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S U M M A R Y
The inversion of complete seismic waveforms offers new perspectives to better constrain
the elastic properties of Earth’s interior. However, models of density and seismic velocities
obtained from full waveform inversions are generally characterized by very different and
uneven spatial resolutions. Because the 3-D structure of the Earth represents small deviations
from average reference Earth models, the absolute values of density, VP and VS in the Earth
are strongly correlated. Here, we exploit this strong correlation between model parameters as
a priori information introduced into a new full waveform inversion algorithm, by considering
a non-diagonal 3-D model covariance matrix in which the spatial correlations of elastic
properties are described with an exponential covariance function. The inverse of such a model
covariance matrix is easy to compute, and we thus have all the ingredients to construct a
consistent Bayesian full waveform inversion scheme. We show that taking into account the
correlations between density and seismic velocities can lead to dramatic improvements on
the reconstructed models of density, seismic velocities and VP/VS ratio. This new imaging
approach opens new perspectives for refining tomographic images of density and seismic
velocities in the lithosphere and upper mantle on a regional scale by full waveform inversion
of teleseismic body waves.

Key words: Inverse theory; Waveform inversion; Seismic tomography.

1 I N T RO D U C T I O N

Seismic tomography still heavily relies on the exploitation of the
phase of the body and surface waves, and thus primarily constrains
the shear and compressional velocities in the Earth’s interior. With
the continued improvement of computer power, full waveform inver-
sion (FWI) has now become feasible, at least over regional domains
of a few degrees in size, opening up new perspectives for obtaining
finely resolved models of seismic velocities (Wang et al. 2016),
density (Beller et al. 2017) and even seismic anisotropy (Beller &
Chevrot 2020). In the inversion of complete teleseismic wavefields,
the different types of seismic phases have very different contribu-
tions to the model reconstruction. Directly transmitted waves mainly
constrain the long wavelengths of the velocity model, whereas later
arrivals such as reflected and converted phases are sensitive to sharp
velocity and density gradients. Therefore, while FWI of teleseismic
P waves allows us to simultaneously reconstruct 3-D models of VP,
VS and density, which are key parameters to get crucial insight into
the compositional and thermal state of the lithosphere, these models
are characterized by contrasting spatial resolutions.

This contribution aims at investigating the beneficial effects for
FWI of a new regularization approach in model space that imposes

a degree of correlation between density, VP and VS, the three pa-
rameters that describe isotropic elastic Earth models. Whereas these
correlations are well known and already found numerous and im-
portant applications in various branches of geophysics, they have
been ignored in multiparameter FWIs until now.

The correlation between compressional wave velocity and den-
sity has been particularly well studied, and several simple laws
relating VP to density have been proposed (e.g. Nafe & Drake 1957;
Birch 1961; Brocher 2005). These relationships played an important
role in the construction of the first reference Earth models because
normal mode and dispersion data are insufficient to fully resolve
the density structure. For example, the PREM model (Dziewonski
& Anderson 1981) was required to satisfy Birch’s law in the up-
per mantle. These relationships were also successfully applied to
model the gravity field, predicting a density model from a tomo-
graphic model (e.g. Wang et al. 2016; Martin et al. 2021), or for
joint/cooperative inversions of seismic and gravity data (e.g. Lines
et al. 1988; Lees & VanDecar 1991). Mantle circulation models,
which provide key insights into plate tectonics and the evolution of
the Earth’s interior, also rely on density models derived from to-
mographic models (e.g. Becker & O’Connell 2001; Simmons et al.
2006). The strong correlation of P and S station corrections (e.g.
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Robertson & Woodhouse 1997) provides direct observational evi-
dence of the correlation between the lateral variations of VP and VS.
The global average ratio of 2.85 between the S and P corrections
leads to ν = ∂ln VS/∂ln VP = 1.6 in the upper mantle, assuming a
constant VP/VS of 1.8. This result is in fairly good agreement with
the value obtained at the top of the lower mantle in a subsequent
global-scale statistical analysis of P- and S-wave traveltimes (Bolton
& Masters 2001). Experimental mineral physics data predict vari-
ations of ν in the upper mantle from 1.3 at low temperature to 2.2
at high temperature, taking into account the significant effect of
anelasticity (Cammarano et al. 2003). On the other hand, the VP/VS

ratio is more variable. For crustal rocks, it is mainly controlled by
the silica content (e.g. Christensen 1996; Chevrot & van der Hilst
2000; Savard et al. 2018) and the fluid concentration (e.g. Watanabe
1993; Savard et al. 2018). For mantle rocks, this ratio varies with
the Mg# (e.g. Lee 2003) or with the fraction of partial melt (e.g.
Watanabe 1993).

To summarize this brief overview of the literature, the strong
correlations between density and seismic velocities are now clearly
established and widely exploited. However, FWIs have so far not
assumed that model parameters are correlated, a simplification that
can potentially result in strong artefacts in the reconstructed models,
in particular of density and VP/VS.

The purpose of this study is first to point out that in realistic mod-
els of the Earth, the absolute values of density and seismic velocities
are necessarily strongly correlated. It is then shown that taking into
account the strong correlations between density and VP and between
VP and VS, the density, VP, VS and VP/VS models obtained by FWI are
considerably improved. The paper is organized as follows. We first
recall in Section 2 the Bayesian formulation of a waveform inversion
problem for imaging isotropic elastic media. We then discuss how
to make the inversion results consistent, that is independent of the
choice of model parametrization. The key is to consider non-zero
off-diagonal terms in the model covariance matrix, which describe
the correlation between model parameters. Another important prac-
tical ingredient is to consider exponential kernels to describe the
spatial correlation functions, as these kernels lead to an inverse co-
variance matrix that is a simple differential operator. The impact of
considering the correlation between model parameters is then stud-
ied through a number of synthetic inversion experiments performed
in a simplified continental subduction model in Section 3. These
tests are performed with a hybrid numerical method that combines
the frequency–wavenumber method to the spectral-element method
in order to compute complete synthetic seismograms of teleseismic
waves in a 3-D regional model. The results demonstrate that the
correlations between model parameters compensate for the poor
sensitivity to deep density and shear velocity anomalies when only
teleseismic P waves are inverted. A preliminary application to long-
period teleseismic P waveforms recorded along a transect deployed
in southern Peru is then presented and discussed in Section 4. Fi-
nally, in Section 5, we discuss guidelines for properly defining the
hyperparameters of an FWI problem, as well as the advantages of
including SH waveforms in the inversion.

2 F O R M U L AT I O N O F A C O N S I S T E N T
B AY E S I A N F W I P RO B L E M

We briefly recall the basic principles of inverse problem theory,
following Tarantola (2005), to which the reader is referred for a more
thorough presentation. Using the Bayes theorem, the conditional

probability of a model m given a data set d is

ρ(m|d) = ρ(d|m)ρ(m)

ρ(d)
, (1)

where ρ(d|m) is the probability density of d given the model m,
and ρ(m) is the probability density of the model parameters. For a
particular realization of the observed data dobs, ρ(dobs) is constant
and therefore

ρ(m|dobs) ∝ ρ(dobs|m)ρ(m). (2)

If we now assume that there is no modeling error and that the data
uncertainties are Gaussian, then

ρ(dobs|m) = const.×exp

[
−1

2
(dobs − g(m))t CD

−1(dobs − g(m))

]
,

(3)

where CD is the data covariance matrix. If we assume that the a
priori information on model parameters is also Gaussian, then

ρ(m) = const. × exp

[
−1

2
(m − mprior)

t CM
−1(m − mprior)

]
, (4)

where CM is the a priori model covariance matrix. When the di-
mensionality of the model space is low (less than a few thousand
parameters), stochastic methods (e.g. Monte-Carlo, simulated an-
nealing) can be used to explore ρ(m|d). For the waveform inversion
problems that we will consider, with about 20 million free parame-
ters, we have thus to consider the optimization method that finds the
most probable model that minimizes the objective function (Taran-
tola 2005)

χ (m) = 1

2
(g(m) − uobs)

t C−1
D (g(m) − uobs)

+ 1

2
(m − mprior)

t C−1
M (m − mprior), (5)

where g is the forward wave equation operator, and mprior is the
mean of the Gaussian distribution of model parameters. In practice,
mprior will be a smooth 1-D reference Earth model. The rationale
for using a smooth 1-D reference is to avoid having sharp disconti-
nuities, which can create artefacts in the reconstructed 3-D model
and slow down the convergence of the iterative inversion algorithm
(Monteiller et al. 2015).

