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Review
Mitochondrial alterations in fatty liver diseases

Bernard Fromenty1, Michael Roden2,3,4,*
Summary

Fatty liver diseases can result from common metabolic diseases, as well as from xenobiotic exposure and excessive alcohol use,
all of which have been shown to exert toxic effects on hepatic mitochondrial functionality and dynamics. Invasive or complex
methodology limits large-scale investigations of mitochondria in human livers. Nevertheless, abnormal mitochondrial function,
such as impaired fatty acid oxidation and oxidative phosphorylation, drives oxidative stress and has been identified as an
important feature of human steatohepatitis. On the other hand, hepatic mitochondria can be flexible and adapt to the ambient
metabolic condition to prevent triglyceride and lipotoxin accumulation in obesity. Experience from studies on xenobiotics has
provided important insights into the regulation of hepatic mitochondria. Increasing awareness of the joint presence of metabolic
disease-related (lipotoxic) and alcohol-related liver diseases further highlights the need to better understand their mutual inter-
action and potentiation in disease progression. Recent clinical studies have assessed the effects of diets or bariatric surgery on
hepatic mitochondria, which are also evolving as an interesting therapeutic target in non-alcoholic fatty liver disease. This review
summarises the current knowledge on hepatic mitochondria with a focus on fatty liver diseases linked to obesity, type 2 diabetes
and xenobiotics.

© 2022 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Fatty liver diseases are a burgeoning health problem and –

upon the cure and control of viral hepatitis – their main causes
have shifted towards non-communicable factors, such as
excess alcohol consumption, common metabolic diseases,
xenobiotic exposure and drug-induced liver injury.1 The rising
worldwide prevalence of obesity and type 2 diabetes mellitus
(T2DM) has created the basis for a new syndemic, which may
drive adverse liver disease outcomes in Europe.1 Common
metabolic diseases like obesity and T2DM share epidemio-
logical and pathophysiologic features with non-alcoholic fatty
liver disease (NAFLD)2,3 and their main chracteristics, ectopic
fat deposition, altered metabolic fluxes and insulin resistance
are linked to abnormal energy metabolism.4 In adipose tissue,
altered mitochondrial functionality contributes to adipose tis-
sue dysfunction, with impaired insulin-mediated triglyceride
storage and subsequent lipid overflow to other tissues.5 This
may explain how hepatic lipid accumulation initiates dynamic
changes in mitochondrial function and promotes the develop-
ment and progression of steatosis (non-alcoholic fatty liver,
NAFL) to non-alcoholic steatohepatitis (NASH) and hepatic
fibrosis/cirrhosis.6

Detailed knowledge of the effects of xenobiotics on hepatic
mitochondria and liver function7–9 has improved our under-
standing of the impact of mitochondria on metabolic disease-
Keywords: Energy metabolism; oxygen flux; adiposity; diabetes mellitus; NAFLD; NASH; e
Received 10 June 2022; received in revised form 29 August 2022; accepted 17 Septembe
* Corresponding author. Address: Department of Endocrinology and Diabetology, Medical
University Düsseldorf, Düsseldorf, Germany.
E-mail address: michael.roden@ddz.de (M. Roden).
https://doi.org/10.1016/j.jhep.2022.09.020

Journal of Hepatology, Febru
related (lipotoxic) liver diseases. This has led to growing inter-
est in the therapeutic potential of targeting mitochondria in fatty
liver diseases.3,10

In this review, we analyse the role of alterations in hepatic
mitochondrial function across the spectrum of fatty liver dis-
eases (of different aetiologies) with a focus on studies
in humans.

Physiological role of hepatic mitochondria
A major role of hepatic mitochondria is energy production, via
oxidation of substrates including amino acids, pyruvate, and
fatty acids. The tight coupling between substrate oxidation and
ATP synthesis, i.e. oxidative phosphorylation (OXPHOS), is
finely tuned by many circulating and intrahepatocellular fac-
tors.11,12 Experimentally, OXPHOS coupling is reflected by a
high respiratory control ratio (RCR), defined as the ratio of ADP-
stimulated respiration (coupled respiration) to resting respira-
tion. Pyruvate provided by glycolysis is oxidised by the tricar-
boxylic acid (TCA) cycle after its transformation into acetyl-
coenzyme A (acetyl-CoA) by pyruvate dehydrogenase. Fatty
acids are oxidised by the b-oxidation process (Fig. 1), which
requires CoA and L-carnitine and involves several enzymes
with specific activities according to their chain length.13 During
fasting, hepatic mitochondrial fatty acid oxidation (FAO) gen-
erates ketone bodies that are oxidised in extrahepatic
thanol; drug toxicity.
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Keypoints

� Mitochondria are essential for multiple features of hepatic function, ranging from substrate metabolism and energy production through
cellular signaling to biotransformation of xenobiotics.

� Assessment of mitochondrial functionality and quality control has largely been limited to preclinical studies, but recent developments
have enabled us to gain more insight into these processes in human livers.

� Due to their role in fatty acid oxidation, lipogenesis and gluconeogenesis, mitochondria are involved in the pathogenesis of non-alcoholic
fatty liver diseases.

� During common metabolic diseases, hepatic mitochondrial oxidative capacity may adapt to greater lipid availability and thereby help to
prevent excessive lipid accumulation.

� With higher-grade obesity and type 2 diabetes, mitochondrial capacity can decline, while subsequent oxidative stress favors the
progression of non-alcoholic fatty liver diseases from steatosis to steatohepatitis and fibrosis/cirrhosis.

� Microvesicular steatosis induced by xenobiotics such as amiodarone or valproic acid results from severe inhibition of mitochondrial fatty
acid oxidation and bears the risk of lethal liver failure.

