SUPPORTING INFORMATION

Cluster Growth Reactions: Structures and Bonding of Metal-Rich Metallaheteroboranes Containing Heavier Chalcogen Elements

Chandan Nandi,^a Arindam Roy,^a Ketaki Kar,^a Marie Cordier^b and Sundargopal Ghosh^{*a}

^aDepartment of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India. Tel: +91 44-22574230; Fax: +91 44-22574202; E-mail: <u>sqhosh@iitm.ac.in</u>

^bUniversité de Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, F-35000 Rennes, France

Table of contents

I.1 Supplementary Data

- Table S1Selected structural parameters and ¹¹B NMR values for polyhedral and
macropolyhedral metallaboranes and metallaheteroboranes.
- Figure S1 Schematic representation of cluster fusion for **3-6**
- Figure S2 Molecular structure and labeling diagram of **3**
- Figure S3 Molecular structure and labeling diagram of 4
- Figure S4 Molecular structure and labeling diagram of **5**
- Figure S5 Molecular structure and labeling diagram of **6**
- Figure S6 Molecular structure and labeling diagram of 8
- Figure S7 Molecular structure and labeling diagram of **10**

I.2 Spectroscopic Details

ESI-MS spectrum of 3 in CH ₂ Cl ₂
¹ H NMR spectrum of 3 in CDCl ₃
Stacked ¹ H (bottom) and ¹ H{ ¹¹ B} NMR (top) spectrum of 3 in CDCl ₃
¹¹ B{ ¹ H} NMR spectrum of 3 in $CDCI_3$
${}^{1}H{}^{11}B{}^{-11}B{}^{1}H{}$ HSQC NMR spectrum of 3 in CDCl ₃
$^{13}C{^{1}H} NMR$ spectrum of 3 in CDCl ₃
IR spectrum of 3 in CH ₂ Cl ₂
ESI-MS spectrum of 4 in CH ₂ Cl ₂
¹ H NMR spectrum of 4 in CDCl ₃
Stacked ¹ H (bottom) and ¹ H{ ¹¹ B} NMR (top) spectrum of 4 in CDCl ₃
$^{11}\text{B}\{^{1}\text{H}\}$ NMR spectrum of $\textbf{4}$ in CDCl_3
Stacked plot of ^{11}B (red) and $^{11}\text{B}\{1\text{H}\}$ (blue) NMR spectrum of $\textbf{4}$ in CDCl3
${}^{1}H{}^{11}B{}^{-11}B{}^{1}H{}$ HSQC NMR spectrum of 4 in CDCl ₃
$^{13}C{^{1}H} NMR$ spectrum of 4 in CDCl ₃
IR spectrum of 4 in CH ₂ Cl ₂
ESI-MS spectrum of 5 in CH ₂ Cl ₂

- Figure S24 ¹H NMR spectrum of **5** in CDCl₃
- Figure S25 Stacked ¹H (bottom) and ¹H{¹¹B} NMR (top) spectrum of **5** in CDCl₃
- Figure S26 ${}^{11}B{}^{1}H$ NMR spectrum of **5** in CDCl₃
- Figure S27 Stacked plot of ¹¹B (red) and ¹¹B{1H} (blue) NMR spectrum of **5** in CDCl₃
- Figure S28 ¹H{¹¹B}-¹¹B{¹H} HSQC NMR spectrum of **5** in CDCl₃
- Figure S29 $^{13}C{^{1}H}$ NMR spectrum of **5** in CDCl₃
- Figure S30 IR spectrum of **5** in CH₂Cl₂
- Figure S31 ESI-MS spectrum of **6** in CH₂Cl₂
- Figure S32 ¹H NMR spectrum of **6** in CDCl₃
- Figure S33 Stacked ¹H (bottom) and ¹H{¹¹B} NMR (top) spectrum of **6** in CDCl₃
- Figure S34 ${}^{11}B{}^{1}H$ NMR spectrum of **6** in CDCl₃
- Figure S35 ${}^{1}H{}^{11}B{}^{-11}B{}^{1}H{}$ HSQC NMR spectrum of **6** in CDCl₃
- Figure S36 $^{13}C{^{1}H}$ NMR spectrum of **6** in CDCl₃
- Figure S37 IR spectrum of **6** in CH₂Cl₂
- Figure S38 ESI-MS spectrum of 8 in CH₂Cl₂
- Figure S39 ¹H NMR spectrum of **8** in CDCl₃
- Figure S40 ${}^{11}B{}^{1}H$ NMR spectrum of **8** in CDCl₃
- Figure S41 $^{1}H^{-11}B{^{1}H}$ HSQC NMR spectrum of **8** in CDCl₃
- Figure S42 ${}^{13}C{}^{1}H$ NMR spectrum of **8** in CDCl₃
- Figure S43 IR spectrum of **8** in CH₂Cl₂
- Figure S44 ESI-MS spectrum of **10** in CH₂Cl₂
- Figure S45 ¹H NMR spectrum of **10** in CDCl₃
- Figure S46 Stacked ¹H (bottom) and ¹H{¹¹B} NMR (top) spectrum of **10** in CDCl₃
- Figure S47 $^{11}B{^{1}H}$ NMR spectrum of **10** in CDCl₃
- Figure S48 $^{13}C{^{1}H}$ NMR spectrum of **10** in CDCl₃
- Figure S49 IR spectrum of **10** in CH₂Cl₂

II Computational Details

- Table S2 Selected geometrical parameters and Wiberg indices (WBIs) of **3'-6'**, **8'**, and **10'**.
- Table S3 Selected Wiberg bond indices (WBIs) of B-H and M-H for **3'-6'**.

