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Land cover mapping is of great interest in the Alps region for monitoring the

surface occupation changes (e.g. forestation, urbanization, etc). In this pilot

study, we investigate how time series of radar satellite imaging (C-band single-

polarized SENTINEL-1 Synthetic Aperture Radar, SAR), also acquired through

clouds, could be an alternative to optical imaging for land cover segmentation.

Concretely, we compute for every location (using SAR pixels over 45 × 45m) the

temporal coherence matrix of the Interferometric SAR (InSAR) phase over

1 year. This normalized matrix of size 60, ×, 60 (60 acquisition dates over

1 year) summarizes the reflectivity changes of the land. Two machine learning

models, a Support Vector Machine (SVM) and a Convolutional Neural Network

(CNN) have been developed to estimate land cover classification performances

of 6 main land cover classes (such as forests, urban areas, water bodies, or

pastures). The training database was created by projecting to the radar

geometry the reference labeled CORINE Land Cover (CLC) map on the

mountainous area of Grenoble, France. Upon evaluation, both models

demonstrated good performances with an overall accuracy of 78% (SVM)

and of 81% (CNN) over Chambéry area (France). We show how, even with a

spatially coarse training database, our model is able to generalize well, as a large

part of the misclassifications are due to a low precision of the ground truth

map. Although some less computationally expensive approaches (using optical

data) could be available, this land cover mapping based on very different

information, i.e., patterns of land changes over a year, could be

complementary and thus beneficial; especially in mountainous regions

where optical imaging is not always available due to clouds. Moreover, we

demonstrated that the InSAR temporal coherence matrix is very informative,

which could lead in the future to other applications such as automatic detection

of abrupt changes as snow fall or landslides.
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1 Introduction

1.1 General context

C-band Synthetic Aperture Radar (SAR), onboard Sentinel-1A

and 1B satellites launched between 2014 and 2016, offer new

opportunities for monitoring France and its mountain ranges

through remote sensing. On the French Alps, this active

microwave radar acquisition is available every 6 days for both the

ascending and the descending orbits, with a 15 × 4 m2 resolution. A

SAR signal contains both an amplitude and a phase information. The

amplitude measures the strength of the radar response and the phase

is the fraction of one complete sine wave cycle (a single SAR

wavelength). The phase of the SAR image is determined by two

components. One is deterministic and controlled by the propagation

duration between the satellite antenna and the ground. The other is

stochastic and results from the interaction of the wave with multiple

targets present in a resolution cell. SARhas the advantage over optical

imaging of being insensitive to cloud cover and meaningful

information can be acquired regardless of solar illumination. SAR

time-series monitoring has some drawbacks: the propagation phase

delay is very sensitive to meteorologic perturbations, the phase of the

signal can only be observedmodulo 2π, and the signal is only relevant

as a relative measure between two acquisition dates in order to cancel

the stochastic phase contribution. Thus Interferometric SAR (InSAR)

measure, calculating the complex (amplitude and phase) difference

between dates, has been developed in order to assess precisely any

changes of the ground. It has been in particular used for

measurements of ground displacements due to earthquakes,

volcanic activity, interseismic strain accumulation (Doin et al.,

2011, 2015; Grandin et al., 2016). However, the InSAR technique

requires that the stochastic phase component associated to the wave-

ground interaction remains stable through time. The InSAR

coherence, measured on the spatial neighborhood of a pixel,

quantifies the ground changes due to vegetation evolution, snow,

construction, landslides, etc. Relating the coherence properties to land

cover is an important step to understand the sources of coherence

loss and mitigate them as much as possible for accurate deformation

measurement. It is, on the other hand, a new source of information

on land cover with a classification based on the dynamics of land

cover changes during the year. Here, we chose to focus on the

coherence only and drop the information carried by radar backscatter

amplitude and its evolution through time, despite the fact that it can

be used for snow (Tsai et al., 2019a,b) and for avalanches

(Eckerstorfer and Malnes, 2015; Karas et al., 2021) detection.

