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Abstract

This work describes an original methodology to simulate the compaction behavior of carbon-

bonded alumina refractories (Al2O3 –C) by taking explicitly into account the microstructure

of each composite phase. The Discrete Element Method (DEM) is used to model the compos-

ite as a mixture of fine and coarse alumina particles and graphite flakes. The binder phase,

which typically represents 20% of the volume fraction, is accounted for by a specific con-

tact law which adjusts the contact rigidity according to the indentation between the coated

particles. Small indentations lead to a soft response while above a critical indentation, the

contact becomes much stiffer when alumina particles are in direct contact. This simple model

incorporates the granular behavior of the composite as well as the continuous matrix of the

binder. matrix. Numerical composites with various compositions are numerically submitted

to closed-die compaction. We show that the densification behavior during compaction de-

pends primarily on the binder phase for the volume fractions studied here. The contribution

of each phase (alumina, graphite, ...) to the total axial stress is investigated, thus providing

new insights into the complex behaviour of these composites.

Keywords: discrete element method, powder compaction, refractory composites, Al2O3 –C

refractories, powder densification behavior, closed-die compaction

1. Introduction1

Carbon-bonded alumina refractories (Al2O3 –C) are heterogeneous and complex granular2

composites made of coarse alumina, graphite flakes, and a bonding matrix (mixture of fine3
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alumina grains and binder). These composites are used for steel casting applications, e.g., for4

stoppers, ladle shrouds, or submerged nozzles. These refractory parts are designed to control5

the flow and velocity of the liquid steel and to prevent oxidation of the steel. The final6

refractory properties are governed both by the properties of the different composite phases7

and by the processing stages (mixing, compaction, and firing). Depending on the final shape8

of the industrial part, the powder composite may be compacted isostatically or uniaxially.9

The compaction may lead to density gradients along the part geometry resulting in thermo-10

mechanical properties mismatch. These mechanical property heterogeneities may induce11

stress concentrations, which, associated with extreme loading conditions, can lead to failure.12

Hence, understanding the link between the composite microstructure, its evolution during13

processing and the final thermo-mechanical properties is important for the development of14

new products and the improvement of the industrial process.15

Because the powder compaction step is central to the forming of refractory composite16

materials, it is paramount to understand its effect on their microstructure evolution. In this17

context, compaction has been investigated in the literature both experimentally and numer-18

ically. Some experimental studies, for example, focused on investigating the densification19

behavior of a composite mixture composed of hard and soft particles during closed-die or20

isostatic compaction [1] [2] [3]. From a numerical point of view, the compaction stage has21

been studied mostly by the Finite Element Method (FEM) which treats the powder as a22

continuum and uses appropriate constitutive equations. The powder parameters applied in23

these equations need to be identified through a complex experimental characterization both24

for ceramic powders [4, 5], powders used for the pharmaceutical industry [6, 7], metal powders25

[8, 9], and refractory composites [10].26

An alternative method to model the compaction behavior of powders is the Discrete27

Element Method (DEM), which explicitly considers the powder as a collection of discrete28

particles. The DEM may be used more effectively than FEM to clarify the link between29

the particulate microstructure and the behavior of the powder prior to and post-compaction.30

This approach of modeling the behavior of granular matter was pioneered by Cundall and31

Strack in 1979 [11] for geomaterials and has spread to engineering powder materials since32

then. Employing DEM [12, 13], or the multi-particle finite element method (MPFEM) [14,33
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15, 16, 17] on model powder materials, the compaction stage has been investigated. Some34

authors also studied the compaction behavior of model powder materials containing different35

particle sizes [18, 19] and particle size distributions [20]. In particular, the DEM has proved36

useful to understand the compaction of composite powders with soft (typically metallic) and37

hard (typically ceramic) particles mixed together [18].38

This paper is mainly focused on the use of DEM simulations for modeling the compaction39

behavior of carbon-bonded alumina composites that are considered as model refractory ma-40

terials, used in the steel casting process. These composites are made of hard (alumina and41

graphite) and soft (binder) phases and may be shaped via two routes: isostatic or closed-die42

compaction, depending on the final application.43

The major part of the numerical and experimental studies concerning the powder com-44

paction is related to composites made of metal-ceramic materials for the powder-metallurgy45

process. DEM simulations of the compaction of homogeneous refractory materials (alumina,46

magnesia) have been reported with various sizes of particles [20, 21]. However, as far as47

we know, no study has been reported yet in the literature regarding compaction simulations48

using DEM to model refractory composites on a mixture of hard particles and a soft binder.49

Especially, a direct link to the real microstructure is still missing in these works. The aim50

of this paper is to describe a methodology, based on DEM simulations, to account for the51

composite microstructure.52

The present article is organized as follows. First, we present some essential information53

on the typical composite microstructure to be simulated. Second, the main characteristics54

of the DEM model, and in particular the contact laws are described. The composite in55

DEM is represented by a mixture of hard particle clusters (coarse alumina), single particles56

(fine alumina) and bonded particles (graphite). An original approach is presented to account57

for the binder as an elastic soft-shell covering alumina particles. The capability of this58

modeling approach to capture the densification behavior of complex refractory composites59

is highlighted by analysing the simulations at the scale of each phase. Experimental data60

on closed-die compaction are used throughout the paper for critical comparison with the61

simulation results.62
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2. Carbon-bonded alumina composites63

A schematic representation of the composite refractory microstructure studied in this work64

is shown in Fig. 1 a). It can be thought of as an overlapping hierarchy, with a mesoscale made65

of coarse hard grains (white fused alumina with 250 µm average size) and graphite (<400 µm)66

reinforcing a matrix; itself constituted at microscale of fine grains (calcined alumina <50 µm)67

embedded into a pyrolytic carbonaceous binder (a mixture of resin and solvent).68

Figure 1: a) Schematic representation of a carbon-bonded alumina composite aggregate, composed of coarse

grains and graphite flakes embedded into a continuum matrix. b) 2D slice from a 3D fragment image accessed

through X-ray tomography analysis. c) Scanning electron microscope (SEM) image.