- Table S4Calculated natural charges (q) and natural valence population (pop) of selected atomsfor compounds **3'** and **4'**.
- Table S5 Topological parameters at selected bond critical points (BCPs) of **3'-6'**, **8'**, and **10'**.
- Table S6 Calculated (DFT) energies of the HOMO and LUMO (eV) and HOMO-LUMO gaps ($\Delta E = E_{LUMO}-E_{HOMO}$, eV) of **3'-6'**, **8'**, and **10'**.
- Figure S50 Frontier molecular orbital diagram of **3'** and **4'**. Isosurfaces are plotted at an isovalue of ± 0.04 (e/bohr³)^{1/2}.
- Figure S51 Frontier molecular orbital diagram of **5'** and **6'**. Isosurfaces are plotted at an isovalue of ± 0.04 (e/bohr³)^{1/2}.
- Figure S52 Selected frontier molecular orbitals (a), (b) and (c) for **3**'; and (d), (e) and (f) for **4**'. Isosurfaces are plotted at an isovalue of ± 0.04 (e/bohr³)^{1/2}.
- Figure S53 Selected frontier molecular orbitals (a), (b) and (c) for **5**'; and (d), (e) and (f) for **6**'. Isosurfaces are plotted at an isovalue of ± 0.04 (e/bohr³)^{1/2}.
- Figure S54 Selected M-M bonding interaction (a) and (b) for **4**'; (c), (d) and (e) for **6**'. Isosurfaces are plotted at an isovalue of ± 0.04 (e/bohr³)^{1/2}.
- Figure S55 Selected frontier molecular orbitals (a), (b), (c), (d) and (e) for **8**'. Isosurfaces are plotted at an isovalue of ± 0.04 (e/bohr³)^{1/2}.
- Figure S56 Selected frontier molecular orbitals (a), (b), (c), (d) (e) and (f) for **10**'. Isosurfaces are plotted at an isovalue of ± 0.04 (e/bohr³)^{1/2}.
- Figure S57 Contour-line diagram of the Laplacian of electron density, $\nabla^2 \rho(\mathbf{r})$ of (a) Co-B-B and (b) B-B-Te-B-B planes for **4'** and (c) Co-Te-B plane for **6'**. The solid brown lines are bond paths, while orange spheres indicate the bond critical points. Area of charge concentration [$\nabla^2 \rho(\mathbf{r})$ <0] are indicated by solid lines and area of charge depletion [$\nabla^2 \rho(\mathbf{r})$ >0] are shown by dashed lines.
- Figure S58 Contour-line diagram of the Laplacian of electron density, $\nabla^2 \rho(r)$ of (a) B-S-Fe-S-B and (b) Co-B-Co planes for **10**[']. The solid brown lines are bond paths, while yellow and orange spheres indicate the ring and bond critical points respectively. Area of charge concentration [$\nabla^2 \rho(r)$ <0] are indicated by solid lines and area of charge depletion [$\nabla^2 \rho(r)$ >0] are shown by dashed lines.
- Figure S59 Optimized geometry of **3'**

- Figure S60 Optimized geometry of 4'
- Figure S61 Optimized geometry of **5**'
- Figure S62 Optimized geometry of **6**'
- Figure S63 Optimized geometry of **8'**
- Figure S64 Optimized geometry of **10**'

I.1 Supplementary Data

	•	Structura	l paramet	ters	Spectrosco		
Clusters	Av. d	d _{B-E} [Å] ^a	Av. d	d _{в-в} [Å]	¹¹ B NMR	t (ppm)	
	Expt.	Calc.	Expt.	Calc.	Expt.	Calc.	Ref.
3/3′	2.23	2.19	1.78	1.78	35.6, 30.4, 24.5, 2.6	36.4, 27.8, 25.8, 4.5	b
4/4´	2.42	2.43	1.77	1.79	38.9, 27.3, 26.6, 8.1	28.1, 22.1, 19.0, 4.6	b
5/5´	2.24	2.14	1.77	1.76	24.7, 23.5	27.4, 23.4	b
6/6	2.44	2.43	1.82	1.75	27.2 ^c	29.5, 29.1	b
8/8′	2.44	2.47	1.78	1.76	50.0, 39.4, 35.8, 14.9,	63.4, 40.7, 34.7,	b
					5.6	26.1, 18.4, 12.1,	
						11.3	
10/10 [′]	1.85	1.88	1.81	1.80	34.8, 30.7, 26.2, 6.9	43.1, 33.0, 19.2, 6.3	b
I	-	-	1.81	-	56.3, 37.8, 29.0, 25.4,	_d	1
					16.1, 14.2, 10.6, 3.8, -		
					10.6, -12.0		
П	1.87	1.90	1.92	-	23.6, 19.3, 17.8, 6.1,	_d	2
					2.3, -3.2, -4.2, -6.5, -		
					7.6, -10.2, -12.6, -		
					14.4, -15.6, -16.8, -		
					18.0, -35.7		
III	-	-	1.81	-	63.0, 26.9, 22.3, 15.7,	_d	3
					5.4, 0.6, -0.6, -6.9, -		
					9.9, -10.3, -12.9, -		
					17.0, -21.3, -28.2		
IV	2.24	-	1.81	-	39.4, 3.9	_d	4
v	2.51	-	1.81	-	-	_d	5
VI	2.35	-	1.80	-	-3.6, -8.5	_d	6

Table S1. Selected structural parameters and ¹¹B NMR values for polyhedral and macropolyhedral metallaboranes and metallaheteroboranes.

Av. = average, d = distance, ^aE = S, Se or Te, ^b this work, ^c accidental overlap of ¹¹B chemical shifts, ^{-d} no data available.

Figure S1. Schematic representation of cluster fusion for 3-6

Figure S2. Molecular structure and labeling diagram of **3**. Thermal ellipsoids of the core are set at the 40% probability level. Selected bond lengths [Å] and angles (deg): B5-B6 1.784(12), B1-B2 1.773(12), B1-Co2 2.128(8), B1-Co5 2.135(9), B1-Co4 2.229(8), B6-Co6 2.216(9), B1-Se2 2.249(8), B2-Se1 2.282(8), B5-Se1 2.160(8); B2-B1-Co2 117.4(5), B2-B1-Co5 65.7(4), Co2-B1-Co5 122.4(4), B2-B1-Se2 115.0(5), Co2-B1-Se2 63.9(2), Co3-Co5-Co4 58.63(4), B2-Co5-B1 49.0(3).

Figure S3. Molecular structure and labeling diagram of **4**. Thermal ellipsoids of the core are set at the 40% probability level. Selected bond lengths [Å] and angles (deg): B1-B6 1.741(5), B4-B5 1.773(5), B1-Co2 2.139(4), B1-Co4 2.126(4), B1-Te1 2.439(4), B4-Te2 2.414(4), B4-Co1 2.150(4), Co5-Co6 2.4319(7), Co4-Te1 2.5058(5), Co3-Co4 2.7470(7); B6-B1- Co4 66.03(18), B6-B1-Co2 118.9(2), B6-B1-Te1 117.5(2), Co4-B1-Te1 66.16(11), Co5-B1-Te1 100.67(15), B5-B4-Co1 117.8(2), Te2-Co3-Te1 107.553(19).