� Xenobiotic-induced macrovacuolar steatosis involves milder but chronic abnormalities of mitochondrial function, thereby favoring
oxidative stress and progression to steatohepatitis and cirrhosis.

� Hepatic mitochondrial alterations play an important role in the mutual interaction of metabolic disorders with some drugs and alcohol
abuse.

� Several interventions directly (e.g. thyroid hormone receptor agonists) or indirectly (e.g. weight loss) affect hepatic mitochondria and have
beneficial effects on fatty liver diseases, suggesting that mitochondrial targets should be further evaluated for the treatment of non-
alcoholic fatty liver diseases.
tissues via the TCA cycle to provide energy.7 Mitochondrial
FAO is regulated by different transcription factors including
peroxisome proliferator-activated receptor (PPAR)a, PPARb/
d and forkhead box A2.7 Several mitochondrial NAD+-depen-
dent protein deacetylases (sirtuins) also regulate mitochondrial
FAO and other mitochondrial metabolic pathways.14

Oxidation of mitochondrial substrates generates NADH and
FADH2, whose electrons and protons feed the electron transport
chain (ETC) in order to create a large electrochemical potential
(DJ), which is mandatory for ATP production (Fig. 1). This pro-
cess regenerates the NAD+ and FAD necessary for other cycles
of fuel oxidation.7 Of note, 13 polypeptides of the ETC are
encoded by mitochondrial DNA (mtDNA), while the remaining
polypeptides are encoded by nuclear DNA (nDNA). Liver mito-
chondria contain all the components required for mtDNA repli-
cation, transcription and translation as well as enzymes involved
in DNA repair.8 Permanent mtDNA replication is a major event
during mitochondrial biogenesis, a complex programme
orchestrated by several key transcription factors and coac-
tivators including nuclear respiratory factors 1 and 2 (NRF1,
NRF2) and peroxisome proliferator-activated receptor-c coac-
tivator 1a and 1b (PGC1a, PGC1b).15 AMP-activated protein
kinase (AMPK) also plays a major role in mitochondrial biogen-
esis, in particular by activating PGC1a.15 Beyond mitochondrial
biogenesis, other processes regulate mitochondrial number and
quality including mitochondrial dynamics (i.e. fusion and fission)
as well as mitophagy, a selective autophagic pathway that
specifically eliminates damaged mitochondria.16,17 Liver mito-
chondria are also involved in anabolic processes. During fasting,
hepatic mitochondria play a pivotal role in gluconeogenesis,
which transforms different carbon precursors (alanine, pyruvate,
416 Journal of Hepatology, Febru
lactate) into glucose. Indeed, the first steps of gluconeogenesis
are catalysed by the mitochondrial enzymes, pyruvate carbox-
ylase and malate dehydrogenase. After feeding, the TCA cycle
metabolite citrate leaves the mitochondria to serve as a carbon
source for hepatic de novo lipogenesis. Liver mitochondria also
play a role in bile acid synthesis from cholesterol via cytochrome
P450 27A1 (CYP27A1).18

Mitochondria further contribute to cell signalling by generating
reactive oxygen species (ROS), via ETC complexes I, III and some
enzymes of the mitochondrial FAO pathway.8,19 ROS activate
different transcription factors, e.g. nuclear factor erythroid 2-like 2
(NFE2L2 or Nrf2), which contribute to antioxidant responses and
mitochondrial biogenesis.8,20 When the mitochondrial unfolded
protein response is activated, other mitochondria-derived sig-
nalling molecules (namely, small peptides) induce nuclear trans-
location of activating transcription factor 5.21

Finally, hepatic mitochondria also contain other CYPs like
CYP1A2 and CYP2E1,22,23 the latter metabolises acetamino-
phen (paracetamol), 1,3-butadiene, ethanol, fatty acids, and
ketone bodies.22

Mitochondrial alterations in metabolic disease-
related liver diseases
Metabolic disease-related liver diseases occur mainly in in-
dividuals with obesity and T2DM but are also present in those
with rare diseases (lipodystrophies, inborn errors of meta-
bolism), which are beyond the scope of this review. Herein, we
focus on the comparison of hepatic mitochondrial function
across the histopathological spectrum of NAFLD in obesity and
the impact of diabetes. The methods used to assess various
ary 2023. vol. 78 j 415–429
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mitochondrial features in human livers are summarised
in Table 1.

Abnormalities in energy metabolism

Non-steatotic obesity
Assessing possible changes in mitochondrial functionality in
metabolic diseases requires direct comparison with lean
insulin-sensitive humans. Koliaki et al. employed ex vivo high-
resolution respirometry with various substrates to measure
oxygen fluxes (Table 1) in whole-liver tissue and isolated liver
mitochondria from lean and obese individuals with different
stages of biopsy-proven NAFLD.24 These studies demon-
strated that – contrary to skeletal muscle – maximal uncoupled
respiration related to b-oxidation and TCA cycle activity was
�85% higher in livers from obese individuals without steatosis
compared to lean controls (Fig. 2, top panel). The elevated
OXPHOS capacity in the face of low intrahepatic triglyceride
Journal of Hepatology, Febru
levels supports the concept of an adaptation of hepatic mito-
chondria to rising lipid exposure, which – teleologically – should
help to protect the liver from lipotoxicity and steatosis at the
onset of obesity.24 Accordingly, high-fat intake was shown to
induce transient upregulation of 13 OXPHOS genes and mito-
chondrial respiration in steatosis-resistant A/J mice,25 and
increased hepatic ATP content by 16%, measured in vivo by
31P magnetic resonance spectroscopy (MRS; Table 1), in lean
humans without steatosis.26 Altogether, these data suggest
that the absence of hepatic fat accumulation results from
mitochondrial adaptation or plasticity,27 which may character-
ise a moderately insulin-resistant obese phenotype28 or an
early state of obesity, which over time could lead to NAFLD.29

Steatotic obesity
Despite upregulated hepatic OXPHOS capacity in non-
steatotic obesity, studies in obese persons with steatosis
(NAFL) revealed heterogeneous results, maybe owing to
ary 2023. vol. 78 j 415–429 417



Table 1. Methods used to assess features of mitochondria in humans or human liver tissue.