1.2 State-of-the-Art

1.2.1 Temporal SAR coherence matrix
1.2.1.1 Temporal and spatial coherence

The pixel stability through time, characterizing the land

cover, could be in theory measured by the temporal

coherence. If we denote by S1 and S2 the two complex values

of SAR images at time 1 and 2 of the same pixel, the complex

correlation coefficient can be written as (Touzi et al. (1999)):

C � eiϕ · ρ � E S1 · S2*( )��������������
E S1| |2( )E S2| |2( )√ (1)

where E() is the expectation, * is the complex conjugate, ϕ and ρ

are respectively the interferometric phase and coherence. In this

paper, we will focus on the coherence ρ. However, having such an

estimation of the coherence ρ means that the expectation values

should be obtained by using a suite of observations for every

single pixel, i.e., a large number of interferograms acquired under

almost exactly the same geometric conditions which is

intractable. Yet, we can consider that the processes involved

are spatially stationary at a local level, and we can thus consider

spatial average instead of a temporal average from the ergodic

assumption. Eq. 1 can be replaced for every pixel by the averaging

of its neighborhood and the estimator Ĉ is:

Ĉ � ∑L
i�1S1 · Sp2��������������∑L

i�1 S1| |2∑L
i�1 S2| |2

√ (2)

where L is the set of pixels of the spatial neighborhood considered

(typically 10 to 100 pixels). This neighborhood can be a squared

box of fixed size, or a spatially homogeneous neighborhood

selected as statistically similar pixels based on their amplitude

distribution (Parizzi and Brcic, 2010). In the following, we will

use the first option but our work could be extended to more

complex neighborhoods.

1.2.1.2 Temporal coherence matrix representation

By estimating the coherence between all pairs of acquisitions

of a period (for example 1 year), we can construct a 2D

symmetric matrix representing the evolution of the temporal

coherence of the signal:

M �
1 ρ̂1,2 / ρ̂1,T
ρ̂2,1 1 / ρ̂2,T
..
. ..

.
1 ..

.

ρ̂T,1 ρ̂T,2 / 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3)

This visualization, also called sample correlation matrix, captures

all pairing information: the short-term coherences, near the

diagonal, as well as the long-term coherences, further off the

diagonal. The drawback of the coherence matrix estimation is its

high computational cost. Many studies using interferograms to

estimate ground displacements calculate only a subset of the

matrix (such as a few diagonals). Yet, recent studies point out the

loss of information that such reductions can cause, coming back

to the full matrix estimation (Ansari et al., 2020). The range of

information contained in the coherence matrix has not yet been

fully studied, while we believe that it could be beneficial in many
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applications (i.e., features related to the type, the cycles or the

abrupt changes of the land cover, etc).

1.2.2 Land cover mapping
As a first proof-of-concept and investigation of the

potentiality of SAR coherence information, estimating

automatically the land cover mapping from SAR coherence

matrices is particularly relevant. Land cover classification,

consisting in segmenting the surface of the ground by type of

coverage (forest, rock, building, etc.), has been one of the most

important applications of remote sensing imaging. It has been

fundamental, for example, for monitoring the evolution of

anthropization and the evolution of forest regions for the last

30 years (Hansen et al., 2000).

1.2.2.1 Machine learning and deep learning for land cover

mapping

Land cover mapping is a classification task at a pixel level,

also called a segmentation task. From satellite imaging, this task

has very early been tackled with supervised learning algorithms,

requiring training regions where an external ground truth

segmentation is available. First, the deployment of traditional

machine learning methods, such as Random Forests (RF) or

Support VectorMachine (SVM), has been very effective for pixel-

based image analysis (Longépé et al., 2011; Balzter et al., 2015;

Ullah et al., 2017; Fragoso-Campón et al., 2018). SVM is a

classification method whose goal is to find a hyperplane, or

class boundary, based on support vectors, i.e., data points that are

closer to the hyperplane and influence the position and

orientation of the hyperplane. SVM is capable to linearly

separate classes of non-linear data by finding a hyperplane in

a transformed feature space of higher dimensions than the

original number of feature dimensions, without needing heavy

calculations, based on what is called the kernel trick

(Koutroumbas and Theodoridis, 2008). Although SVM is

computationally efficient and accurate even with a small

number of samples, it cannot take into account a particular

feature organization, such as a grid-like pattern as in images.