Figure S4. Molecular structure and labeling diagram of **5**. Thermal ellipsoids of the core are set at the 40% probability level. Selected bond lengths [Å] and angles (deg): Co1-B2 2.118(9), Co1-Se1 2.3177(18), Co2-Co3 2.4896(17), Co3-B2 2.117(10), Co3-Co3' 2.651(3), Se1-B2 2.242(9), B2-B2' 1.73(2); B2'-Co1'-B2'' 94.2(5), B2-Co1-Se1 60.5(3), B2-Co2-Co2' 81.0(3), B2-Co2-Co3 52.9(2), Co2-Co3-Co2' 58.33(6).

Figure S5. Molecular structure and labeling diagram of **6**. Thermal ellipsoids of the core are set at the 40% probability level. Selected bond lengths [Å] and angles (deg): Te1-B1 2.444(5), Te1-Co2 2.4646(6), Te1-Co1 2.4661(9), Co1-B1 2.141(5), Co2-B1^{'''} 2.137(5), Co2-Co3^{''} 2.4901(9), Co2-Co2['] 2.7938(15); B1-Te1-B1^{'''} 81.7(2), B1-Te1-Co2['] 51.61(11), Co2-Te1-Co2['] 69.05(3), B1-Te1-Co1 51.69(11), Co2-Te1-Co1 99.28(3), B1-Co1-Te1 63.63(12).

Figure S6. Molecular structure and labeling diagram of **8**. Thermal ellipsoids of the core are set at the 40% probability level. One CH₂Cl₂ molecule is omitted for clarity. Selected bond lengths (Å) and angles (°): Co1-B3 2.103(7), Co1-B7 2.197(7), Co1-Te1 2.4692(9), Co2-B2 2.026(7), Ru1-Te1 2.6571(7), Ru1-B7 2.451(7), Ru1-Ru3 2.8175(7), Ru2-Ru3 2.7242(7), Ru3-Te1 2.6674(6), Te1-B3 2.397(7); B3-Co1-B7 94.2(3), B7-Co1-Te1 64.24(19).

Figure S7. Molecular structure and labeling diagram of **10**. Thermal ellipsoids of core are set at the 40% probability level. One CH₂Cl₂ molecule is omitted for clarity. Selected bond lengths (Å) and angles (°): Co1-B3' 2.072(7), Co1-B2 2.095(5), Co1'-S1' 2.2081(17), Fe1-S1 2.3033(18), S1-B3 1.867(7), B3-B3' 1.857(13), S2-B3 1.856(7), S2-C13 1.817(6), B3-B4 1.799(10); B4-Co1-B1 87.7(3), B3-Co1-S1 51.6(2), B4-Co1'-S1' 92.3(3), S1-Fe1-S1' 92.78(9), S2'-B3'-S1' 118.4(4), S2-C13-S2' 111.6(5).

Figure S10. Stacked ¹H (bottom) and ¹H{¹¹B} NMR (top) spectrum of **3** in CDCl₃ (*Co-<u>H</u>-B)

Figure S12. ${}^{1}H{}^{11}B{}^{-11}B{}^{1}H{}$ HSQC NMR spectrum of 3 in CDCl₃

Figure S13. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of 3 in CDCl_3

Figure S15. ESI-MS spectrum of 4 in CH₂Cl₂

Figure S17. Stacked ¹H (bottom) and ¹H{¹¹B} NMR (top) spectrum of 4 in CDCl₃ (*Co-<u>H</u>-B)

Figure S18. ¹¹B{¹H} NMR spectrum of **4** in CDCl₃⁷

Figure S19. Stacked plot of ${}^{11}B$ (red) and ${}^{11}B{}^{1}H$ (blue) NMR spectrum of 4 in CDCl₃⁷

Figure S20. $^1H\{^{11}B\}\text{-}^{11}B\{^{1}H\}$ HSQC NMR spectrum of 4 in CDCl3

Figure S21. $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum of 4 in CDCl_3

Figure S24. ¹H NMR spectrum of 5 in CDCl₃ (*inseparable impurities)

Figure S25. Stacked ¹H (bottom) and ¹H $\{^{11}B\}$ NMR (top) spectrum of 5 (^{*}Co-<u>H</u>-B)

Figure S27. Stacked plot of ¹¹B (red) and ¹¹B $\{^{1}H\}$ (blue) NMR spectrum of 5 in CDCl₃⁷

Figure S28. ${}^{1}H{}^{11}B{}^{-11}B{}^{1}H{}$ HSQC NMR spectrum of 5 in CDCl₃

Figure S29. $^{13}C{^{1}H}$ NMR spectrum of 5 in CDCl₃

Figure S31. ESI-MS spectrum of 6 in CH₂Cl₂

Figure S32. ¹H NMR spectrum of $\bf{6}$ in CDCl₃

Figure S33. Stacked ¹H (bottom) and ¹H{¹¹B} NMR (top) spectrum of **6** in CDCl₃(*Co-<u>H</u>-B)

Figure S34. ${}^{11}B{}^{1}H{}$ NMR spectrum of 6 in CDCl₃⁷

Figure S35. ${}^{1}H{}^{11}B{}^{-11}B{}^{1}H{}$ HSQC NMR spectrum of **6** in CDCl₃

Figure S36. $^{13}C{^{1}H}$ NMR spectrum of 6 in CDCl₃

Figure S37. IR spectrum of ${\bf 6}$ in CH_2CI_2

Figure S38. ESI-MS spectrum of 8 in CH₂Cl₂

Figure S43. IR spectrum of 8 in CH₂Cl₂

Figure S46. Stacked ¹H (bottom) and ¹H{¹¹B} NMR (top) spectrum of **10** in CDCl₃

Computational Details: Optimizations of clusters are done using the Gaussian 16 Ш program.⁸ The gradient-corrected B3LYP⁹ functional along with def2-TZVP basis set from EMSL¹⁰ Basis Set Exchange Library had been employed for the optimization. Starting from X-ray crystallographic coordinates, the model compounds were fully optimized without any solvent effect in the gaseous state. The calculations were performed with the Cp analogs instead of Cp* for clusters 3-6 and 8 to reduce computational effort. Frequency calculations were carried out for verification of the nature of the stationary state and to confirm the absence of any imaginary frequency, which eventually confirmed the minima on the potential energy hypersurface for all structures. NMR chemical shifts were computed by employing the gaugeincluding atomic orbitals (GIAOs) method¹¹ using the optimized geometries at the B3LYP/def2-TZVP level. Chemical shifts corresponding to ¹¹B NMR were computed in relation to B₂H₆ (B3LYP shielding constant for ¹¹B NMR: 89.3 ppm) and were then converted to the standard [BF₃·OEt₂] scale by adding 16.6 ppm (the experimental δ (¹¹B) value of B₂H₆) to the computed values.¹² Wiberg bond indices (WBI)¹³ were obtained from natural bond orbital analysis (NBO)¹⁴. All the optimized structures and orbital pictures were created with the Chemcraft¹⁵ visualization program. Two-dimensional electron density and Laplacian electronic distribution plots were generated using the Multiwfn package.¹⁶