Parameter Method Readout Pros Cons

Mitochondrial content Transmission electron microscopy Mitochondrial area and number Gold standard, morphologic
assessment

Invasive, availability, time

Protein expression, and activity ratios,
proteomics

Maximal CSA, cardiolipin, mtDNA,
ETC complexes I-IV, biomarkers of
mitochondrial biogenesis

Availability, time Invasive, no accepted marker, no vali-
dation in liver

Mitochondrial bioenergetic
efficiency

High-resolution respirometry (HRR) OXPHOS capacity Quasi-gold standard, assess-
ment of different OXPHOS
states

Ex vivo, invasive, permeabilized tissue

Near-infrared spectroscopy (NIRS) Hb oxygenation, cytochrome oxidase
aa3 (REDOX state)

Intact tissue Ex vivo, invasive, indirect measure,
limited use

Liver 31P MRS [ATP], [Pi] or VATP (from saturation
transfer or upon fructose challenge)

In vivo, intact tissue, suitable
for repeated measures and
clinical studies

Availability, multidisciplinary expertise,
exclusion criteria, time

Liver 13C MRS + [1-13C]acetate and
[3-13C]lactate

Mitochondrial oxidation and pyruvate
cycling (from13C incorporation into
hepatic glutamate and alanine)

In vivo, intact tissue Availability, multidisciplinary expertise,
exclusion criteria, time

PET +11C- or18F-labeled fatty acids or
analogues

Fatty acid ß-oxidation In vivo, intact tissue Radiation, availability, multidisciplinary
expertise, indirect measure, time

13C- or 2H-labeled metabolite dilution
and positional isotopomer analysis

Anaplerotic and TCA cycle fluxes (e.g.
VPC and VCS), b-oxidation

In vivo, intact tissue Availability, indirect measure, time

Breath test +13C-labeled metabolites Mitochondrial oxidation In vivo, intact tissue Indirect measure, no validation
Genome-scale human metabolic
model

Multiomics and splanchnic metabolite
flux data

Integrated complex analysis Partly in vitro, partly invasive, multi-
disciplinary expertise

Mitochondrial quality control Protein expression, activity, and ratios Ubiquitin-proteasome system: USPs,
ubiquitin

Availability,
Time

In vitro, invasive, indirect measure, no
accepted single marker, no validation
in human liverMitochondrial dynamics:

Fusion: mitofusins (Mfn1, Mfn2), Opa1
Fission: Drp1
Mitophagy: PINK1/Parkin pathway,
Tom20, COXII

Fluorescence-activated cell sorting,
confocal imaging

Mitophagy: cell analyses Direct measure Ex vivo, invasive, no validation in hu-
man liver

COXII, cytochrome c oxidase subunit II; CS, citrate synthase; CSA, CS activity; Drp, dynamin-related protein; ETC, electron transfer chain; Hb, hemoglobin; Mfn, mitofusin; MRS, magnetic
resonance spectroscopy; mtDNA, mitochondrial DNA; PC, pyruvate carboxylase; PET, positron emission tomography; PINK1, PTEN-induced kinase 1; USPs, ubiquitin-specific proteases;
Tom20, translocase of outer mitochondrial membrane 20.
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differences in obesity grade/duration, age, liver fat content and/
or the absence of liver histology. The following studies reported
on in vivo investigations of hepatic energy metabolism in obese
people with steatosis but without progressive NAFLD. Non-
invasive 31P MRS detected no difference in hepatic ATP con-
tent30 and ATP synthase flux rates (VATP)

31 between elderly
obese people with NAFL and young lean volunteers. A study
using [1-13C]acetate infusion to label hepatic [5-13C]glutamate
and [1-13C]glutamate for in vivo 13C MRS (Table 1) also
revealed no difference in hepatic citrate synthase (CS) flux (VCS)
between young lean/overweight persons without or with
NAFL.32 In contrast, [U-13C]propionate administration to label
plasma glucose revealed increased hepatic TCA cycle flux
rates (VTCA) as well as anaplerotic flux in middle-aged obese
people with steatosis.33 Greater hepatic VTCA has been
repeatedly found in other cohorts34–36 and is associated with a
switch from lactate to glycerol as the substrate for gluconeo-
genesis.34 High-resolution respirometry measurements origi-
nally revealed a comparable 4–5-fold increase in malate-
temporarily (4) protects against lipotoxic-insulin resistance and (5) TAG accumulation
onset of steatosis, (7) mitochondrial biogenesis and (8) quality control start to dec
impairs the efficiency of mitochondrial oxidative capacity, which leads to (2) accum
resistance with (3) augmented GNG and (4) DNL. In the face of decreasing antioxid
proteins and DNA, which (6) impairs mitochondrial biogenesis and (7) quality control
dyslipidaemia (9) activate Kupffer cells and stellate cells, which via cytokines (e.g. TN
BCL2 interacting protein 3; DAG, diacylglycerol; DRP1, dynamin-related protein 1; ET
coenzyme A; FFA, free fatty acid; FIS1, mitochondrial fission 1 protein; GNG, glucone
kinase; LC3, autophagy-related protein 8 (ATG8); MFN2, mitofusin 2; NAFL, non-alc
factor 1; PINK, PTEN-induced kinase; PGC1a, peroxisome proliferator-activated rec
activated receptor-a; ROS, reactive oxygen species; TAG, triacylglycerol; TCA, tricarb
TNFa, tumour necrosis factor-a; VLDL, very low-density lipoprotein.