More recently, the advent of deep neural networks, and

particularly Convolutional Neural Network (CNN) specifically

designed for gridded data, has proposed new opportunites for

segmentation tasks and in particular for land cover mapping

(Ndikumana et al., 2018; Gao et al., 2019; Liu et al., 2019). A CNN

is a deep learning architecture widely adopted and a very effective

model for analyzing images or image-like data for pattern

recognition (Krizhevsky et al., 2012). A CNN is structured in

layers: an input layer connected to the data, an output layer

connected to the quantities to estimate, and multiple hidden

layers in between. The hidden layers of a CNN typically consist of

convolutional layers, pooling layers, fully connected layers and

normalization layers. The convolutional operations are inspired

by the cortex visual system, where each neuron only processes

data for its receptive field. Fully connected (FC) layers, usually at

the end of the CNN network, connect every neuron in one layer

to every neuron in the following layer. The advantage of CNN is

that it can learn to recognize spatial patterns by exploiting

translation invariance (i.e., all parts of the image are processed

in a similar way), and thus can extract features automatically and

at different spatial scales while considerably reducing the number

of parameters. While Ndikumana et al. (2018); Liu et al. (2019)

performed the segmentation by sliding a classification encoder

network over the region of interest, Gao et al. (2019) performed a

direct pixel-based classification from a U-net (encoder followed

by a decoder) architecture.

1.2.2.2 Optical land cover mapping

The majority of the land cover monitoring is done by optical

imagery such as the Sentinel-2 data (Bruzzone et al., 2017; Phiri

et al., 2020). It is also the case of the European Corine Land Cover

(CLC), releasing new versions every 6 years: the 2018 CLC is

based on Sentinel-2 and Landsat 8 data (Büttner et al., 2017).

Mountainous areas, due to their difficulty of access on the

ground, their rapid evolution and their importance in the

sustainable management of natural resources, have been

particularly monitored by remote sensing (Gao et al., 2019).

Yet, the optical land cover products usually have a lower accuracy

in mountainous areas, due to different issues: high relief and

strong topographic variations, such as shadows, steep slopes and

illumination variations (Tokola et al., 2001; Gao et al., 2019).

Moreover, in many mountain ranges, the cloud cover is often

particularly frequent leading to a smaller availability of optical

imagery.

1.2.2.3 SAR land cover mapping

In contrast, SAR has also been employed for land cover

mapping as it holds a very interesting characteristic: it is

insensitive to cloud cover. Some land cover mapping studies

rely only on SAR imagery (Longépé et al., 2011; Abdikan et al.,

2014; Balzter et al., 2015; Hagensieker and Waske, 2018) while

some other are combining optical and SAR acquisitions (Laurin

et al., 2013; Liu et al., 2019).

SAR is affected by distortions in mountainous areas, but it is

nearly independent of weather conditions and has a short revisit

time. This provides the opportunity to monitor very efficiently

the dynamic characteristics of land cover (from multiple

acquisitions), which contain more information than a static

representation (seasonal changes leading to a distinction

between coniferous and broad-leaved forest for example).

Moreover, SAR monitoring is particularly sensitive to changes

(Rosen et al., 2000), which can be very useful for detecting either

seasonal changes (such as snow, re-vegetation) or irremediable

changes (such as constructions, landslides). Both are particularly

relevant for mountainous and cold terrain. Yet, most of the

current studies rely only on one acquisition time and do not

benefit from this multitemporal information. This is why recently

a few works have proposed to investigate the use of
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multitemporal InSAR data for land cover mapping (Waske and

Braun, 2009; Ndikumana et al., 2018). The use of recurrent

neural networks can be in particular interesting for this

purpose (Ienco et al., 2017; Ndikumana et al., 2018), however

this is at the cost of heavier computations or by using a pixel-

based method (without spatial convolutions), and often only a

few acquisitions are used in input.