Although the eq. (5) is mathematically correct, in practice it may
not converge numerically to its true minimum if one of the two terms
of the cost function is much larger than the other. This can happen
for example in the case of a very large number of model parameters
compared to the small number of data, as it is usually the case in
FWI, where a limited number of carefully selected waveforms are
inverted. For this reason, we define the new objective function

χ (m) = 1

2
(g(m) − uobs)

t C−1
D (g(m) − uobs)

+ λ

2
(m − mprior)

t C−1
M (m − mprior), (6)

where λ is a scaling parameter that is introduced to balance the
contribution of the two terms of the cost function. Note that the
scaling parameter could have been applied to the first term of the cost
function and that therefore the definition of the model covariance
matrix does not depend on it.

In this study, we will illustrate the methodology by focusing on the
inversion of complete teleseismic waveforms to obtain 3-D models
of the isotropic elastic structure of the Earth. However, its domain
of application is more general and the method could be applied to
any type of multiparameter inversion.
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The minimum of function (6) can be found with an iterative
algorithm (e.g. Tarantola & Valette 1982; Tarantola 2005), in which
the model mk at iteration k is perturbed by the quantity

�mk = −αkH−1
k · γk (7)

where α is the step length, H−1 the inverse Hessian, and γk the
gradient of the cost function (6) at iteration k. This gradient is given
by

γk = ∂χk

∂m
= Gt

kC−1
D (g(mk) − uobs) + λC−1

M (mk − mprior), (8)

with Gk the derivative or Jacobian operator given by

Gk = ∂g

∂m
(mk). (9)

In tomographic applications based upon complete seismic wave-
forms, the first contribution to the gradient can be computed with
the adjoint method (Tromp et al. 2005) whereas the second term is
usually discarded.

The L-BFGS method (Nocedal & Wright 2006) is a quasi-
Newton method which has rapidly gained popularity for solving
FWI problems. Its main advantages are that it behaves like a pre-
conditioned steepest descent method during the first iterations and
that it has a fast convergence comparable to that of a Newton method.
Moreover, the L-BFGS method does not require the computation
and storage of the inverse Hessian. Instead, the L-BFGS method
iteratively builds a finite-difference approximation of the inverse
Hessian from the stored gradients and models obtained in previous
iterations. For a more detailed description of the L-BFGS method
and its application to FWI, the reader is referred to Monteiller et al.
(2015).

2.1 Model parametrization and consistency of the inverse
problem

Isotropic elastic media are described by three parameters, the den-
sity ρ, the compressional velocity VP and the shear velocity VS.
Alternatively, one may also consider other parametrizations such
as (ρ, IP, IS), with IP and IS respectively the P and S impedances,
(ρ, λ, μ), with λ and μ the two Lamé parameters, (ρ, VP, VP/VS),
or (ρ, κ , μ), with κ the bulk modulus. In principle, these different
parametrizations are equivalent, because any set of parameters can
be recombined to reconstruct say the (ρ, VP, VS) model. However, in
practice, owing to the overlap of scattering diagrams for the different
parameters (e.g. Wu & Aki 1985; Gholami et al. 2013; Operto et al.
2013), the strong nonlinearity of FWI, and the presence of noise
contamination in the data, the reconstructed tomographic models
strongly depend on the chosen parametrization and regularization
scheme.

Another issue stems from the physical units chosen for the model
parameters. To define a norm in the model space, model parameters
need to be normalized by their standard deviation, which are stored
on the diagonal of the model covariance matrix. Using reduced
centred model parameters, defined by

m̂k = C
− 1

2
M (mk − mprior), (10)

allows us to work in an dimensionless model space, which makes
the inverse problem better conditioned. Using this definition of
the auxiliary model m̂k, and the chain rule for differentiation, the
gradient becomes

∂χk

∂m̂
= ∂χk

∂m

∂m

∂m̂
. (11)

We deduce from formula (10) that

mk = C
1
2
Mm̂k + mprior, (12)

which gives

∂m

∂m̂
= C

1
2
M. (13)

Therefore, with the new model metric, the normalized gradient
becomes

∂χk

∂m̂
= C

1
2
MGt

kC−1
D (g(mk) − uobs) + λm̂k. (14)

This formulation leads to a stable regularization of the inverse prob-
lem by smoothing the gradient with the model covariance matrix.
Another advantage of this approach is that we can determine directly
the model perturbations at each node of the spectral-element mesh,
thereby avoiding back-and-forth projections in a Cartesian tomo-
graphic grid, as in Wang et al. (2016). This results in a simplified
and versatile inversion algorithm that can be applied in arbitrarily
complex 3-D spectral-element meshes. For example, to account for
the effects of surface topography we just need to deform the upper
edge of the mesh accordingly, which greatly simplifies the inversion
algorithm.

For convenience, it is often assumed that the model covariance
matrix is purely diagonal. This is a source of inconsistencies in mul-
tiparameter inversions. This problem has been clearly illustrated by
Babuška & Cara (1991) with the inversion of the dispersion of the
fundamental and higher modes of both Love and Rayleigh waves to
determine a vertical transversely isotropic model of the upper man-
tle. They performed the first inversion using a transversely isotropic
model parametrization in terms of βV and ξ = (βH/βV)2, with βV and
βH the velocity of horizontally propagating S waves polarized hori-
zontally and vertically respectively. However, a new inversion using
parameters βH and βV lead to a drastically different model of the
βH/βV ratio. To make the inversion results consistent, they pointed
out that it is necessary to introduce the matrix T that transforms
model perturbations (δβV, δξ ) to (δβV, δβH), defined by[
δβV

δβH

]
= T ·

[
δβV

δξ

]
=

[
1 0√
ξ

βV
2
√

ξ

][
δβV

δξ

]
. (15)

If the model covariance matrix CM is diagonal for the set of
parameters (βV, ξ ) then we need to use the covariance matrix C′

M

for parameters (βV, βH) given by

C′
M = T · CM · Tt (16)

to ensure the consistency of the inversion.
For isotropic FWI, this means that if we want to transform model

parametrization (ρ, VP, VS) with the model covariance matrix

C(ρ,VP,VS) =
⎡
⎣σ 2

ρ 0 0
0 σ 2

VP
0

0 0 σ 2
VS

⎤
⎦ (17)

to parametrization (ρ, VP, VP/VS), according to⎡
⎣ δρ

δVP

δ VP
VS

⎤
⎦ =

⎡
⎣1 0 0

0 1 0
0 1

VS
− VP

V 2
S

⎤
⎦

⎡
⎣ δρ

δVP

δVS

⎤
⎦ (18)

then we need to define the new model covariance matrix as

C
(ρ,VP,

VP
VS

)
=

⎡
⎢⎣

σ 2
ρ 0 0

0 σ 2
VP

1
VS

σ 2
VP

0 1
VS

σ 2
VP

1
V 2

S
σ 2

VP
+ V 2

P

V 4
S
σ 2

VS

⎤
⎥⎦ (19)
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in order to get consistent inversion results. From these simple con-
siderations, we thus see that the non-diagonal terms of the model
covariance matrix, which describe the correlations between model
parameters, are key ingredients for the formulation of a consistent
inverse problem. Whereas model parametrization can be chosen at
will, the assumptions that we make (implicitly or not) on the degree
of correlation between model parameters can potentially strongly
impact the results of inversions.

2.2 The model covariance matrix for a 3-D isotropic Earth
model

The main impediment to introduce a complete non-diagonal model
covariance matrix into an inversion algorithm stems from much
increased computational cost and algorithmic complexity, which
can indeed become prohibitive for very large 3-D problems.