420 Journal of Hepatology, Febru
glutamate-, malate-octanoylcarnitine-stimulated and maximal
uncoupled respiration in hepatic mitochondria isolated from
either steatotic or non-steatotic livers of obese individuals vs.
non-steatotic livers of lean individuals24 (Fig. 2, top panel).
Recent high-resolution respirometry studies also reported
increased maximal coupled (significant) and uncoupled (p =
0.054) mtDNA/nDNA-adjusted respiration from malate-
glutamate-octanoylcarnitine in livers of obese individuals with
NAFL vs. lean individuals without steatosis.37 But no differ-
ences were found with this substrate37 or with malate-
palmitoylcarnitine between steatotic or non-steatotic livers in
people with obesity.38 Interestingly, hepatic oxidative capacity
correlated with hepatic triglycerides, plasma free fatty acids
and insulin resistance in isolated mitochondria,24 but only with
body mass index in liver tissue.37 While these data would
suggest steatosis-independent upregulation of oxidative ca-
pacity in obesity, some mitochondrial abnormalities could
occur early in NAFL, including lower hepatic RCR, along with
reduced expression of genes involved in mitochondrial
, while (6) ROS are scavenged by increased catalase and GPX1 activities. With the
line. Bottom panel: In NASH, continuous excess FFA overload progressively (1)
ulation of lipotoxic metabolites (e.g. ceramides and DAGs), which induce insulin
ant activity, (5) increasing ROS production favours oxidation of membrane lipids,
, and (8) activates JNK and NF-jB. Ongoing oxidative stress, hyperglycaemia and
F-a, IL-1b and IL-6) drive inflammation, fibrosis and disease progression. BNIP3,
C, electron transport chain; FATP, fatty acid transport protein; FA-CoA, fatty acyl
ogenesis; GPX1, glutathione peroxidase 1; IL-, interleukin; JNK, c-Jun N-terminal
oholic fatty liver; NASH, non-alcoholic steatohepatitis; NRF1, nuclear respiratory
eptor-c coactivator 1a; PKCε, protein kinase Cε; PPARa, peroxisome proliferator-
oxylic acid; TFAM, transcription factor A mitochondrial; TLR4, Toll-like receptor 4;

ary 2023. vol. 78 j 415–429
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Review
biogenesis24 or activities of rate-controlling enzymes such as
b-hydroxyacyl-CoA dehydrogenase.38 Such mitochondrial al-
terations might then contribute to oxidative stress and lipid
peroxidation24 (Fig. 3).

Diabetes mellitus
Studies in T2DM, which frequently co-exists with NAFLD,1–3,39

also revealed varying results. Elderly persons with long-
standing T2DM have lower hepatic ATP content and VATP

than age-and body mass-matched glucose-tolerant
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persons.30,31 Hepatic Pi, but not ATP content, decreased in
parallel with rising liver fat content during the 5 years following
a diabetes diagnosis.40 A 13C-ketoisocaproate approach
showed an inverse association of reduced mitochondrial
function with age, adiposity and diabetes status in people with
NAFLD.41 Conversely, upregulation of hepatic mitochondrial
gene expression was reported in overweight individuals with
T2DM vs. lean controls in a Japanese cohort,42 but data on liver
fat content were not provided. One high-resolution respirom-
etry study detected no difference in hepatic OXPHOS capacity
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and CS activity between lean individuals, and those with
obesity or T2DM.43 The observation that liver lipid droplet area
and density only tended to be higher in individuals with T2DM
or non-diabetic obesity points to a specific phenotype, as most
people with overt T2DM will have steatosis.1,2 In this context,
recent cluster analyses identified T2DM endotypes (subtypes),
discriminating between severely insulin deficient and severely
insulin-resistant (from moderate obesity- and age-related dia-
betes) cases. The severe insulin-resistant diabetes endotype
was not only associated with the highest liver fat content at
diagnosis, but also with the greater risk of liver fibrosis29 and a
higher frequency of the rs738409(G) single nucleotide poly-
morphism in the PNPLA3 (patatin-like phospholipase domain-
containing 3) gene.44 Nevertheless, despite growing evidence,
there is currently no proof of a causal interaction between
mitochondrial function and genes that increase the risk of
NAFLD development and progression.45,46

Also, individuals with autoimmune or type 1 diabetes melli-
tus may display altered mitochondrial features in different tis-
sues, which mainly relate to glycaemic control and insulin
resistance.47 Recent analyses of the German Diabetes Study
showed that hepatic cATP decreases and negatively correlates
with glycaemic control, despite unchanged liver fat content, 5
years after the diagnosis of type 1 diabetes mellitus.40 It is
conceivable that the decreased ATP content resulted from
unphysiological insulin supply, leading to impaired suppression
of gluconeogenesis and glucose production.

NASH and fibrosis
It has long been known that progressive NAFLD is associated
not only with complex metabolic derangements including se-
vere insulin resistance,1,2,27 but also with ultrastructural mito-
chondrial defects, e.g. larger size, loss of mitochondrial cristae,
paracrystalline inclusions or linear crystalline inclusions in
swollen mitochondria.48,49 This might suggest a progressive
decline in hepatic respiratory capacity during the transition
from steatosis to NASH and cirrhosis.50,51 Indeed, several hu-
man studies reported evidence for a decline in hepatic mito-
chondrial functionality, i.e. impaired hepatic ATP repletion after
fructose-induced ATP depletion (Table 1),52 decreased ETC
complex activity53 and increased hepatic expression of
uncoupling protein-2.54 Uncoupling protein-2 upregulation
leads to dissociation of OXPHOS from ATP production and
reduction of the redox pressure on the ETC, thereby protecting
against liver damage at the expense of impaired capacity to
respond to metabolic demands, as present in a dyslipidaemic
and inflammatory milieu.55,56 Nonetheless, the excess avail-
ability of free fatty acids will overload the ETC, increase ROS
production and oxidative stress, as well as disrupt redox ho-
meostasis27,57,58 (Figs 2 and 3).