1.2.2.4 InSAR coherence for land cover mapping

The computation of SAR coherence between different dates

is very useful for temporal analysis as well as for unwrapping

interferometric SAR phases (Abdelfattah et al., 2001; Zhang et al.,

2019). It has been shown that land cover mapping results were

improved when temporal coherence features were added to

backscatter coefficients (Borlaf-Mena et al., 2021; Nikaein

et al., 2021). Yet, the information captured in a coherence

matrix is still poorly understood, and one can ask if land

cover mapping classification can be solved only from temporal

(normalized) coherence patterns. Sica et al. (2019) proposes a

three-class land cover mapping based on short InSAR time-series

(1 month), where temporal decorrelation is used as one of the

input features of an RF classifier. Some recent studies seem to

indicate that coherence could be even more efficient than image

intensity for land cover mapping (Jacob et al., 2020; Mestre-

Quereda et al., 2020). Jacob et al. (2020) compared different

classification algorithms (RF, SVM, k-nearest neighbors, possibly

coupled with a dimensionality reduction technique or a hand-

crafted feature selection) based on the temporal coherence matrix

or a subset of the matrix terms. The classification results are very

promising, with accuracies ranging from 65 to 85% on up to

15 class evaluations. However, the 2D representation of the

coherence matrix was not used to train a specific classifier

such as CNN, that can take benefit of the multiscale patterns

in the 2D matrix.

1.3 Contributions

In this work, we aim at studying the potential of the full

temporal SAR coherence matrix representation on a

mountainous area, summarizing the information of a pixel

neighborhood by the normalized correlations between all

acquisition dates. To do so, we will focus on a proof-of-

concept case study: land cover mapping classification task,

using the European CLC map as ground truth. Our goal is to

assess the benefit of a 2D representation of the coherence matrix

and treat it as an image-like input data in a CNN classifier. We

will compare this approach to a more conventional method

(SVM). Moreover, we will test the generalization of our

method to a distinct area (Chambéry area, also in the French

Alps). Finally, we will analyze in more details the obtained result

mapping and discuss the benefits and limits of the proposed

approach, in particular related to mountainous areas.The

flowchart of the proposed land cover classification methods is

represented in Figure 1.

2 Data processing

2.1 InSAR coherence pre-processing

From the C-band Sentinel-1 satellite wide swath acquisitions,

the complex SAR images are extracted on the region of interest

during 1 year, from 09 to 03-2017 to 04-03-2018 (so

60 acquisitions, one acquisition every 6 days). We choose to

process the descending track D139, subswath 2, and the VV

polarization, that has a larger signal to noise ratio than the VH

polarization. The processing is performed by the non-

commercial NSBAS chain (Doin et al., 2011, 2015) in a few

steps (see Figure 2):

1) Single Look Complex (SLC) burst images are first deramped

using the burst phase function provided in the annotations

and mosaicked into larger images.

2) Each image is then co-registered in a single radar geometry

using a distortion field between secondary images and the

reference image computed as follows: 1) subpixel offsets

obtained by amplitude image correlation are computed for

numerous points within the image, 2) an a priori range

distortion field is computed using orbital information and

the Digital Elevation Model (DEM), 3) the distortion field in

azimuth is obtained by adjusting a bilinear model in range

and azimuth on computed offsets, while iteratively removing

outliers, 4) the distortion field in range corresponds to the

modeled distortion field plus a constant, adjusted using

computed offsets. Offsets in azimuth allow to refine the

burst phase function, as described in Grandin et al. (2016).

3) We compute differential forward-backward interferograms,

called Enhanced Spectral Diversity (ESD) phase (De Zan

et al., 2014), on burst overlap regions, using a connected

and redundant network of interferograms. ESD phase values

are fitted by a polynomial, whose parameters are then

inverted into time series (Thollard et al., 2021). The ESD

polynomial function inverted for each time step is then used

to correct the SLC images. This process avoids residual phase

ramps within bursts and offsets across bursts due to slight

azimuth misalignments.