X-ray computed tomography analysis has been performed on the green mix aggregate69

sample to examine the overall microstructure arrangement after compaction (Fig. 1 b). The70

experiment consists of taking X-ray images of a sample tilted by a small angle for each image.71

The whole volume of the imaged specimen is re-constructed by assembling the digital images.72

The resulting 3D image is a superimposed projection of a volume in a 2D plane [22]. The73

observed aggregate has 1.2 mm size and the analysis was performed applying a resolution74

of 1.0 µm voxel size and 30 keV energy spectrum. Note that the gray levels in a CT slice75
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image correspond to the X-ray attenuation, i.e., reflecting the proportion of X-rays scattered76

or absorbed as they pass through each voxel. The X-ray attenuation is highly dependent on77

the X-ray energy, material density, and composition. Typically, alumina grains are denser78

and absorb more photons by the beam than porosity and graphite.79

The geometry of coarse grains is dispersed in shape but generally angular, whereas the80

graphite flakes are mostly planar. The coarse alumina grains are visualized in different81

dimensions (average size of 250 µm). The graphite flakes exhibit some deformation due to82

the compaction stage. Three main phases could be distinguished: graphite, a bonding matrix83

(fine alumina and binder), and coarse alumina.84

SEM (scanning electron microscope) analysis is also carried out on the final product85

(fired), displayed in Fig. 1 c). The image highlights mainly the matrix, appearing in grey at86

low magnification, which is composed of fine calcined alumina grains and a pyrolyzed binder.87

Fine alumina grains are also dispersed in shape, but some exhibit rounded shapes. Some88

graphite micro-cracks can be observed that are a consequence of the compaction and of the89

firing itself. However, the alumina grains remain unaffected.90

Four model composites are investigated with different compositions (Table 1) to reflect91

the typical microstructure of industrial composites. Hereafter, the term matrix refers to the92

group (fine alumina + binder). Mix R is considered as the reference composite. The matrix93

of Mix 2 is characterized by a lack of binder (and excess of fine alumina grains). Mix 3 has an94

overall depleted matrix (40 % on Mix 3 against 45 % volume fraction on Mix R, Mix 2, and95

Mix 4) and an excess of coarse alumina grains and graphite. Mix 4, on the opposite exhibits96

a matrix with an excess of binder and lack of fine alumina grains. The objective in Mix 297

and Mix 3 is to generate a model composite with an excess of hard solid grains. In contrast,98

Mix 4 presents an excess of soft binder. Mix R can be considered as an intermediate to the99

other mixes.100

3. Modeling particulate and continuous materials with DEM101

An in-house DEM code dp3D, dedicated to engineering materials for modelling the com-102

paction of refractory composites, is used. Spherical discrete elements are generated to model103

each phase of the composite with specific contact laws that describe the mechanical interac-104
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Refractory Coarse alumina Fine alumina Graphite Binder

Mix R (reference) 33 22.5 22 22.5

Mix 2 33 27.5 22 17.5

Mix 3 36 20 24 20

Mix 4 33 20 22 25

Table 1: Model refractory compositions in volume fraction %.

tions between them. As classically implemented in DEM, the spherical particles are displaced105

in the first half time-step according to the imposed increment in strain following the affine106

solution (homogeneous deformation of the sample). Contact forces are used to compute the107

total force acting on each particle. Newton’s second law of motion enables the computation108

of the acceleration and an explicit time-integration scheme is used (velocity-Verlet) to obtain109

the new position of particles before a new affine strain increment is imposed. New contacts110

and lost contacts are updated at each time-step.111

The graphite flakes and coarse alumina are represented as particle clusters (particle as-112

semblies linked by elastic bonds). The fine alumina particles are modeled as single spheres113

with no bonds to represent a granular macroscopic behavior, characteristic of green materials114

(Fig. 2). The clusters (coarse alumina and graphite) are considered fully dense (relative115

density RD=1). This was attained simply by imposing an initial indentation between inter-116

nal cluster particles such that the macroscopic relative density of the cluster is unity. This117

indentation is of the order of 0.29R, where R is the sphere radius.118

The graphite flakes present an elasto-plastic behavior, and may deform during compaction119

(particle bonds may deform and break, thus bringing some plasticity at the microscopic and120

macroscopic scales). The bonds in the coarse alumina clusters cannot fracture, contrary to121

the graphite. The bond interactions inside the coarse alumina particles are not calculated.122

In other words, spheres inside large alumina particles serve only to mesh them. Only spheres123

at the surface of these large alumina particles can interact mechanically with other particles.124

This type of cluster is generally referred as clump in the literature [23, 24].125

The external and internal interaction contact models are summarized in Table 2 and126

schematically described in Fig. 3. The contact models (Hertzian and Bond) are described in127
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Figure 2: Typical discrete composite after compaction: from blue (no bonds) to red (with bonds). Coarse

alumina and graphite are considered as an assembly of particles linked by bonds (cluster), and fine alumina

as single non-bonded particles. Note how graphite flakes may deform while coarse alumina particles cannot.

the next section.128

Composite phase DEM model External interactions Internal interactions

Fine alumina Single particle Hertz (Eq. (1)) -

Coarse alumina Particles cluster Hertz (Eq. (1)) None

Graphite Particles cluster Hertz (Eq. (1)) Bond model (Eqs. (7), (8))

Table 2: Summary of the applied DEM model for each coarse alumina, fine alumina, and graphite phases (if

single particle or particle cluster), and the external and internal interaction contact models.