To clarify whether hepatic mitochondrial oxidative capacity
is indeed reduced in human biopsy-proven NASH (NAFLD
activity score [NAS] >−5), Koliaki et al. compared hepatic oxygen
fluxes by high-resolution respirometry between lean and obese
people without NASH and obese people with NASH24 (Fig. 2,
bottom panel). In NASH, hepatic OXPHOS capacity was
�40–51% lower than in obese individuals with/without stea-
tosis and �10% lower than in lean non-steatotic humans.24

RCR remained low, as in obese people without NASH,
whereas leaking control ratio (reflecting abnormal proton leak
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across the inner membrane), H2O2 production and oxidative
DNA damage increased, while antioxidative defence declined.
Another study expanded on these observations by stratifying
people with NAFLD into borderline and definite NASH groups
based on the presence of histopathological ballooning and
fibrosis (by NAS).38 The definite NASH group featured lower
complete [1-14C]palmitate oxidation and lower incomplete FAO
(i.e. oxidation to 14C-acid-soluble metabolites) in whole-liver
tissue. This study further confirmed higher mitochondrial
H2O2 emission in the presence of palmitoyl-CoA, which rises
with increasing inflammation and ballooning stages.38 Further
high-resolution respirometry studies reported a similar pattern
of respiratory capacity, being numerically highest in NAFL, in-
termediate in NASH and non-steatotic obesity, and lowest in
non-steatotic lean livers, but it was concluded that hepatic
respiration is preserved in NAFLD.37

Despite some evidence for sexual dimorphism in obesity
and NAFLD, the available studies on hepatic oxygen fluxes in
humans were too small to fully address this question.24,37,38

One study showed no association between sex and
hepatic maximal OXPHOS capacity,37 whereas another
study found higher liver pyruvate kinase in males, which
related to NAFLD severity, and demonstrated improved
mitochondrial function in male mice following pyruvate ki-
nase-silencing.59

Notably, in vivo 13C-octanoate breath testing (Table 1)
revealed increased hepatic b-oxidation in NASH.60 This
discrepancy with palmitate oxidation hints at specific
impairment of the mitochondrial entry of long-chain fatty
acids via the carnitine palmitoyltransferase (CPT) shuttle, in
line with investigations in rodent NASH models.61–63 The
lower efficiency of mitochondrial b-oxidation of long-chain
fatty acids could explain the cellular accumulation of lip-
otoxins, i.e. free fatty acids, diacylglycerols (DAGs) and
ceramides (Fig. 4). Hepatic DAG concentrations correlate with
steatosis grade, NAS and insulin resistance in people with
obesity,64 maybe due to specific membrane-bound DAG
species.65 Of note, certain hepatic ceramides and sphingoli-
pids do not necessarily correlate with hepatic insulin resis-
tance, but rather with hepatic oxidative capacity, oxidative
stress and inflammation, and are higher in obese people with
NASH than in those with or without NAFL.66,67 Further studies
are needed to evaluate whether lipotoxins mediate mito-
chondrial effects on NAFLD progression and can serve as
biomarkers in NASH.68 As T2DM is not only associated with
greater insulin resistance and lipotoxicity, but also with
accelerated NAFLD progression, one might hypothesise that
T2DM associates with more severe hepatic mitochondrial
abnormalities. Gancheva et al. compared hepatic oxygen
fluxes in obese individuals with histologically proven NASH,
with/without T2DM, vs. lean individuals without steatosis.69

Despite comparable histopathology, individuals with T2DM
and NASH had �33% lower complex II–linked oxidative ca-
pacity from TCA cycle substrates than those with non-
diabetic NASH and had higher H2O2 production than lean
individuals.69 Although hyperglycaemia and reactive dicar-
bonyls may cause oxidative stress, advanced glycation end
products largely failed to explain the altered hepatic mito-
chondrial capacity.69 Further analysis demonstrated lower
hepatic OXPHOS capacity and antioxidant defences in obese
ary 2023. vol. 78 j 415–429
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people with NASH and hepatic fibrosis score >−1 (F1+) vs.
those without fibrosis (F0).69

Concept of mitochondrial adaptation/plasticity

Collectively, these data support the contention that hepatic
OXPHOS capacity is upregulated in obesity and early obesity-
related NAFL in response to adipose tissue-derived lipid flux to
the liver, but continuously declines with rising lipotoxic and
oxidative stress during progression to NASH and fibrosis
(Fig. 3). Indeed, rodent models demonstrated transient upre-
gulation of mitochondrial function during development of
metabolic disease-related fatty liver,70–72 but impairment in
NASH.51,73–75 Moreover, integrating multiomics and splanchnic
metabolite flux measurements in humans (Table 1) provided
independent support for the concept of increasing metabolic
stress and loss of metabolic adaptability in NAFLD.34 This
study showed increased mitochondrial metabolism, glycer-
oneogenesis and a switch from lactate to glycerol as the
substrate for gluconeogenesis, which may contribute to a vi-
cious cycle in the pathogenesis of NAFLD and T2DM.34 Of
note, these cross-sectional studies do not allow us to draw firm
conclusions on causality and the sequence of events but pro-
vide support for prospective studies monitoring hepatic mito-
chondrial functionality over time in humans, specifically in
advanced NAFLD, to prove the concept of gradually declining
mitochondrial adaptation/plasticity.