4) Interferograms between all acquisition pairs are calculated by

their Hadamard product and corrected from the geometrical

phase modeled based on orbits and the DEM.

For computing the coherence, we fix a patch size of 12 × 3

pixels, corresponding to a 45 × 45 m2 land area (the radar

geometry being anisotropic). For each patch of the studied

area, we compute the full coherence symmetric matrix. By

visualizing this matrix in a color-coded representation, we
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can already see how different types of land are expressing

different patterns (Figure 3). Note that since the coherence is

the normalized correlation, the diagonal is always filled

with ones.

2.2 Ground truth land cover mapping

As with any supervised learning methods, the performance of

the model and results are highly dependent on the training data

inputs and their labels (associated ground truth classes). In our

case, we used the open source labeled land cover map CORINE

Land Cover (CLC). The CLC 2018 segments Europe in 44 types

of terrain (many of which are different types of urban buildings),

it has a resolution of 100m × 100m and is produced by a

combined automated and manual interpretation of high-

resolution optical satellite data (Büttner et al., 2017). We

selected zones containing mountain areas, urban areas and

cultivated areas, and we restricted our classification into

6 main categories that are the most present (Discontinuous

Urban, Non-irrigated arable land, Pastures, Broad Leaved

Forest, Coniferous Forest, Water Bodies).

As our coherence calculation is performed in the radar

acquisition geometry, we projected the CLC segmentation

product on the radar geometry using detailed lookup tables

allowing the geometrical transformation. This operation is

approximately equivalent to a rescaling, a range elongation

(because the radar geometry is anisotropic), a flipping and a

rotation of 9.7°. This allows us to directly define for every SAR

pixel its CLC classification.

2.3 Data sets creation

We focused on Grenoble, France area for building the

training and validation sets, and Chambéry, France for the

FIGURE 1
Flowchart of land cover classification from InSAR temporal coherence matrix, comparison of SVM and CNN methods.

FIGURE 2
Intererometric SAR processing pipeline.
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FIGURE 3
Examples of InSAR coherence matrices over 1 year. Left: broad-leaved forest. Right: urban area.

FIGURE 4
Top: Grenoble area, used for the training and validation phases. Bottom: Chambéry area, used for the testing phase. Left: Satellite view. Right:
Corine land cover main classes.
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test set (see Figure 4). The training set is used to train themachine

learning model, the validation set to select the best

hyperparameter setting, and the test set, kept unseen, is used

to finally estimate the results. Both Grenoble and Chambéry

regions contain urban areas, mountain areas, forests, cultivated

areas and water areas, and they are completely disjoined.

For the training and validation sets, we extracted all the

patches of size (range = 12, azimuth = 3) falling in the six classes

defined above. Moreover, as the CLC resolution is larger than our

patches, we decided to remove the samples located on the

boundaries of the CLC segmented regions, i.e., between the

classes regions, in order to have a cleaner dataset. Then, we

selected the same number of samples (3,600) in every class so as

to have a balanced dataset. Yet, since the arable land is too scarce

in the region (944 samples), we decided to keep the 3,600 samples

in the other classes and have a slightly less balanced dataset.

Finally, 70% of each class was randomly assigned to the training

set, and 30% to the validation set.

The test phase, performed on Chambéry area, will be used in

two steps: firstly, a quantitative (balanced) evaluation with a

similar selection of image patches for each of the six classes;

secondly, an estimation of the full region in a sliding window

process (for every 12 × 3 patch) in order to qualitatively assess the

prediction.

3 Learning models

We compared different machine learning methods to classify

the different coherence matrices in the six classes listed above.

More formally, we want to learn a function fθ such that fθ(M) = y

withMT×T the coherence matrix of size T × T with T the number

of acquisition times, y ∈ [1, 6] the class label. Concretely, we will

optimize the function parameters θ during the training phase,

and use the estimated fθ to perform predictions on new samples.