3.1. Contact models129

The Hertzian model is used to compute the normal force at the contact between two elas-130

tic particles, together with the Derjaguin Muller and Toporov (DMT) adhesion theory [25],131

which adds a tensile force to the standard repulsive Hertzian force. The normal force acting132

between two non-bonded particles with radii ri and rj, and elastic properties (Ei, νi) and133

(Ej, νj), respectively, is given by an Hertzian repulsive component (NHertz) and an adhesive134

tensile component (NDMT ) (compressive forces are considered as positive) [25, 26]:135

136

Ne = NHertz +NDMT =
4

3
E∗R∗1/2δ3/2n − 2πωR∗ (1)
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Figure 3: Schematic representation of the different type of contacts between the different discrete phases (fine

alumina, coarse alumina and graphite).

where the effective Young’s modulus between is:137

E∗ =

(
1− ν2i
Ei

+
1− ν2j
Ej

)−1

(2)

the equivalent radius R∗ is:138

R∗ =

(
1

ri
+

1

rj

)−1

(3)

and where δn is the normal indentation, and ω = 2γ is the work of adhesion (with γ the139

surface energy). Decohesion occurs in the DMT model for a pull-off force NDMT = 2πωR∗.140

The contact radius a is given by:141

a2 = R∗δn (4)

Contacts may also transmit frictional force (Hertz–Mindlin model) in the sticking mode142

while the tangential force is limited during sliding by Coulomb friction (friction coefficient143

µ). The friction law is implemented in incremental form at each time step dt by the friction144

force vector T:145

dT = −8G∗avtdt |T| < µNHertz (5)
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146

T←− T

|T|
µNHertz |T| ≥ µNHertz (6)

where vt is the tangential relative velocity at the contact and G∗ is the equivalent shear147

modulus. Note that the condition for stick or slip (|T| < µNHertz) applies on the repulsive148

part of the normal force (NHertz) and not on the total force Ne. In the slip condition, the149

vector |T| is capped by µNHertz but its direction is incrementally modified (Eq. (6)).150

For bonded particles, the contact law is given by the analysis of [27] who studied the elastic151

response of bonded contact by the Finite Element Method (FEM). Two spherical particles152

(of the same material), connected to each other through a bond of radius ab, transmit normal153

and tangential forces, and resisting moments. The normal contact force (Nb) for a bonded154

contact is given by:155

Nb =
2ER∗

1− ν2
fN(a∗,Ψ)a∗uN (7)

where E and ν are the Young’s modulus and Poisson’s ratio of the particles, fN(a∗,Ψ) is156

a function that depends on the relative radius of the bond (a∗ = ab
2R∗ ), Ψ is a geometric157

factor which allows for bond interaction to be considered, and uN is the accumulated normal158

displacement at the contact [28]. The normal force can be either in compression (uN > 0) or159

in tension (uN < 0). The tangential contact force (Tb) is written as:160

Tb =
4ER∗

(2− ν)(1 + ν)
fT (a∗)a∗uT (8)

where the function fT (a∗) depends on the relative bond size a∗, and, uT is the accumulated161

tangential displacement vector at the contact. fN and fT values vary typically in between 1162

and 2. More details concerning the form of fN(a∗,Ψ) and fT (a∗) used in this work can be163

found in earlier works [27, 28, 29, 30].164

The maximum stress in tension (σN) and in shear (σT ) can be evaluated by using the165

Potyondy’s model [31]:166

σN =
Nb

πab2
− 4
|MT |
πab3

(9)

167

σT =
Tb
πab2

+ 2
|MN |
πab3

(10)

where MN and MT are the bonds resisting moments in the normal and tangential directions,168
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respectively:169

MN = − 8ER∗3

(2− ν)(1 + ν)
fT (a∗)θN (11)

170

MT = − 2ER∗3

(1− ν2)
fN(a∗,Ψ)θT (12)

where θN and θT are the accumulated relative rotations in the normal and tangential direc-171

tions, respectively.172

Regarding the failure criteria applied in our work at a bonded contact, Eqs. (9) and173

(10) give at each time step an evaluation of the stress in tension and shear acting on the174

bond. If one of these stresses is above the tension strength (ΣN) or shear strength (ΣT ), the175

bond is considered as broken. A fractured bond may transmit a shear force according to a176

Hertz-Mindlin friction law (Eq. (6)). Correspondingly, a fractured bond in shear continues177

to transmit a resisting moment in the tangential direction but none in the normal direction.178

3.2. Binder shell model179

The contact laws described above are classic laws for elastic and bonded interactions.180

The very soft binder phase that coats hard particles (fine alumina particles or coarse alumina181

particles) introduces a different issue. We simply take the binder into account by stating182

that the stiffness of a contact depends on the mutual indentation of particles. For a small183

enough indentation, the contact stiffness is dictated by the binder (soft phase) whereas for184

an indentation larger than a critical value (linked to the binder thickness on the particles),185

the stiffness is dictated by the hard alumina (hard phase). Note that we have observed that186

graphite flakes are more difficult to be coated properly with binder. Thus, the binder model187

applies only to fine and coarse alumina particles. Still, contacts between an alumina particle188

and a graphite flake are affected by the binder but with a smaller thickness.189

Consider two hard particles with Young’s moduli (Ei, Ej) coated by a binder shell with190

thickness ti and tj. The total radii of the particles (with the binder) are ri and rj. We note191

Ebinder, the Young’s modulus of the binder. In this model, the effective Young’s modulus192

(Eq. (2)) used in Eq. (1) is simply multiplied by a factor Ealumina

Ebinder
when entering the hard193

phase branch. The transition from the soft phase to the hard phase depends on the mutual194

indentation and on the thickness of the binder.195
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Figure 4: Schematic representation of a contact between two hard particles coated with a binder of thickness

ti and tj . a) the contact remains within the soft elastic binder phase (branch 1). b) when the indentation

reached a critical value i.e., condition δn ≥ ti + tj applies, the elastic modulus of particles i and j are

multiplied by a factor α and the contact enters branch 2. Once in branch 2, the contact may i) continue to

load in compression, ii) unload, or iii) fail (if δn ≤ (ti + tj)
(
1− 1

α

) 2
3 ).