Let us consider a model covariance matrix of the form

CM =
⎡
⎣ σ 2

ρ C rρ,VPσρσVP C rρ,VSσρσVS C
rρ,VPσρσVP C σ 2

VP
C rVP,VSσVPσVS C

rρ,VSσρσVS C rVP,VSσVPσVS C σ 2
VS

C

⎤
⎦ (20)

where the ri, j are the correlation coefficients between parameters
i and j, C the spatial covariance kernel, σρ the standard deviation
of density, σVP the standard deviation of VP, and σVS the standard
deviation of VS.

This model covariance matrix can be rewritten

CM = �SRS�, (21)

where

� =
⎡
⎣σρI 0 0

0 σVP I 0
0 0 σVS I

⎤
⎦, S =

⎡
⎢⎣C

1
2 0 0

0 C
1
2 0

0 0 C
1
2

⎤
⎥⎦, (22)

and

R =
⎡
⎣ I rρ,VP I rρ,VS I

rρ,VP I I rVP,VS I
rρ,VS I rVP,VS I I

⎤
⎦. (23)

The matrix R encodes the correlations between model parame-
ters. The decomposition of this matrix when the correlations be-
tween the different pairs are equal is detailed in Appendix A. In the
general case, that is when the correlation coefficients are not equal,
the singular value decomposition of R is given by

R = V�Vt , (24)

with V the matrix containing the orthogonal eigenvectors of R.
Using the decomposition of CM, we can derive the expression of
the inverse covariance matrix

C−1
M = �−1S−1V�−1Vt S−1�−1, (25)

from which we can deduce that

C
1
2
M = V�

1
2 Vt S� = �SV�

1
2 Vt , (26)

and

C
− 1

2
M = �−1S−1V�− 1

2 Vt = V�− 1
2 Vt S−1�−1. (27)

The operator C(r, r′) describes the correlation of model parame-
ters at positions r and r′. Correlation kernels can be seen as smooth-
ing operators and their inverse as roughening operators (Oliver

1998). As can be deduced from eqs (10) and (14), both the C
1
2
M

and C
− 1

2
M operators are needed for the implementation of a consis-

tent FWI algorithm. The application of the model covariance matrix
to a model vector thus involves three steps: First, normalization by
the standard deviation with the diagonal matrix �, as in eq. (10),
followed by smoothing with the spatial filter S, and finally recombi-
nation of model parameters to account for their physical correlation
with the matrix R.

In tomographic inversions, Gaussian kernels are often considered
(e.g. Nataf et al. 1986) but they strongly filter out the short wave-
lengths of the model. Since the main motivation of FWI is to refine
the spatial resolution of tomographic images, we must therefore
use correlation kernels that decay less rapidly at high wavenum-
bers, such as exponential (or Laplacian) kernels (e.g. Oliver 1998;
Trinh et al. 2017; Araujo et al. 2021). Since Gaussian or expo-
nential kernels have broad support, convolving these filters on a
large 3-D grid can be time-consuming and difficult to implement
when the computational grid is distributed with domain decompo-
sition. Furthermore, as pointed out by Oliver (1998), computing
(and storing) the full inverse covariance matrix is a challenge. How-
ever, inverse exponential kernels can be defined analytically with
finite-difference operators (e.g. Oliver 1998; Tarantola 2005; Trinh
et al. 2017), an interesting property that has been already exploited
to regularize tomographic inversions (e.g. Potin 2016; Araujo et al.
2021).

A 3-D exponential kernel is defined as (Oliver 1998; Trinh et al.
2017)

C(r, r′) = e
−

√
(x−x ′ )2

L2
x

+ (y−y′ )2
L2

y
+ (z−z′ )2

L2
z , (28)

with Lx, Ly and Lz the correlation (or smoothing) lengths along the x,
y and z directions, respectively. The 3-D exponential kernel admits
the simple inverse operator (Trinh et al. 2017)

C−1(r, r′) = 1

8π Lx L y Lz
(I − �L )2 , (29)

with

�L = L2
x∂

2
x + L2

y∂
2
y + L2

z∂
2
z (30)

the Laplacian operator (Oliver 1998; Trinh et al. 2017). It is easy to
verify that the application of this inverse operator to the exponential
covariance kernel gives the identity operator (Oliver 1998; Trinh
et al. 2017). From eq. (29), we deduce that

C− 1
2 = 1√

8π Lx L y Lz

(I − �L ) . (31)

The C− 1
2 is a local differential operator which involves only the

identity and the Laplacian operators. It is therefore easy to compute
the results of applying this operator to a model vector, for example
with a spectral-element method (SEM), which has the advantage
that this of being able to be implemented on the same mesh that
is used for the resolution of the weak form of the wave equation.
By doing so, we also avoid having to project the model back and
forth on a regular tomographic Cartesian grid, as in our previous
implementations of the inversion algorithm (Monteiller et al. 2015;
Wang et al. 2016). By using exponential kernels, it is therefore
straightforward to introduce a non-diagonal inverse model covari-
ance operator into the FWI. As pointed out by Trinh et al. (2017),
for large problems involving domain decomposition, it may be sim-
pler and more efficient to compute the filtered model mf = C

1
2 m

by solving the linear system

C− 1
2 mf = m. (32)
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(a) (b) (c)

Figure 1. The continental subduction model used in the synthetic tests. The model is parametrized by the values of density, VP and VS at each node of the
spectral-element mesh. We show here the VP model, expressed in km s−1, and the positions of the receivers located on the surface (white triangles). The slab
extends down to 130 km depth, and the width of the forearc basin is 50 km.

Table 1. Values of model parameters inside each structural unit of the model shown in Fig. 1. Density ρ is in
g cm−3, VP and VS in km s−1, P and S impedances IP and IS in g cm−3 km s−1, and the Lamé parameters λ and
μ in GPa.

Unit ρ VP VS VP/VS IP IS λ μ

Forearc basin 1.80 4.80 2.40 2.00 8.64 4.32 20.74 10.37
Upper crust 2.60 5.80 3.20 1.81 15.08 8.32 34.22 26.62
Lower crust 2.90 6.50 3.90 1.67 18.85 11.31 34.31 44.11
Mantle wedge 3.20 7.80 4.10 1.90 24.96 13.12 87.10 53.79
Upper mantle 3.50 8.00 4.48 1.79 28.00 15.68 83.51 70.25

Because C− 1
2 is sparse, only the non-zero elements need to be stored,

and this system can be solved iteratively with a conjugate gradient
method (Trinh et al. 2017). However, as mentioned by Trinh et al.
(2017), a simpler matrix-free conjugate gradient algorithm can be
implemented with the SEM. In this case, we can simply compute the
matrix–vector products with the weak form of the Laplacian, which
is already stored by the SEM. Therefore, the vector mf is easy
to compute, for negligible additional memory and computational
costs.

3 N U M E R I C A L E X P E R I M E N T S

We now perform several numerical tests to assess the influence of
using non-diagonal model covariance matrices in FWIs.

3.1 Description of the model

We build and mesh a 2.5-D model of continental subduction (Fig. 1)
composed of five distinct units: upper crust, lower crust, upper man-
tle, forearc basin, and mantle wedge. This configuration is similar to
the one considered in Monteiller et al. (2021). Inside each domain
the values of density, VP, and VS are constant (see Table 1). These
values were chosen such as to be representative of the different geo-
logical units and standard continental crust and mantle. We impose

a large VP/VS ratio in the forearc basin and in the mantle wedge,
where hydration of mantle rocks is expected to strongly decrease
the shear velocity.