Here, M is the input of the model, and y the output.

3.1 Support Vector Machine Model

The first group of methods, from standard machine

learning theory, is able to learn θ for problems in which

the input is a vector of fixed size, i.e., a list of features. We

will therefore linearize M. Since M is symmetric and its

diagonal terms are always equal to one, we can restrict

ourselves to the terms Mi,j, i + j > 0. We can then

construct the input vector m of size [T × (T − 1)/2, 1] for

every matrix M. From an evaluation of different state-of-the-

art methods including RF, SVM and Multi-layer perceptron,

we focused on SVM as it gave the best results for more details

on SVM method). We used the Radial Basis Function (RBF)

kernel with a regularization parameter C = 1. The RBF is a

non-linear kernel, and thus can produce convoluted

hyperplane separators in the high dimensional feature

space able to make complex discrimination between sets

that are not convex in the original space. The parameters

of the model are optimized during the learning phase, by

minimizing the hinge loss between the true class and the

estimated class of every training sample.

3.2 Convolutional neural network model

The second group of methods, based on CNN, is able to

learn from spatially ordered data, in order to capture the

information contained in the texture and the patterns rather

than treating each pixel independently. A series of filtering

operations at different scales (based on local convolutions) are

performed in order to extract higher order features. While this

family of methods was intended for natural images, in our case

we can also view the coherence matrix as a 2D image, as

nearby pixels can share common information. For example, by

looking at Figure 3 (Right), the fact that the selected patch is

coherent by pieces (visible by the red squares, meaning a

coherence during a certain period of time) is important to

capture, no matter the dates of coherency breaks. By

linearizing the matrix, we loose the links between nearby

pixels (i.e. dates). This is why we will compare the SVM

approach with a CNN model for more details on CNN).

Figure 5 shows the structure of our CNN model with two

pairs of convolution layers and pooling layers and one fully

connected layer at the end. The convolution operations are

performed by 3 × 3 filters: the values of these filters are

optimized during the training in an iterative process. We

used the Rectified Linear activation (ReLU) functions as

activation functions after all the convolution and dense

layers, and we perform a batch normalization after every

convolution, as well as a 50% dropout, for regularizing the

model (Srivastava et al., 2014; Ioffe and Szegedy, 2015). The

max-pooling operations, performed after the convolutions,

enables the model to extract highly abstract features in a

multi-scale approach by downscaling the image by a factor

of 2 with a max operator on every 2 × 2 window. The

optimization is done by back-propagation and stochastic

gradient descent, and the loss function is defined as the

categorical crossentropy (used in multi-class classification

tasks).

4 Results

4.1 Quantitative results

We can evaluate the predictive power of our classification

methods on the validation and test sets by first looking at the

accuracy, i.e., the fraction of all predictions (classes) that are
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correct, in Table 1. We can confront the results to the

theoretical power of a random guess predictor, which in

case of a balanced dataset of 6 classes would give an

accuracy of 17% (1/6 chances to randomly predict the

correct class). With all accuracies larger than 77%, we can

first conclude that the use of InSAR temporal coherence for

classifying the land cover is indeed efficient, even when no

amplitude information is used. For both methods, the

accuracy on the test set (SVM: 77%, CNN: 81%) is smaller

than on the validation set (SVM: 80%, CNN: 86%). This is due

to the fact that the validation set is composed of samples

coming from Grenoble area, i.e., the same area as the training

set, while the test set is made of samples from a distinct region,

Chambéry area. Even if the training and validation samples

are different, they can be very similar and thus the prediction

can be easier on the validation set than on the test set. Note

that the accuracy on the test set are still very high, meaning

that both methods are able to generalize well. Between the two

models, the CNN has clearly a better predictive power.