Fig. 4 graphically summarizes the binder model in the case of two coated particles (fine196

or coarse alumina). In branch 1 (soft phase) and in the general case of two coated (alumina)197

or non-coated (graphite) particles:198

NHertz =
4

3

(
1− ν2i
αiEi

+
1− ν2j
αjEj

)−1

R∗1/2δ3/2n 0 < δn ≤ ti + tj (13)

with α = Ebinder

Ealumina
for alumina and α = 1 for graphite. If the contact has not entered previously199

branch 2 (hard phase), any unloading in branch 1 is fully reversible. If the indentation reaches200

the critical indentation ti + tj:201

NHertz =
4

3

(
1− ν2i
Ei

+
1− ν2j
Ej

)−1

R∗1/2δ3/2n δn > ti + tj (14)

Two coated alumina particles interact directly through the hard alumina phase in branch202

2. Note that in our case the hard phase stiffness is much larger than the binder’s stiffness.203

Thus, the indention increase is very small in branch 2.204
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If the contact unloads from branch 2, (Fig. 4 ii), the elastic properties in eq. (14) are kept205

constant. This is to mimic the extrusion of the binder at the contact between the two hard206

particles. The contact may fail (Fig. 4 iii) if the condition: δn ≤ (ti + tj)
(
1− 1

α

) 2
3 applies.207

In that case no normal force is transmitted at the contact.208

Hysteresis is introduced in the model since a contact that has entered branch 2 will not209

unload reversibly through branch 1. It should be clear that this model is a very simplistic210

idealization of the complex behaviour of hard particles coated with a soft binder. In partic-211

ular, the binder plasticity (or viscoplasticity) is oversimplified. Still, our model allows for a212

simple representation of particles that behave with a small stiffness when slightly indented213

(beginning of the compaction) and exhibit a much larger stiffness when indented above a214

critical value (end of the compaction).215

As stated above, the binder model applies only to fine and coarse alumina particles. For216

contacts between alumina particles and graphite flakes, the total binder thickness (ti + tj) in217

Eqs. (13) and (14) is solely given by the alumina binder thickness. Thus, contacts between218

alumina and graphite particles are affected by the binder, but with a lesser thickness, which219

models very crudely the poorer coating of the graphite flakes.220

3.3. Binder thickness calculation221

The binder shell thickness of each composite (Mix R to 4) can be related to its composition,222

calculated from the volume fraction of each component (coarse and fine alumina, graphite,223

and binder). We use subscripts ca, fa and g for coarse alumina, fine alumina, and graphite,224

respectively.225

Note that all spherical discrete elements have the same diameter (7.8 µm), which corre-226

sponds to the mean size of the fine alumina particles. This allows for more efficient CPU227

processing of contact detection in the DEM code. The coarse alumina cluster (made approxi-228

mately of 4,600 spherical particles) is about 135 µm in size. For simplicity, it is approximated229

to be a sphere-like cluster. The graphite flake (made of 1,070 spherical particles) is repre-230

sented by a parallelepiped with dimensions of 121 µm× 116 µm× 17 µm.231

The binder volume fraction Vf(binder) is:232

Vf(binder) = (Vbinder(ca) + Vbinder(fa))/(Vca + Vfa + Vg) (15)
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where Vbinder(ca), Vbinder(fa) are the total binder volumes surrounding the coarse alumina clus-233

ters and fine alumina particles, and Vca, Vfa, and Vg are the coarse, fine alumina, and, graphite234

volumes, respectively. We assume that the binder thickness on coarse alumina and fine alu-235

mina particles is the same, and hereafter noted t. Vbinder(ca) and Vbinder(fa) can be simply236

computed from the number of coarse and fine alumina particles introduced in the simulation237

(nca, nfa) and their radii (rca, rfa):238

Vbinder(ca) = nca
4

3
π(r3ca − (rca − t)3) (16)

239

Vbinder(fa) = nfa
4

3
π(r3fa − (rfa − t)3) (17)

Table 3 lists the typical numbers of discrete elements and particles introduced in simulations240

once the number of coarse alumina clusters is fixed for each mix. The total number of discrete241

elements is characteristic of the Representative Volume Element chosen for our simulations242

(see section 5).243

Mix phase binder number of particles total number of

thickness (µm) discrete elements

Coarse alumina 0.774 8

Mix R Fine alumina 0.774 53,695 117,605

Graphite - 25

Coarse alumina 0.569 8

Mix 2 Fine alumina 0.569 54,589 118,499

Graphite - 25

Coarse alumina 0.893 8

Mix 3 Fine alumina 0.893 53,199 117,109

Graphite - 25

Coarse alumina 0.771 10

Mix 4 Fine alumina 0.771 53,192 132,812

Graphite - 31

Table 3: DEM main parameters for each composition.
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3.4. Macroscopic stress calculation244