	3/3′			4/4′			
	Expt.	Cal.	WBI		Expt.	Cal.	WBI
Co5-Se1	2.388	2.391	0.480	Co4-Te1	2.505	2.536	0.527
Co5-Co4	2.505	2.502	0.409	Co4-B1	2.126	2.103	0.425
Co3-Co4	2.435	2.435	0.402	Co3-Co4	2.747	2.798	0.352
Co5-B1	2.135	2.095	0.378	Co5-Co6	2.431	2.414	0.475
B4-B6	1.791	1.803	0.552	Te2-B6	2.434	2.447	0.532
Se1-B5	2.160	2.163	0.662	B3-B4	1.778	1.776	0.589
Co4-B1	2.229	2.287	0.266	Co1-Te2	2.474	2.524	0.509
		5/5′			6/6′		
	Expt.	Cal.	WBI		Expt.	Cal.	WBI
Se1-B2	2.242	2.214	0.564	Co2-Co3	2.490	2.507	0.386
Se1-Co1	2.317	2.361	0.525	B2-B2	1.834	1.814	0.526
Co3-B2	2.117	2.100	0.380	Te1-B1	2.444	2.428	0.492
B1-B2	1.756	1.776	0.566	Te1-Co2	2.464	2.492	0.524
Co2-Co3	2.489	2.496	0.405	Co2-B1	2.137	2.119	0.399
Co2-Co2	2.426	2.434	0.406	B1-B2	1.756	1.763	0.589
Se1-Co3	2.338	2.362	0.499	Te1-Co1	2.466	2.518	0.523
		8/8′			10/10	ŕ	
	Expt.	Cal.	WBI		Expt.	Cal.	WBI
Te1-Ru3	2.667	2.705	0.540	Fe1-S1	2.303	2.358	0.602
Ru2-Ru3	2.724	2.761	0.408	S1-B3	1.867	1.897	0.909
Ru2-B3	2.305	2.358	0.310	S2-B3	1.856	1.850	1.138
B2-B3	1.700	1.713	0.648	B1-B2	1.801	1.787	0.548
Co1-Te1	2.469	2.508	0.538	Co1-B2	2.095	2.099	0.404
Co2-B4	2.073	2.085	0.423	C13-S2	1.817	1.828	0.997
Te1-B3	2.397	2.418	0.535	Fe1-B1	2.248	2.258	0.347

Table S2. Selected geometrical parameters and Wiberg indices (WBIs) of 3'-6', 8', and 10'.

	3/3′	4/4	4′
	WBI		WBI
$B2-H_b$	0.678	B1-H _b	0.685
B5-H _t	0.945	B5-H _t	0.934
$Co3-H_{b}$	0.225	Co5-H _b	0.224
	5/5´	6/0	5´
	WBI		WBI
B2-H	0.687	B1-H _b	0.677
B1-H	0.936	B2-Ht	0.934
Co2-H	0.218	Co3-H _b	0.229

Table S3. Selected Wiberg bond indices (WBIs) of B-H and M-H for 3'-6'.

^b bridging hydrogen; ^t terminal hydrogen

Table S4. Calculated natural charges (q) and natural valence population (pop) of selected atoms for compounds **3**' and **4**'.

	3′			4′	
	q	рор		q	рор
Co5	-0.994	9.977	Co4	-0.547	9.563
Co6	-1.154	10.144	Co3	-0.809	9.818
B1	0.031	2.907	B6	-0.248	3.197
B2	0.031	2.907	B1	-0.248	3.197
B5	-0.087	3.035	B5	-0.205	3.164
B6	-0.085	3.034	B4	-0.205	3.164
Se1	0.731	5.230	Te1	0.818	5.161

Clusters	ВСР	ρ(r)	H(r)	∇²ρ(r)	ELF
3′	Co3-Co5	0.490	-0.112	0.586	0.345
	Se1-Co5	0.687	-0.187	0.146	0.263
4′	Co4-Co5	0.496	-0.176	0.313	0.363
	Te1-Co4	0.615	-0.170	0.991	0.301
5′	Co2-Co3	0.492	-0.113	0.606	0.338
	Co3-Se1	0.720	-0.207	0.153	0.268
6′	Co2-Co3	0.478	-0.108	0.602	0.329
	Co2-Te1	0.670	-0.202	0.984	0.333
8′	Ru2-Ru3	0.522	-0.132	0.576	0.363
	Te1-Ru1	0.582	-0.145	0.869	0.324
10′	Fe1-S1	0.648	-0.176	0.165	0.205
_	Co1-S1	0.798	-0.258	0.198	0.241

Table S5. Topological parameters at selected bond critical points (BCPs) of 3'-6', 8', and 10'.

Table S6. Calculated (DFT) energies of the HOMO and LUMO (eV) and HOMO-LUMO gaps ($\Delta E = E_{LUMO}-E_{HOMO}$, eV) of **3'-6'**, **8'**, and **10'**.

Clusters	HOMO (eV)	LUMO (eV)	ΔE _{H-L} (eV)
3′	-5.978	-3.401	2.577
4′	-5.823	-3.323	2.500
5´	-6.112	-3.668	2.444
6′	-6.122	-3.702	2.420
8′	-5.796	-2.667	3.129
10′	-5.291	-2.418	2.873

Figure S50. Frontier molecular orbital diagram of **3**' and **4**'. Isosurfaces are plotted at an isovalue of ± 0.04 (e/bohr³)^{1/2}.

Figure S51. Frontier molecular orbital diagram of **5**' and **6**'. Isosurfaces are plotted at an isovalue of ± 0.04 (e/bohr³)^{1/2}.

Figure. **S52.** Selected frontier molecular orbitals (a), (b) and (c) for **3**'; and (d), (e) and (f) for **4**'. Isosurfaces are plotted at an isovalue of ± 0.04 (e/bohr³)^{1/2}.

Figure. **S53.** Selected frontier molecular orbitals (a), (b) and (c) for **5**'; and (d), (e) and (f) for **6**'. Isosurfaces are plotted at an isovalue of ± 0.04 (e/bohr³)^{1/2}.

Figure S54. Selected M-M bonding interaction (a) and (b) for **4**'; (c), (d) and (e) for **6**'. Isosurfaces are plotted at an isovalue of ± 0.04 (e/bohr³)^{1/2}.