In Figures 6, 7 are represented the normalized confusion

matrices of the two methods for both the validation and the

test sets. A confusion matrix represents the proportion of class

predictions for every ground truth class. Concretely, a perfect

predictor would correspond to an identity matrix (ones on the

main diagonal, and zero everywhere else). We can first notice

that both models have high recall values (proportion of

correctly classified, diagonal terms) for every of the

6 classes, in accordance with Table 1. Yet, we can see some

differences in the predictive power between the classes. The

water, urban and coniferous forest classes show high recalls

(always > 0.8, and even > 0.97 for water bodies). On the other

hand, we can see that pastures, arable lands and broad-leaved

forest have higher errors. With a closer look, we notice that

pastures are often misclassified as broad-leaved forest on both

validation and test set (16% for CNN, 18–20% for SVM). This

can be due to many reasons, the first one being that these land

types might often overlap and the patches are then composed

of a mix of both. The same phenomenon is also visible for

arable land misclassified as urban areas (between 8% and 10%

for CNN). By looking at the difference between validation and

test results, we can notice some particular behaviors, such as

the broad-leaved forest misclassified as water bodies (27% for

CNN, 29% for SVM). This particular case, caused by SAR

acquisition shadowing effect, will be investigated more in

details in. Overall, both models show a similar behavior but

CNN performs better in most of the cases.

4.2 Influence of the training set size

We represent in Figure 8 the influence of the training set

size on the accuracy for both models. We performed multiple

runs of every model, by randomly varying the weights

initialization, in order to have a more robust comparison

(represented by the box plots in both graphs). We can see

that in both cases, a too small number of training samples

causes a drop of performance (using 200 samples for every of

the 6 classes, the accuracies are below 75%). For SVM, the

performance improves quickly, then reaches a plateau at

1,200 samples and increasing further the number of

FIGURE 5
CNN architecture developed for land cover classification with InSAR coherence matrices.

TABLE 1 Accuracy of the two tested methods on the balanced
validation and test sets (both composed of equal number of
samples from the 6 classes, validation: from Grenoble area, test: from
Chambéry area).

Model Validation set Test set

SVM 80% 77%

CNN 86% 81%
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samples does not change the result. On the other hand, the

CNN model’s improvement is more gradual, and the

performance keeps improving at least until 2,600 samples,

surpassing then the SVM accuracy. Thus, it is interesting to

point out that with a small database, the SVM is a satisfactory

model. Yet, when having access to more data, the power of

deep learning is revealed and it seems to be able to capture

more complex features than the SVM model.

4.3 Qualitative results and limits of the
ground truth labelling

4.3.1 Segmentation of full testing area
We selected a region in the testing dataset (the Bourget du Lac

area near Chambéry) and performed a complete segmentation by

calculating the coherence matrix of every patch of the area and

estimating its land cover class. The results of both SVM and CNN

FIGURE 6
SVM results, normalized confusion matrices. (left) validation set (right) test set.

FIGURE 7
CNN results, normalized confusion matrices. (left) validation set (right) test set.
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models are visible in Figure 9C,D, together with a satellite view

(Figure 9A) and the Corine Land Cover of the same area (Figure 9B).

We recall that the Corine LandCoverwas used to create ground truth

labels on Grenoble area for the training phase, using the 6main types

FIGURE 8
Influence of the training set size on the accuracy for (left) the SVM model (right) the CNN model on the test set.

FIGURE 9
Results of automatic land cover classification bymachine learning from InSAR temporal coherencematrices. (A) satellite view (Google Maps) of
the Bourget du Lac study area. (B) extract from the Corine Land Cover land cover map of the same area (C) results of the classification by Support
Vector Machine method (D) results of the classification by Convolutional Neural Network method (E) extract from the Theia land cover map (finer
resolution than Corine Land Cover).
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of lands. It is interesting to see that both models are performing well:

the lake is clearly segmented, the zones of “Non-irrigated arable land”

(zone D in the CLC map) is also well captured, as well as the forests.

Moreover, we can also notice that the estimated segmentations

are finer than the CLC map: we can see more details, such as the

airport where the “urban” class is only restricted to the landing strip

and the surroundings are identified as arable land or pastures. By

looking at the satellite view, we can see that this segmentation is

accurate. Moreover, by comparing with the Theia land cover1

(Figure 9E), we can see how similar our segmentations perform

with this finer scale map.We can draw three conclusions from these

observations: firstly, in a future study, we might consider using a

finer resolution for ground truth labelling (e.g., Theia land cover).