The macroscopic stress tensor at the scale of the entire packing is computed by using245

the total contact force at each contact (normal and tangential components) and the branch246

vector connecting the centers of the two particles p and q in contact (lp,q). The macroscopic247

stress tensor is calculated from Love’s formulation [32] [33]:248

σij =
1

V

∑
contacts

(Ni + Ti)lpq,j (18)

where the summation is carried out on all contacts transmitting forces in the packing and249

where V is the sample volume, Ni and Ti are the ith components of the normal and tangential250

contact forces at the contact, respectively. lpq,j is the jth component of the lpq branch vector.251

When modeling a composite made of a mixture of distinct phases, it is also useful to252

calculate the macroscopic stress contribution of each phase separately. Thus, similarly to Eq.253

(18), the stress tensor associated to phase P is defined as:254

σij,P =
1

V

∑
contacts,P

(Ni + Ti)(r −
1

2
δn)nj (19)

where nj is the jth component of the contact normal vector n. And, r is the radius of the255

discrete element of phase P for a given contact. Note that in Eq. (19), the sum is made256

on all contacts that include a particle of phase P . The total macroscopic stress tensor (Eq.257

(18)) is retrieved by summing all contributions from each phase P from Eq. (19). This is258

because the branch vector in Eq. (18) is replaced here by the term (r − 1
2
δn)n.259

4. Generation of numerical microstructures and compaction simulations260

Fig. 5 depicts the three stages that are used to characterize a mix from its generation261

(Fig. 5 a) to the compaction (Fig. 5 c). The initial composite assembly is obtained by first262

randomly locating bonded particle clusters (graphite and coarse alumina) and non-bonded263

single particles (fine alumina) in a parallelepipedic periodic cell with (1x1x2) size ratio (Fig.264

5 a). At this stage (denominated gas of particles), there is no contact between constituents265

(fine alumina, coarse alumina, and graphite flakes) and the relative density is small (0.4). The266

number of discrete elements for each phase is chosen to obtain the correct composition for a267

given mix (see table 3). Note that by modifying the random seed used to produce a given268
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initial gas of particles, we can produce several packings that exhibit the same macroscopic269

properties (essentially the same composition), but with particles located differently. This is270

useful to evaluate dispersion in our simulations. We have used 5 different random seeds for271

each condition to generate error bars.272

Figure 5: DEM simulations steps performed in this work: a) Particles/aggregates are randomly located inside

a box with periodic conditions up to a density RD = 0.4. b) the packing is densified until RD = 0.6. c)

close-die or isostatic compaction simulations are used to investigate the minimum RVE size (section 5).

This initial microstructure is further jammed by isostatic densification under a small273

macroscopic pressure (0.02 MPa) up to a relative density of 0.6 (Fig. 5 b) [34, 35]. During274

this jamming stage, only elastic interactions are considered (Eq. (1)). Friction and adhesion275

between particles are set to zero. The jamming stage mimics the gentle rearrangement of276

particles in the die without any plasticity or bond breakage. The jammed numerical packing277

at RD=0.6 represents the mix in the die before compaction. This value of the RD before278

compaction has been chosen to be in agreement with experimental observations.279
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From the jammed state, the numerical microstructure can be compacted along two routes:280

closed-die or isostatic compaction (Fig. 5 c). In close-die compaction, the packing is com-281

pacted by imposing an axial strain-rate (ε̇z) in the z direction and a null strain-rate on282

x and y axis. Although we do not simulate the die itself, these conditions (uniaxial com-283

paction) should simulate correctly the typical stress conditions encountered by a composite284

powder during close-die compaction (far from the die). In isostatic compaction, an identical285

compressive strain-rate is imposed on all three axis.286

The imposed strain-rates are adjusted during simulations to ensure quasi-static conditions287

(force equilibrium). The normalized kinetic energy per particle [36] is used as the criterion288

for adjusting strain-rates:289

Ẽkin =
Ekin

nmax (Nr)
≤ 10−7 (20)

where Ekin is the total kinetic energy of the particle system, n the total number of particles,290

and max (Nr) is the maximum value for all contacts of the product of the normal force N291

and discrete element radius r.292

5. Representative volume element293

Figs. 2 and 5 show the typical simulation box with fine alumina, coarse alumina and294

graphite flakes to form a composite. In these figures, the total number of particles is approx-295

imately 600k. Because the microstructure is quite complex with large size ratio between the296

fine alumina and coarse alumina particle, a three-dimensional Representative Volume Ele-297

ment (RVE) must be found to ensure that the results do not depend on the particle number298

while minimizing the CPU time. We use two criteria to determine the RVE: convergence of299

the macroscopic stress (at RD=0.95) and isotropy. The macroscopic response of the com-300

posite should be isotropic (due to the random orientation of the graphite flakes). We tested301

this through isostatic compaction simulations performed on RVEs containing increasing num-302

ber of discrete elements. All RVEs are generated with the composition of mix R (reference303

composite).304

For each RVE, five different packings were generated using five different random seeds to305

locate the particles initially in the simulation box. A total of 30 RVEs are used from isostatic306
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compaction simulations to allow deviation measurement. The mean (Σm) and deviatoric (Σd)307

stresses are calculated and plotted in Fig. 6.308

Fig. 6 shows that too small RVEs with n ≈ 14000 discrete elements exhibit a large309

deviation, a non-isotropic behavior and a too large mean stress as compared to larger RVEs.310

For an RVE with n ≥ 380, 000 discrete elements, stresses converge with a much lower standard311

deviation. Larger RVEs confirm this trend with a clear convergence of both Σm and Σd. Fig.312

6 shows that an RVE with n ≥ 117, 605 discrete elements is large enough to ensure a good313

convergence of Σm and Σd with reasonable standard deviation.314

Figure 6: Evolution of the macroscopic deviatoric (Σd) and mean (Σm) stresses, in module, against the total

number of particles, at the end of isostatic compaction simulations (density RD = 0.95).