Figure. S55. Selected frontier molecular orbitals (a), (b), (c), (d) and (e) for **8'**. Isosurfaces are plotted at an isovalue of ± 0.04 (e/bohr³)^{1/2}.

Figure. **S56.** Selected frontier molecular orbitals (a), (b), (c), (d) (e) and (f) for **10**[']. Isosurfaces are plotted at an isovalue of ± 0.04 (e/bohr³)^{1/2}.

Figure. **S57.** Contour-line diagram of the Laplacian of electron density, $\nabla^2 \rho(\mathbf{r})$ of (a) Co1-B2-B6 and (b) B3-B4-Te2-B6-B2 planes for **4'** and (c) Co1-Te2-B6 plane for **6'**. The solid brown lines are bond paths, while orange spheres indicate the bond critical points. Area of charge concentration $[\nabla^2 \rho(\mathbf{r})<0]$ are indicated by solid lines and area of charge depletion $[\nabla^2 \rho(\mathbf{r})>0]$ are shown by dashed lines.

Figure. S58. Contour-line diagram of the Laplacian of electron density, $\nabla^2 \rho(\mathbf{r})$ of (a) B3-S1-Fe1-S1-B3 and (b) Co1-B3-S1 planes for **10'**. The solid brown lines are bond paths, while yellow and orange spheres indicate the ring and bond critical points respectively. Area of charge concentration $[\nabla^2 \rho(\mathbf{r})<0]$ are indicated by solid lines and area of charge depletion $[\nabla^2 \rho(\mathbf{r})>0]$ are shown by dashed lines.

Figure S59. Optimized geometry of 3' T. E. = -14547.5149 a. u. Cartesian coordinates for the calculated structure of 3' (in Å).

В	0.239486000	-0.862345000	0.832149000	С	-2.634771000	2.683939000	0.589580000
Н	-1.101129000	-1.559769000	1.405330000	С	-3.511715000	1.718789000	-1.796989000
В	0.902344000	0.000459000	-1.873354000	Со	1.621409000	1.878320000	-1.239171000
Н	0.690308000	0.003036000	-3.047308000	Со	1.610975000	-1.883435000	-1.245520000
В	2.543761000	-0.005608000	-1.125667000	Со	1.580333000	-0.006356000	2.217194000
Н	3.568599000	-0.006872000	-1.735659000	Со	-0.815381000	0.001754000	0.987531000
В	2.587034000	0.876384000	0.423713000	Со	-2.467997000	-1.211460000	-0.447772000
Н	3.548066000	1.492558000	0.747878000	Со	-2.461595000	1.224207000	-0.447603000
В	2.583308000	-0.892744000	0.420478000	0	4.171202000	0.017289000	3.507577000
Н	3.541969000	-1.512224000	0.745340000	0	0.344416000	-0.048754000	4.862556000
В	-0.234480000	0.867013000	-0.830369000	0	-2.508136000	0.018324000	3.383119000
Н	-1.092316000	1.570397000	-1.401934000	0	-2.811689000	-3.570024000	1.268147000
С	1.124702000	3.866342000	-1.811352000	0	-4.735617000	0.011880000	0.858710000
С	1.130167000	3.018737000	-2.942769000	0	-2.807081000	3.590959000	1.257733000
С	2.434920000	2.461069000	-3.062675000	0	-4.186392000	-2.033629000	-2.660826000
С	3.239904000	2.988060000	-2.015400000	0	-4.170307000	2.039440000	-2.670146000
С	2.428231000	3.845263000	-1.237198000	Н	2.731300000	4.361664000	-0.340950000
С	1.126739000	-2.997233000	-2.967656000	Н	4.266255000	2.730527000	-1.815391000
С	1.084232000	-3.855492000	-1.845187000	Н	0.274509000	4.405872000	-1.426782000
С	2.377675000	-3.866240000	-1.248526000	Н	0.287129000	2.793986000	-3.574508000
С	3.220399000	-3.018702000	-2.004400000	Н	2.752057000	1.751987000	-3.808020000
С	2.444717000	-2.465554000	-3.059952000	Н	0.216641000	-4.381058000	-1.480711000
С	3.148925000	0.008549000	3.002645000	Н	0.299495000	-2.748684000	-3.611211000
С	0.775635000	-0.030565000	3.807538000	Н	2.789170000	-1.756025000	-3.792640000
С	-1.832025000	0.010842000	2.463653000	Н	4.248294000	-2.784638000	-1.784399000
С	-2.640382000	-2.666159000	0.595385000	Н	2.654644000	-4.397424000	-0.352454000
С	-3.715960000	0.008909000	0.295463000	Se	0.714486000	1.836785000	0.938473000
С	-3.523756000	-1.709817000	-1.791922000	Se	0.707471000	-1.841764000	0.932958000

Figure S60. Optimized geometry of **4**' T. E. = -10277.7761 a. u.

Cartesian coordinates for the calculated structure of 4' (in Å).

В	0.366666000	0.862061000	-0.903304000	С	2.725325000	-2.680243000	0.605425000
Н	1.268788000	1.560197000	-1.446816000	С	3.675838000	-1.614034000	-1.711047000
В	-0.711149000	0.000163000	-2.000439000	Со	-1.476988000	-1.878055000	-1.420080000
Н	-0.438756000	0.000257000	-3.178564000	Со	-1.477696000	1.878090000	-1.420014000
В	-2.416254000	-0.000142000	-1.386174000	Со	-1.749750000	-0.000420000	2.017663000
Н	-3.376718000	-0.000356000	-2.119954000	Со	0.839492000	0.000011000	0.956514000
В	-2.633075000	-0.881428000	0.140882000	Со	2.545927000	1.207466000	-0.401169000
Н	-3.643907000	-1.493008000	0.372346000	Со	2.546344000	-1.206712000	-0.401352000
В	-2.633471000	0.880926000	0.140925000	0	-4.461503000	-0.002664000	3.038293000
Н	-3.644513000	1.492006000	0.372780000	0	-0.650451000	0.001329000	4.733220000
В	0.367175000	-0.861284000	-0.903506000	0	2.315232000	0.001139000	3.500258000
Н	1.269430000	-1.558864000	-1.447538000	0	2.915312000	3.602592000	1.260206000
С	-0.932646000	-3.852993000	-1.998120000	0	4.668896000	0.000609000	1.147794000
С	-0.848814000	-2.977273000	-3.111076000	0	2.914206000	-3.600934000	1.261526000
С	-2.144817000	-2.412721000	-3.321019000	0	4.389618000	1.881533000	-2.565873000
С	-3.034856000	-2.964083000	-2.350965000	0	4.391377000	-1.883512000	-2.564120000
С	-2.285496000	-3.843083000	-1.526898000	Н	-2.667471000	-4.396257000	-0.670172000
С	-0.851454000	2.975764000	-3.112596000	Н	-4.085643000	-2.709868000	-2.229412000
С	-0.932158000	3.852124000	-1.999912000	Н	-0.108892000	-4.417533000	-1.563775000
С	-2.284124000	3.844011000	-1.526177000	Н	0.049598000	-2.740273000	-3.677491000
С	-3.036103000	2.965521000	-2.348442000	Н	-2.405226000	-1.681992000	-4.083017000
С	-2.148538000	2.412670000	-3.319885000	Н	-0.106912000	4.415828000	-1.567318000
С	-3.387230000	-0.001729000	2.640758000	Н	0.045611000	2.737377000	-3.680557000
С	-1.043473000	0.000651000	3.657156000	Н	-2.411228000	1.681912000	-4.081073000
С	1.733998000	0.000685000	2.511626000	Н	-4.086968000	2.712621000	-2.224815000
С	2.725802000	2.681552000	0.604787000	Н	-2.663824000	4.398098000	-0.669027000
С	3.710113000	0.000499000	0.476089000	Те	-0.688704000	2.023843000	0.973740000
С	3.674600000	1.613231000	-1.711987000	Те	-0.687988000	-2.024150000	0.973637000