Secondly, we can deduce that our models are robust as they were

able to learn from a coarse labelling (i.e., with a consequent

percentage of errors in the ground truth) and yet succeeded in

correctly creating a more accurate model than the CLCmap used as

ground truth. Thirdly, our quantitative results should be

reconsidered, as we can see that many misclassifications are

clearly due to the too coarse ground truth labelling: a perfect

accuracy score would be impossible and not desired.

Finally, we can see some small differences between SVM and

CNN, as the contours of the urban areas: the CNN seems to

better detect the urban areas and the segmentation is closer to the

Theia land cover map.

4.3.2 Consequences of SAR acquisition artifacts
in mountainous areas

An external bias that constitutes a source of classification errors is

specific to the satellite data used and the terrain under study. Indeed,

there are various phenomena that limit the quality of the original SAR

data in steep terrain, particularly important in Grenoble and

Chambéry areas, including foreshortening, layover and shadowing.

For example, we can see that for the class “Broad-leaved forest”,

the prediction of the pixels in the middle area of the Figure 10 (Left)

are mis-classified as “Water”. From Figure 10 (Right) we can see ,that

is clearly not a water area. The background of Figure 10 (Left)

represents the radar mean amplitude image, and we see that the

central zone is completely dark: the original SAR data gets affected by

the shadowing effect, as the area is behind amountain and cannot be

seen by the sensor. Geometrical artifacts, such as foreshortening and

layover, could be corrected by mixing information from SAR data

from Sentinel-1 on the descending orbit which complements the

ascending data. However, shadows, also less frequent, may appear on

slopes that are, for the other viewing angle, in layover or

foreshortening areas. These areas cannot be mapped with radar data.

5 Conclusion and discussion

From this preliminary study, we can assess the potential of

InSAR temporal coherence and in particular the temporal matrix

representation for segmenting the land cover. The originality of this

study resides on the fact that we consider the one-year coherence

matrix as an image, while previous studies only considered 6, 12 or

18 days coherence time series (Sica et al., 2019; Mestre-Quereda

et al., 2020). We have shown that it can distinguish between related

classes such as coniferous and broad-leaved forests. Moreover, our

FIGURE 10
(Left) Prediction of the “Broad-Leaved Forest” class on a part of the test set. Background: radar amplitudemean image. The extent of the colored
zone corresponds to the ground truth “Broad-leaved forest”CLCmap zone. The colors are representing the prediction of the SVMmodel: in blue are
the correct predictions (i.e., broad-leaved forest), while other colors represent mis-classifications. (Right) Optical image by Google Earth of the same
area.

1 Value-added data processed by CNES for the Theia data cluster www.
theia.land.fr from Copernicus data. The processing uses algorithms
developed by Theia’s Scientific Expertise Centres.
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model has the capacity to learn from a low-detailed ground truth,

which is important for generalizing in different areas. Such an

approach is particularly relevant for differentiating different crops

having different dynamical seasonalities (as inMestre-Quereda et al.

(2020)), even if further studies would have to be made with more

classes and more land diversity. Based on Sica et al. (2019); Mestre-

Quereda et al. (2020), it would be interesting to assess the potential of

using both polarizations (VV and VH) as well as adding the

backscatter amplitude information. Moreover, one could perform

a quantitative comparison with segmentation methods based on

optical data in order to see if there would be a gain in combining

both. In order to gain precision, the spatial neighboring could be

adaptative by using the local spatial connectivity of the pixels (Parizzi

and Brcic, 2010).

Lastly, we think that the potential of InSAR temporal coherence

could be extended to other applications, such as abrupt soil change

detection, as snow deposit, building constructions or landslides. The

findings of this study also clearly show that such a change detection

would have to be based on a prior land cover classification, as the

temporal coherence patterns are very different between types of land

cover.
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