We have repeated the isostatic compaction RVE study for closed-die compaction con-315

ditions and observed a similar behavior. In other words, a total number of particles n of316

the order of 110, 000 is sufficiently large to ensure a good convergence and reasonable CPU317

time on both isostatic and closed-die compaction configurations. The typical total clock time318

using 8 CPUs (openMP parallelization) is 25 hours for n = 117, 605 discrete elements and is319

approximately linear with n. All results shown hereafter are obtained with n of the order of320

100, 000 particles (depending on the exact composition of the mix).321

6. Closed-die compaction simulations322

The closed-die compaction of the four mixes described in section 2 has been simulated.323

These simulations are compared with experimental data obtained from single-action pressing324

in a steel die for a maximum axial stress of 35 MPa. Experimental relative density was mea-325

sured by recording the piston displacement. The finite rigidity of the set-up was measured by326
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running piston to piston pressing (no powder), and the related displacement was subtracted327

to the piston displacement to obtain the correct relative density (RD).328

6.1. Phase properties329

The material parameters at the microscopic scale that enter contact laws (Eqs. (1), (5-330

12) have been determined to retrieve the macroscopic properties (elasticity and fracture) of331

alumina and graphite phases. The identification methodology has been described in details332

elsewhere for elasticity [35] and fracture [37]. Concerning the binder, the value of the elastic333

modulus has been calibrated using the macroscopic compaction curve of mix R (reference334

mix). This value (approximately 1 GPa) is much lower than for alumina and graphite phases,335

as it should for a pyrolytic carbonaceous binder.336

The material parameters chosen for the simulations are listed in Table 4. Note that the337

Poisson’s ratio has almost no effect and has been chosen as 0.2 for all materials for simplicity.338

The friction coefficient has also been set to a reasonable value of 0.2 for all contacts. We339

have observed that its effect is also of second order on the axial macroscopic stress during340

closed-die compaction.341

Binder stiffness is the material parameter that most affects the macroscopic compaction342

behaviour of refractory composites. Fig. 7 shows simulations for increasing Ebinder from 0.1343

to 3 GPa for mix R (with Ebinder = 1.0GPa, the value chosen for standard simulations).344

The simulation curves are typical of closed-die compaction with an initial flat curve that is345

characteristic of particle rearrangement followed by an increase of the axial stress when the346

various phases in the mix deform at the contact (binder coated particles, graphite flakes).347

The last stage of the compaction is an asymptotic increase of the stress when large RDs are348

attained. Fig. 7 shows that the relative density attained at the maximum axial stress (35349

MPa) decreases markedly as the binder rigidity increases. This indicates the importance of350

the binder phase (with approximately 20% volume fraction of binder) in such composites. The351

objective of the following sections is to better understand, using the wealth of information352

provided by DEM simulations, the role of the binder and its interaction with other phases.353
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Figure 7: Evolution of the axial stress during closed-die compaction of Mix R with various values of Ebinder.

Phase γ (J/m2) µ σN = σT (MPa) E (GPa) ν

Coarse alumina 28 0.2 - 380 0.2

Fine alumina 28 0.2 - 380 0.2

Graphite 28 0.2 150 35 0.2

Binder - 0.2 - 1.0 0.2

Table 4: Material parameters of contact laws used for compaction simulations for the four phase of the mixes.

6.2. Composites densification behavior354

Eq. (19) allows to evaluate the contribution of each phase of the mix on the total macro-355

scopic stress. The evolution of the axial stresses associated with each phase (fine coated356

alumina, coarse coated alumina, and graphite) and the total macroscopic axial stress against357

the relative density are shown in Fig. 8 for mix R. The binder phase contribution is not358

explicitly included here as it is gathered together with fine coated alumina and coarse coated359

alumina. Fig. 8 also shows the experimental data with a good agreement with DEM. This360

validates the calibration of the binder stiffness. Note in particular that the curve shape is361

well rendered by the DEM simulation.362

Fig. 8 allows sorting the contribution of each phase. Recall that a contact between two363

different phases (for example coarse alumina and fine alumina) is accounted in the contribu-364

tion of the two phases (with a 1/2 factor approximately since the branch vector in Eq. (18)365
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is replaced by the term (r − 1
2
δn)n). Fig. 8 indicates that the fine coated alumina particles366

and the graphite flakes have the most important contributions and that the coarse alumina367

coated particles have only a minor effect on the total stress. This result is not intuitive in368

a continuum mechanics framework since all phases have similar volume fractions and coarse369

alumina is the dominant phase in volume fraction (33%). It should be understood by recalling370

that the material to be compacted is a particulate material with particles interacting through371

their contacts. Because coarse alumina particles are large in size, they generate only a few372

contacts that do not percolate. The more numerous contacts between fine alumina particles373

have a much greater impact.374

Figure 8: DEM close-die compaction: contribution of the three different discrete phases (fine alumina, coarse

alumina, and graphite) to the axial macroscopic stress (final target: σz=35 MPa). Comparison of the total

stresses evolution during a DEM closed-die compaction simulation and experiment (Mix R).

The above result for mix R, is confirmed for the four mixes by examining the contribution375

of each phase. This is carried out in Fig. 9, which gives the axial stress contributions376

attained for a target density RD=0.90 for all four mixes. Again, the dominant effect of fine377

alumina and graphite phases on the total macroscopic stress is clear for the four mixes. Fig.378

9 demonstrates that the binder volume fraction (accounted for in the DEM simulations by379

varying the binder layer thickness (see section 3.2)) is the best predictor for the ranking of380

the four mixes in terms of their ability to densify. This ranking is in good accordance with381

experimental data for the four mixes. Note that DEM material parameters are the same382
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for all four mixes, while the mix composition is solely accounted for by varying the particle383

numbers and the binder thickness.384

Figure 9: Contribution of the macroscopic axial stress related to each discrete phase (coarse alumina, graphite,

and fine alumina) to the total macroscopic axial stress (σz) of composites (Mix R to 4), against the binder

volume fraction (in %), during close-die compaction simulations (target: density RD=0.90). Comparison

with experimental data obtained for the four mixes.