Figure S61. Optimized geometry of 5'

T. E. = -17766.7714 a. u.

Cartesian coordinates for the calculated structure of $\mathbf{5'}$ (in Å).

Со	-1.885415000	1.927692000	0.000000000	С	-3.865329000	2.238117000	-0.712144000
Со	-1.217185000	-0.441496000	3.429901000	С	-3.021307000	3.284174000	-1.152004000
Со	0.000033000	-1.084163000	1.347491000	C	-2.484201000	3.923170000	0.000000000
Se	-1.828276000	-0.433221000	0.00000000	С	0.000079000	-2.867230000	1.567337000

С	-2.693283000	-1.440209000	3.176678000	С	2.693359000	-1.440097000	-3.176671000
С	0.000044000	-1.663662000	4.218083000	С	0.000044000	-1.663662000	-4.218083000
С	-1.686256000	0.341352000	4.959043000	С	1.686259000	0.341410000	-4.959044000
0	-1.989414000	0.851829000	5.931499000	0	1.989381000	0.851878000	-5.931516000
0	0.000063000	-2.622992000	4.878410000	0	0.000063000	-2.622992000	-4.878410000
0	-3.607911000	-2.111543000	3.073408000	0	3.608021000	-2.111383000	-3.073378000
0	-0.000219000	-3.997347000	1.714749000	0	-0.000219000	-3.997347000	-1.714749000
В	-0.863423000	0.820307000	1.549549000	С	3.865255000	2.238276000	-0.712144000
В	-0.000037000	2.231857000	0.902487000	С	3.021188000	3.284297000	-1.152004000
Н	-0.000057000	3.222042000	1.567284000	Со	1.217220000	-0.441449000	3.429897000
Н	-1.549930000	1.008001000	2.573115000	С	2.693359000	-1.440097000	3.176671000
Se	1.828314000	-0.433149000	0.00000000	С	1.686259000	0.341410000	4.959044000
В	0.863404000	0.820339000	-1.549547000	0	1.989381000	0.851878000	5.931516000
В	-0.000037000	2.231857000	-0.902487000	0	3.608021000	-2.111383000	3.073378000
Н	-0.000057000	3.222042000	-1.567284000	Со	-1.217185000	-0.441496000	-3.429901000
Н	1.549903000	1.008062000	-2.573115000	С	-2.693283000	-1.440209000	-3.176678000
В	0.863404000	0.820339000	1.549547000	С	-1.686256000	0.341352000	-4.959043000
Н	1.549903000	1.008062000	2.573115000	0	-1.989414000	0.851829000	-5.931499000
В	-0.863423000	0.820307000	-1.549549000	0	-3.607911000	-2.111543000	-3.073408000
Н	-1.549930000	1.008001000	-2.573115000	Н	1.782020000	4.739379000	0.000000000
С	-3.865329000	2.238117000	0.712144000	Н	2.785537000	3.525126000	-2.175065000
С	-3.021307000	3.284174000	1.152004000	Н	4.391735000	1.540082000	-1.342412000
Со	1.885352000	1.927768000	0.00000000	Н	4.391735000	1.540082000	1.342412000
Со	1.217220000	-0.441449000	-3.429897000	Н	2.785537000	3.525126000	2.175065000
Со	0.000033000	-1.084163000	-1.347491000	Н	-2.785667000	3.525012000	-2.175065000
С	3.865255000	2.238276000	0.712144000	Н	-1.782197000	4.739306000	0.000000000
С	3.021188000	3.284297000	1.152004000	Н	-2.785667000	3.525012000	2.175065000
С	2.484057000	3.923272000	0.00000000	Н	-4.391778000	1.539902000	1.342415000
С	0.000079000	-2.867230000	-1.567337000	Н	-4.391778000	1.539902000	-1.342415000

Figure S62. Optimized geometry of 6'

T. E. = -13499.8216 a. u.

Cartesian coordinates for the calculated structure of ${\bf 6'}$ (in Å).

Те	1.986572000	0.000000000	-0.583952000	Со	1.220324000	-3.496050000	-0.355809000
Со	1.890860000	0.000000000	1.932508000	0	0.000000000	1.781821000	-3.986482000
Со	0.00000000	1.424987000	-1.068903000	0	3.639483000	-3.319281000	-2.009885000