Changes in mitochondrial dynamics

In humans, assessment of mitochondrial content and quality
control, i.e. mitophagy and mitochondrial dynamics,76 bears
some limitations, because it is based on ex vivo measure-
ments77 rather than on direct real-time monitoring of the pro-
cesses (Table 1). As for mitochondrial content, CS activity was
found to be increased in NASH,24 gradually higher in T2DM
with NASH,69 but not different in borderline or definite NASH in
another cohort.38 Protein expression of ETC complexes was
unchanged,38 slightly to moderately24,69 or markedly lower in
NASH53 and decreased in F1+69 and F2-F4.38 Likewise, mtDNA
copy number was lower in obese individuals with NASH than in
lean controls.69 The mRNA expression of biomarkers of mito-
chondrial biogenesis was already slightly lower in obese in-
dividuals with or without NAFL (PGC1A, NRF1, TFAM)24 and
was markedly diminished in those with NASH (PGC1A, NRF1,
TFAM, sirtuin 1, AMPK).24,38 Despite certain variability, these
studies demonstrate defects in mitochondrial biogenesis and
point to differences in mitochondrial quality control across the
NAFLD spectrum. While mitochondrial dynamics were clearly
impaired in many murine models, e.g. diet-induced hepatic
insulin resistance,78 PGC1a overexpression,79 liver-specific
deletion of dynamin-related protein GTPases for division/
fission (dynamin-related protein 1 [Drp1]) and fusion (Opa1),80

or of mitochondrial fission factor,81 few clinical studies exam-
ined mitochondrial quality control. The higher mitochondrial
content despite lower oxidative capacity observed in some
studies would suggest impaired removal of dysfunctional
mitochondria, which is supported by the loss of the mitophagy-
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associated adaptor protein BNIP3 (BCL2-interacting protein 3)
with progression of NAFLD and reduction in OPA1, mitofusin 2,
and pDRPS616 in NAFL and definite NASH.38 Liver-specific
pDRPS616 deletion leads to impaired FAO and mitochondrial
enlargement, resulting in megamitochondria,80 a typical sign of
human NASH. Another study reported a reduction only in the
fusion marker MFN2, in a NASH cohort with and without T2DM,
despite impressive mitochondrial ultrastructural alterations,
e.g. swelling, autophagosome activity and matrix degenera-
tion.69 Among other factors, excessive ROS production could
impede the physiological fission/fusion cycles, resulting in
mitophagy arrest and leaving hepatocytes with high amounts of
damaged mitochondria that cannot be recycled, but inducing
the mitochondrial unfolded protein response and cytochrome
c-related apoptosis.82

Mitochondrial alterations in xenobiotic-induced
fatty liver diseases
Fatty liver diseases can also be induced by some xenobiotics,
including pharmaceuticals and environmental toxicants. How-
ever, in contrast to metabolic disease-related liver diseases,
there are only a few clinical studies reporting mitochondrial
alterations in xenobiotic-induced fatty liver diseases, likely due
to their relatively low incidence and the challenge of diag-
nosis.83 Hence, the following sections are mainly based on
experimental studies (Fig. 1).

Abnormalities in energy metabolism

Xenobiotic-induced fatty liver diseases can present as two
main entities, associated with distinct mitochondrial alter-
ations. Microvesicular steatosis, a rare but potentially fatal
liver lesion, is caused by severe inhibition of mitochondrial
FAO,7,83 whereas macrovacuolar steatosis is not a pure
mitochondrial disease and is often asymptomatic in the short
term.7,83 Lipid accumulation in macrovacuolar steatosis re-
sults partly from moderate impairment of mitochondrial FAO,
but may also result from other mechanisms e.g. activated de
novo lipogenesis and reduced very low-density lipopro-
tein secretion.84–86

There is a number of mechanisms by which xenobiotics can
induce inhibition of mitochondrial FAO (Fig. 1), which are not
mutually exclusive: (i) direct FAO impairment, e.g. through in-
hibition of CPT1 and acyl-CoA dehydrogenases;87,88 (ii)
reduced PPARa expression and activity;89 (iii) inhibition of ETC
complexes, limiting NAD+ and FAD availability for FAO;7,87,90

(iv) mtDNA depletion, which impairs ETC activity and FAO.7,8

Of note, alcohol-related microvesicular steatosis might be
secondary to these four mechanisms.86,91,92 Interestingly,
alcohol-related alterations in both mitochondrial FAO and ETC
activity could result from impaired mitochondrial targeting of
methionine adenosyltransferase a-1 (MATa1).93 Reduced
mtDNA after repeated or chronic alcohol intoxication seems to
be linked, at least partly, to the blockage of mtDNA replication
caused by the accumulation of unrepaired oxidative DNA le-
sions.91,94 Alcohol-related mtDNA depletion could also result
from impairment of the NRF1 signalling pathway.95
ary 2023. vol. 78 j 415–429 423



Another mechanism of xenobiotic-induced impairment of
mitochondrial FAO and steatosis is intrahepatic L-carnitine
depletion (Fig. 1), which can result from the formation and renal
excretion of xenobiotic-carnitine derivatives.87,96,97

Like NAFLD, xenobiotic-induced macrovacuolar steatosis
can progress in the long-term to steatohepatitis and
cirrhosis.7,83,98 Regarding drugs, progression to steatohepa-
titis has been described in people treated with anti-anginal
agents, amiodarone and perhexiline, and the antifolate
drug methotrexate.7,99 Carbon tetrachloride, 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD) and alcohol abuse can
also induce steatohepatitis.98,100,101

Although the mechanisms underlying the xenobiotic-
induced transition of steatosis to steatohepatitis may be
complex, altered mitochondrial function likely plays a signifi-
cant role. For instance, amiodarone- and perhexiline-induced
impairment of the ETC favours ROS overproduction and lipid
peroxidation, which in turn could promote necroinflammation
and fibrosis,102–104 as suggested for ethanol-induced steato-
hepatitis.101,105 Ethanol-induced mitochondrial ROS over-
production may result from impaired ETC, but also higher
CYP2E1 levels in these organelles.22,105