6.3. Contact behaviour of coated particles385

Figs. 8 and 9 give valuable information on the contributions of the hard phases (alumina386

and graphite) during compaction. However, they still conflate the effect of the binder with387

those phases. To better understand the effect of the binder on the composite densification388

during closed-die compaction, it is necessary to analyze the behavior at the particle contact389

length scale.390

For this purpose, the interactions between coated or non-coated particles has been recorded391

all along closed-die compaction for Mix R (reference composite) with a target of 35 MPa for392

the axial stress. Four typical contacts have been tagged and their normal contact force evo-393

lution was examined. The four contacts are coarse alumina - graphite (1), fine alumina -394

graphite (2), coarse alumina - fine alumina (3), and fine alumina - fine alumina (4). The395

evolution of a contact between two coarse alumina particles is not presented as this type of396

contact is very rare.397
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The evolution of the normal contact force (NHertz) (Eq. (1)), against the particle inden-398

tation normalized by the particle radius r, δ̃n = δn/r, is shown in Figs. 10 a1) and a2). Note399

that the initial normal force is negative (tensile force) as adhesion is introduced only in the400

compaction simulation (the jamming stage is conducted with neither friction nor adhesion).401

Figs. 10 a1) and a2) illustrate the stiff transition from a binder dominated contact to a hard402

phase dominated one, with the material parameters from table 4. The critical value at which403

this transition occurs depends on the total binder thickness that coats the two particles (ti+tj404

in Eqs. (13) and (13)). Since we assume that graphite flakes are poorly coated (t2 = 0), the405

transition for contacts involving graphite occurs at approximately half that for contacts with406

only alumina particles (≈ 0.2 and 0.4, respectively).407

When the transition is reached, the relative indentation δ̃n does not increase anymore408

(although the hard phase stiffness is finite) and the contact loads and unloads in the hard-409

phase branch. Contact (1) between a coarse alumina particle and a graphite flake exemplifies410

such a behaviour. Figs. 10b shows the history of the four contacts as relative density411

increases from 0.6 to 0.97. Contact (1) reaches the critical indentation (marked by a star)412

soon in the compaction and stays in the hard phase branch afterward. The contact is lost at413

approximately 0.87 RD but the memory of its transition to branch 2 is kept in the simulation414

and further reloading when the contact is resumed is characteristic of branch 2.415

Contact (2) exhibits a similar behaviour to contact (1) but is never lost during com-416

paction. Contact (3) shows the typical behaviour of a contact between two hard particles.417

The transition occurs at a rather large value of δ̃n (≈ 0.4) as the two particles are coated418

with binder. Contact (4) illustrates the fact that some contacts never reach branch 2 and419

keep a soft behaviour all along the compaction.420

These four examples represent only a fraction of the hundreds of thousands of contacts421

that arise in the simulation. Fig. 11 allows for a more quantitative understanding of how422

contacts evolve from the soft to the hard branch. It shows the fraction of contacts in a423

given branch for the five types of contact that have non-negligible contributions to the total424

macroscopic stress.425

Below RD=0.85, the fraction of contacts between fine alumina particles corresponds to426

approximately 80% of interactions in the soft binder (Fig. 11 a)) . Above RD=0.85, a gradual427
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Figure 10: DEM close-die compaction simulation (target σz=35 MPa, Mix R). a1) and a2) Normal Hertzian

contact force evolution (NHertz) versus normalized particle indentation (δn/r). Contacts type 1) to 4)

represent the particle contact between three components (coarse alumina, fine alumina, and graphite). Once

the contact reaches the critical indentation value (δ̃n), hard contacts appear. b) NHertz versus composite

relative density (RD). ∗ represents the point where the interactions move towards the hard branch.

decrease is observed, associated with an increase of the fraction of direct contacts between428

alumina particles (Fig. 11 b)). This increase explains in part the asymptotic behaviour of429

the axial stress at large densities (Fig. 8).430

In any case, Fig. 11 a demonstrates that most contacts involving some binder stay in the431

soft branch and that the binder plays a dominant role for a large portion of the compaction.432

Recall, that the internal deformation of the graphite flakes also plays an important role on433

the total macroscopic stress (Fig. 8), but is not accounted in the contacts involving binder434
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Figure 11: DEM close-die compaction simulation (target σz= 35 MPa, Mix R): fraction of contacts in a) the

soft branch, and b) in the hard branch. B1 and B2 are the total number of contacts in the soft and hard

branch, respectively.

shown in Fig. 11.435

The fraction of contacts in branch 2 depends primarily on the volume fraction of binder436

(Fig. 12). A higher volume fraction of binder is associated, for a given stress or relative437

density, with a smaller fraction of contacts transitioning to branch 2 (hard phase). This is438

expected as the macroscopic deformation required to reach the critical indentation locally439

must be greater for a thicker binder coating.440

We have also observed, that for a given relative density or a given stress, increasing the441

binder stiffness results in less contacts in branch 2. This is because reaching the critical442

indention becomes less frequent with stiffer binder. In any case, the binder stiffness has a443

significant impact on the macroscopic compaction stress (as indicated by Fig. 7), as a large444

majority of contacts remain in branch 1 dominated by the binder stiffness (Fig. 11).445