0	1.917604000	-5.972581000	1.022151000	0	0.000000000	4.932390000	-2.545572000
0	0.000000000	-4.932390000	-2.545572000	С	-2.452667000	0.000000000	3.947678000
С	2.452667000	0.00000000	3.947678000	С	-3.000184000	1.151923000	3.319208000
С	3.000184000	-1.151923000	3.319208000	С	-3.862262000	0.713197000	2.288420000
С	3.862262000	-0.713197000	2.288420000	С	0.000000000	-1.648558000	-2.854324000
С	0.000000000	1.648558000	-2.854324000	С	-2.713537000	3.341141000	-1.345005000
С	2.713537000	-3.341141000	-1.345005000	С	-1.641533000	5.010176000	0.478221000
С	1.641533000	-5.010176000	0.478221000	С	0.000000000	4.274615000	-1.584099000
С	0.00000000	-4.274615000	-1.584099000	С	-3.000184000	-1.151923000	3.319208000
В	0.856390000	-1.588532000	0.863429000	С	-3.862262000	-0.713197000	2.288420000
Н	1.526782000	-2.620690000	1.084243000	Со	1.220324000	3.496050000	-0.355809000
В	0.00000000	-0.907156000	2.245771000	0	3.639483000	3.319281000	-2.009885000
Н	0.000000000	-1.533200000	3.261794000	0	1.917604000	5.972581000	1.022151000
Те	-1.986572000	0.000000000	-0.583952000	С	2.713537000	3.341141000	-1.345005000
В	-0.856390000	1.588532000	0.863429000	С	1.641533000	5.010176000	0.478221000
Н	-1.526782000	2.620690000	1.084243000	Со	-1.220324000	-3.496050000	-0.355809000
В	0.00000000	0.907156000	2.245771000	0	-3.639483000	-3.319281000	-2.009885000
Н	0.000000000	1.533200000	3.261794000	0	-1.917604000	-5.972581000	1.022151000
В	0.856390000	1.588532000	0.863429000	С	-2.713537000	-3.341141000	-1.345005000
Н	1.526782000	2.620690000	1.084243000	С	-1.641533000	-5.010176000	0.478221000
В	-0.856390000	-1.588532000	0.863429000	Н	-1.735739000	0.000000000	4.750585000
Н	-1.526782000	-2.620690000	1.084243000	Н	-2.761382000	2.174823000	3.557253000
С	3.000184000	1.151923000	3.319208000	Н	-4.411297000	1.344582000	1.608893000
С	3.862262000	0.713197000	2.288420000	Н	-4.411297000	-1.344582000	1.608893000
Со	-1.890860000	0.000000000	1.932508000	Н	-2.761382000	-2.174823000	3.557253000
Со	0.000000000	-1.424987000	-1.068903000	Н	1.735739000	0.000000000	4.750585000
Со	-1.220324000	3.496050000	-0.355809000	Н	2.761382000	-2.174823000	3.557253000
0	0.000000000	-1.781821000	-3.986482000	Н	4.411297000	-1.344582000	1.608893000
0	-3.639483000	3.319281000	-2.009885000	Н	4.411297000	1.344582000	1.608893000
0	-1.917604000	5.972581000	1.022151000	Н	2.761382000	2.174823000	3.557253000

Figure S63. Optimized geometry of 8'

T. E. = -4791.5563 a. u.

Cartesian coordinates for the calculated structure of ${f 8'}$ (in Å).

Со	-0.465942000	2.065625000	-1.600974000	Ru	-2.396219000	-1.023084000	0.368728000
Со	-0.060426000	1.774461000	2.105690000	Ru	2.898578000	-0.383605000	-0.147348000

Ru	0.412803000	-1.569215000	0.049102000	0	4.142505000	-2.353847000	1.799598000
Те	-1.043969000	-0.359223000	-1.883545000	0	5.231140000	1.631453000	-0.137672000
С	-0.776292000	3.160502000	3.537746000	В	-0.533264000	-0.208522000	1.717056000
С	-0.536892000	1.915575000	4.173737000	Н	-0.527066000	-0.748595000	2.775680000
С	0.837041000	1.602754000	4.023837000	В	0.924906000	0.446859000	0.905910000
С	1.453656000	2.662308000	3.302845000	Н	2.162575000	0.375453000	1.338936000
С	0.456620000	3.623269000	3.004123000	В	0.873234000	0.636035000	-0.796810000
С	-0.096964000	4.071188000	-2.016736000	Н	1.963431000	0.595029000	-1.449394000
С	0.800656000	3.277305000	-2.783357000	В	-1.862534000	1.069573000	1.328263000
С	0.030548000	2.455384000	-3.638042000	Н	-2.750651000	1.361138000	2.069627000
С	-1.346543000	2.754789000	-3.414649000	В	0.619322000	2.058680000	0.199313000
С	-1.425213000	3.756793000	-2.422690000	Н	1.524423000	2.834969000	0.141502000
С	3.667119000	-1.622193000	1.067663000	В	-1.105280000	2.427519000	0.426153000
С	4.356348000	0.902579000	-0.142520000	Н	-1.542357000	3.532408000	0.532782000
С	3.469444000	-1.439214000	-1.636214000	В	-2.187434000	1.310142000	-0.368527000
С	0.709021000	-2.685851000	1.534558000	Н	-3.192714000	1.657993000	-0.890282000
С	0.688306000	-3.047088000	-1.132165000	Н	0.413924000	1.722959000	-4.329930000
С	-2.987620000	-1.382367000	2.140472000	Н	1.874140000	3.274861000	-2.693869000
С	-2.347105000	-2.900114000	-0.098045000	Н	0.178820000	4.779752000	-1.254837000
С	-4.183781000	-0.709015000	-0.254749000	Н	-2.327881000	4.172546000	-2.008463000
0	-3.368868000	-1.593738000	3.192894000	Н	-2.183312000	2.281003000	-3.901775000
0	-5.251558000	-0.538684000	-0.616830000	Н	-1.730729000	3.650537000	3.443533000
0	-2.431809000	-4.006328000	-0.368430000	Н	-1.279960000	1.289923000	4.639228000
0	0.869224000	-3.941031000	-1.827803000	Н	1.320760000	0.704190000	4.369706000
0	0.864378000	-3.370046000	2.440313000	Н	2.488833000	2.712266000	3.007824000
0	3.818168000	-2.061026000	-2.524460000	Н	0.598593000	4.525521000	2.432927000

Figure S64. Optimized geometry of 10'

T. E. = -6540.8196 a. u.

Cartesian coordinates for the calculated structure of ${\bf 10}^{\prime}$ (in Å).