The computational domain is discretized in a regular Cartesian
grid with dimensions 340 × 280 × 150 km along the x, y and z direc-
tions, respectively. The model is meshed with ∼8.5 km hexahedral
elements. We use Lagrange polynomials of degree 7 in the three or-
thogonal directions so that the geometry of each element is defined
by 8 x 8 x 8 =512 nodes. The grid is composed of 19 840 spectral
elements and 6 922 154 nodes or grid points. Since the minimum
shear wave velocity is 2.4 km s−1 (Table 1), the minimum period
resolved is around 2.5 s. Our goal is to invert the values of density,
VP, and VS at each node of the spectral-element mesh, which will
also be our tomographic grid. The number of free parameters in our
FWI experiments is therefore 3 × 6 922 154 = 20 766 462.

3.2 The degree of correlation between absolute and
relative values of elastic parameters

Table 1 lists alternative parametrizations that can be used to describe
our 3-D elastic subduction model. These parameters can be derived
from the values of density and seismic velocities, according to the
following formula: IP = ρVP, IS = ρVS, λ = ρ(V 2

P − 2V 2
S ), and

μ = ρV 2
S . Obviously, since we consider a model composed of only
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Figure 2. Scatter plots of joint variations of the three pairs of parameters for the four parametrizations (ρ, VP, VS), (ρ, IP, IS), (ρ, λ, μ) and (ρ, VP, VP/VS).
The values of the parameters for the five geological units are indicated by coloured circles: forearc basin (B: Brown circles), upper crust (UC: yellow circles),
lower crust (LC: orange circles), mantle wedge (W: green circles) and upper mantle (M: blue circles). The parameters’ units are the same as those given in the
caption of Table 1. The correlation coefficient for each pair of parameters is indicated in the lower right corner of the diagrams.

five distinct homogeneous units, the variability of each parameter is
rather limited. Nevertheless, the examination of the joint variations
of the different pairs of parameters gives an insight into their degree
of correlation and thus into the a priori information that could be
incorporated in the inversions.

We consider the four parametrizations (ρ, VP, VS), (ρ, IP, IS), (ρ,
λ, μ) and (ρ, VP, VP/VS). Fig. 2 illustrates the joint variations of
the three pairs of parameters corresponding to these parametriza-
tions, with the corresponding correlation coefficients given at the
bottom right of each diagram. The first three parametrizations are
characterized by large (>0.86) correlation coefficients. The corre-
lations between model parameters are particularly strong (>0.96)
for the (ρ, VP, VS) and (ρ, IP, IS) parametrizations. In general, these
plots suggest that imposing a diagonal model covariance matrix to
regularize the inversion, that is assuming that model parameters are
uncorrelated, is clearly a poor assumption that can potentially bias
the results of FWIs. The correlation coefficients for the three pairs of
parameters are very similar to the first three parametrizations, which
suggests that building the model covariance matrix with equal cor-
relation coefficients is a reasonable assumption. In that case, the
decomposition of the model covariance matrix is very simple (see
Appendix A). The last parametrization (ρ, VP, VP/VS) displays a

very different behaviour. Whereas the correlation between ρ and
VP is strong, with a correlation coefficient of 0.97, the VP/VS ratio
is poorly correlated to either ρ or VP, with an even negative cor-
relation coefficient. For this parametrization, assuming a diagonal
model covariance matrix is thus probably less prejudicial.

The correlation coefficients measured between the three param-
eter pairs in the first two parametrizations are all larger than 0.96.
Such large values may be surprising at first glance, but they are a
true reflection of our knowledge of the Earth’s interior (and not a
bias in the methodology followed to build this model). To demon-
strate this, we performed a simple statistical experiment with the
(ρ, VP, VS) parametrization. We generate 1000 random models by
first selecting 10 values of VP drawn at random between 4.5 and
8.5 km s−1. We then derive the values of VS from those of VP, using
a VP/VS ratio that varies randomly between 1.62 and 1.98. These
values are representative of the variations in our synthetic model.
Fig. 3 presents the histogram of the correlation coefficients ob-
tained, which shows a clear peak at 0.96, that is at the same value
obtained with our subduction model. We again obtain large correla-
tion coefficients (>0.80) if we randomly vary the VP/VS ratio from
1.44 to 2.16, that is over an extreme and most likely unrealistic
range of variations. We would obtain similar numbers with the pair
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Figure 3. Histogram of the correlation coefficients measured in random models of VP and VS, with VP/VS ratio ranging from 1.62 to 1.98 (grey bars), and
from 1.44 to 2.16 (white bars).

(a) (b) (c)

Figure 4. Scatter plots showing the joint variations of model perturbations for the three pairs of parameters for the (ρ, VP, VS) parametrization: (a) δVS versus
δVS, (b) δρ versus δVP, and (c) δρ versus δVS. The model perturbations are defined by the difference between the value in the true model and in the initial 1-D
background model. The computed correlation coefficients are about 0.97 for these three distributions.

of parameters (ρ, VP). From this simple experiment, we therefore
conclude that because heterogeneities in the Earth are moderate, of
the order of a few percent with respect to a reference 1-D model,
the absolute values of density and seismic velocities are strongly
correlated.

Fig. 4 presents the distribution of the model perturbations
δm = m − mprior, where mprior is the smooth 1-D model. The scatter
plots clearly show that the model perturbations are not randomly
distributed. On the contrary, they seem to be strongly correlated,
as quantified by the correlation coefficients which are all around
0.97. This strong correlation observed between the different pertur-
bations of the model (or relative parameters) simply results from
the large correlations that exist between the absolute values of pa-
rameters. For example, variations of model perturbations inside a
homogeneous unit such as the lower crust will change with the
depth position of the tomographic node considered, and will there-
fore exhibit the same correlation as the one observed in the 1-D
reference model. Similarly, at a given depth, the spatial variations
of the elastic parameters between the different units will also follow
on average the same scaling relationships observed on the absolute

elastic parameters. Therefore, these simple considerations suggest
that assuming that the elastic parameters vary independently in the
Earth is generally a poor assumption that should be abandoned.

3.3 Computation of synthetic seismograms with the
FK/SEM hybrid method

We use a numerical hybrid method to compute the complete re-
gional wavefield produced by an incoming teleseismic body wave
(Monteiller et al. 2013, 2021). Owing to the small size of our re-
gional grid, the curvature of both the wave fronts and of the Earth
can be neglected (Monteiller et al. 2021). We can thus approximate
the incident wavefields with plane waves, and use the FK/SEM hy-
brid modeling method as described in Monteiller et al. (2021). The
FK method is particularly efficient because for teleseismic applica-
tions we only need to compute the incident wavefield corresponding
to a single wavenumber. Another advantage of the FK method is
that, in contrast to AxiSEM, the amount of computations scales lin-
early with the maximum frequency, and thus it is possible to reach
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Figure 5. L-curve showing the variations of data and model terms of the cost
function for different values of the regularization parameter λ. The optimal
regularization coefficient (λ = 0.3) is chosen at the kink of the L-curve.

high frequencies with modest computational resources. By limiting
the time-consuming 3-D computations inside the regional domain,
hybrid methods make FWIs feasible on moderate-size clusters.

We compute the synthetic seismograms of teleseismic P waves
coming from four different backazimuths: 0◦, 70◦, 180◦, and 300◦.
The incident ray parameters of the four incoming plane waves cor-
respond to epicentral distances of 60◦ for the first two, and 30◦ for
the last two. The wavefields are recorded by a 2-D array of 720
receivers located on the surface, with a regular 10 km spacing. We
consider a Gaussian source wavelet with a dominant period of 2.5 s,
which is slightly longer than the resolution of the mesh to avoid
numerical noise. To investigate the impact of noise in the inversion,
we also generate noisy synthetic seismograms by adding real noise

time-series recorded by station MLS from the French RLBP net-
work (RESIF 1995). The amplitude of the noise is tuned to get an
S/N ratio of 6, a value that may seem high but that reflects the strict
criteria applied to data selection in FWI applications.