7. Conclusions446

In the present work, an original approach was developed based on a Representative Vol-447

ume Element (RVE) to mimic the complex microstructure of model carbon-bonded alumina448

refractory composites. The compaction of the numerical microstructure was simulated using449

the discrete element method (DEM). Four compositions were studied by varying the volume450
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Figure 12: Evolution of the relative density (RD) of each composite, at 35 MPa, and the % of contacts in

branch 2 (hard) at the end of the compaction.

fraction of each phase, within the typical range that is of interest for industrial applications.451

The composite in DEM was modeled by a mixture of single fine particles and bonded particle452

clusters (coarse alumina and graphite). For this purpose, a new contact models was devel-453

oped to take into account the binder phase within the DEM framework. We have also shown454

the importance of carefully choosing the minimum number of discrete elements to ensure455

a good compromise between CPU time and model accuracy. When dealing with complex456

microstructures, this verification step is crucial as too small an RVE would lead to inaccurate457

results.458

The main conclusion of this work is that for compositions of the order of 20 % volume459

fraction of binder, the binder stiffness dominates the mechanical response of the composite460

during compaction. Accordingly, varying the binder volume fraction will impact significantly461

the compaction behaviour. The DEM framework that we propose allows for a wealth of462

information to be obtained, leading to a more subtle picture of how these composites densify463

under compaction. In particular, it could lead to microstructure optimization to attain larger464

RDs for a given compacting stress.465

Seeking simplicity, both in the implementation and the post-calculation analysis, we have466

chosen to represent coarse alumina particles as monosize spheres. The graphite was modelled467

by a rectangular geometry, also with monosize distribution. The real composite microstruc-468
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ture is clearly much more complex. It is characterized by irregular coarse alumina grains469

and graphite flakes with some dispersion in size and shape. We believe that the main results470

obtained here should remain valid for more realistic microstuctures. Ideally, the angular471

coarse alumina particles could be modelled by using X-ray tomography images. A number472

of individual real coarse alumina particles could be included in the simulation as proposed in473

[38].474

Coarse and fine alumina hard particles were coated by an elastoplastic soft binder in DEM.475

This model aimed to represent in a simplified manner the presence of a soft coating on hard476

particles. The good qualitative and quantitative agreement with experimental compaction477

curves brings some confidence on the possibility of such a model to represent accurately a478

continuous matrix that cover most particles. The model includes some plasticity, once the479

contact has entered the hard-hard branch. It could be further improved by including some480

plasticity in the soft branch.481
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scale simulations of carbon nanotube assemblies, Journal of the Mechanics and Physics551

of Solids 61 (3) (2013) 762–782. doi:10.1016/j.jmps.2012.10.016.552

[25] B. V. Derjaguin, V. M. Muller, Y. P. Toporov, Effect of contact deformation on the553

adhesion of elastic solids, Journal of Colloid and Interface Science 53 (2) (1975) 314–554

326.555

[26] K. Johnson, Contact Mechanics, Cambridge University Press, 1987.556

[27] G. Jefferson, G. K. Haritos, R. M. McMeeking, The elastic response of a cohesive ag-557

gregate - A discrete element model with coupled particle interaction, Journal of the558

Mechanics and Physics of Solids 50 (12) (2002) 2539–2575.559

[28] D. Jauffres, C. L. Martin, A. Lichtner, R. K. Bordia, D. Jauffrès, C. L. Martin, A. Licht-560

ner, R. K. Bordia, Simulation of the toughness of partially sintered ceramics with realistic561

microstructures, Acta Mater. 60 (2012) 4685–4694.562

[29] C. L. Martin, D. Bouvard, G. Delette, Discrete element simulations of the compaction563

of aggregated ceramic powders, Journal of the American Ceramic Society 89 (11) (2006)564

3379–3387.565

[30] P. Pizette, C. L. Martin, G. Delette, F. Sans, T. Geneves, Green strength of binder-free566

ceramics, Journal of the European Ceramic Society 33 (5) (2013) 975–984.567

[31] D. O. Potyondy, P. A. Cundall, A bonded-particle model for rock, International Journal568

of Rock Mechanics and Mining Sciences 41 (8 SPEC.ISS.) (2004) 1329–1364.569

[32] J. Weber, Recherches concernant les contraintes intergranulaires dans les milieux pul-570

vérulents, Bulletin de liaison des Ponts et Chaussées, (1966) 1–20.571

29



[33] J. Christoffersen, A Micromechanical Description of Granular Material Behavior, Journal572

of Applied Mechanics 48 (1981) 67.573

[34] C. L. Martin, R. K. Bordia, Influence of adhesion and friction on the geometry of packings574

of spherical particles, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics575

77 (3) (2008) 1–8.576

[35] R. Kumar, S. Rommel, D. Jauffrès, P. Lhuissier, C. L. Martin, Effect of packing char-577

acteristics on the discrete element simulation of elasticity and buckling, International578

Journal of Mechanical Sciences 110 (2016) 14–21.579

[36] I. Agnolin, J.-N. Roux, Internal states of model isotropic granular packings. I. Assembling580

process, geometry, and contact networks, Phys. Rev. E 76 (2007) 61302.581

[37] K. Radi, D. Jauffrès, S. Deville, C. L. Martin, Elasticity and fracture of brick and mortar582

materials using discrete element simulations, Journal of the Mechanics and Physics of583

Solids 126 (2019) 101–116.584

[38] K. Radi, H. Saad, D. Jauffres, S. Meille, T. Douillard, S. Deville, C. L. Martin, Effect of585

microstructure heterogeneity on the damage resistance of nacre-like alumina: Insights586

from image-based discrete simulations, Scripta Materialia 191 (2021) 210–214.587

30