It remains unclear why some xenobiotics induce severe
mitochondrial alterations and microvesicular steatosis in a few
people, but only moderate alterations and macrovacuolar
steatosis in a larger number of individuals. An attractive hy-
pothesis is the presence of genetic predisposition affecting
basal mitochondrial function, e.g. congenital defects in en-
zymes involved in mitochondrial FAO, OXPHOS and antioxi-
dant defence.103,106,107 For instance, polymorphisms (or
mutations) in the gene encoding DNA polymerase c may
favour mitochondrial failure and microvesicular steatosis
induced by valproic acid and some antiretroviral nucleo-
side analogues.103,106

Changes in mitochondrial dynamics

The altered mitochondrial dynamics induced by some xenobi-
otics have mostly been investigated in the context of alcohol-
related fatty liver disease. Recent experimental studies sug-
gested that alcohol-related steatosis could result from
abnormal activation of mitochondrial fission via increased
expression of Drp1.108,109 Interestingly, ethanol-stimulated
Drp1 expression resulted from upregulation of orphan NR4A1
(nuclear receptor subfamily 4 group A member 1) signalling and
p53 activation.108 Drp1 upregulation might also be involved in
aflatoxin B1-induced exacerbation of steatosis in the liver of
HBV-transgenic mice and HBV-X protein-expressing human
hepatocytes.110 Finally, several investigations suggested that
acetaminophen promotes mitochondrial fission directly via
increased Drp1 expression and indirectly by suppressing fusion
proteins such as mitofusin 1 and OPA1.111 However, it remains
to be confirmed whether acetaminophen-induced mitochon-
drial fission is pathogenic in the few reported cases of hepatic
steatosis caused by this painkiller.7,112

Hepatic mitochondrial alterations in the mutual
interaction of xenobiotics and metabolic
disorders
Some xenobiotics can aggravate metabolic disease-related
liver diseases either by worsening preexisting hepatic lipid
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deposition and/or by hastening the transition from fatty liver to
NASH.23,113 Although most knowledge is derived from rodents
and cultured cells, several clinical studies also support the
interaction between some xenobiotics and metabolic dis-
eases.23 From a clinical perspective, compelling evidence has
been gathered for drugs, e.g. methotrexate, stavudine, corti-
costeroids, irinotecan and tamoxifen.23,114–116 Alcohol abuse
also increases the risk of aggravating fatty liver disease in
people with obesity.23,117 Experimental investigations further
demonstrated worsening of obesity-associated fatty liver dis-
ease by environmental toxicants, e.g. bisphenol A, TCDD,
perchloroethylene and nonylphenol.23

Some studies pointed to abnormal mitochondrial function as
a mechanism underlying xenobiotic-induced aggravation of
metabolic disease-related fatty liver diseases.23 Obese
ethanol-intoxicated mice showed reduced hepatic ATP content
and mRNA levels of Nrf1, Ppargc1a (encoding PGC1a) and
Ppara (encoding PPARa).118,119 Reduced CPT1 expression
might explain why exposing pregnant rats to bisphenol A ex-
acerbates hepatic lipid accumulation in male offspring fed a
high-fat diet after weaning.120 Of note, methotrexate, stavu-
dine, corticosteroids and tamoxifen can impair mitochondrial
function through different mechanisms.114,121 However, no
studies have shown an additive/synergistic effect of obesity
and these drugs on mitochondrial function or quality control in
the liver.

The zebrafish model has been useful to examine NAFLD and
toxicant-induced liver injury.122,123 A recent study showed that
ethanol and benzo[a]pyrene exposure triggers the progression
of NAFL to NASH in obese zebrafish larvae.124 This was most
probably due to aryl hydrocarbon receptor-dependent mito-
chondrial accumulation of labile iron, thereby impairing mito-
chondrial respiration.125 Interestingly, combined ethanol- and
benzo[a]pyrene-induced NAFLD progression was also repro-
duced in human HepaRG cells incubated with a mixture of
stearic and oleic acids.126 Moreover, the transition of steatosis
to a NASH-like state in HepaRG cells was associated with
mitochondrial ROS overproduction, lower mtDNA levels and
reduced mitochondrial respiration.126

Therapeutic implications
Caloric restriction

Low-energy nutrition and bariatric (metabolic) surgery currently
represent the most efficient strategies to treat or even reverse
common metabolic disorders (Fig. 4). While some studies have
addressed the acute effects of hypercaloric nutrition on hepatic
energy metabolism in lean humans,26,127 Luukkonen et al.
recently described the effects of a 6-day ketogenic diet in
overweight/obese volunteers using co-infusion of [D7]glucose,
[13C4]b-hydroxybutyrate and [3-13C]lactate.128 In the face of a
3% weight loss, liver fat content decreased by 31% despite
elevated plasma free fatty acid concentrations, which was
associated with multiple adaptations including lower hepatic
CS flux – possibly due to 1.67-fold higher mitochondrial
NADH levels.128

Bariatric (metabolic) surgery

Despite the impressive effect of surgery on body weight and
NAFLD in humans, evidence of its effects on hepatic mito-
chondrial function, i.e. increased OXPHOS capacity, CS
ary 2023. vol. 78 j 415–429



Review
activity, ETC gene expression and reduced oxidative stress,
has mainly come from studies in rodents.129,130 One clinical
study performed liver biopsies during Roux-en-Y gastric
bypass surgery or sleeve gastrectomy and Tru-Cut percuta-
neous liver biopsies 12 months later in people with obesity.
Along with metabolic improvements and a 2-point reduction in
NAS, hepatic respiration (specifically from ETC complexes II
and IV) increased along with a higher mtDNA/nDNA ratio in-
dependent of the type of surgery.37 This mirrors the gradual
increase in skeletal muscle respiration from ETC complex II and
expression of genes involved in mitochondrial function 12
months after metabolic surgery.131

Physical exercise training

Exercising improves mitochondrial features in skeletal muscle
and clinical features of NAFLD.3,132 There is some evidence for
exercise-mediated mitochondrial adaptation in rodent livers.133

In humans, a 3-month combined aerobic and resistance
training programme led to a decrease in hepatic fat content in
people with or without NAFL, but no changes in the hepatic
ATP/Pi ratio,134 which of course does not exclude other effects
on liver mitochondrial functionality.