3.4 Results

3.4.1 Reference case: (ρ, VP, VS) inversion with a diagonal model
covariance matrix

We perform a first FWI of the noisy data set using model
parametrization (ρ, VP, VS), assuming that the parameters are uncor-
related. We thus basically reproduce the approach followed in our
previous implementations of FWI on synthetic (Monteiller et al.
2015) or real data (Wang et al. 2016) but with a regularization
scheme relying on the model covariance matrix, as detailed in the
previous section. This first inversion will constitute our reference
test case. We briefly describe the inversion strategy here and refer
the reader to Monteiller et al. (2015) for more details. We use a
hierarchical iterative L-BFGS inversion, starting with a long pe-
riod inversion of data filtered with a Butterworth bandpass filter
between 0.04 and 0.1 Hz in order to obtain a long-wavelength ve-
locity model. For this first, inversion we use a smooth 1-D model
derived from the ak135 reference Earth model (Kennett et al. 1995).
The value of the regularization parameter λ is chosen at the kink of
the L-curve obtained by plotting the joint variations of the data and
model misfit contributions to the cost function (6) (Fig. 5). We then
perform successive inversions in which we progressively decrease
the cut-off period to 8, 6, 4 and finally 2.5 s, using at each iteration
the model obtained at the previous iteration as the starting model.

Figure 6. Results of multiscale FWI on noisy data with (ρ, VP, VS) parametrization, assuming a diagonal model covariance matrix and a Laplacian smoothing
length of 5 km. The first inversion starts from long period filtered in 25 s to 10 s, from which we take the model as the input of the next run and decrease the
cut-off period progressively to 8, 6, 4 and finally 2.5 s.
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Figure 7. Results of FWI obtained on noise-free (left-hand column) and noisy (right-hand column) data using a diagonal model covariance matrix.

The correlation (or smoothing) length of the exponential correlation
operator is set to 5 km along the three spatial dimensions for all the
periods. At each iteration, we compute synthetic seismograms in
the current model which are compared to the data to be fitted, here
the data is computed in the true subduction model. The time win-
dows considered for the measurements of waveform misfits start
5 s before and end 70 s after the P-wave arrival. The waveform
residuals are injected at the position of the receivers to compute
the adjoint wavefields. The gradients corresponding to each param-
eter are then computed by correlating the forward wavefield with
the adjoint wavefield, following the method described in Tromp
et al. (2005). The standard deviations for density, VP and VS are set
to 0.27 g cm−3, 0.65 km s−1 and 0.37 km s−1, respectively. These
standard deviations were simply estimated from the distributions of
model parameters in the input model. The inversion algorithm is
iterated until the inversion fails to meet the Wolfe conditions during
the line search, or when the reduction of the cost function goes
below 0.1 per cent.

Fig. 6 shows cross-sections along the x axis in the ρ, VP, and VS

models obtained at each stage of the hierarchical inversions. We can
observe that the spatial resolution improves and that the interfaces
get sharper when the cut-off period decreases. The VP model seems
to be the best resolved, especially at depth. The deep part of the slab
is well reconstructed only in the VP model. The negative anomaly
related to the forearc basin has a clear signature on the density and
VS models. In general, the ρ and VS models are characterized by
a finer resolution, but only in the shallow part of the model. For a
given frequency content, the wavelengths of compressional waves
are about twice that of shear waves. In addition, because we only

consider teleseismic P waves here, it is the phase (and amplitude)
of directly transmitted P waves that contribute to the VP model and
thus mainly constrain the long wavelength VP model. In contrast,
the VS model is mainly controlled by P-to-S reflections and/or con-
versions which are produced on sharp gradients or discontinuities
in the underlying medium. This basically explains the main differ-
ences observed between the VP and VS models. Not surprisingly,
the VP/VS model derived from the VP and VS models shows many
artefacts that simply results from the different spatial resolutions
in these two models. The sensitivity to density mainly comes from
the reverberations between the free surface and internal discontinu-
ities such as the Moho or the slab edges. This sensitivity decreases
with depth, and almost vanishes beneath 75 km depth. The density
model is also contaminated by significant artefacts in the upper
crust. Therefore, whereas seismic waveforms do have some sensi-
tivity to density, in particular at shallow depth, seismic data alone
are not sufficient to fully recover the density structure.

For comparison, the results of the hierarchical inversion obtained
on noise-free and noisy data are shown in Fig. 7. The degradation
of spatial resolution and the contamination by small-scale artefacts
are especially visible in the density and VS models.

3.4.2 Consistent inversion results with different model
parametrizations

As noted by Nataf et al. (1986) and Babuška & Cara (1991), chang-
ing the parametrization without changing the covariance matrix
accordingly leads to inconsistent inversion results. We now perform
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Figure 8. FWI results obtained with (a) the (ρ, VP, VS) parametrization and a diagonal model covariance matrix, (b) the (ρ, VP, VP/VS) parametrization and a
transformed CM defined in eq. (19), and (c) the (ρ, VP, VP/VS) and a diagonal CM. In all cases, the data are band-pass filtered between 0.04 and 0.40 Hz. Note
the similarity of models (a) and (b) obtained with different parametrizations.

the same inversion as in the reference case, but using this time the
(ρ, VP, VP/VS) parametrization. The results of the hierarchical inver-
sion for this parametrization are shown in the third column of Fig. 8
whereas the results obtained with the (ρ, VP, VS) parametrization are
shown in the first column of Fig. 8. The reconstructed models ob-
tained with the two parametrizations and diagonal model covariance
matrices clearly differ. With the new parametrization (ρ, VP, VP/VS),
the VP and VS models seem to be slightly better reconstructed, espe-
cially in the deep part of the subduction. The general improvement
in the VP and VS models results from the more realistic a priori
assumption that VP and VP/VS are independent, as suggested by the
last column of Fig. 2.

We now consider the model covariance matrix given by (19),
that is we assume that VP and VS are independent, but keep the
same inversion parameters (ρ, VP, VP/VS). The results, shown in the
middle column of Fig. 8, are very similar to those obtained with
the initial (ρ, VP, VS) parametrization (shown in the first column of
Fig. 8). In particular, the similarity of the VP/VS models highlights
the consistency of the VP and VS models. These simple tests thus

confirm that the parametrization choice is not so important provided
that the model covariance matrix is transformed accordingly in order
to make the inversion consistent.

3.4.3 (ρ, VP, VS) inversion with a non-diagonal model covariance
matrix

We now consider the (ρ, VP, VS) parametrization and a non-diagonal
model covariance matrix in the form (20). We perform a hierarchi-
cal inversion in which we impose r = 0.97 for all parameter pairs
for lower cut-off periods ranging from 10 to 4 s, and r = 0.80 in
the final inversion at 2.5 s. The resulting models at each stage of
this hierarchical inversion are shown in Fig. 9. At 10 s, the ρ, VP,
and VS structures of the subducted slab and basin are generally
well recovered, with a notable blurring effect that comes from the
limited spatial resolution of this low-frequency inversion. The final
ρ, VP, and VS models are all nicely recovered with a sharp defini-
tion. The remaining small-scale artefacts could perhaps be reduced
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Figure 9. Results of five stages of multiscale FWI with (ρ, VP, VS) parametrization, assuming a non-diagonal model covariance. The first inversion starts from
long period filtered in 25 to 10 s, from which we take the model as the input of the next run and decrease the cut-off period progressively to 8, 6, 4 and finally
2.5 s.

by additional smoothing, but this would probably also degrade the
spatial resolution. Comparing these models to those previously ob-
tained with a diagonal model covariance matrix (Fig. 7 right), we
can therefore conclude that introducing strong correlations between
model parameters significantly improves the results of FWI.