Со	0.930683000	-1.878374000	-0.672629000	С	0.804012000	-3.857932000	-1.485244000
Fe	-2.481805000	0.000189000	0.040167000	С	1.552762000	-3.875888000	-0.268631000
S	-0.920984000	-1.683329000	0.579518000	С	2.673102000	-3.034838000	-0.434134000
S	1.399231000	-1.524815000	2.789534000	С	2.605974000	-2.475916000	-1.744436000
0	-3.667652000	0.000266000	2.762336000	С	1.463361000	-3.015672000	-2.402403000
0	-4.209788000	2.052565000	-1.159882000	С	-3.192141000	0.000220000	1.730108000

С	-3.534805000	1.256442000	-0.704578000	0	-4.210155000	-2.051921000	-1.159800000
С	2.294755000	-0.000189000	3.255720000	C	0.804624000	3.857762000	-1.485396000
Н	2.406581000	-0.000204000	4.338295000	C	1.553235000	3.875725000	-0.268696000
Н	3.281039000	-0.000259000	2.796376000	C	2.673496000	3.034530000	-0.434000000
В	-0.889018000	-0.876843000	-1.298921000	C	2.606446000	2.475499000	-1.744258000
Н	-1.371977000	-1.528801000	-2.163642000	C	1.463982000	3.015353000	-2.402409000
В	0.645753000	-0.000038000	-1.565857000	C	-3.534978000	-1.255919000	-0.704573000
Н	1.051578000	-0.000060000	-2.685697000	Н	-0.130237000	4.367379000	-1.654744000
В	0.712284000	-0.926665000	1.178953000	Н	1.289089000	4.409336000	0.629664000
В	1.603844000	-0.000117000	-0.042439000	Н	3.406021000	2.801074000	0.320057000
Н	2.785224000	-0.000206000	0.129812000	Н	1.126454000	2.763884000	-3.393715000
S	-0.920729000	1.683471000	0.579541000	Н	3.302925000	1.769920000	-2.164911000
S	1.399462000	1.524576000	2.789555000	Н	1.125747000	-2.764242000	-3.393690000
В	-0.888887000	0.876998000	-1.298912000	Н	-0.130933000	-4.367447000	-1.654441000
Н	-1.371749000	1.529045000	-2.163620000	Н	1.288654000	-4.409391000	0.629804000
В	0.712430000	0.926556000	1.178961000	Н	3.405742000	-2.801408000	0.319818000
Со	0.930961000	1.878250000	-0.672609000	Н	3.302495000	-1.770461000	-2.165229000

References

- (1) Zafar, M.; Kar, S.; Nandi, C.; Ramalakshmi, R.; Ghosh, S. Cluster Fusion: Face-fused Macropolyhedral Tetracobaltaboranes. *Inorg. Chem.* **2019**, *58*, 47-51.
- (2) Kaur, P.; Thornton-Pett, M.; Clegg, W.; Kennedy, J. D. Macropolyhedral boron-containing cluster chemistry: nineteen-vertex [(PPh₃)NiS₂B₁₆H₁₂(PPh₃)] and eighteen-vertex S₂B₁₆H₁₄(PPh₃), J. Chem. Soc. Dalton Trans. **1996**, 1996, 4155–4157.
- (3) Barton, L.; Bould, J.; Kennedy, J. D.; Rath, N. P. Macropolyhedral boron-containing cluster chemistry. Isolation and characterisation of the eighteen-vertex nido-5'-iridaoctaborano [3',8':1',2]-closo-4-iridadodec aborane, [(CO)(PMe₃)₂IrB₁₆H₁₄Ir(CO)(PMe₃)₂]. J. Chem. Soc. Dalton Trans. **1996**, 3145–3149.
- (4) Nandi, C.; Kar, S.; Zafar, M.; Kar, K.; Roisnel, T.; Dorcet, V.; Ghosh, S. Chemistry of Dimetallaoctaborane(12) with Chalcogen-Based Borate Ligands: Obedient versus Disobedient Clusters. *Inorg. Chem.* 2020, *59*, 3537-3541.
- di Biani, F. F.; Laschi, F.; Zanello, P.; Ferguson, G.; Trotter, J.; O'Riordand, G. M.; Spalding, T. R. Synthesis, structure, spectroscopic and electrochemical study of the paramagnetic compound [2-(η⁷-C₇H₇)-7,11-F₂-2,1-*closo*-MoTeB₁₀H₈]. *J. Chem. Soc. Dalton Trans.* **2001**, 1520-1523.
- (6) Joseph, B.; Barik, S. K.; Ramalakshmi, R.; Kundu, G.; Roisnel, T.; Dorcet, V.; Ghosh, S. Chemistry of Triple-Decker Sandwich Complexes Containing Four-Membered Open B₂E₂ Rings (E = S or Se). *Eur. J. Inorg. Chem.* **2018**, 2045–2053.
- (7) (a) Led, J. J.; Gesmar, H. Application of the Linear Prediction Method to NMR Spectroscopy. *Chem. Rev.* 1991, *91*, 1413-1426. (b) Yang, L.; Simionescua, R.; Lough, A.; Yan, H. Some observations relating to the stability of the BODIPY uorophore under acidic and basic conditions. *Dyes and Pigments* 2011, *91*, 264-267. (c) Weiss, R.; Grimes, R. N. Sources of Line Width in Boron-11 Nuclear Magnetic Resonance Spectra. Scalar Relaxation and Boron-Boron Coupling in B₄H₁₀ and B₅H₉. *J. Am. Chem. Soc.* 1978, *100*, 1401-1405.

- (8) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, Jr., J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J. ; Fox, D. J. Gaussian16, Rev. B.01; Gaussian, Inc., Wallingford CT, 2016.
- (9) Lee, C.; Yang, W.; Parr. R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B.* **1988**, *37*, 785-789.
- (10) EMSL Basis Set Exchange Library. https://bse.pnl.gov/bse/portal.
- (11) (a) London, F. J., Théorie quantique des courants interatomiques dans les combinaisons aromatiques. J. Phys. Radium 1937, 8, 397-409. b) Ditchfield, R. Self-consistent perturbation theory of diamagnetism. Mol. Phys. 1974, 27, 789-807. c) Wolinski, K.; Hinton J. F.; Pulay, P. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. J. Am. Chem. Soc. 1990, 112, 8251-8260.
- (12) Onak, T. P.; Landesman, H. L.; Williams, R. E.; Shapiro, I. The B11 Nuclear Magnetic Resonance Chemical Shifts and Spin Coupling Values for Various Compounds. J. Phys. Chem. 1959, 63, 1533-1535.
- (13) Wiberg, K., Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutylcation and to bicyclobutane. *Tetrahedron* **1968**, *24*, 1083-1096.
- (14) (a) Weinhold, F.; Landis, C. R. Valency and bonding: A natural bond orbital donor-acceptor perspective; Cambridge University Press: Cambridge, U.K., 2005. (b) Reed, A. E.; Curtiss, L. A.; Weinhold, F. intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. *Chem. Rev.* **1988**, *88*, 899-926.
- (15) Chemcraft Graphical Software for Visualization of Quantum Chemistry Computations. https://www.chemcraftprog.com.
- (16) Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. **2012**, *33*, 580-592.