicative constant. Since we have assumed ρ to be the uniform measure over
Sd−1 to ensure that the Wasserstein GF (1.3) is well-defined, the constant is one here but in
the case of a general ρ with spherical symmetry, the result should also hold (as long as the
Wasserstein GF (1.3) is well-defined) but the proof is more technical and different constants
might appear.

Simplifying f(µt; ·). Using the results from Appendix E.2.2, we have for any φ, zH , z⊥ ∈
[0, π/2] × SdH−1 × Sd⊥−1 (so that u = cos(φ)zH + sin(φ)z⊥ ∈ Sd−1)

f(µt; cos(φ)zH + sin(φ)z⊥) =∫
ψ

∫
ξH ,ξ⊥

σ
(

cos(ψ) cos(φ)⟨ξH , zH⟩ + sin(ψ) sin(φ)⟨ξ⊥, z⊥⟩
)

dω̃dH (ξH)dω̃d⊥(ξ⊥)d(τ+t − τ−t )(ψ)

Now, because of the integration against uniform measures on the unit spheres, and the inner
products involved, we can use some spherical harmonics theory to simplify those calculations.
Using The Funk-Hecke formula (see Atkinson and Han, 2012, Theorem 2.22, n = 0, d = dH
or d = d⊥), we get

f(µt; cos(φ)zH + sin(φ)z⊥) =

|SdH−2||Sd⊥−2|
|SdH−1||Sd⊥−1|

∫
ψ

∫
r,s
σ (r cos(ψ) cos(φ) + s sin(ψ) sin(φ)) dγdH (r)dγd⊥(s)d(τ+t − τ−t )(ψ)

=
1

|γdH ||γd⊥|
|γdH ||γd⊥ |

∫
ψ∈[0,π/2]

ϕ̃(ψ;φ)d(τ+t − τ−t )(ψ)

= f̃(τ+t , τ
−
t ;φ).

Simplifying f∗(cos(φ)zH + sin(φ)z⊥). Because f∗(y) = ||yH ||, f∗(cos(φ)zH + sin(φ)z⊥)
is simply ||cos(φ)zH ||= cos(φ) because zH ∈ SdH−1.
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With the previous expressions for f(µt; ·) and f∗ we have that for any function Φ : R2 →
R,

Φ
(
f∗(cos(φ)zH + sin(φ)z⊥), f(µt; cos(φ)zH + sin(φ)z⊥)

)
= Φ

(
cos(φ), f̃(τ+t , τ

−
t ;φ)

)
.

Note that this applies both to Φ(y, ŷ) = ℓ(y, ŷ) and Φ(y, ŷ) = −∂2ℓ(y, ŷ).

Proof that F (µt) = A(τ+t , τ
−
t ). Using the disintegration Lemma A.4 for the uniform

measure on the unit sphere Sd−1, we have

F (µt) =

∫
y
ℓ
(
f∗(y), f(µt; y)

)
dρ(y)

=

∫
ℓ ◦ (f∗(·), f(µt; ·))

(
cos(φ)zH + sin(φ)z⊥

)
dω̃dH (zH)dω̃d⊥(z⊥)dγ̃(φ)

=

∫
ℓ
(

cos(φ), f̃(τ+t , τ
−
t ;φ)

)
dω̃dH (zH)dω̃d⊥(z⊥)dγ̃(φ)

=

∫
ℓ
(

cos(φ), f̃(τ+t , τ
−
t ;φ)

)
dγ̃(φ),

where we have used in the last equality the fact that the integrand does not depend on zH

or z⊥ and that ω̃dH and ω̃d⊥ are probability measures (and thus their total mass is 1).

Simplifying Gt. Using the disintegration Lemma A.4, we have:

Gt(θ) =

∫
y
Rt(y)σ

(
yH1 cos(θ) + y⊥1 sin(θ)

)
dρ(y)

=

∫
Rt(cos(φ)zH + sin(φ)z⊥)σ

(
zH1 cos(φ) cos(θ) + z⊥1 sin(φ) sin(θ)

)
ω̃dH (zH)dω̃d⊥(z⊥)dγ̃(φ).

Similarly to what we did for simplifying f(µt; ·), we can simplify the integrals against ω̃dH
and ω̃d⊥ using spherical harmonics theory to get:

Gt(θ) = −
∫
φ∈[0,π/2]

∂2ℓ
(

cos(φ), f̃(τ+t , τ
−
t ;φ)

)
ϕ̃(φ; θ)dγ̃(φ).

This shows that

− δA

δτ+
(τ+t , τ

−
t )[θ] = Gt(θ)

δA

δτ−
(τ+t , τ

−
t )[θ] = Gt(θ),

which proves that Equation (4.5) indeed describes the evolution of the Wasserstein-Fisher-
Rao for the objective functional A over M([0, π/2])2, given by the pair (τ+t , τ

−
t ).

F Numerical simulations in one dimension

Measure discretization. Discretizing µt via µm,t = 1
m

∑m
j=1 δ(aj(t),bj(t)), we get that

τm,t := τ+m,t − τ−m,t = 1
m

∑m
j=1 cj(t)δθ(t) where

cj(t) = εj |aj(t)| ||bj(t)||,
εj = sign(aj(0)),

θj(t) = arccos

(
bj(t)

||bj(t)||

)
.
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Initializing through aj(0) ∼ U{−1,+1} and bj(0) ∼ ω̃d = U(Sd−1), yields cj(0) ∼ U{−1,+1}
and θj(0) ∼ γ̃, i.i.d. over j. The gradient flows of Equation (4.5) translates into the following
ODEs on (cj)j∈[1,m] and (θj)j∈[1,m]:

d

dt
cj(t) = 2εjGt(θj(t))cj(t),

d

dt
θj(t) = εjVt(θj(t)).

where εj = aj(0) ∈ {−1,+1} denotes whether the corresponding quantity appears in τ+t,m
(ε = +1) or τ−t,m (ε = −1).