Fig. 10 shows the 2-D scatter plots of model parameters corre-
sponding to the first and last stage of the hierarchical inversions
with (Fig. 9) and without correlation (Fig. 6). After the long period
inversions (10 s), in all cases, neither the basin (brown circle) nor the
mantle wedge (green circle) are recovered. The spatial resolution is
simply insufficient to resolve these small-scale structures correctly.
When the model parameters are assumed to be uncorrelated, they
can deviate significantly from the input model values (Fig. 10b).
When high correlation coefficients are imposed (r = 0.97), we
observe a very different behaviour. The model parameters follow a
quasi-linear distribution between the values in the different homoge-
neous tectonic units, with very small deviations from these average
trends (Fig. 10c). The algorithm has imposed a local correlation,
on a support corresponding to the spatial extent of the exponen-
tial kernels. In summary, the inversion successfully exploited the
averaged scaling relationships that exist between the model param-
eters, for a better reconstruction of the input model. Fig. 11 presents
the errors on the density, VP, VS and VP/VS computed in the final
models with or without correlation imposed between the model pa-
rameters. The standard deviations obtained are 0.15 g cm−3, 0.23
km s−1, 0.14 km s−1 and 0.05 for density, VP, VS and VP/VS respec-
tively for the diagonal model covariance matrix, and 0.08 g cm−3,
0.16 km s−1, 0.11 km s−1, 0.03 respectively for the non-diagonal
model covariance matrix. Therefore, using a non-diagonal model
covariance matrix leads to variance reductions of 71 per cent for the
density, 51 per cent for VP, 38 per cent for VS, and 64 per cent for

the VP/VS ratio. The improvement of the recovered model is thus
very significant.

Fig. 12 compares the evolution of the residual variance with the
number of iterations in long period inversions with diagonal and
non-diagonal model covariance matrices. When the model param-
eters are assumed to be uncorrelated, convergence is slower in the
first 10 iterations, and a much larger number of iterations is neces-
sary to reach convergence. Intuitively, when strong correlations are
imposed between model parameters, this restricts the model space
explored by the iterative inversion algorithm, which both acceler-
ates the convergence and restricts the occurrence of artefacts in the
reconstructed models.

4 A P P L I C AT I O N T O R E A L DATA : T H E
S O U T H E R N P E RU T R A N S E C T

We now illustrate the impact of using a complete non-diagonal
model covariance matrix on a real data set, the PE profile of the
Peru Subduction Experiment (Clayton 2013; Fig. 13). The motiva-
tion of this experiment was to image the subduction of the Nazca
plate beneath South America. Under this profile, the subduction of
the Nazca plate is normal, with a dip of the Nazca plate around 30◦.
Receiver functions have shown that the crustal thickness is increas-
ing from 25 km close to the coast to 75 km beneath the Altiplano
(Phillips et al. 2012).

We only provide here a brief outline of the data selection and
preparation. The results of this tomographic study will be presented
and discussed in full detail elsewhere. We retrieved all the data
corresponding to teleseismic events with magnitude larger than
6 from IRIS-DMC. For this study, we selected the records of 16
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Figure 10. Scatter plots for inversion with and without correlations between model parameters ρ, VP and VS. (a) Scatter plots for initial smooth 1-D model. (b)
Scatter plots for models with zero correlations between model parameters for the 10 s and 2.5 s inversions. (c) Scatter plots for models with strong correlations
(0.97 and 0.80) between model parameters corresponding to the 10 and 2.5 s inversions. The grey dots represent the value in the corresponding model. The
colour dots are the same as detailed in Fig. 2(b).

(a) (b) (c) (d)

Figure 11. Histogram of the differences of density (a), VP (b), VS (c) and VP/VS (d) between the values in the true model and the final model obtained with a
diagonal covariance matrix (grey) and a non-diagonal covariance matrix (orange). The standard deviations are 0.15 g cm−3, 0.23 km s−1, 0.14 km s−1 and 0.05
for density, VP, VS and VP/VS respectively for the diagonal model covariance matrix, and 0.08 g cm−3, 0.16 km s−1, 0.11 km s−1 and 0.03 respectively for the
non-diagonal model covariance matrix.

events with large S/N ratios. We invert both the radial and ver-
tical component records of the P waves, over time windows that
start 5 s before the P arrival and end from 50 to 70 s after, de-
pending on the event. The data are band-pass filtered between
0.04 and 0.08 Hz. We first compute synthetic impulse responses
using a Gaussian source wavelet with a dominant period of 4 s
with the hybrid AxiSEM/SEM method (Monteiller et al. 2021).
For each event, we estimate the source wavelet by deconvolv-
ing the vertical component records from their corresponding syn-
thetic impulse responses, aligning the resulting traces, and finally

stacking them. The complete synthetic seismograms are obtained
by convolving the impulse responses with the corresponding source
wavelet. The inversions are started from a smooth 1-D reference
model derived from the ak135 reference Earth model (Kennett et al.
1995). We perform two types of inversions. In the first inversion,
we assume that model parameters are independent and thus con-
sider a diagonal model covariance matrix. In the second inversion,
we impose a correlation coefficient of 0.9 between all the pairs
of parameters. The smoothing length in both inversions is set to
30 km.
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Figure 12. Evolution of the normalized cost reduction in the long period
inversions (data filtered between 0.04 and 0.10 Hz) with (orange dots) and
without (grey) correlation imposed between model parameters. The inver-
sion with the non-diagonal covariance matrix converges faster.

The convergence is achieved after 19 and 17 iterations in in-
versions 1 and 2 respectively, with a variance reduction of about
80 per cent in both cases. The final models obtained are presented
in Fig. 14(a), which shows the absolute values of the density and
seismic velocities, while Fig. 14(b) shows the deviations of den-
sity and seismic velocities with respect to the depth-averaged 1-D
models. The VP and VS models are relatively similar in both in-
versions, with a pronounced low-velocity anomaly down to about
80 km depth that corresponds to the thickened crust beneath the
Altiplano. The VP model is slightly better resolved at depth, as in
the synthetic experiments shown previously. In particular, the fast
velocity anomaly related to the subducting Nazca plate is imaged
in the VP model, but with a much finer resolution in the inversion
that accounts for correlations between model parameters. However,
the benefits of accounting for the correlations between model pa-
rameters are more pronounced on the density and VS models. From
this very simple inversion experiment on real data, we can therefore
already conclude that taking into account the correlation between
density and seismic velocities seems very promising to improve the
FWI results.

5 D I S C U S S I O N

5.1 Tuning FWI hyperparameters: model
parametrization, standard deviations, correlation
coefficients and smoothing length

If we assume that the model parameters are not correlated, then
the parametrization (ρ, VP, VP/VS) should give better results than
the parametrization (ρ, VP, VS). Indeed, Fig. 2 suggests that to first
order VP/VS and VP are weakly correlated (r = −0.37), while the
assumption that VP and VS are independent is clearly wrong, as
these two parameters are strongly correlated (r = 0.96). The fact
that the (VP, VP/VS) parametrization leads to a better reconstruction
of the VP/VS ratio than the (VP, VS) parametrization has been known
for a long time (e.g. Thurber & Eberhart-Phillips 1999), and this
property has been widely exploited in local earthquake tomography,
where one seeks to jointly image P and S velocity variations form
P and S traveltimes (e.g. Thurber et al. 1995). The scatter plots
shown in Fig. 2 show that the parameters are strongly correlated
with the parametrizations (ρ, IP, IS) and (ρ, VP, VS). This suggests
that choosing one of these two parametrizations, and also assuming
high (r > 0.95) correlation coefficients, is probably the best and

simplest strategy for obtaining images of the Earth’s interior by
multiparametric inversion of complete waveforms.

We now explore the influence of correlations between model pa-
rameters by performing inversions at low frequency (0.04–0.1 Hz)
with r equal to 0.00, 0.50 and 0.97, with a constant smoothing
length of 5 km. The results of these three inversions are presented
in Fig. 15. The most notable differences are observed in the re-
constructed ρ models, for which the correlations imposed between
VP and VS compensate for the limited sensitivity of P waves to
the density structure. The best density model is obtained for very
large correlation coefficients (r = 0.97) between density and seis-
mic velocities. In this case, the sedimentary basin is more sharply
defined, the slab is better imaged, especially in its deep part, and the
small-scale spurious artefacts that are clearly visible in the inversion
with uncorrelated parameters have almost completely disappeared.
A similar though less dramatic improvement is observed on the
reconstructed VS models. As with the density reconstruction, the
correlation imposed between VP and VS compensates for the lack of
sensitivity to deep, large-scale VS heterogeneities. Not surprisingly,
the correlation coefficient imposed between VP and VS has also
a large impact on the VP/VS ratio. For small values of r, the VP/VS

model is contaminated by strong artefacts resulting from the marked
difference in resolution between the VP and VS models, the latter
being characterized by a very low resolution at depth. This long
period inversion test suggests that complete, non-diagonal model
covariance matrices are key ingredients to image lateral variations
of density.