Pharmacological treatments

Metformin has been the first-line antihyperglycaemic drug for
T2DM, which among a plethora of systemic effects also tar-
gets mitochondrial functionality135 (Fig. 4), by inhibiting ETC
complex I (with subsequent AMPK activation at high con-
centrations) or AMPK-independent inhibition of mitochondrial
glycerol-3-phosphate dehydrogenase and the subsequent
rise in cytosolic redox state and fall of lactate-mediated
gluconeogenesis.136,137 However, no reports from prospec-
tive placebo-controlled studies have addressed the effects of
metformin on hepatic mitochondrial function in humans.
Interestingly, a phase IIa trial with a direct AMPK activator
(PXL770) failed to show an improvement in liver fat content in
people with MRI-diagnosed steatosis,138 which suggests that
AMPK activation alone may not be sufficient to alle-
viate NAFLD.

Because of their potential to stimulate hepatic b-oxidation
and restore mitochondrial function, thyroid hormone-related
strategies have recently attracted interest as treatments for
NAFLD. They include thyroxin and its analogues, iodothyr-
onines and more recently thyromimetics.139 Liver-selective
thyroid hormone receptor agonists should improve NAFLD
independently of weight loss and without (extra-)hepatic side
effects. In a phase II placebo-controlled trial, the liver-
directed, orally active, selective THRb agonist, resmetirom
(MGL-3196), resulted in lower liver fat content by MRI-proton
density fat fraction, in a >2-point NAS reduction, but – despite
decreased serum fibrosis markers – did not affect fibrosis as
assessed by histology.140 Resmetirom is currently being
studied in larger clinical trials in NASH cohorts (MAESTRO-
NASH/NCT03900429).

Finally, mitochondrial uncouplers that use an ATP synthase-
independent pathway to generate heat from dissipation of the
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proton gradient cause effective weight loss, but were banned
from clinical use, mainly because of the risk of life-threatening
hyperthermia.141 Currently, several compounds with mito-
chondrial protonophore properties are being developed and
showed some beneficial effects on dyslipidaemia and steatosis
in animal models142 (Fig. 4).

Given the dynamic mitochondrial adaptation that occurs
during the development and progression of NAFLD, upregula-
tion of intrahepatic mitochondrial pathways will not necessarily
be beneficial. Consequently, stimulating oxidative metabolism
might accelerate oxidative stress, lipid peroxidation and inflam-
mation in NASH.73 In this context, current pharmacological
concepts mainly act indirectly on the liver via improvement of
adipose tissue function either due to weight loss (liraglutide,
semaglutide, empagliflozin, dapagliflozin) or due to adipose tis-
sue remodelling (pioglitazone)3 (Fig. 4). Novel strategies, such as
dual agonists addressing glucagon-like peptide-1 and glucagon
receptors, could combine both the weight losing effect with
direct effects on hepatic mitochondrial functionality to more
efficiently treat NAFLD, as demonstrated for cotadutide in mu-
rine NASH models.143

Regardless of the potential benefit of the aforementioned
pharmacological treatments in NAFLD, physicians should be
aware that the fatty liver is more susceptible to drug-induced
injury. Hence, people with NAFLD who are prescribed new
drugs should be closely monitored for drug-induced liver
injury,144,145 which is particularly relevant in the context of
possible mitochondrial toxicity.146

Conclusion
Fatty liver diseases due to common metabolic diseases or
xenobiotics share several similarities, but also substantial
differences regarding toxic effects on mitochondrial func-
tionality. Nevertheless, metabolic disorders and alcohol
abuse and/or pharmaceutical drugs frequently go hand-in-
hand and can potentiate each other’s toxic effects on en-
ergy metabolism,23,117 which makes it difficult to delineate
their specific action in fatty liver disease. Additionally, the
assessment of the various features of hepatic mitochondrial
functionality and quality control remains challenging in
humans (Table 1), for whom only expensive and time-
consuming techniques or invasive tests are currently
available.147 Thus, detailed examination of hepatic mito-
chondria calls for non-invasive methods, which should also
enable more time-course studies to follow disease progres-
sion,37,40 and monitor the effects of drugs affecting hepatic
energy metabolism in clinical trials. In this context, novel
biomarkers of abnormal mitochondrial function, e.g. extra-
cellular vesicles148 or circulating cell-free mitochondria,149

are currently being evaluated. Such developments might
also help to identify drugs and other xenobiotics that can
aggravate mitochondrial alterations in NAFLD. Finally, such
biomarkers will not only increase our knowledge on the
pathophysiological role of mitochondria, but will further
enable validation of targets aimed at restoring defective
mitochondrial function in fatty liver diseases, particularly by
ary 2023. vol. 78 j 415–429 425



concomitantly improving FAO and ETC activity to prevent
oxidative stress.3,10,73 Aside from the aforementioned thera-
peutic concepts, further innovative strategies could aim to
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increase PGC1a activity73,79 and mitochondrial MATa1
levels93 or reduce the expression of methylation-controlled J
protein150 and OPA1.80,151
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