Time discretization. Simulating these ODEs via the discrete Euler scheme with step
η > 0, leads, for any iteration k ∈ N, to:

cj(k + 1) =
(

1 + 2ηεjGk(θj(k))
)
cj(k)

θj(k + 1) = θj(k + 1) + ηεjVk(θj(k)).
(F.1)

Approximating integrals numerically. The only thing that needs to be dealt with
numerically is estimating the values of Gt and Vt which are defined by integrals. With the
discretization of the measures, we have:

Gk(θ) =

∫
φ

(
cos(φ) − f̃(τ+k , τ

−
k ;φ)

)
ϕ̃(φ; θ)dγ̃(φ),

f̃(τ+k , τ
−
k ;φ) =

m∑
j=1

cj(k)ϕ̃(θj(k);φ),

ϕ̃ (θ;φ) =

∫
r,s∈[−1,1]

σ
(
r cos(φ) cos(θ) + s sin(φ) sin(θ)

)
dγ̃dH (r)dγ̃d⊥(s).

We thus get:

Gk(θ) =

∫
ψ(r, s; θ, φ)

m

m∑
j=1

(
cos(φ) − cj(k)ψ(r′, s′; θj(k), φ)

)
dγ̃(φ)(dγ̃dH )2(r, r′))(dγ̃d⊥)2(s, s′),

with

ψ(r, s; θ, φ) : = σ
(
r cos(φ) cos(θ) + s sin(φ) sin(θ)

)
.

Similarly, we have:

Vk(θ) =

∫
χ(r, s; θ, φ)

m

m∑
j=1

(
cos(φ) − cj(k)ψ(r′, s′; θj(k), φ)

)
dγ̃(φ)(dγ̃dH )2(r, r′))(dγ̃d⊥)2(s, s′),

with

χ(r, s; θ, φ) : =
∂

∂θ
ψ(r, s; θ, φ)

= σ′
(

cos(θ) cos(φ)r + sin(θ) sin(φ)s
)[

− sin(θ) cos(φ)r + cos(θ) sin(φ)s
]
.
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We use Monte-Carlo estimation through sampling to approximate the integrals against the
five variables (φ, r, r′, s, s′) by drawing N samples from the corresponding distributions. We
get:

Gk(θj(k)) ≈ 1

mN

N∑
i=1

m∑
l=1

Ψji

(
cos(Φi) − cl(k)Ψ̃li

)
,

Ψji(k) = ψ(Ri, Si; θj(k),Φi)

Ψ̃ji(k) = ψ(R′
i, S

′
i; θj(k),Φi),

and similarly

Vk(θj(k)) ≈ 1

mN

N∑
i=1

m∑
j=1

χji

(
cos(Φi) − cl(k)Ψ̃li

)
,

χji(k) = χ(Ri, Si; θj(k),Φi),

where we have drawn the samples i.i.d. over i ∈ [1, N ]:

Φi ∼ γ̃,

Ri, R
′
i ∼ γ̃dH ,

Si, S
′
i ∼ γ̃d⊥ .

Iterations in the numerical simulation. Defining the vectors c(k) = (cj(k))j∈[1,m],
θ(k) = (θj)j∈[1,m], and ε = (εj)j∈[1,m], the update Equations (F.1) can then be writ-

ten in terms of update rules using the matrices Ψ(k) = (Ψji(k))j,i∈[1,m]×[1,N ], Ψ̃(k) =

(Ψ̃ji(k))j,i∈[1,m]×[1,N ], and finally χ = (χji(k))j,i∈[1,m]×[1,N ], and the vectors (Φ, R,R′, S, S′) =
(Φi, Ri, R

′
i, Si, S

′
i)i∈[1,N ], which are re-sampled at each iteration k ∈ [0,K], where K ∈ N:

c(k + 1) = (1 + 2ηε⊙ Ĝk) ⊙ c(k),

θ(k + 1) = θ(k) + ηε⊙ V̂k,

where

Ĝk =
d

Nb
Ψ

(
cos(Φ) − 1

m
Ψ̃⊤c(k)

)
,

V̂k =
d

Nb
χ

(
cos(Φ) − 1

m
Ψ̃⊤c(k)

)
,

and ⊙ denotes the Hadamard (element-wise) product of two vectors. One can compute the
loss through sampling in a similar way.

Experimental value for α and parameters of the numerical simulation. For the
numerical simulations, we fix the number of atoms of the measure (or equivalently the width
of the network) to m = 1, 024, the learning rate to η = 5.10−3, the number of samples for
the Monte-Carlo scheme to N = 1, 000, and the total number of iterations to K = 20, 000.
The experimental value for α (see Section 4.2) is computed through αexp = τ+m,K([0, π/2]),
that is

αexp =
1

m

∑
j∈J+

cj(K),

J+ : = {j ∈ [1,m] ; εj = 1}.
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As mentioned in the main text, the behaviour of the numerical simulation depends a lot on
the step-size η. Some of the differences between our observations and our intuitive description
of the limiting model (infinite-width and continuous time) can come from too big a step-
size. We have thus run the numerical simulation with η = 2.10−5 as well, for K = 230, 000
steps but the same differences still appear (e.g., τ+m,k([0, π/2]) still grows larger than the
theoretically expected limit α after some time, albeit by a smaller margin) and after the
critical t∗, some negative particles seem to go slightly beyond π/2, even with a very small
step-size, a fact which cannot happen for the limiting model. Consequently, in Figure 3, the
first histogram bin right after π/2 has been merged with the one before.
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