Different tests (not shown) suggest that the models are best re-
constructed with moderate smoothing lengths (5–10 km) and that
significant artefacts appear when smoothing lengths greater than
about 20 km are used. The reason for this can be understood by
looking at Fig. 16, which shows the normalized gradients of VS ob-
tained after the first long period inversion (10–25 s period) with dif-
ferent smoothing lengths. When no smoothing is applied (Fig. 16a),
strong and localized negative singularities are observed in the very
shallow part of the grid, just below the stations. These anomalies
are produced by the sources of the adjoint wavefield, located at the
positions of the sensors on the free surface. With a 5 km smooth-
ing length (Fig. 16b), these singularities are smoothed out while at
the same time all the details of the gradient are preserved. With
a larger smoothing length of 20 km (Fig. 16c), most of the struc-
tural details of the gradient are lost. This comparison suggests that
a 5 km smoothing length represents a good compromise between
cleaning up numerical artefacts and preserving structural details in
the gradients.

Intuitively, we can understand this by the fact that in the hier-
archical inversion algorithm, we first invert long period signal (T
> 10 s) to obtain smooth long wavelength models. At this point,
the gradients are smooth and do not require additional smoothing.
As the frequency cut-off is progressively increased, the inversions
start to resolve smaller structural details that could potentially be
erased by imposing too much smoothing. It is therefore advisable
to impose a minimum amount of smoothing in inversions.

The last hyperparameters that need to be defined are the standard
deviations for each class of model parameters. In all the inver-
sions we have presented so far, we have used σρ = 0.27 g cm−3,
σVP = 0.65 km s−1 and σVS = 0.37 km s−1. These values were sim-
ply deduced from inspection of the scatter plots shown in Fig. 2.
Fig. 17 shows the results of the long period inversion obtained
for different values of σVP . When the value of σVP is reduced, the
anomalies in the VP models are smaller in amplitude and smoother.
In contrast, the density model shows sharper variations, especially
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(a) (b)

Figure 13. Geometry of the PERUSE deployment (a) and teleseismic sources (b) used in the real data inversion. The dashed lines show the depth contours of
the Nazca plate taken from the Slab2 model (Hayes 2018).

Figure 14. Absolute ρ, VP and VS models (a) obtained by FWI of 16 teleseismic events recorded by the profile PE of PeruSE array, with data filtered between
0.04 and 0.08 Hz. (b) Deviations of ρ, VP and VS from their average 1-D models. The green triangles represent the seismic stations whereas the red triangle
indicates the location of the active volcanic arc. B.A. represents the Bouguer anomaly.

in the shallow part of the slab. The VS is almost not affected. When
σVP is increased, we observe opposite effects on ρ and VP. The VP

model shows stronger and sharper contrasts while the ρ model is
smoother with anomalies of reduced amplitude. The use of strongly
unbalanced standard deviations of the model parameters can thus
lead to trade-offs between the model parameters, in particular be-
tween ρ and VP.

So far, we have focused on our synthetic subduction model. It
remains to be seen whether the hyperparameters we found suitable in
synthetic inversion experiments can also be used in real waveform

inversions, although we expect that this will indeed be the case.
In any case, the use of a full non-diagonal matrix with spatial
covariance kernels provides additional flexibility to regularize the
inversion. With this approach, it is possible to freely adjust standard
deviations, correlation lengths, and correlation coefficients between
model parameters. Our approach also allows the implementation of
model covariance matrices that can vary with the position in the
model, and in particular with depth. This could provide additional
flexibility to regularize FWI on large tomographic grids, extending
to the transition zone or even the lower mantle.
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Figure 15. FWI models obtained with data filtered between 0.04 and 0.1 Hz, using correlation coefficients between model parameters varying from 0 (no
correlation) to 0.97 (strong correlation).

(a) (b) (c)

Figure 16. Normalized VS gradient computed in the initial smooth model, with different smoothing lengths. (a) No smoothing. (b) Smoothing length of 5 km.
(c) Smoothing length of 20 km. Note that the strong singularities beneath the stations when no spatial smoothing is applied in (a).

5.2 Joint inversions of P and SH events

As we have seen in the previous sections, accounting for the corre-
lation between VP and VS in the inversions allowed us to improve the
resolution in the deep parts of the VS models. Fig. 18 compares the
reconstructed models obtained by adding 4 SH events to the data set,
with or without taking into account the correlations between model
parameters. Fig. 19 presents the synthetic seismograms computed in
the final models (black lines), and the seismograms computed in the
initial (grey lines) and final (red lines for P waves and blue lines for
SH waves) models. This comparison reveals that the SH waveforms
are already quite well fitted by the model derived from the inversion
of the P waveforms only, provided that a strong correlation between
VP and VS is assumed. When SH waves are included in the inversion,

the fits of SH waveforms are significantly improved, in particular
for the multiples that arrive ∼15 s after the direct SH waves. We
can first note that in the joint inversion of P and S waveforms,
the reconstructed VP and VS models assuming a diagonal or non-
diagonal model covariance matrix are very similar. Furthermore,
these models are also remarkably similar to the models previously
obtained from the inversion of P waveforms alone but using the
full covariance matrix. These results therefore suggest that taking
into account the correlation between VP and VS indeed allows us
to reconstruct the VS model even if we only invert P waveforms.
However, the VP/VS ratio model is best recovered when both P and S
waveforms are inverted and with a non-diagonal model covariance
matrix.
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Figure 17. Comparison of long period FWI results for different σVP (km s−1). All the other hyperparameters are the same as in the reference inversion shown
in Fig. 6.

Although these results seem to suggest that it may not be neces-
sary to include shear waves to image VS heterogeneities, the con-
tribution of shear waves in waveform inversion is in fact far from
negligible. First, shear waves provide an independent source of data
that can be used to assess the quality of the model obtained by
the inversion of teleseismic P waveforms. Second, the addition of
shear waves will allow us to obtain more robust constraints on the
VP/VS ratio, which would otherwise suffer from the contrast in spa-
tial resolution of the VP and VS models. In addition to improving the
spatial coverage, especially of deep and long wavelengths VS hetero-
geneities, the combination of S waveforms with P waveforms is also
essential to properly constrain seismic anisotropy, as demonstrated
by Beller & Chevrot (2020).

6 C O N C LU S I O N S

We have presented a new implementation of Bayesian FWI that
introduces a priori information through a full 3-D model covariance
matrix. The spatial correlation function that describes the statistical
spatial correlations of model parameters is an exponential kernel. Its

inverse admits a simple semi-analytical expression and it can thus
be easily applied to any vector model within the spectral-element
framework that is used to simulate the wave propagation. With this
formalism, it is also possible to account for the physical correlation
between density and compressional and shear wave velocities by
introducing off-diagonal terms in the model covariance matrix.

Synthetic inversion experiments demonstrate that with this new
inversion method the parameter correlations compensate for the
lower sensitivity of P waveforms to shear velocities and the final
shear velocity model is on par with the one that would have been
obtained by jointly inverting P and S waveforms. The improvement
on the reconstruction of the density is even more spectacular. The
reconstruction of the VP/VS ratio, a key parameter to constrain the
composition and thermal state of the lithosphere, is also greatly
improved. Whereas the models obtained by assuming the model
parameters are uncorrelated, that is assuming a diagonal model
covariance matrix, are contaminated by significant artefacts, most
of these artefacts disappear when the correlations between model
parameters are accounted for during the inversion. In addition, com-
plete non-diagonal model covariance matrices reduce the number of
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(a) (b)

Figure 18. Comparison of the results obtained after multiscale (0.04–0.40 Hz frequency bandwidth) FWI considering P waveforms only (a) and both P and
SH waveforms (b), with a diagonal model covariance matrix or with a non-diagonal model covariance matrix. The multiscale inversion strategies are the same
as in Figs 6 and 9. The corresponding waveforms for STA1 and STA2 are shown in Fig. 19.

(a) (b)

Figure 19. Waveform fits for the event with a backazimuth of 70◦. (a) Waveform fits obtained by inverting P waveforms considering a diagonal and a
non-diagonal model covariance matrix. (b) Waveform fits obtained by inverting both P and SH waveforms considering a diagonal and a non-diagonal model
covariance matrix. All the traces are bandpass filtered between 0.04 and 0.40 Hz. Black lines show the noisy data. Red traces represent the corresponding
waveforms computed in the final model shown in Fig. 18. Blue lines represent the predicted SH waveforms when only P waves are included in the inversion.
The position of stations STA1 and STA2 are marked in Fig. 18.
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degrees of freedom of the inverse problem and thus the size of the
model space to explore. The convergence of the inversion algorithm
is consequently faster.

Future work will be devoted to applying this new approach to
real teleseismic waveforms recorded by dense regional arrays. The
extension of the Bayesian FWI approach described here to general
anisotropic media will be presented in a future contribution.
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A P P E N D I X A : D E C O M P O S I T I O N O F
T H E M O D E L C OVA R I A N C E M AT R I X

We consider a model covariance matrix of the form

CM =
⎡
⎣ σ 2

ρ C rσρσVP C rσρσVS C
rσρσVP C σ 2

VP
C rσVPσVS C

rσρσVS C rσVPσVS C σ 2
VS

C

⎤
⎦ (A1)

where r is the correlation coefficient, C is the spatial covariance
kernel, σρ is the standard deviation of density, σVP is the standard
deviation of VP and σVS is the standard deviation of VS. Note that we
assume here for simplicity that the correlation coefficients between
each pair of parameters are equal.

The model covariance matrix can be rewritten as

CM = �SRS�, (A2)

where

� =
⎡
⎣σρ 0 0

0 σVP 0
0 0 σVS

⎤
⎦, S =

⎡
⎢⎣C

1
2 0 0

0 C
1
2 0

0 0 C
1
2

⎤
⎥⎦, (A3)

and

R =
⎡
⎣1 r r

r 1 r
r r 1

⎤
⎦. (A4)

The eigenvalues λ of R are solutions of

|� − λI| = (1 − λ)3 − 3r 2(1 − λ) + 2r 3 = 0. (A5)

The third-order polynomial in x = 1 − λ can be factorized as

x3 − 3r 2x + 2r 3 = (x + 2r )(x − r )2. (A6)

The first eigenvalue of R is thus λ1 = 1 + 2r and the first eigenvector

v1 =

⎡
⎢⎣

1√
3

1√
3

1√
3

⎤
⎥⎦. (A7)

The second and third eigenvalues are λ2 = λ3 = 1 − r and

v2 =
⎡
⎣

1√
2

− 1√
2

0

⎤
⎦, v3 =

⎡
⎢⎣

− 1√
6

− 1√
6

2√
6

⎤
⎥⎦. (A8)

The singular value decomposition of R is

R = V�Vt , (A9)

with

V =

⎡
⎢⎣

1√
3

1√
2

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

0 2√
6

⎤
⎥⎦and � =

⎡
⎣λ1 0 0

0 λ2 0
0 0 λ3

⎤
⎦. (A10)

The model covariance matrix can therefore be decomposed into
the product

CM = �SV�Vt S�. (A11)

This decomposition provides some insights into the anatomy of
the physical constraints that are imposed on the model parameters.
The matrix � defines a metric that normalizes the perturbations of
model parameters. It makes the inversion insensitive to the units
chosen and equalizes the contribution of each class of parameter
to the gradient of the misfit function. The matrix V can be seen
as a transformation matrix that rotates the covariance matrix along
its principal axes. The first axis, oriented along v1, describes the
principal linear relationship between the different parameters. The
second and third eigenvectors describe the deviations of model per-
turbations with respect to this linear relationship. When r → 1, λ1

→ 3, and λ2, 3 → 0. The three parameters are perfectly correlated
and described by their position along the line oriented along v1.
When r → 0, λ1, 2, 3 → 1, variations of the parameters are com-
pletely random and the model covariance matrix is diagonal. This is
the implicit assumption that has been made so far in most multipa-
rameter tomographic inversions. The matrix S describes how model
parameters vary as a function of the distance between two points
and can thus be seen as a smoothing operator.

A P P E N D I X B : C H A N G E O F M O D E L
PA R A M E T R I Z AT I O N A N D
T R A N S F O R M AT I O N O F T H E M O D E L
C OVA R I A N C E M AT R I X

We illustrate the transformation of the model covariance matrix after
a change of model parametrization. We first consider a diagonal
covariance matrix for model parametrization (ρ, VP, VS) with mean
V P = 7 km s−1 and V S = 4 km s−1, σVP = 0.65 km s−1 and σVS =
0.37 km s−1. We draw 2000 samples from the bivariate probability
density function

f (VP, VS) = 1

2πσVPσVS

√
1 − r 2

· exp

(
− 1

2(1 − r 2)

[ (
VP − V P

σVP

)2

+
(

VS − V S

σVS

)2

− 2r

(
VP − V P

σVP

)(
VS − V S

σVS

) ])
, (B1)

where r is the correlation coefficient between VP and VS. The scat-
ter plot showing the distribution of these samples is displayed in
Fig. B1(a). Since ρ is independent of either VP, VS or VP/VS, the
scatter plots with ρ are not shown. The same distribution after con-
version to the (VP, VP/VS) parametrization is plotted in Fig. B1(b).
Using eq. (19), we can derive the transformed covariance matrix
for the (VP, VP/VS) parametrization. We draw a new set of 2000
samples that follow the distribution described by this transformed
covariance matrix and plot them in Fig. B1(c). As expected, the
distributions shown in Figs B1(b) and (c) are very similar.
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(a) (d)

(b) (e)

(c) (f)

Figure B1. The consistency of bivariate normal distributions over differ-
ent parametrizations, with the covariance matrix properly transformed. (a)
Bivariate normal distribution of VP and VS, generated with a diagonal co-
variance matrix. (b) Same distribution of (a) but plotted in VP and VP/VS.
(c) Bivariate normal distribution of VP and VP/VS, generated with the trans-
formed covariance matrix. (d) Bivariate normal distribution of VP and VP/VS,
generated with a diagonal covariance matrix. (e) Same distribution of (d) but
plotted in VP and VS. (f) Bivariate normal distribution of VP and VS, gener-
ated with the transformed covariance matrix. The grey lines correspond to
three standard deviations.

We now consider the diagonal covariance matrix

C
(ρ,VP,

VP
VS

)
=

⎡
⎢⎣

σ 2
ρ 0 0

0 σ 2
VP

0
0 0 σ 2

VP
VS

⎤
⎥⎦ (B2)

for the (ρ, VP, VP/VS) parametrization, which transforms to

C(ρ,VP,VS) =

⎡
⎢⎢⎣

σ 2
ρ 0 0

0 σ 2
VP

VS
VP

σ 2
VP

0 VS
VP

σ 2
VP

V 2
S

V 2
P
σ 2

VP
+ V 4

S

V 2
P
σ 2

VP
VS

⎤
⎥⎥⎦ (B3)

for the (ρ, VP, VS) parametrization.
We draw 2000 samples from the bivariate normal distribution

(B2) using V P = 7 km s−1, VP
VS

= 1.75, σVP = 0.65 km s−1 and
σ VP

VS

= 0.1. The resulting scatter plot is shown in Fig. B1(d). The

same distribution after conversion to the (VP, VS) parametrization is
plotted in Fig. B1(e). Finally, the distribution obtained by sampling
the bivariate distribution (B3) is shown in Fig. B1(f). Again, the two
distributions in Figs B1(e) and (f) are similar. These two examples
emphasize the importance of the non-diagonal terms of the model
covariance matrix when the model parametrization is changed.
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